
Rev. 3.1 (2005-06) by Enrico Nardelli 114 -

William Stallings 
Computer Organization 
and Architecture

Chapter 14
Control Unit Operations



Rev. 3.1 (2005-06) by Enrico Nardelli 214 -

Execution of the 
Instruction Cycle
• It has many elementary phases, each executed in a 

single clock cycle (remember pipelining)
• In each phase only very simple operations (called 

micro-operations) are executed:
Move contents between registers (internals, interface with ALU, 
interface with memory)
Activate devices (ALU, memory)

• Micro-operations are the CPU atomic operations, hence 
define its low-level behaviour

• A micro-operation is the set of actions (data flows and 
controls) that can be completed in a single clock cycle



Rev. 3.1 (2005-06) by Enrico Nardelli 314 -

Constituent Elements of 
Program Execution



Rev. 3.1 (2005-06) by Enrico Nardelli 414 -

Sequence of micro-operations 
for instruction fetch

• t1: MAR <- (PC) <DF1 >
• t2: MBR <- (memory) <DF2 DF3 DF4 DF5 >

PC <- (PC) +1 <DF7 > 
• t3: IR <- (MBR) <DF6 >

(each ti is a clock cycle, 
i.e. an atomic time unit)

An alternative organization
• t1: MAR <- (PC)
• t2: MBR <- (memory)
• t3: PC <- (PC) +1 

IR <- (MBR)

IR MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter

PC
2

3

3

4

4

5

1

6

7

IR MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter

PC
2

3

3

4

4

5

1

6

7



Rev. 3.1 (2005-06) by Enrico Nardelli 514 -

Rules for micro-operation 
sequencing
• Proper precedence must be observed

MAR <- (PC) must precede MBR <- (memory)
• Conflicts must be avoided

Must not read & write same register at same time
MBR <- (memory) & IR <- (MBR) must not be in same 
cycle

• Also:  PC <- (PC) +1 involves addition
Depending on the kind of ALU may need additional 
micro-operations, hence it may be better to have it in t2

• Minimization of the number of micro-operations is 
an algorithmic problem on graphs



Rev. 3.1 (2005-06) by Enrico Nardelli 614 -

Sequence of micro-operations 
for direct addressing

• t1: MAR <- (IR) <DF1 >
• t2: MBR <- (memory) <DF2 DF3 DF4 DF5 >

IR MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter

2

3

3

4

4

5

1

IR MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter

2

3

3

4

4

5

1



Rev. 3.1 (2005-06) by Enrico Nardelli 714 -

Sequence of micro-operations 
for register indirect addressing

• t1: MAR <- ((IRregister-address)) <DF1 DF2 >
• t2: MBR <- (memory) <DF3 DF4 DF5 DF6 >

IR MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter

Registers

3

4

4

5

5

6

1

1

2

IR MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter

Registers

3

4

4

5

5

6

1

1

2



Rev. 3.1 (2005-06) by Enrico Nardelli 814 -

Sequence of micro-operations 
for indirect addressing

• t1: MAR <- (IRaddress) <DF1 >
• t2: MBR <- (memory) <DF2 DF3 DF4 DF5 >
• t3: MAR <- (MBR) <DF6 >
• t4: MBR <- (memory) <DF7 DF8 DF9 DF10 >

MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter

2 - 7

3 - 8

3 - 8

4 - 9

4 - 9

5 - 10

1

IR

6

MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter

2 - 7

3 - 8

3 - 8

4 - 9

4 - 9

5 - 10

1

IR

6



Rev. 3.1 (2005-06) by Enrico Nardelli 914 -

Sequence of micro-operations 
for relative addressing

• t1: MAR <- (IR) + (PC) <DF1 DF2 DF3 DF4 >
• t2: MBR <- (memory) <DF5 DF6 DF7 DF8 >

IR MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter
ALU A ith ti L i U it

ALU

PC
5

6

6

7

7

8

1

2

3

4

IR MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter
ALU A ith ti L i U it

ALU

PC
5

6

6

7

7

8

1

2

3

4



Rev. 3.1 (2005-06) by Enrico Nardelli 1014 -

Sequence of micro-operations 
for base and indexed addressing

• t1: MAR <- ((IRregister-address)) + (IRaddress)
<DF1 DF2 DF3 DF4 DF5 >

• t2: MBR <- (memory) <DF6 DF7 DF8 DF9 >

IR MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter
ALU A ith ti L i U it

Registers

1

1

2

3

5

ALU

4

6

7

7

8

8

9

IR MBR

Control
Unit

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter
ALU A ith ti L i U it

Registers

1

1

2

3

5

ALU

4

6

7

7

8

8

9



Rev. 3.1 (2005-06) by Enrico Nardelli 1114 -

Sequence of micro-operations for 
combination of displacement and 
indirect addressing

• Try them yourself !



