
Rev. 3 (2005-06) by Enrico Nardelli 17 -

William Stallings
Computer Organization
and Architecture

Chapter 7
Operating System Support

Rev. 3 (2005-06) by Enrico Nardelli 27 -

Objectives and Functions

• Convenience
Making the computer easier to use

• Efficiency
Allowing better use of computer resources

Rev. 3 (2005-06) by Enrico Nardelli 37 -

Layers and Views of a
Computer System

Rev. 3 (2005-06) by Enrico Nardelli 47 -

Operating System Services

• Program creation
• Program execution
• Access to I/O devices
• Controlled access to files
• System access
• Error detection and response
• Accounting

Rev. 3 (2005-06) by Enrico Nardelli 57 -

O/S as a Resource Manager

Rev. 3 (2005-06) by Enrico Nardelli 67 -

Types of Operating System

• Batch
• Interactive

• Single program (Uni-programming)
• Multiple programs (Multi-tasking)

Rev. 3 (2005-06) by Enrico Nardelli 77 -

Early Systems

• Late 1940s to mid 1950s
• No Operating System
• Programs interact directly with hardware
• Two main problems:

Scheduling
Set-up time

Rev. 3 (2005-06) by Enrico Nardelli 87 -

Simple Batch Systems

• Resident Monitor program
• Users submit jobs to operator
• Operator batches jobs
• Monitor controls sequence of events to process

batch
• When one job is finished, control returns to

Monitor which reads next job
• Monitor handles scheduling

Rev. 3 (2005-06) by Enrico Nardelli 97 -

Job Control Language

• Instructions to Monitor
• Usually denoted by $
• e.g.

$JOB
$FTN
... Some Fortran instructions
$LOAD
$RUN
... Some data
$END

Rev. 3 (2005-06) by Enrico Nardelli 107 -

Desirable Hardware Features

• Memory protection
To protect the Monitor

• Timer
To prevent a job monopolizing the system

• Privileged instructions
Only executed by Monitor
e.g. I/O

• Interrupts
Allows for relinquishing and regaining control

Rev. 3 (2005-06) by Enrico Nardelli 117 -

Multi-programmed Batch
Systems

• I/O devices very slow
• When one program is waiting for I/O, another

can use the CPU

Rev. 3 (2005-06) by Enrico Nardelli 127 -

Single Program

Rev. 3 (2005-06) by Enrico Nardelli 137 -

Multi-Programming with
Two Programs

Rev. 3 (2005-06) by Enrico Nardelli 147 -

Multi-Programming with
Three Programs

Rev. 3 (2005-06) by Enrico Nardelli 157 -

Time Sharing Systems

• Allow users to interact directly with the
computer

i.e. Interactive

• Multi-programming allows a number of users to
interact with the computer

Rev. 3 (2005-06) by Enrico Nardelli 167 -

Scheduling

• Key to multi-programming
• Long term
• Medium term
• Short term
• I/O

Rev. 3 (2005-06) by Enrico Nardelli 177 -

Long Term Scheduling

• Determines which programs are submitted for
processing

• i.e. controls the degree of multi-programming
• Once submitted, a job becomes a process for

the short term scheduler
• (or it becomes a swapped out job for the

medium term scheduler)

Rev. 3 (2005-06) by Enrico Nardelli 187 -

Medium Term Scheduling

• Part of the swapping function (later…)
• Usually based on the need to manage multi-

programming
• If no virtual memory, memory management is

also an issue

Rev. 3 (2005-06) by Enrico Nardelli 197 -

Short Term Scheduler

• Dispatcher
• Fine grained decisions of which job to execute

next
• i.e. which job actually gets to use the processor

in the next time slot

Rev. 3 (2005-06) by Enrico Nardelli 207 -

Process States

Rev. 3 (2005-06) by Enrico Nardelli 217 -

Process Control Block

• Identifier
• State
• Priority
• Program counter
• Memory pointers
• Context data
• I/O status
• Accounting information

Rev. 3 (2005-06) by Enrico Nardelli 227 -

Key Elements of O/S

Rev. 3 (2005-06) by Enrico Nardelli 237 -

Process Scheduling

Process

Request

EndLong-Term
Queue

Short-Term

Queue
CPU

I/O QueueI/O

I/O QueueI/O

I/O QueueI/O

Rev. 3 (2005-06) by Enrico Nardelli 247 -

Memory Management

• Uni-program
Memory split into two
One for Operating System (monitor)
One for currently executing program

• Multi-program
“User” part is sub-divided and shared among active
processes

Rev. 3 (2005-06) by Enrico Nardelli 257 -

Swapping

• Problem: I/O is so slow compared with CPU
that even in multi-programming system, CPU
can be idle most of the time

• Solutions:
Increase main memory

• Expensive
• Leads to larger programs

Swapping

Rev. 3 (2005-06) by Enrico Nardelli 267 -

What is Swapping?

