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Objectives and Functions

• Convenience
Making the computer easier to use

• Efficiency
Allowing better use of computer resources
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Layers and Views of a 
Computer System
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Operating System Services

• Program creation
• Program execution
• Access to I/O devices
• Controlled access to files
• System access
• Error detection and response
• Accounting



Rev. 3 (2005-06) by Enrico Nardelli 57 -

O/S as a Resource Manager
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Types of Operating System

• Batch 
• Interactive

• Single program (Uni-programming)
• Multiple programs (Multi-tasking)
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Early Systems

• Late 1940s to mid 1950s
• No Operating System
• Programs interact directly with hardware
• Two main problems:

Scheduling
Set-up time
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Simple Batch Systems

• Resident Monitor program
• Users submit jobs to operator
• Operator batches jobs
• Monitor controls sequence of events to process 

batch
• When one job is finished, control returns to 

Monitor which reads next job
• Monitor handles scheduling
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Job Control Language

• Instructions to Monitor
• Usually denoted by $
• e.g.

$JOB
$FTN
... Some Fortran instructions
$LOAD
$RUN
... Some data
$END
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Desirable Hardware Features

• Memory protection
To protect the Monitor

• Timer
To prevent a job monopolizing the system

• Privileged instructions
Only executed by Monitor
e.g. I/O

• Interrupts
Allows for relinquishing and regaining control
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Multi-programmed Batch 
Systems

• I/O devices very slow
• When one program is waiting for I/O, another 

can use the CPU
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Single Program
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Multi-Programming with 
Two Programs
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Multi-Programming with 
Three Programs
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Time Sharing Systems

• Allow users to interact directly with the 
computer

i.e. Interactive

• Multi-programming allows a number of users to 
interact with the computer
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Scheduling

• Key to multi-programming
• Long term
• Medium term
• Short term
• I/O
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Long Term Scheduling

• Determines which programs are submitted for 
processing

• i.e. controls the degree of multi-programming
• Once submitted, a job becomes a process for 

the short term scheduler
• (or it becomes a swapped out job for the 

medium term scheduler)
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Medium Term Scheduling

• Part of the swapping function (later…)
• Usually based on the need to manage multi-

programming
• If no virtual memory, memory management is 

also an issue
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Short Term Scheduler

• Dispatcher
• Fine grained decisions of which job to execute 

next
• i.e. which job actually gets to use the processor 

in the next time slot
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Process States
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Process Control Block

• Identifier
• State
• Priority
• Program counter
• Memory pointers
• Context data
• I/O status
• Accounting information
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Key Elements of O/S
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Process Scheduling

Process

Request

EndLong-Term
Queue

Short-Term

Queue
CPU

I/O QueueI/O

I/O QueueI/O

I/O QueueI/O



Rev. 3 (2005-06) by Enrico Nardelli 247 -

Memory Management

• Uni-program
Memory split into two
One for Operating System (monitor)
One for currently executing program

• Multi-program
“User” part is sub-divided and shared among active 
processes
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Swapping

• Problem:  I/O is so slow compared with CPU 
that even in multi-programming system, CPU 
can be idle most of the time

• Solutions:
Increase main memory 

• Expensive
• Leads to larger programs

Swapping
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What is Swapping?

• Long term queue of processes stored on disk
• Processes “swapped” in as space becomes 

available
• As a process completes it is moved out of main 

memory
• If none of the processes in memory are ready 

(i.e. all I/O blocked)
Swap out a blocked process to intermediate queue
Swap in a ready process or a new process
But swapping is an I/O process...
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Partitioning

• Splitting memory into sections to allocate to 
processes (including Operating System)

• Fixed-sized partitions
May not be equal size
Process is fitted into smallest hole that will take it 
(best fit)
Some wasted memory
Leads to variable sized partitions
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Fixed
Partitioning
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Variable Sized Partitions (1)

• Allocate exactly the required memory to a 
process

• This leads to a hole at the end of memory, too 
small to use

Only one small hole - less waste

• When all processes are blocked, swap out a 
process and bring in another

• New process may be smaller than swapped out 
process

• Another hole
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Variable Sized Partitions (2)

• Eventually have lots of holes (fragmentation)
• Solutions:

Coalesce - Join adjacent holes into one large hole
Compaction - From time to time go through memory 
and move all hole into one free block (c.f. disk de-
fragmentation)
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Effect of Dynamic Partitioning
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Relocation

• No guarantee that process will load into the 
same place in memory

• Instructions contain addresses
Locations of data
Addresses for instructions (branching)

• Logical address - relative to beginning of 
program

• Physical address - actual location in memory 
(this time)

• Automatic conversion using base address
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Paging

• Split memory into equal sized, small chunks -
page frames

• Split programs (processes) into equal sized 
small chunks - pages

• Allocate the required number page frames to a 
process

• Operating System maintains list of free frames
• A process does not require contiguous page 

frames
• Use page table to keep track
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Logical and Physical Addresses 
- Paging
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Virtual Memory

• Demand paging
Do not require all pages of a process in memory
Bring in pages as required

• Page fault
Required page is not in memory
Operating System must swap in required page
May need to swap out a page to make space
Select page to throw out based on recent history
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Thrashing

• Too many processes in too little memory
• Operating System spends all its time swapping
• Little or no real work is done
• Disk light is on all the time

• Solutions
Good page replacement algorithms
Reduce number of processes running
Fit more memory
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Bonus

• We do not need all of a process in memory for it 
to run

• We can swap in pages as required
• So - we can now run processes that are bigger 

than total memory available!

• Main memory is called real memory
• User/programmer sees much bigger memory -

virtual memory
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Page Table Structure
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Segmentation

• Paging is not (usually) visible to the 
programmer

• Segmentation is visible to the programmer
• Usually different segments allocated to program 

and data
• May be a number of program and data 

segments
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Advantages of Segmentation

• Simplifies handling of growing data structures
• Allows programs to be altered and recompiled 

independently, without re-linking and re-loading
• Lends itself to sharing among processes
• Lends itself to protection
• Some systems combine segmentation with 

paging


