
Rev. 3.2.1 (2007-08) by Enrico Nardelli 19 -

William Stallings

Computer Organization

and Architecture

Chapter 9

Instruction Sets:

Characteristics and Functions

Rev. 3.2.1 (2007-08) by Enrico Nardelli 29 -

What is an instruction set?

• The complete collection of instructions that are
understood by a CPU

• The instruction set is the specification of the
expected behaviour of the CPU

• How this behaviour is obtained is a matter of
CPU implementation

Rev. 3.2.1 (2007-08) by Enrico Nardelli 39 -

Instruction Cycle

Rev. 3.2.1 (2007-08) by Enrico Nardelli 49 -

Elements of an Instruction

• Operation code (Opcode)

� Do this

• Source Operand(s) reference(s)

� To this (and this …)

• Result Operand reference

� Put the answer here

• The Opcode is the only mandatory element

Rev. 3.2.1 (2007-08) by Enrico Nardelli 59 -

Instruction Types

• Data processing

• Data storage (main memory)

• Data movement (internal transfer and I/O)

• Program flow control

Rev. 3.2.1 (2007-08) by Enrico Nardelli 69 -

Instruction Representation

• There may be many instruction formats

• For human convenience a symbolic
representation is used for both opcodes (MPY)
and operand references (RA RB)
� e.g. 0110 001000 001001 MPY RA RB

(machine code) (symbolic - assembly code)

16 bits

4 bits 6 bits 6 bits

Opcode Operand 1 Refer. Operand 2 Ref.

Rev. 3.2.1 (2007-08) by Enrico Nardelli 79 -

Design Decisions (1)

• Operation repertoire
� How many opcodes?

� What can they do?

� How complex are they?

• Data types

• Instruction formats
� Length and structure of opcode field

� Number and length of reference fields

Rev. 3.2.1 (2007-08) by Enrico Nardelli 89 -

Design Decisions (2)

• Registers

� Number of CPU registers available

� Which operations can be performed on which
registers?

• Addressing modes (later…)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 99 -

Types of Operand references

• Main memory

• Virtual memory (usually slower)

• Cache (usually faster)

• I/O device (slower)

• CPU registers (faster)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 109 -

Number of References/

Addresses/ Operands

• 3 references

� ADD RA RB RC RA+RB → RC

• 2 references (reuse of operands)

� ADD RA RB RA+RB → RA

• 1 reference (some implicit operands)

� ADD RA Acc+RA → Acc

• 0 references (all operands are implicit)

� S_ADD Acc+Top(Stack) → Acc

Rev. 3.2.1 (2007-08) by Enrico Nardelli 119 -

How Many References

• More references

� More complex (powerful?) instructions

� Fewer instructions per program

� Slower instruction cycle

• Fewer references

� Less complex (powerful?) instructions

� More instructions per program

� Faster instruction cycle

Rev. 3.2.1 (2007-08) by Enrico Nardelli 129 -

Example

• Compute (A-B)/(A+(C*D)), assuming each of
them is in a read-only register which cannot be
modified.

• Additional registers X and Y can be used if
needed.

• Try to minimize the number of operations

• Incremental constraints on the number of
operands allowed for instructions

Rev. 3.2.1 (2007-08) by Enrico Nardelli 139 -

Example - 3 operands (1)

• Syntax
<operation><destination><source-1><source-2>

• Meaning
<source-1><operation><source-2> →→→→ <destination>

Rev. 3.2.1 (2007-08) by Enrico Nardelli 149 -

Example - 3 operands (2)

• Solution
� MUL X C D C*D →→→→ X
� ADD X A X A+X →→→→ X
� SUB Y A B A-B →→→→ Y
� DIV X Y X Y/X →→→→ X

Rev. 3.2.1 (2007-08) by Enrico Nardelli 159 -

Example – 2 operands (1)

