William Stallings
Computer Organization
and Architecture

Chapter 9
Instruction Sets:
Characteristics and Functions

Rev. 3.2.1 (2007-08) by Enrico Nardelli

What is an instruction set?

e The complete collection of instructions that are
understood by a CPU

e The instruction set is the specification of the
expected behaviour of the CPU

e How this behaviour is obtained is a matter of
CPU implementation

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9-

Instruction Cycle

Operand
store

Multiple

operands

MWultiple
resulis

Instructio

operation
decoding

Instructio

address
calculation

(rperand
address
calculation

Operand
address
calculatio

Data
Operation

Instruction complete,
leteth next instruction

Ketum for string
or vector data

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 3

Elements of an Instruction

e Operation code (Opcode)
= Do this

e Source Operand(s) reference(s)
= To this (and this ...)

e Result Operand reference
= Put the answer here

 The Opcode is the only mandatory element

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Instruction Types

e Data processing

e Data storage (main memory)

o Data movement (internal transfer and I/0)
e Program flow control

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Instruction Representation

4bits 6 bits . 6 bits
Opcode Operand 1 Refer. Operand 2 Ref.
16 bits

e There may be many instruction formats

e For human convenience a symbolic

representation is used for both opcodes (MPY)
and operand references (RA RB)

= e.g. 0110 001000 001001 MPY RA RB

(machine code) (symbolic - assembly code)

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Design Decisions (1)

o Operation repertoire
= How many opcodes?
= What can they do?
= How complex are they?

e Data types

o Instruction formats
= Length and structure of opcode field
= Number and length of reference fields

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Design Decisions (2)

e Registers
= Number of CPU registers available

= Which operations can be performed on which
registers?

e Addressing modes (later...)

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Types of Operand references

e Main memory
e Virtual memory (usually slower)
e Cache (usually faster)

e I/O device (slower)
e CPU registers (faster)

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Number of References/
Addresses/ Operands

e 3 references
= ADD RA RB RC RA+RB — RC

o 2 references (reuse of operands)
= ADD RA RB RA+RB — RA

e 1 reference (some implicit operands)
= ADD RA Acc+RA — Acc

e O references (all operands are implicit)
= S ADD Acc+Top(Stack) — Acc

Rev. 3.2.1 (2007-08) by Enrico Nardelli

How Many References

e More references
= More complex (powerful?) instructions
= Fewer instructions per program
= Slower instruction cycle

e Fewer references
= Less complex (powerful?) instructions
= More instructions per program
= Faster instruction cycle

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Example

e Compute (A-B)/(A+(C*D)), assuming each of
them is in a read-only register which cannot be
modified.

o Additional registers X and Y can be used if
needed.

e Try to minimize the number of operations

e Incremental constraints on the number of
operands allowed for instructions

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 12

Example - 3 operands (1)

e Syntax
<operation><destination><source-1><source-2>

e Meaning
<source-1><operation><source-2> - <destination>

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 13

Example - 3 operands (2)

e Solution
= MULXCD C*D - X
= ADDXAX A+X->X
= SUBYAB AB-Y
= DIVXY X Y/X - X

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Example - 2 operands (1)

e Syntax
<operation><destination><source>
e Meaning (the destination is also the first source
operand)
<destination><operation><source> - <destination>

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 15

Example - 2 operands (2)

e Solution (using a new movement instruction)
= MOV X C C-X

= MULXD X*D - X
= ADD X A X+A - X
= MOVYA A->Y

= SUBYB Y-B-Y

= DIVY X Y/X=>Y

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Example - 2 operands (3)

o A different solution (a trick avoids using a new
movement instruction)

= SUB X X X-X - X (set X to zero)
= ADD X C X+C > X (move C to X)
= MULXD X*D - X

= ADD X A X+A - X

= SUBYY Y-Y >Y (set Y to zero)
= ADDY A Y+A - Y (move Ato Y)
= SUBY B Y-B->Y

= DIVY X Y/IX->Y

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 17

Example - 1 operand (1)

e Syntax
<operation><source>
e Meaning (a given register, e.g. the accumulator, is both
the destination and the first source operand)
<ACCUMULATOR><operation><source> - <ACCUMULATOR>