Rev. 3.1 (2005-06) by Enrico Nardelli 1214 -

Sequence of micro-operations 
for interrupt handling

• t1: MBR <- (PC) <DF1a >
MAR <- (Stack-Pointer) <DF1b>

• t2: Memory <- (MBR) <DF1c DF1d DF1e >
• t3: MAR <- Interrupt_Code <DF2a >
• t4: MBR <- (Memory) <DF2b DF2c DF2d DF2e >
• t5: PC <- (MBR) <DF2f >

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter

Registers

PC

Control
Unit

MBR

1b

1a

1b

1c - 2b

1c

1d - 2c

1d - 2c

1e

1e - 2d
2a

2d

2e2f

MAR

Data
Bus

Address
Bus

Control
Bus

Memory

CPU

MAR = Memory Address Register
MBR = Memory Buffer Register
IR = Instruction Register
PC = Program Counter

Registers

PC

Control
Unit

MBR

1b

1a

1b

1c - 2b

1c

1d - 2c

1d - 2c

1e

1e - 2d
2a

2d

2e2f



Rev. 3.1 (2005-06) by Enrico Nardelli 1314 -

Micro-operation sequencing 
for the execution phase (1)

• Different for each instruction

• MUL R1 X - add the contents of location X to 
Register 1 and store result in Register 1 and 2

Assuming that content of cell at address X is in MBR 
after the operand fetch phase:
t1: ALU <- (R1) * (MBR)
t2: R1 <- (ALU)low

R2 <- (ALU)high



Rev. 3.1 (2005-06) by Enrico Nardelli 1414 -

Micro-operation sequencing 
for the execution phase (2)

• ISZ X - increment memory cell X and skip if it’s zero
Assuming that content of cell at address X is in MBR after 
the operand fetch phase:
t1: MBR <- (MBR) + 1
t2: memory <- (MBR)

IF (MBR) == 0 THEN PC <- (PC) + 1

• Note:
IF-THEN is a single micro-operation



Rev. 3.1 (2005-06) by Enrico Nardelli 1514 -

Micro-operation sequencing 
for the execution phase (3)

• PPJ  X - Save in stack the return address and 
jump to address X

t1: MBR <- (PC)
MAR <- (SP)

t2: memory <- (MBR)
SP <- (SP) + 1
PC <- (IRaddress)



Rev. 3.1 (2005-06) by Enrico Nardelli 1614 -

A simplified flow diagram for the 
execution of instruction cycle

Interrupt 
enabled?

Execute
interrupt 
handling 
micro-ops

Opcode?

ICC?

Indirect
addressing?

Fetch
instructionExecute

indirect
addressing
micro-ops

ICC = 10

ICC = 01

ICC = 10ICC = 00ICC = 11

ICC = 00

Execute micro-ops
for the given opcode

11 (Interrupt) 00 (Fetch)

01 (Indirect Addressing)10 (Execution)

ICC = Instruction Cycle Code

YesNo

Fetch
data



Rev. 3.1 (2005-06) by Enrico Nardelli 1714 -

Functions of Control Unit

• Sequencing
Causing the CPU to step through a series of micro-
operations

• Execution
Causing the execution of each micro-op

• ALL THESE ACTIONS are performed by means 
of Control Signals



Rev. 3.1 (2005-06) by Enrico Nardelli 1814 -

A simplified data flow diagram 
of a Control Unit

Control
Unit

Instruction
Register

C
ontrol B

us

Control Signals

Control Signals

Signals internal to CPU

Clock

Flags

…



Rev. 3.1 (2005-06) by Enrico Nardelli 1914 -

Input Signals

• Clock
One micro-op (or set of parallel ops) per clock cycle
Different signals are needed for different steps

• Instruction register
Op-code for current instruction
Determines which micro-instructions are performed

• Flags
State of CPU
Results of previous operations

• Control Bus
Interrupts
Acknowledgments



Rev. 3.1 (2005-06) by Enrico Nardelli 2014 -

Output Signals

• To other CPU components
For data movement
To activate specific functions

• To the Control Bus
To control memory
To control I/O modules

• Output signals from the control unit make all 
micro-operations happen



Rev. 3.1 (2005-06) by Enrico Nardelli 2114 -

Example of Control Signal use 
in a simplified schema of a CPU

M
B
R

M
A
R

C5

C12

C0

PC IR

AC

Control
Unit

ALU

C11

C9C7

C10

C6

C4

C13

C3C1

C2

C8

Clock

…
Control signals Cx

Flags

Cx
The flow of data is 

enabled when the Control 
Signal x is enabled

…
Control signals Cx

C14

C15

C16 Decod.