• Syntax
<operation><destination><source>

• Meaning (the destination is also the first source
operand)
<destination><operation><source> →→→→ <destination>

Rev. 3.2.1 (2007-08) by Enrico Nardelli 169 -

Example – 2 operands (2)

• Solution (using a new movement instruction)
� MOV X C C →→→→ X
� MUL X D X*D →→→→ X
� ADD X A X+A →→→→ X
� MOV Y A A →→→→ Y
� SUB Y B Y-B →→→→ Y
� DIV Y X Y/X →→→→ Y

Rev. 3.2.1 (2007-08) by Enrico Nardelli 179 -

Example – 2 operands (3)

• A different solution (a trick avoids using a new
movement instruction)
� SUB X X X-X →→→→ X (set X to zero)

� ADD X C X+C →→→→ X (move C to X)

� MUL X D X*D →→→→ X
� ADD X A X+A →→→→ X
� SUB Y Y Y-Y →→→→ Y (set Y to zero)

� ADD Y A Y+A →→→→ Y (move A to Y)

� SUB Y B Y-B →→→→ Y
� DIV Y X Y/X →→→→ Y

Rev. 3.2.1 (2007-08) by Enrico Nardelli 189 -

Example – 1 operand (1)

• Syntax
<operation><source>

• Meaning (a given register, e.g. the accumulator, is both
the destination and the first source operand)
<ACCUMULATOR><operation><source> →→→→ <ACCUMULATOR>

Rev. 3.2.1 (2007-08) by Enrico Nardelli 199 -

Example – 1 operand (2)

• Solution (using two new instructions to move data to
and from the accumulator)
� LOAD C C →→→→ Acc
� MUL D Acc*D →→→→ Acc
� ADD A Acc+A →→→→ Acc
� STORE X Acc →→→→ X
� LOAD A A →→→→ Acc
� SUB B Acc-B →→→→ Acc
� DIV X Acc/X →→→→ Acc

Rev. 3.2.1 (2007-08) by Enrico Nardelli 209 -

Example – 1 operand (3)

• A different solution (assumes at the beginning the
accumulator stores zero, but STORE is needed since no
other instruction move data towards the accumulator)
� ADD C Acc+C →→→→ Acc (move C to Accumul.)

� MUL D Acc*D →→→→ Acc
� ADD A Acc+A →→→→ Acc
� STORE X Acc →→→→ X
� SUB Acc Acc-Acc →→→→ Acc (set Acc. to zero)

� ADD A Acc+A →→→→ Acc (move A to Accumul.)

� SUB B Acc-B →→→→ Acc
� DIV X Acc/X →→→→ Acc

Rev. 3.2.1 (2007-08) by Enrico Nardelli 219 -

Example – 0 operands (1)

• Syntax
<operation>

• Meaning (all arithmetic operations make reference to pre-defined registers,
e.g. the accumulator and the top of the stack)
<ACCUMULATOR><operation><TOP(STACK)> →→→→ <ACCUMULATOR>

• Requires instructions (with an operand) to move values in and out the
stack and the accumulator
� LOAD C C → Acc
� PUSH D D → Top(Stack)
� MUL Acc*Top(Stack) → Acc
� PUSH A A → Top(Stack)
� ADD Acc+Top(Stack) → Acc
� PUSH Acc Acc → Top(Stack)
� PUSH B B → Top(Stack)
� LOAD A A → Acc
� SUB Acc-Top(Stack) → Acc
� POP X Top(Stack) → X
� DIV Acc/Top(Stack) → Acc

Rev. 3.2.1 (2007-08) by Enrico Nardelli 229 -

Example – 0 operands (2)

• A different solution only needs instructions (with an
operand) to move values in and out the stack
� PUSH C C → Top(Stack)
� POP Acc Top(Stack) → Acc
� PUSH D D → Top(Stack)
� MUL Acc*Top(Stack) → Acc
� PUSH A A → Top(Stack)
� ADD Acc+Top(Stack) → Acc
� PUSH Acc Acc → Top(Stack)
� PUSH B B → Top(Stack)
� PUSH A A → Top(Stack)
� POP Acc Top(Stack) → Acc
� SUB Acc-Top(Stack) → Acc
� POP X Top(Stack) → X
� DIV Acc/Top(Stack) → Acc

Rev. 3.2.1 (2007-08) by Enrico Nardelli 239 -

Types of Operand

• Addresses

• Numbers

� Integer/floating point

• Characters

� ASCII etc.