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 18

Example - 1 operand (2)

e Solution (using two new instructions to move data to
and from the accumulator)

= LOAD C C - Acc

= MULD Acc*D - Acc
= ADD A Acc+A - Acc
= STORE X Acc - X

= LOAD A A - Acc

= SUB B Acc-B —» Acc

= DIV X Acc/X - Acc

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Example - 1 operand (3)

o A different solution (assumes at the beginning the
accumulator stores zero, but STORE is needed since no
other instruction move data towards the accumulator)

= ADD C

= MULD

= ADD A
= STORE X
= SUB Acc
= ADD A
= SUB B

= DIV X

Acc+C - Acc (move C to Accumul.)
Acc*D — Acc

Acc+A - Acc

Acc - X

Acc-Acc - Acc (set Acc. to zero)
Acc+A - Acc (move A to Accumul.)
Acc-B - Acc

Acc/X - Acc

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 20

Example - 0 operands (1)

e Syntax
<operation>
e Meaning (all arithmetic operations make reference to pre-defined registers,
e.g. the accumulator and the top of the stack)
<ACCUMULATOR> <operation><TOP(STACK)> - <ACCUMULATOR >

e Requires instructions ﬁwith an operand) to move values in and out the
stack and the accumulator

= LOADC C — Acc

= PUSH D D — Top(Stack)

= MUL Acc*Top(Stack) — Acc
= PUSH A A — Top(Stack)

= ADD Acc+Top(Stack) — Acc
= PUSH Acc Acc — Top(Stack)

= PUSH B B — Top(Stack)

= LOAD A A — Acc

= SUB Acc-Top(Stack) — Acc
= POP X Top(Stack) — X

= DIV Acc/Top(Stack) — Acc

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 21

Example - 0 operands (2)

e A different solution only needs instructions (with an
operand) to move values in and out the stack

= PUSH C C — Top(Stack)

= POP Acc Top(Stack) — Acc

= PUSH D D — Top(Stack)

= MUL Acc*Top(Stack) — Acc
= PUSH A A — Top(Stack)

= ADD Acc+Top(Stack) — Acc
= PUSH Acc Acc — Top(Stack)

= PUSH B B — Top(Stack)

= PUSH A A — Top(Stack)

= POP Acc Top(Stack) — Acc

= SUB Acc-Top(Stack) — Acc

= POP X Top(Stack) — X

DIV Acc/Top(Stack) — Acc

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 22

Types of Operand

e Addresses

e Numbers
= Integer/floating point

e Characters
= ASCII etc.

e Logical Data

= Bits or flags

e (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9-

23

Instruction Types (more detail)

o Arithmetic

e Logical

e Conversion

e Transfer of data (internal)
e I/O

e Transfer of Control

e System Control

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9-

24

Arithmetic

e Add, Subtract, Multiply, Divide
e Signed Integer
e Floating point ?
e May include
= Increment (a++)

= Decrement (a--)
= Negate (-a)

Rev. 3.2.1 (2007-08) by Enrico Nardelli

- 25

Logical

e Bit manipulation operations
= shift, rotate, ...

e Boolean logic operations (bitwise)
= AND, OR, NOT, ...

e Test operations

= To set (indirectly through the ALU) control bits in the
Program Status Word

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 26

Conversion

e e.g. Binary to Decimal

Rev. 3.2.1 (2007-08) by Enrico Nardelli

- 27

Transfer of data

e Specify
= Source and Destination
= Amount of data

e May be different instructions for different
movements
= e.g. MOVE, STORE, LOAD, PUSH

e Or one instruction and different addresses
= e.g. MOVE B C, MOVE AM, MOVE M A, MOVE A S

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 28

Input/Output

e May be specific instructions

e May be done using data movement instructions
(memory mapped)

e May be done by a separate controller (DMA)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9-

29

Transfer of Control (1)

 Needed to
= Take decisions (branch)
= Execute repetitive operations (loop)
= Structure programs (subroutines)

e Branch (examples)
= BRA X: branch (i.e., go) to X (unconditional jump)
= BRZ X: branch to X if accumulator value is 0

