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What is an instruction set?

e The complete collection of instructions that are
understood by a CPU

e The instruction set is the specification of the
expected behaviour of the CPU

e How this behaviour is obtained is a matter of
CPU implementation
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Elements of an Instruction

e Operation code (Opcode)
= Do this

e Source Operand(s) reference(s)
= To this (and this ...)

e Result Operand reference
= Put the answer here

 The Opcode is the only mandatory element
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Instruction Types

e Data processing

e Data storage (main memory)

o Data movement (internal transfer and I/0)
e Program flow control
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Instruction Representation

4bits 6 bits . 6 bits
Opcode Operand 1 Refer. Operand 2 Ref.
16 bits

e There may be many instruction formats

e For human convenience a symbolic

representation is used for both opcodes (MPY)
and operand references (RA RB)

= e.g. 0110 001000 001001 MPY RA RB

(machine code) (symbolic - assembly code)
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Design Decisions (1)

o Operation repertoire
= How many opcodes?
= What can they do?
= How complex are they?

e Data types

o Instruction formats
= Length and structure of opcode field
= Number and length of reference fields
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Design Decisions (2)

e Registers
= Number of CPU registers available

= Which operations can be performed on which
registers?

e Addressing modes (later...)
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Types of Operand references

e Main memory
e Virtual memory (usually slower)
e Cache (usually faster)

e I/O device (slower)
e CPU registers (faster)
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Number of References/
Addresses/ Operands

e 3 references
= ADD RA RB RC RA+RB — RC

o 2 references (reuse of operands)
= ADD RA RB RA+RB — RA

e 1 reference (some implicit operands)
= ADD RA Acc+RA — Acc

e O references (all operands are implicit)
= S ADD Acc+Top(Stack) — Acc
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How Many References

e More references
= More complex (powerful?) instructions
= Fewer instructions per program
= Slower instruction cycle

e Fewer references
= Less complex (powerful?) instructions
= More instructions per program
= Faster instruction cycle
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Example

e Compute (A-B)/(A+(C*D)), assuming each of
them is in a read-only register which cannot be
modified.

o Additional registers X and Y can be used if
needed.

e Try to minimize the number of operations

e Incremental constraints on the number of
operands allowed for instructions
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Example - 3 operands (1)

e Syntax
<operation><destination><source-1><source-2>

e Meaning
<source-1><operation><source-2> - <destination>
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Example - 3 operands (2)

e Solution
= MULXCD C*D - X
= ADDXAX A+X->X
= SUBYAB AB-Y
= DIVXY X Y/X - X
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Example - 2 operands (1)

e Syntax
<operation><destination><source>
e Meaning (the destination is also the first source
operand)
<destination><operation><source> - <destination>
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Example - 2 operands (2)

e Solution (using a new movement instruction)
= MOV X C C-X

= MULXD X*D - X
= ADD X A X+A - X
= MOVYA A->Y

= SUBYB Y-B-Y

= DIVY X Y/X=>Y
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Example - 2 operands (3)

o A different solution (a trick avoids using a new
movement instruction)

= SUB X X X-X - X (set X to zero)
= ADD X C X+C > X (move C to X)
= MULXD X*D - X

= ADD X A X+A - X

= SUBYY Y-Y >Y (set Y to zero)
= ADDY A Y+A - Y (move Ato Y)
= SUBY B Y-B->Y

= DIVY X Y/IX->Y
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Example - 1 operand (1)

e Syntax
<operation><source>
e Meaning (a given register, e.g. the accumulator, is both
the destination and the first source operand)
<ACCUMULATOR><operation><source> - <ACCUMULATOR>
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Example - 1 operand (2)

e Solution (using two new instructions to move data to
and from the accumulator)

= LOAD C C - Acc

= MULD Acc*D - Acc
= ADD A Acc+A - Acc
= STORE X Acc - X

= LOAD A A - Acc

= SUB B Acc-B —» Acc

= DIV X Acc/X - Acc
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Example - 1 operand (3)

o A different solution (assumes at the beginning the
accumulator stores zero, but STORE is needed since no
other instruction move data towards the accumulator)

