
Rev. 3.2 (2006-07) by Enrico Nardelli 19 -

William Stallings
Computer Organization
and Architecture

Chapter 9
Instruction Sets:
Characteristics and Functions

Rev. 3.2 (2006-07) by Enrico Nardelli 29 -

What is an instruction set?

• The complete collection of instructions that are
understood by a CPU

• The instruction set is the specification of the
expected behaviour of the CPU

• How this behaviour is obtained is a matter of
CPU implementation

Rev. 3.2 (2006-07) by Enrico Nardelli 39 -

Instruction Cycle

Rev. 3.2 (2006-07) by Enrico Nardelli 49 -

Elements of an Instruction

• Operation code (Opcode)
Do this

• Source Operand(s) reference(s)
To this (and this …)

• Result Operand reference
Put the answer here

• The Opcode is the only mandatory element

Rev. 3.2 (2006-07) by Enrico Nardelli 59 -

Instruction Types

• Data processing
• Data storage (main memory)
• Data movement (internal transfer and I/O)
• Program flow control

Rev. 3.2 (2006-07) by Enrico Nardelli 69 -

Instruction Representation

• There may be many instruction formats
• For human convenience a symbolic

representation is used for both opcodes (MPY)
and operand references (RA RB)

e.g. 0110 001000 001001 MPY RA RB
(machine code) (symbolic - assembly code)

16 bits

4 bits 6 bits 6 bits

Opcode Operand 1 Refer. Operand 2 Ref.

Rev. 3.2 (2006-07) by Enrico Nardelli 79 -

Design Decisions (1)

• Operation repertoire
How many opcodes?
What can they do?
How complex are they?

• Data types
• Instruction formats

Length and structure of opcode field
Number and length of reference fields

Rev. 3.2 (2006-07) by Enrico Nardelli 89 -

Design Decisions (2)

• Registers
Number of CPU registers available
Which operations can be performed on which
registers?

• Addressing modes (later…)

Rev. 3.2 (2006-07) by Enrico Nardelli 99 -

Types of Operand references

• Main memory
• Virtual memory (usually slower)
• Cache (usually faster)

• I/O device (slower)
• CPU registers (faster)

Rev. 3.2 (2006-07) by Enrico Nardelli 109 -

Number of References/
Addresses/ Operands

• 3 references
ADD RA RB RC RA+RB → RC

• 2 references (reuse of operands)

ADD RA RB RA+RB → RA

• 1 reference (some implicit operands)

ADD RA Acc+RA → Acc

• 0 references (all operands are implicit)

S_ADD Acc+Top(Stack) → Acc

Rev. 3.2 (2006-07) by Enrico Nardelli 119 -

How Many References

• More references
More complex (powerful?) instructions
Fewer instructions per program
Slower instruction cycle

• Fewer references
Less complex (powerful?) instructions
More instructions per program
Faster instruction cycle

Rev. 3.2 (2006-07) by Enrico Nardelli 129 -

Example

• Compute (A-B)/(A+(C*D)), assuming each of
them is in a read-only register which cannot be
modified.

• Additional registers X and Y can be used if
needed.

• Try to minimize the number of operations
• Incremental constraints on the number of

operands allowed for instructions

Rev. 3.2 (2006-07) by Enrico Nardelli 139 -

Example - 3 operands

• Syntax
<operation><destination><source-1><source-2>

• Meaning
<source-1><operation><source-2> → <destination>

• Solution
MUL X C D C*D → X
ADD X A X A+X → X
SUB Y A B A-B → Y
DIV X Y X Y/X → X

Rev. 3.2 (2006-07) by Enrico Nardelli 149 -

Example – 2 operands (1)

• Syntax
<operation><destination><source>

• Meaning (the destination is also the first source
operand)
<destination><operation><source> → <destination>

• Solution (using a new movement instruction)
MOV X C C → X
MUL X D X*D → X
ADD X A X+A → X
MOV Y A A → Y
SUB Y B Y-B → Y
DIV Y X Y/X → Y

Rev. 3.2 (2006-07) by Enrico Nardelli 159 -

Example – 2 operands (2)

• A different solution (a trick avoids using a new
movement instruction)

SUB X X X-X → X (set X to zero)
ADD X C X+C → X (move C to X)
MUL X D X*D → X
ADD X A X+A → X
SUB Y Y Y-Y → Y (set Y to zero)
ADD Y A Y+A → Y (move A to Y)
SUB Y B Y-B → Y
DIV Y X Y/X → Y

Rev. 3.2 (2006-07) by Enrico Nardelli 169 -

Example – 1 operand (1)
• Syntax

<operation><source>
• Meaning (a given register, e.g. the accumulator, is both

the destination and the first source operand)
<ACCUMULATOR><operation><source> → <ACCUMULATOR>

• Solution (using two new instructions to move data to
and from the accumulator)

LOAD C C → Acc
MUL D Acc*D → Acc
ADD A Acc+A → Acc
STORE X Acc → X
LOAD A A → Acc
SUB B Acc-B → Acc
DIV X Acc/X → Acc