Rev. 3.2.1 (2007-08) by Enrico Nardelli

- 30

Transfer of control (2)

e Skip (example)

= Increment register R and skip next instruction if

result is 0
) S

ISZR
BRA X (loop)
(exit)

e Interrupts (the basic form of control transfer)
e Subroutine call (a kind of interrupt serving)

Rev. 3.2.1 (2007-08) by Enrico Nardelli

- 31

Interrupts

e Mechanism by which other modules (e.g. I/O) may
interrupt normal sequence of processing

e Program error
= e.g. overflow, division by zero

e Time scheduling
= Generated by internal processor timer
= Used to execute operations at regular intervals

e I/O operations (usually much slower)
= from I/O controller (end operation, error, ...)

e Hardware failure
= e.g. memory parity error, power failure, ...

Rev. 3.2.1 (2007-08) by Enrico Nardelli

- 32

Program Flow Control

Llser [/ Llser 4] Liser [/
Proeraim Progeram Proveram Proveram Prioveram Prioveraim
T | e T i R i
| 1P | I~ | -
@ @@ PO O O .
| PR I | L ; [J | o P
1 - o | i) N N J_?L - [/0) S I P 'r-',n',r-* [/
I g _— - ' g S - ' g
WRITE : II.' : I{ Lﬂ|£]]l.j WRITE ;J___ -5, Commanid WRITE |h"f |||I ;, Command
| U (5] ! Iy | L
| ! -‘r- | | ! ; I
| F e B Iy B
: .'ll s ND |t |
@/’ IR 0 I~ I“r"{ @ : .f'r r'r
| Fooe
| d ‘J-" ' f‘:r-,h i [nterrupt : f f [nterrupt
I,-JI B @' gy kw ™. Handler i Hamdler
] ;." S] L.f; w‘l 1| T N Lf J_.L_.__.__,__?:——-' |
r R - ! |
WRITE f’J WERITLE ¢ ;r I~ @ WRITE - ' I @
— | — | L - : ey R
| LT ENI i END
| - | !
: | .-’f - - I ! flll
| ros I ¢
@ E (3 |
| s
| | | 4r
| £
+| @ I |4
i
1 R Lo
WRITE WRITE WEITE W

ia) No intermpts by Interrupts; short DO wait (¢ Interrupts; long 1O wail

Temporal view of control flow
(short 1/0 wait)

Time

o6

Processor I L/

wait opceration opceration

RRLe

operation

Processor L/
wait opceration

Gll[CISHILEIRI

(b)) With interrupts

8 |

(a) Without interrupts

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 34

Temporal view of control flow
(long 1/0 wait)

Iitne

G

Processor
wealt

OReaC

Processor
wValit

)

Y180

L'
operation

L'
opceration Processor
i

(b)) With interrupts

(a) Without i11te1:l’LlptS find the imprecision !

Rev. 3.2.1 (2007-08) by Enrico Nardelli

operation

operation

Instruction Cycle with Interrupt

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts
Disabled

Check for
Interrupt;

Interrupts|Process Interrupt
Enabled

Execute
Instruction

Fetch Next
Instruction

HALT ’

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9-

36

Interrupt Cycle

e Added to instruction cycle

e Processor checks for interrupt
= Indicated by an interrupt signal
o If no interrupt, fetch next instruction
o If interrupt pending:
Suspend execution of current program
Save context
Set PC to start address of interrupt handler routine
Process interrupt
Restore context and continue interrupted program

Rev. 3.2.1 (2007-08) by Enrico Nardelli

- 37

Instruction Cycle (with
Interrupts) - State Diagram

Multiple

operands

Instructio
operation
decoding

Operand
address
calculation

[nstruction complele,
fetcth nexi insiruction

Data
Operation

Retum for string
oF viector data

Operand

store

Multiple
resulls

Operand
address
calculatio

iy

interrp

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Multiple Interrupts

o 1st solution: Disable interrupts

= Processor will ignore further interrupts whilst
processing one interrupt

= Interrupts remain pending and are checked after first
interrupt has been processed

