
17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 1

William Stallings

Computer Organization

and Architecture

Chapter 17

Micro-programmed Control

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 2

Hardwired vs

Micro-programmed Control

• Hardwired implementation of the CU

� synthesizing a sequential circuit to obtain the
desidered input-output relations for control signals

• Micro-programmed implementation of the CU

� use sequences of micro-operations to implement the
execution of CPU instructions

• Called micro-programming or firmware
production, since each sequence is made up
by a small number of very simple operations

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 3

Implementation (1)

• For each micro-operation (mOP) all the control
unit does is to generate a set of control signals

• Each control signal is on or off

• Represent each control signal by a bit

• The set of control bits is a control word (CW)

• Each mOP corresponds to a different CW

• Each mOP is executed during one execution
cycle of the CU, which starts by reading the
current CW to be executed and ends by
preparing the address of the next CW to be
executed

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 4

Implementation (2)

• Example of CWs for the mOPs corresponding to instruction
fetch and direct addressing (see 16-26 and 16-27)
� CW1: MAR <- PC

C2

� CW2: MBR <- memory; ALU <- PC; increment ALU; AC <- ALU

C0 CR C5 C14 CA C9

� CW3: PC <- AC; IR <- MBR

C15 C4

� CW4: MAR <- IRaddress

C16

� CW5: MBR <- memory

C0 CR C5

• Add to each CW address information to specify the next
mOP, depending on some conditions

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 5

Implementation (3)

• Have a sequence of CW for each CPU instruction or
substep of it (micro-procedure)

• Each micro-procedure is terminated by a (possibly
conditional) jump to another micro-procedure

• All CWs are put in a memory, called Control Memory,
which can now be used to drive the CU behavior

• All is needed is to define the flow of execution of CWs,
i.e. the sequence of addresses in the control memory
whose corresponding CWs have to be activated

CW Cond. Next mOP

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 6

Implementation (4)

curr.CW mOPs Jump Next CW

CW1 C2 False

CW2 C0 C5 C9 C14 CA CR False

CW3 C4 C9 C15 ?Indirect? CW6

CW4 C16 False

CW5 C0 C5 CR True CW10

• Assuming the first control word of the micro-
procedure for indirect addressing is CW6 and the first
one for execute is CW10

• When the (value of the) jump condition is False the
next CW in the sequence is executed

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 7

Control Memory

...
Jump to Indirect or Execute

...
Jump to Execute

...
Jump to Fetch

...
Jump to Op code routine

...
Jump to Fetch or Interrupt

...
Jump to Fetch or Interrupt

Fetch cycle routine

Indirect Cycle routine

Interrupt cycle routine

Execute cycle start

AND routine

ADD routine

...

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 8

Horizontal Micro-programming

• Wide CW: reserve one bit of the CW for each
control signal

• Many mOPs can be executed in parallel, but a
large space is used

Internal CPU Control Signals Next mOP Address Inform.

Jump ConditionsSystem Bus

Control Signals

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 9

Vertical Micro-programming (1)

• CW is narrow: n control signals encoded into
log2 n bits

• Limited ability to execute mOP in parallel: at most
1 control signal can be managed

• Encoding of control information requires an
additional CW decoder to identify the exact control
line being manipulated

• CW decoder introduce a delay

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 10

Vertical Micro-programming (2)

• Compromise:
� Divide control signals into disjoint groups

• Functional basis (groups for operand source, addressing mode, …)

• Resource basis (groups for ALU, memory, I/O, …)

� Criteria
• All operations coded within a group cannot be executed in parallel

• Any operation in a group can be executed in parallel with any
operation in any other group

� Implement each group as separate field in memory word

� Supports reasonable levels of parallelism without too
much complexity

� With k groups at most k mOPs may be executed in
parallel

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 11

Control Unit: core elements

• Control Address Register
� Contains the address of the current

mOP in execution and (at the end of
each CU execution cycle) of the next
mOP to be executed

• Control Buffer Register
� Store the content of the current

mOP in execution

• Sequencing Logic
� Activates reading from the Control

Memory of the location at the
address in CAR and storing its
content in CBR

� Decides on the next address to be
put in CAR at the end of the
execution cycle

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 12

Sequence of operations during

each execution cycle of CU (1)

1. Sequencing logic unit issues read command to
Control Memory

2. The CW at the address specified in Control
Address Register is read into Control Buffer
Register

3. CBR content generates control signals to CPU
and to system bus, and information used to
decide next CW address in the Control Memory

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 13

Sequence of operations during

each execution cycle of CU (2)

4. Sequencing Logic decide the next CW address
based on:
� jump conditions and next address information in

CBR

� info from IR (D) and from flags (T)

� current state of the CU, given by the value in CAR

5. then loads the next CW address into the CAR
� Next CW address in control memory can be

• Current address + 1

• A jump to
� A new micro-procedure within a same CPU instruction

� A new micro-procedure corresponding to a new CPU
instruction

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 14

Control Unit Organization

Control Unit

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 15

Organization of

the sequencing logic

• Sequencing logic decides the address of the
next CW to be executed

• Its organization depend also on structure of
jump conditions and next-mOP address
information in CW
� 1 field containing only the address in case of jump,

since otherwise CU go in sequence (needs an adder)

� 2 fields containing both addresses needed for the
case CU jumps or not (faster but longer CW)

� Variable structure of CW: only address information or
only control information (much shorter CW but slower
execution)

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 16

Adder

CW structure: 1 next CW field

IR

CAR

Jump ConditionsControl Signals Next CW

Sequencing
Logic

MUX

+1

CONTROL UNIT

Control
Memory

T

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 17

CW structure: 2 next CW fields

IR

CAR

Jump ConditionsControl Signals Seq. CW Addr

Sequencing
Logic

MUX

CONTROL UNIT

Control
Memory

Jump CW Addr

T

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 18

Adder

Variable CU structure

IR

CAR

Jump Addr1 Jump Addr2

Sequencing
Logic

MUX

+1

CONTROL UNIT

Control Memory

DEMUX

Flag Variable Structure CW

Control Signals

T

17 -Rev. 3.2.1 (2010-11) by Enrico Nardelli 19

Hardwired vs Micro-programmed

• Micro-programmed control simplifies the design of
control unit
� Cheaper

� Less error-prone

� Much more easier to revise and modify

• But the control unit is faster with hardwired CU

• Micro-programmed CU is used mainly for CISC
architectures since flexibility of CU is more important for
a complex instruction set

• On the other side, RISC architectures use hardwired CU
since with a simpler instruction set flexibility is a less
important requirement than speed of execution