• Long term queue of processes stored on disk
• Processes “swapped” in as space becomes

available
• As a process completes it is moved out of main

memory
• If none of the processes in memory are ready

(i.e. all I/O blocked)
Swap out a blocked process to intermediate queue
Swap in a ready process or a new process
But swapping is an I/O process...

Rev. 3 (2005-06) by Enrico Nardelli 277 -

Partitioning

• Splitting memory into sections to allocate to
processes (including Operating System)

• Fixed-sized partitions
May not be equal size
Process is fitted into smallest hole that will take it
(best fit)
Some wasted memory
Leads to variable sized partitions

Rev. 3 (2005-06) by Enrico Nardelli 287 -

Fixed
Partitioning

Rev. 3 (2005-06) by Enrico Nardelli 297 -

Variable Sized Partitions (1)

• Allocate exactly the required memory to a
process

• This leads to a hole at the end of memory, too
small to use

Only one small hole - less waste

• When all processes are blocked, swap out a
process and bring in another

• New process may be smaller than swapped out
process

• Another hole

Rev. 3 (2005-06) by Enrico Nardelli 307 -

Variable Sized Partitions (2)

• Eventually have lots of holes (fragmentation)
• Solutions:

Coalesce - Join adjacent holes into one large hole
Compaction - From time to time go through memory
and move all hole into one free block (c.f. disk de-
fragmentation)

Rev. 3 (2005-06) by Enrico Nardelli 317 -

Effect of Dynamic Partitioning

Rev. 3 (2005-06) by Enrico Nardelli 327 -

Relocation

• No guarantee that process will load into the
same place in memory

• Instructions contain addresses
Locations of data
Addresses for instructions (branching)

• Logical address - relative to beginning of
program

• Physical address - actual location in memory
(this time)

• Automatic conversion using base address

Rev. 3 (2005-06) by Enrico Nardelli 337 -

Paging

• Split memory into equal sized, small chunks -
page frames

• Split programs (processes) into equal sized
small chunks - pages

• Allocate the required number page frames to a
process

• Operating System maintains list of free frames
• A process does not require contiguous page

frames
• Use page table to keep track

Rev. 3 (2005-06) by Enrico Nardelli 347 -

Logical and Physical Addresses
- Paging

Rev. 3 (2005-06) by Enrico Nardelli 357 -

Virtual Memory

• Demand paging
Do not require all pages of a process in memory
Bring in pages as required

• Page fault
Required page is not in memory
Operating System must swap in required page
May need to swap out a page to make space
Select page to throw out based on recent history

Rev. 3 (2005-06) by Enrico Nardelli 367 -

Thrashing

• Too many processes in too little memory
• Operating System spends all its time swapping
• Little or no real work is done
• Disk light is on all the time

• Solutions
Good page replacement algorithms
Reduce number of processes running
Fit more memory

Rev. 3 (2005-06) by Enrico Nardelli 377 -

Bonus

• We do not need all of a process in memory for it
to run

• We can swap in pages as required
• So - we can now run processes that are bigger

than total memory available!

• Main memory is called real memory
• User/programmer sees much bigger memory -

virtual memory

Rev. 3 (2005-06) by Enrico Nardelli 387 -

Page Table Structure

Rev. 3 (2005-06) by Enrico Nardelli 397 -

Segmentation

• Paging is not (usually) visible to the
programmer

• Segmentation is visible to the programmer
• Usually different segments allocated to program

and data
• May be a number of program and data

segments

Rev. 3 (2005-06) by Enrico Nardelli 407 -

Advantages of Segmentation

• Simplifies handling of growing data structures
• Allows programs to be altered and recompiled

independently, without re-linking and re-loading
• Lends itself to sharing among processes
• Lends itself to protection
• Some systems combine segmentation with

paging