= Interrupts handled in sequence as they occur

o 2nd solution: Define priorities

= Low priority interrupts can be interrupted by higher
priority interrupts

= When higher priority interrupt has been processed,
processor returns to(2|(:))Ogevious interrupt

Rev. 3.2.1 -08) by Enrico Nardelli 9- 39

Multiple Interrupts - Sequential

User Program

|
|
|
I
I
|
|
2

o

e i

-
-l

I"-|.

|

|

I

I

|

|

|

I

I

|

|

|
w

Interrupt
Handler X
|
-
|, |
- |
-
- |
- |
.'-"f I
-
- |
|
. |
-l-_"—|.|___‘___-‘__"_——-|__|__|
-l—_‘..‘_\.-‘_-‘-
[~ e Interrupt
b, Il T
'\-\l| -l—_‘- r
Rt — Handler ¥
"1._\‘_ _|-|__‘__
'l-\._\‘_ "—-.__‘_
-\-‘."'\.
""1..__\.-“
-

/
4

r
_

i)

Rev. 3.2.1 (2007-08) by Enrico Nardelli

Multiple Interrupts - Nested

User Program

— —————— — —

h

it

‘-

Interrupt
Handler X

Interrupt
~- Handler Y
-

b

T

- 41

Subroutine (or procedure) call

Main
Program

Procedure
100

Procedure
200

o A WO N =+ O

100
101
102
103

200
201
202
203

CALL 100

CALL 200

RET

RET

_

Rev. 3.2.1 (2007-08) by Enrico Nardelli

- 42

Alternative for storing the return
address from a subroutine

e In a pre-specified register

= Limit the number of nested calls since for each
successive call a different register is needed

e In the first memory cell of the memory zone
storing the called procedure
= Does not allow recursive calls

o At the top of the stack (more flexible)

Rev. 3.2.1 (2007-08) by Enrico Nardelli

- 43

Return using the stack (1)

e Use a reserved zone of memory managed with a
stack approach (last-in, first-out)
= In a stack of dirty dishes the last to become dirty is
the first to be cleaned
e Each time a subroutine is called, before starting
it the return address is put on top of the stack

e Even in the case of multiple calls or recursive
calls all return addresses keep their correct
order

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 44

Return using the stack (2)

Main
Program

Procedure
100

Procedure
200

o b~ WO N =+ O

100
101
102
103

200
201
202
203

e The stack can be used also to
pass parameters to the called
procedure

102

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 45

Passing parameters to a procedure

e In general, parameters to a procedure might be
passed
= Using registers

e Limit the number of parameters that can be passed, due to
the limited number of registers in the CPU

e Limit the number of nested calls, since each successive calls
has to use a different set of registers

= Using pre-defined zone of memory
e Does not allow recursive calls

= Through the stack (more flexible)

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9- 46

System Control

e For managing the system is convenient to have
reserved instruction executable only by some
programs with special privileges (e.g., to halt a
running program)

e These privileged instructions may be executed
only if CPU is in a specific state (or mode)

o Kernel or supervisor or protected mode

e Privileged programs are part of the operating
system and run in protected mode

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9-

47

Byte Order

 What order do we read numbers that occupy more than

one cell (byte)

e 12345678 can be stored in 4 locations of 8 bits each as

follows
Address Value (1) Value(2)
184 12 78
185 34 56
186 56 34
186 78 12

e j.e. read top down or bottom up ?

Rev. 3.2.1 (2007-08) by Enrico Nardelli

- 48

Byte Order Names

e The problem is called Endian

e The system on the left has the least significant
byte in the lowest address

e This is called big-endian

e The system on the right has the least
significant byte in the highest address

e This is called /ittle-endian

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9-

49

Standard...What Standard?

e Pentium (80x86), VAX are little-endian

e IBM 370, Motorola 680x0 (Mac), and most RISC
are big-endian
e Internet is big-endian
= Makes writing Internet programs on PC more
awkward!

= WinSock provides Ato/and jtoh (Host to Internet &
Internet to Host) functions to convert

Rev. 3.2.1 (2007-08) by Enrico Nardelli 9-

50