• Logical Data

� Bits or flags

• (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 249 -

Instruction Types (more detail)

• Arithmetic

• Logical

• Conversion

• Transfer of data (internal)

• I/O

• Transfer of Control

• System Control

Rev. 3.2.1 (2007-08) by Enrico Nardelli 259 -

Arithmetic

• Add, Subtract, Multiply, Divide

• Signed Integer

• Floating point ?

• May include

� Increment (a++)

� Decrement (a--)

� Negate (-a)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 269 -

Logical

• Bit manipulation operations

� shift, rotate, …

• Boolean logic operations (bitwise)

� AND, OR, NOT, …

• Test operations

� To set (indirectly through the ALU) control bits in the
Program Status Word

Rev. 3.2.1 (2007-08) by Enrico Nardelli 279 -

Conversion

• e.g. Binary to Decimal

Rev. 3.2.1 (2007-08) by Enrico Nardelli 289 -

Transfer of data

• Specify

� Source and Destination

� Amount of data

• May be different instructions for different
movements

� e.g. MOVE, STORE, LOAD, PUSH

• Or one instruction and different addresses

� e.g. MOVE B C, MOVE A M, MOVE M A, MOVE A S

Rev. 3.2.1 (2007-08) by Enrico Nardelli 299 -

Input/Output

• May be specific instructions

• May be done using data movement instructions
(memory mapped)

• May be done by a separate controller (DMA)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 309 -

Transfer of Control (1)

• Needed to

� Take decisions (branch)

� Execute repetitive operations (loop)

� Structure programs (subroutines)

• Branch (examples)

� BRA X: branch (i.e., go) to X (unconditional jump)

� BRZ X: branch to X if accumulator value is 0

Rev. 3.2.1 (2007-08) by Enrico Nardelli 319 -

Transfer of control (2)

• Skip (example)

� Increment register R and skip next instruction if
result is 0

X: …

…

ISZ R

BRA X (loop)

… (exit)

• Interrupts (the basic form of control transfer)

• Subroutine call (a kind of interrupt serving)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 329 -

Interrupts

• Mechanism by which other modules (e.g. I/O) may
interrupt normal sequence of processing

• Program error

� e.g. overflow, division by zero

• Time scheduling

� Generated by internal processor timer

� Used to execute operations at regular intervals

• I/O operations (usually much slower)

� from I/O controller (end operation, error, ...)

• Hardware failure

� e.g. memory parity error, power failure, ...

Rev. 3.2.1 (2007-08) by Enrico Nardelli 339 -

Program Flow Control

Rev. 3.2.1 (2007-08) by Enrico Nardelli 349 -

Temporal view of control flow

(short I/O wait)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 359 -

Temporal view of control flow

(long I/O wait)

- find the imprecision !

Rev. 3.2.1 (2007-08) by Enrico Nardelli 369 -

Instruction Cycle with Interrupt

Rev. 3.2.1 (2007-08) by Enrico Nardelli 379 -

Interrupt Cycle

• Added to instruction cycle

• Processor checks for interrupt

� Indicated by an interrupt signal

• If no interrupt, fetch next instruction

• If interrupt pending:

� Suspend execution of current program

� Save context

� Set PC to start address of interrupt handler routine

� Process interrupt

� Restore context and continue interrupted program

Rev. 3.2.1 (2007-08) by Enrico Nardelli 389 -

Instruction Cycle (with

Interrupts) - State Diagram

Rev. 3.2.1 (2007-08) by Enrico Nardelli 399 -

Multiple Interrupts

• 1st solution: Disable interrupts

� Processor will ignore further interrupts whilst
processing one interrupt

� Interrupts remain pending and are checked after first
interrupt has been processed

� Interrupts handled in sequence as they occur

• 2nd solution: Define priorities

� Low priority interrupts can be interrupted by higher
priority interrupts

� When higher priority interrupt has been processed,
processor returns to previous interrupt

Rev. 3.2.1 (2007-08) by Enrico Nardelli 409 -

Multiple Interrupts - Sequential

Rev. 3.2.1 (2007-08) by Enrico Nardelli 419 -

Multiple Interrupts - Nested

Rev. 3.2.1 (2007-08) by Enrico Nardelli 429 -

Subroutine (or procedure) call

CALL 100

0

1

2

3

4

5

100

101

102

103 RET

200

201

202

203 RET

CALL 200Procedure

100

Procedure

200

Main

Program

Rev. 3.2.1 (2007-08) by Enrico Nardelli 439 -

Alternative for storing the return

address from a subroutine

• In a pre-specified register

� Limit the number of nested calls since for each
successive call a different register is needed

• In the first memory cell of the memory zone
storing the called procedure

� Does not allow recursive calls

• At the top of the stack (more flexible)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 449 -

Return using the stack (1)

• Use a reserved zone of memory managed with a
stack approach (last-in, first-out)
� In a stack of dirty dishes the last to become dirty is
the first to be cleaned

• Each time a subroutine is called, before starting
it the return address is put on top of the stack

• Even in the case of multiple calls or recursive
calls all return addresses keep their correct
order

Rev. 3.2.1 (2007-08) by Enrico Nardelli 459 -

Return using the stack (2)

• The stack can be used also to
pass parameters to the called
procedure

4 4

102

4

CALL 100

0

1

2

3

4

5

100

101

102

103 RET

200

201

202

203 RET

CALL 200Procedure

100

Procedure

200

Main

Program

Rev. 3.2.1 (2007-08) by Enrico Nardelli 469 -

Passing parameters to a procedure

• In general, parameters to a procedure might be
passed

� Using registers

• Limit the number of parameters that can be passed, due to
the limited number of registers in the CPU

• Limit the number of nested calls, since each successive calls
has to use a different set of registers

� Using pre-defined zone of memory

• Does not allow recursive calls

� Through the stack (more flexible)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 479 -

System Control

• For managing the system is convenient to have
reserved instruction executable only by some
programs with special privileges (e.g., to halt a
running program)

• These privileged instructions may be executed
only if CPU is in a specific state (or mode)

• Kernel or supervisor or protected mode

• Privileged programs are part of the operating
system and run in protected mode

Rev. 3.2.1 (2007-08) by Enrico Nardelli 489 -

Byte Order

• What order do we read numbers that occupy more than
one cell (byte)

• 12345678 can be stored in 4 locations of 8 bits each as
follows

Address Value (1) Value(2)

184 12 78

185 34 56

186 56 34

186 78 12

• i.e. read top down or bottom up ?

Rev. 3.2.1 (2007-08) by Enrico Nardelli 499 -

Byte Order Names

• The problem is called Endian

• The system on the left has the least significant
byte in the lowest address

• This is called big-endian

• The system on the right has the least
significant byte in the highest address

• This is called little-endian

Rev. 3.2.1 (2007-08) by Enrico Nardelli 509 -

Standard…What Standard?

• Pentium (80x86), VAX are little-endian

• IBM 370, Motorola 680x0 (Mac), and most RISC
are big-endian

• Internet is big-endian

� Makes writing Internet programs on PC more
awkward!

� WinSock provides htoi and itoh (Host to Internet &
Internet to Host) functions to convert