= ADD C

= MULD

= ADD A
= STORE X
= SUB Acc
= ADD A
= SUB B

= DIV X

Acc+C - Acc (move C to Accumul.)
Acc*D — Acc

Acc+A - Acc

Acc - X

Acc-Acc - Acc (set Acc. to zero)
Acc+A - Acc (move A to Accumul.)
Acc-B - Acc

Acc/X - Acc
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Example - 0 operands (1)

e Syntax
<operation>
e Meaning (all arithmetic operations make reference to pre-defined registers,
e.g. the accumulator and the top of the stack)
<ACCUMULATOR> <operation><TOP(STACK)> - <ACCUMULATOR >

e Requires instructions ﬁwith an operand) to move values in and out the
stack and the accumulator

= LOADC C — Acc

= PUSH D D — Top(Stack)

= MUL Acc*Top(Stack) — Acc
= PUSH A A — Top(Stack)

= ADD Acc+Top(Stack) — Acc
= PUSH Acc Acc — Top(Stack)

= PUSH B B — Top(Stack)

= LOAD A A — Acc

= SUB Acc-Top(Stack) — Acc
= POP X Top(Stack) — X

= DIV Acc/Top(Stack) — Acc
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Example - 0 operands (2)

e A different solution only needs instructions (with an
operand) to move values in and out the stack

= PUSH C C — Top(Stack)

= POP Acc Top(Stack) — Acc

= PUSH D D — Top(Stack)

= MUL Acc*Top(Stack) — Acc
= PUSH A A — Top(Stack)

= ADD Acc+Top(Stack) — Acc
= PUSH Acc Acc — Top(Stack)

= PUSH B B — Top(Stack)

= PUSH A A — Top(Stack)

= POP Acc Top(Stack) — Acc

= SUB Acc-Top(Stack) — Acc

= POP X Top(Stack) — X

DIV Acc/Top(Stack) — Acc
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Types of Operand

e Addresses

e Numbers
= Integer/floating point

e Characters
= ASCII etc.

e Logical Data

= Bits or flags

e (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)
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Instruction Types (more detail)

o Arithmetic

e Logical

e Conversion

e Transfer of data (internal)
e I/O

e Transfer of Control

e System Control

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9-

24



Arithmetic

e Add, Subtract, Multiply, Divide
e Signed Integer
e Floating point ?
e May include
= Increment (a++)

= Decrement (a--)
= Negate (-a)
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Logical

e Bit manipulation operations
= shift, rotate, ...

e Boolean logic operations (bitwise)
= AND, OR, NOT, ...

e Test operations

= To set (indirectly through the ALU) control bits in the
Program Status Word

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 26



Conversion

e e.g. Binary to Decimal
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Transfer of data

e Specify
= Source and Destination
= Amount of data

e May be different instructions for different
movements
= e.g. MOVE, STORE, LOAD, PUSH

e Or one instruction and different addresses
= e.g. MOVE B C, MOVE AM, MOVE M A, MOVE A S
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Input/Output

e May be specific instructions

e May be done using data movement instructions
(memory mapped)

e May be done by a separate controller (DMA)
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Transfer of Control (1)

 Needed to
= Take decisions (branch)
= Execute repetitive operations (loop)
= Structure programs (subroutines)

e Branch (examples)
= BRA X: branch (i.e., go) to X (unconditional jump)
= BRZ X: branch to X if accumulator value is 0
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Transfer of control (2)

e Skip (example)

= Increment register R and skip next instruction if

result is 0
) S

ISZR
BRA X (loop)
(exit)

e Interrupts (the basic form of control transfer)
e Subroutine call (a kind of interrupt serving)
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Interrupts

e Mechanism by which other modules (e.g. I/O) may
interrupt normal sequence of processing

e Program error
= e.g. overflow, division by zero

e Time scheduling
= Generated by internal processor timer
= Used to execute operations at regular intervals

e I/O operations (usually much slower)
= from I/O controller (end operation, error, ...)

e Hardware failure
= e.g. memory parity error, power failure, ...
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Program Flow Control