…



Rev. 3.1 (2005-06) by Enrico Nardelli 2214 -

Example of Control Signal 
Sequence – Instruction Fetch (1)

• t1: MAR <- (PC)
Control unit (CU) activates signal C2 to open gate 
between PC and MAR

• t2: MBR <- (memory)
CU activates C0 to open gate between MAR and 
address bus
CU activates the memory read control signal (CR -
not shown) to the memory
CU activates C5 to open gate between data bus and 
MBR



Rev. 3.1 (2005-06) by Enrico Nardelli 2314 -

Example of Control Signal 
Sequence – Instruction Fetch (2)
• t3: PC <- (PC) +1

In the simple schema shown there is no direct data 
path from ALU to PC hence the micro-op has to be 
split in two (ALU has internally an output buffer to 
store result):
t3-1: ALU <- (PC) CU activates C14
increment ALU CU act. control signal CA (not

shown) for ALU
t3-2: AC <- (ALU) CU activates C9

PC <- (AC) CU activates C15
• t4: IR <- (MBR)

CU activates C4



Rev. 3.1 (2005-06) by Enrico Nardelli 2414 -

Example of Control Signal 
Sequence – Instruction Fetch (3)

• Optimization
t2 and t3-1 can be executed together
t3-2 and t4 can be executer together

• New organization
t1: MAR <- (PC) C2
t2: MBR <- (memory) C0 CR C5

(PC)+1 in ALU C14 CA
t3: AC <- (ALU) C9

PC <- (AC) C15
IR <- (MBR) C4



Rev. 3.1 (2005-06) by Enrico Nardelli 2514 -

Example of Control Signal 
Sequence - Indirect Addressing

• t1: MAR <- (IRaddress)
CU activates C16 to open gate between IR and MAR 

• t2: MBR <- (memory)
CU act. C0 to open gate between MAR and address bus
CU act. the memory read control signal (CR)
CU act. C5 to open gate between data bus and MBR

• t3: MAR <- (MBR)
CU activates C8 to open gate between MBR and MAR

• t4: MBR <- (memory)
CU activates C0, CR and C5 as above



Rev. 3.1 (2005-06) by Enrico Nardelli 2614 -

Other Examples of Control 
Signal Sequence

• Direct Addressing
• Relative Addressing

• Try them yourself !



Rev. 3.1 (2005-06) by Enrico Nardelli 2714 -

Limitations

• The simplified schema of a CPU’s does not show 
registers, hence we cannot show

Register addressing
Register indirect addressing
Base addressing
Indexed addressing
Combination of displacement and indirect addressing

Try adding to the simplified schema one or more of 
the above addressing modalities and derive the 
required micro-operations!



Rev. 3.1 (2005-06) by Enrico Nardelli 2814 -

Internal Organization of CPU

• Usually a single internal bus 
less complex then having direct data paths between 
registers and ALU

• Gates control movement of data onto and off 
the internal bus

• Control signals control also data transfer to and 
from external systems bus

• Temporary registers in input to ALU are now 
needed for proper operation of ALU



Rev. 3.1 (2005-06) by Enrico Nardelli 2914 -

Hardwired Implementation (1)

• Consider the control unit as a combinational circuit
Outputs of the circuit are the control signals
Inputs of the circuit are status signal for ICC and opcode
bits
For each configuration of inputs produce a proper output
That is, the activation of a given control signal Cn has to 
happen when this condition is true OR this condition is 
true OR …



Rev. 3.1 (2005-06) by Enrico Nardelli 3014 -

Hardwired Implementation (2)

• Example:
Control signals P and Q code ICC: then fetch is coded by 
P’Q’, indirect by P’Q, execute by PQ’, and interrupt by PQ
Opcode bits are further control signals
Boolean expression activating C5 in the simplified schema 
of a CPU:
C5 = P’Q’t2 + P’Q(t2+ t4) + PQ’B

• where B is the boolean expression representing, for all opcodes
activating C5, all micro-operations actually activating it

• E.g.: if C5 is activated by opcode 3 during t2 and t4 and by opcode
7 during t3 and t4 then B is: OC3(t2+t4)+OC7(t3+t4)



Rev. 3.1 (2005-06) by Enrico Nardelli 3114 -

A simplified data flow diagram 
of a Control Unit for the hardwired 
implementation

Control
Unit

Instruction
Register

C
ontrol B

us

Control Signals

Control Signals

Signals internal to CPU

Clock

Flags

…

clocks 
for 

mOPs

…t1

tn

Decoder

…OC1 OCm



Rev. 3.1 (2005-06) by Enrico Nardelli 3214 -

Problems with the 
Hardwired Implementation

• Complex sequencing & micro-operation logic
• Difficult to design and test
• Inflexible design
• Difficult to add new instruction


