
Rev. 3 (2004-05) by Enrico Nardelli 115 -

William Stallings
Computer Organization
and Architecture

Chapter 15
Micro-programmed Control

Rev. 3 (2004-05) by Enrico Nardelli 215 -

Hardwired vs
Micro-programmed Control

• Hardwired implementation of the CU
synthesizing a sequential circuit to obtain the
desidered input-output relations for control signals

• Micro-programmed implementation of the CU
use sequences of micro-operations to implement the
execution of CPU instructions

• Called micro-programming or firmware
production, since each sequence is made up
by a small number of very simple operations

Rev. 3 (2004-05) by Enrico Nardelli 315 -

Implementation (1)

• For each micro-operation (mOP) all the control
unit does is to generate a set of control signals

• Each control signal is on or off
• Represent each control signal by a bit
• The set of control bits is a control word (CW)
• Each mOP corresponds to a different CW
• Each mOP is executed during one execution

cycle of the CU, which starts by reading the
current CW to be executed and ends by
preparing the address of the next CW to be
executed

Rev. 3 (2004-05) by Enrico Nardelli 415 -

Implementation (2)

• Example of CWs for the mOPs corresponding to
instruction fetch

CW1: MAR <- (PC)
C2

CW2: MBR <- (memory); (PC)+1 in ALU
C0 CR C5 C14 CA

CW3: AC <- (ALU); PC <- (AC); IR <- (MBR)
C9 C15 C4

• Add to each CW address information to specify
the next mOP, depending on some conditions

Rev. 3 (2004-05) by Enrico Nardelli 515 -

Implementation (3)
• Have a sequence of CW for each CPU instruction or

substep of it (micro-procedure)
• Each micro-procedure is terminated by a (possibly

conditional) jump to another micro-procedure

• All CWs are put in a memory, called Control Memory,
which can now be used to drive the CU behavior

• All is needed is to define the flow of execution of CWs,
i.e. the sequence of addresses in the control memory
whose corresponding CWs have to be activated

CW Cond. Next mOP

Rev. 3 (2004-05) by Enrico Nardelli 615 -

Implementation (4)

curr. CW mOPs Jump Next CW
CW1 C2 False
CW2 C0 C5 C14 CA CR False
CW3 C4 C9 C15 True CW7

• Assuming that after fetch the execute phase starts
and its first control word is CW7

• When the jump condition is false the next CW in the
sequence is executed

Rev. 3 (2004-05) by Enrico Nardelli 715 -

Control Memory
...

Jump to Indirect or Execute
...

Jump to Execute
...

Jump to Fetch
...

Jump to Op code routine
...

Jump to Fetch or Interrupt
...

Jump to Fetch or Interrupt

Fetch cycle routine

Indirect Cycle routine

Interrupt cycle routine

Execute cycle start

AND routine

ADD routine

...

Rev. 3 (2004-05) by Enrico Nardelli 815 -

Horizontal Micro-programming

• Wide CW: reserve one bit of the CW for each
control signal

• Many mOPs can be executed in parallel, but a
large space is used

Internal CPU Control Signals Next mOP Address Inform.

Jump ConditionsSystem Bus
Control Signals

Rev. 3 (2004-05) by Enrico Nardelli 915 -

Vertical Micro-programming (1)

• CW is narrow: n control signals encoded into
log2 n bits

• Limited ability to execute mOP in parallel: at most
1 mOP can be executed

• Encoding of control information requires an
additional CW decoder to identify the exact control
line being manipulated

• CW decoder introduce a delay

Rev. 3 (2004-05) by Enrico Nardelli 1015 -

Vertical Micro-programming (2)

• Compromise:
Divide control signals into disjoint groups

• Functional basis (groups for operand source, addressing mode, …)
• Resource basis (groups for ALU, memory, I/O, …)

Criteria
• All operations coded within a group cannot be executed in parallel
• Any operation in a group can be executed in parallel with any

operation in any other group
Implement each group as separate field in memory word
Supports reasonable levels of parallelism without too
much complexity
With k groups at most k mOPs may be executed in
parallel

Rev. 3 (2004-05) by Enrico Nardelli 1115 -

Control Unit: core elements

• Control Address Register
Contains the address of the current
mOP in execution and (at the end of
each CU execution cycle) of the next
mOP to be executed

• Control Buffer Register
Store the content of the current mOP
in execution

• Sequencing Logic
Activates reading from the Control
Memory of the location at the
address in CAR and storing its
content in CBR
Decides on the next address to be
put in CAR

Rev. 3 (2004-05) by Enrico Nardelli 1215 -

Sequence of operations during
each execution cycle of CU (1)
1. Sequencing logic unit issues read command to

Control Memory
2. The CW at the address specified in Control

Address Register is read into Control Buffer
Register

3. CBR content generates control signals to CPU
and to system bus, and information used to
decide next CW address in the Control Memory

Rev. 3 (2004-05) by Enrico Nardelli 1315 -

Sequence of operations during
each execution cycle of CU (2)
4. Sequencing Logic decide the next CW address

based on:
jump conditions and next address information in
CBR
info from IR and from ALU flags
current state of the CU, given by the value in CAR

5. then loads the next CW address into the CAR
Next CW address in control memory can be
• Current address + 1
• A jump to

A new micro-procedure within a same CPU instruction
A new micro-procedure corresponding to a new CPU
instruction

Rev. 3 (2004-05) by Enrico Nardelli 1415 -

Control Unit Organization

Control Unit

Rev. 3 (2004-05) by Enrico Nardelli 1515 -

Organization of
the sequencing logic

• Sequencing logic decides the address of the
next CW to be executed

• Its organization depend also on structure of
jump conditions and next-mOP address
information in CW

1 field containing only the address in case of jump,
since otherwise CU go in sequence (needs an adder)
2 fields containing both addresses needed for the
case CU jumps or not (faster but longer CW)
Variable structure of CW: only address information or
only control information (much shorter CW but slower
execution)

Rev. 3 (2004-05) by Enrico Nardelli 1615 -

Adder

CW structure: 1 next CW field

IR

CAR

Jump ConditionsControl Signals Next CW

Sequencing
Logic MUX

+1

CONTROL UNIT

Control
Memory

Rev. 3 (2004-05) by Enrico Nardelli 1715 -

CW structure: 2 next CW fields

IR

CAR

Jump ConditionsControl Signals Seq. CW Addr

Sequencing
Logic MUX

CONTROL UNIT

Control
Memory

Jump CW Addr

Rev. 3 (2004-05) by Enrico Nardelli 1815 -

Adder

Variable CU structure

IR

CAR

Jump Addr1 Jump Addr2

Sequencing
Logic MUX

+1

CONTROL UNIT

Control Memory

DEMUX

Flag Variable Structure CW

Control Signals

Rev. 3 (2004-05) by Enrico Nardelli 1915 -

Hardwired vs Micro-programmed

• Micro-programmed control simplifies the design of
control unit

Cheaper
Less error-prone
Much more easier to revise and modify

• But the control unit is faster with hardwired CU
• Micro-programmed CU is used mainly for CISC

architectures since flexibility of CU is more important for
a complex instruction set

• On the other side, RISC architectures use hardwired CU
since with a simpler instruction set flexibility is a less
important requirement than speed of execution