Llser [/ Llser 4] Liser [/
Proeraim Progeram Proveram Proveram Prioveram Prioveraim
T | e T i R i
| 1P | I~ | -
@ @@ PO O O .
| PR I | L ; [ J | o P
1 - o | i) N N J_?L - [/0) S I P 'r-',n',r-* [/
I g _— - ' g S - ' g
WRITE : II.' : I{ Lﬂ|£]]l.j WRITE ;J___ -5, Commanid WRITE |h"f |||I ;, Command
| U (5] ! Iy | L
| ! -‘r- | | ! ; I
| F e B Iy B
: .'ll s ND |t |
@/’ IR 0 I~ I“r"{ @ : .f'r r'r
| Fooe
| d ‘J-" ' f‘:r-,h i [nterrupt : f f [nterrupt
I,-JI B @' gy kw ™. Handler i Hamdler
] ;." S ] L.f; w‘l 1| T N Lf J_.L_.__.__,__?:——-' |
r R - ! |
WRITE f’J WERITLE ¢ ;r I~ @ WRITE - ' I @
— | — | L - : ey R
| LT ENI i END
| - | !
: | .-’f - - I ! flll
| ros I ¢
@ E (3 |
| s
| | | 4r
| £
+| @ I |4
i
1 R Lo
WRITE WRITE WEITE W

ia) No intermpts by Interrupts; short DO wait (¢ Interrupts; long 1O wail



Temporal view of control flow
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Temporal view of control flow
(long 1/0 wait)
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Instruction Cycle with Interrupt
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Interrupt Cycle

e Added to instruction cycle

e Processor checks for interrupt
= Indicated by an interrupt signal
o If no interrupt, fetch next instruction
o If interrupt pending:
Suspend execution of current program
Save context
Set PC to start address of interrupt handler routine
Process interrupt
Restore context and continue interrupted program
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Instruction Cycle (with
Interrupts) - State Diagram
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Multiple Interrupts

o 1st solution: Disable interrupts

= Processor will ignore further interrupts whilst
processing one interrupt

= Interrupts remain pending and are checked after first
interrupt has been processed

= Interrupts handled in sequence as they occur

o 2nd solution: Define priorities

= Low priority interrupts can be interrupted by higher
priority interrupts

= When higher priority interrupt has been processed,
processor returns to( 2|(:))Ogevious interrupt
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Multiple Interrupts - Sequential
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Multiple Interrupts - Nested
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Subroutine (or procedure) call

Main
Program

Procedure
100

Procedure
200

o A WO N =+ O

100
101
102
103

200
201
202
203

CALL 100

CALL 200

RET

RET

_
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Alternative for storing the return
address from a subroutine

e In a pre-specified register

= Limit the number of nested calls since for each
successive call a different register is needed

e In the first memory cell of the memory zone
storing the called procedure
= Does not allow recursive calls

o At the top of the stack (more flexible)
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Return using the stack (1)

e Use a reserved zone of memory managed with a
stack approach (last-in, first-out)
= In a stack of dirty dishes the last to become dirty is
the first to be cleaned
e Each time a subroutine is called, before starting
it the return address is put on top of the stack

e Even in the case of multiple calls or recursive
calls all return addresses keep their correct
order
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Return using the stack (2)
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Passing parameters to a procedure

e In general, parameters to a procedure might be
passed
= Using registers

e Limit the number of parameters that can be passed, due to
the limited number of registers in the CPU

e Limit the number of nested calls, since each successive calls
has to use a different set of registers

= Using pre-defined zone of memory
e Does not allow recursive calls

= Through the stack (more flexible)
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System Control

e For managing the system is convenient to have
reserved instruction executable only by some
programs with special privileges (e.g., to halt a
running program)

e These privileged instructions may be executed
only if CPU is in a specific state (or mode)

o Kernel or supervisor or protected mode

e Privileged programs are part of the operating
system and run in protected mode
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Byte Order

 What order do we read numbers that occupy more than

one cell (byte)

e 12345678 can be stored in 4 locations of 8 bits each as

follows
Address Value (1) Value(2)
184 12 78
185 34 56
186 56 34
186 78 12

e j.e. read top down or bottom up ?
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Byte Order Names

e The problem is called Endian

e The system on the left has the least significant
byte in the lowest address

e This is called big-endian

e The system on the right has the least
significant byte in the highest address

e This is called /ittle-endian
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Standard...What Standard?

e Pentium (80x86), VAX are little-endian

e IBM 370, Motorola 680x0 (Mac), and most RISC
are big-endian
e Internet is big-endian
= Makes writing Internet programs on PC more
awkward!

= WinSock provides Ato/and jtoh (Host to Internet &
Internet to Host) functions to convert
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