Rev. 3.2 (2006-07) by Enrico Nardelli 179 -

Example – 1 operand (2)

• A different solution (assumes at the beginning X and Y
and the accumulator store zero, but STORE is needed
since no other instruction move data towards the
accumulator)

ADD C Acc+C → Acc (move C to Accumul.)
MUL D Acc*D → Acc
ADD A Acc+A → Acc
STORE X Acc → X
SUB Acc Acc-Acc → Acc (set Acc. to zero)
ADD A Acc+A → Acc (move A to Accumul.)
SUB B Acc-B → Acc
DIV X Acc/X → Acc

Rev. 3.2 (2006-07) by Enrico Nardelli 189 -

Example – 0 operands (1)
• Syntax

<operation>
• Meaning (all arithmetic operations make reference to pre-defined registers,

e.g. the accumulator and the top of the stack)
<ACCUMULATOR><operation><TOP(STACK)> → <ACCUMULATOR>

• Requires instructions (with an operand) to move values in and out the
stack and the accumulator

LOAD C C → Acc
PUSH D D → Top(Stack)
MUL Acc*Top(Stack) → Acc
PUSH A A → Top(Stack)
ADD Acc+Top(Stack) → Acc
PUSH Acc Acc → Top(Stack)
PUSH B B → Top(Stack)
LOAD A A → Acc
SUB Acc-Top(Stack) → Acc
POP X Top(Stack) → X
DIV Acc/Top(Stack) → Acc

Rev. 3.2 (2006-07) by Enrico Nardelli 199 -

Example – 0 operands (2)
• A different solution only needs instructions (with an

operand) to move values in and out the stack
PUSH C C → Top(Stack)
POP Acc Top(Stack) → Acc
PUSH D D → Top(Stack)
MUL Acc*Top(Stack) → Acc
PUSH A A → Top(Stack)
ADD Acc+Top(Stack) → Acc
PUSH Acc Acc → Top(Stack)
PUSH B B → Top(Stack)
PUSH A A → Top(Stack)
POP Acc Top(Stack) → Acc
SUB Acc-Top(Stack) → Acc
POP X Top(Stack) → X
DIV Acc/Top(Stack) → Acc

Rev. 3.2 (2006-07) by Enrico Nardelli 209 -

Types of Operand

• Addresses
• Numbers

Integer/floating point

• Characters
ASCII etc.

• Logical Data
Bits or flags

• (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)

Rev. 3.2 (2006-07) by Enrico Nardelli 219 -

Instruction Types (more detail)

• Arithmetic
• Logical
• Conversion
• Transfer of data (internal)
• I/O
• Transfer of Control
• System Control

Rev. 3.2 (2006-07) by Enrico Nardelli 229 -

Arithmetic

• Add, Subtract, Multiply, Divide
• Signed Integer
• Floating point ?
• May include

Increment (a++)
Decrement (a--)
Negate (-a)

Rev. 3.2 (2006-07) by Enrico Nardelli 239 -

Logical

• Bit manipulation operations
shift, rotate, …

• Boolean logic operations (bitwise)
AND, OR, NOT, …

• Test operations
To set (indirectly through the ALU) control bits in the
Program Status Word

Rev. 3.2 (2006-07) by Enrico Nardelli 249 -

Conversion

• e.g. Binary to Decimal

Rev. 3.2 (2006-07) by Enrico Nardelli 259 -

Transfer of data

• Specify
Source and Destination
Amount of data

• May be different instructions for different
movements

e.g. MOVE, STORE, LOAD, PUSH

• Or one instruction and different addresses
e.g. MOVE B C, MOVE A M, MOVE M A, MOVE A S

Rev. 3.2 (2006-07) by Enrico Nardelli 269 -

Input/Output

• May be specific instructions
• May be done using data movement instructions

(memory mapped)
• May be done by a separate controller (DMA)

Rev. 3.2 (2006-07) by Enrico Nardelli 279 -

Transfer of Control (1)

• Needed to
Take decisions (branch)
Execute repetitive operations (loop)
Structure programs (subroutines)

• Branch (examples)
BRA X: branch (i.e., go) to X (unconditional jump)
BRZ X: branch to X if accumulator value is 0

Rev. 3.2 (2006-07) by Enrico Nardelli 289 -

Transfer of control (2)

• Skip (example)
Increment register R and skip next instruction if
result is 0

X: …
…
ISZ R
BRA X (loop)
… (exit)

• Interrupts (the basic form of control transfer)
• Subroutine call (a kind of interrupt serving)

Rev. 3.2 (2006-07) by Enrico Nardelli 299 -

Interrupts
• Mechanism by which other modules (e.g. I/O) may

interrupt normal sequence of processing
• Program error

e.g. overflow, division by zero

• Time scheduling
Generated by internal processor timer
Used to execute operations at regular intervals

• I/O operations (usually much slower)
from I/O controller (end operation, error, ...)

• Hardware failure
e.g. memory parity error, power failure, ...

Rev. 3.2 (2006-07) by Enrico Nardelli 309 -

Program Flow Control

Rev. 3.2 (2006-07) by Enrico Nardelli 319 -

Temporal view of control flow
(short I/O wait)

Rev. 3.2 (2006-07) by Enrico Nardelli 329 -

Temporal view of control flow
(long I/O wait)

- find the imprecision !

Rev. 3.2 (2006-07) by Enrico Nardelli 339 -

Instruction Cycle with Interrupt

Rev. 3.2 (2006-07) by Enrico Nardelli 349 -

Interrupt Cycle

• Added to instruction cycle
• Processor checks for interrupt

Indicated by an interrupt signal

• If no interrupt, fetch next instruction
• If interrupt pending:

Suspend execution of current program
Save context
Set PC to start address of interrupt handler routine
Process interrupt
Restore context and continue interrupted program

Rev. 3.2 (2006-07) by Enrico Nardelli 359 -

Instruction Cycle (with
Interrupts) - State Diagram

Rev. 3.2 (2006-07) by Enrico Nardelli 369 -

Multiple Interrupts

• 1st solution: Disable interrupts
Processor will ignore further interrupts whilst
processing one interrupt
Interrupts remain pending and are checked after first
interrupt has been processed
Interrupts handled in sequence as they occur

• 2nd solution: Define priorities
Low priority interrupts can be interrupted by higher
priority interrupts
When higher priority interrupt has been processed,
processor returns to previous interrupt

Rev. 3.2 (2006-07) by Enrico Nardelli 379 -

Multiple Interrupts - Sequential

Rev. 3.2 (2006-07) by Enrico Nardelli 389 -

Multiple Interrupts - Nested

Rev. 3.2 (2006-07) by Enrico Nardelli 399 -

Subroutine (or procedure) call

CALL 100

0

1

2

3

4

5

100

101

102

103 RET

200

201

202

203 RET

CALL 200Procedure
100

Procedure
200

Main
Program

Rev. 3.2 (2006-07) by Enrico Nardelli 409 -

Alternative for storing the return
address from a subroutine

• In a pre-specified register
Limit the number of nested calls since for each
successive call a different register is needed

• In the first memory cell of the memory zone
storing the called procedure

Does not allow recursive calls

• At the top of the stack (more flexible)

Rev. 3.2 (2006-07) by Enrico Nardelli 419 -

Return using the stack (1)

• Use a reserved zone of memory managed with a
stack approach (last-in, first-out)

In a stack of dirty dishes the last to become dirty is
the first to be cleaned

• Each time a subroutine is called, before starting
it the return address is put on top of the stack

• Even in the case of multiple calls or recursive
calls all return addresses keep their correct
order

Rev. 3.2 (2006-07) by Enrico Nardelli 429 -

Return using the stack (2)

• The stack can be used also to
pass parameters to the called
procedure

4 4

102

4

CALL 100

0

1

2

3

4

5

100

101

102

103 RET

200

201

202

203 RET

CALL 200Procedure
100

Procedure
200

Main
Program

Rev. 3.2 (2006-07) by Enrico Nardelli 439 -

Passing parameters to a procedure

• In general, parameters to a procedure might be
passed

Using registers
• Limit the number of parameters that can be passed, due to

the limited number of registers in the CPU
• Limit the number of nested calls, since each successive calls

has to use a different set of registers

Using pre-defined zone of memory
• Does not allow recursive calls

Through the stack (more flexible)

Rev. 3.2 (2006-07) by Enrico Nardelli 449 -

System Control

• For managing the system is convenient to have
reserved instruction executable only by some
programs with special privileges (e.g., to halt a
running program)

• These privileged instructions may be executed
only if CPU is in a specific state (or mode)

• Kernel or supervisor or protected mode
• Privileged programs are part of the operating

system and run in protected mode

Rev. 3.2 (2006-07) by Enrico Nardelli 459 -

Byte Order

• What order do we read numbers that occupy more than
one cell (byte)

• 12345678 can be stored in 4 locations of 8 bits each as
follows

Address Value (1) Value(2)
184 12 78
185 34 56
186 56 34
186 78 12

• i.e. read top down or bottom up ?

Rev. 3.2 (2006-07) by Enrico Nardelli 469 -

Byte Order Names

• The problem is called Endian
• The system on the left has the least significant

byte in the lowest address
• This is called big-endian
• The system on the right has the least

significant byte in the highest address
• This is called little-endian

Rev. 3.2 (2006-07) by Enrico Nardelli 479 -

Standard…What Standard?

• Pentium (80x86), VAX are little-endian
• IBM 370, Motorola 680x0 (Mac), and most RISC

are big-endian
• Internet is big-endian

Makes writing Internet programs on PC more
awkward!
WinSock provides htoi and itoh (Host to Internet &
Internet to Host) functions to convert

