William Stallings
Computer Organization
and Architecture

Chapter 14
Control Unit Operations

Rev. 3.1 (2005-06) by Enrico Nardelli

14 -

Execution of the
Instruction Cycle

e |t has many elementary phases, each executed in a
single clock cycle (remember pipelining)

e |In each phase only very simple operations (called

micro-operations) are executed:
= Move contents between registers (internals, interface with ALU,

Interface with memory)
= Activate devices (ALU, memory)

e Micro-operations are the CPU atomic operations, hence
define its low-level behaviour

e A micro-operation is the set of actions (data flows and
controls) that can be completed in a single clock cycle

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -

Constituent Elements of
Program Execution

Program Execution

P

Instruction Cycle Instruction Cycle L O Instruction Cycle
Fetch Indirect Execute Interrupt

ZAANPZAN

pOP| (pOP| |pOP] |pOP| |pOP

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -

Sequence of micro-operations
for instruction fetch

o t,:
ot

o 1,
(each t is a clock cycle,
l.e. an atomic time unit)

An alternative organization

o t,:
o t,:
oty

MAR <- (PC) <DF, >
MBR <- (memory)

PC <- (PC) +1 <DF, >
IR <- (MBR) <DF, >

MAR <- (PC)

MBR <- (memory) R K2 wer [

PC <- (PC) +1
IR <- (MBR)

CPU

1
=~

<DF, DF, DF, DF, >

PC [—1 MAR

V

7 Control
Unit

\/

\/

Rev. 3.1 (2005-06) by Enrico Nardelli

Memory

Rules for micro-operation
sequencing

e Proper precedence must be observed
= MAR <- (PC) must precede MBR <- (memory)

e Conflicts must be avoided
= Must not read & write same register at same time
= MBR <- (memory) & IR <- (MBR) must not be in same
cycle
e Also: PC <- (PC) +1 involves addition
= Depending on the kind of ALU may need additional
micro-operations, hence it may be better to have it in t,
e Minimization of the number of micro-operations Is
an algorithmic problem on graphs

Rev. 3.1 (2005-06) by Enrico Nardelli 14- 5

Sequence of micro-operations
for direct addressing

* t;: MAR <- (IR) <DF, >
* t,: MBR <- (memory) <DF, DF; DF, DF; >

CPU \
—!\
:'I> 2 ”
MAR > _——
AN
v
Control 3
Unit >
5
IR MBR |
— [
MAR =M A
MBR = Memory B Address Data Control
IR = Instruction Re Bus Bus Bus
PC roaram Cou

Rev. 3.1 (2005-06) by Enrico Nardelli

Memory

14 -

Sequence of micro-operations
for register indirect addressing

t;: MAR <- ((IR <DF, DF, >

register—address))

* 1, MBR <- (memory) <DF, DF, DF; DF; >
CPU .
— 3 5
, MAR = — — Memory
5
O
Registers \,/‘i C?Jr:]tirtol ! ’>
{]
6
IR MBR |—__,
MER - Memory B Address Data Control
= Instruction Re Bus Bus Bus
=P m Coul

Rev. 3.1 (2005-06) by Enrico Nardelli 14- 7

Sequence of micro-operations
for indirect addressing

® tl: MAR <- (IRaddress) <DF1 =
* t,; MBR <- (memory) <DF, DF,; DF, DF; >
° t;; MAR <- (MBR) <DF; >
* t,; MBR <- (memory) <DF, DFg DFq DF,>

CPU

3-8
L~
————
:l> 2-7 4-9
MAR >
— — Memory
4-9
N
d
Control 3-8
1 6 3 N
Unit A
5-10
IR MBR |
| —
MAR = Memory Address Register
MBR = Memory Buffer Register Address Data Control
IR = Instruction Register Bus Bus Bus
Counte

Rev. 3.1 (2005-06) by Enrico Nardelli

Sequence of micro-operations
for relative addressing

* t;: MAR <-(IR) + (PC) <DF, DF, DF, DF, >
° t,: MBR <- (memory) <DF, DF4 DF, DFg >

CPU 6
_I\
© 5
7
2 —| MAR >
PC |~ g — Memory
ALU — 1
3 | Control 6
<—— unit >
it
8
IR MBR = __
MAR = Memory Address Register
MBR = Memory Buffer Register Address Data Control
1 Instruction Register Bus Bus Bus
m Cou_nter o

Rev. 3.1 (2005-06) by Enrico Nardelli

Sequence of micro-operations
for base and indexed addressing

° tl: MAR <- ((IRregister-address)) + (IRaddress)
<DF, DF, DF, DF, DF; >

° t,: MBR <- (memory) <DF4 DF, DF4 DFg >

CPU .
>
5
ALU ——] MAR — 8
7 < — Memory

8
NI 1 —>
2 ——
4
3 Control 7

Registers| Unit

\/

IR MBR =,

mory Address Register
mory Buffer Register Address Data Control
1 Instruction Register Bus Bus Bus
m Counter

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -10

Sequence of micro-operations for
combination of displacement and
Indirect addressing

e Try them yourself |

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -11

Sequence of micro-operations
for interrupt handling

ot

MBR <- (PC)

MAR <- (Stack-Pointer)
Memory <- (MBR)
MAR <- Interrupt_Code

<DF,, >

<DF, >
<DF,. DF,4 DF,, >

<DF,, >

MBR <- (Memory) <DF,, DF,, DF,, DF,, >
PC <- (MBR) . <DF, >
77777
— ic-2b 2d
. MAR > e f> .
TTZa >
|2 I control 1d-2 te-2d
Registers K—— Unit ">
2f | 2e
PC _,\jla MBR <IN1C —|
Reliam: ueb Bimiegasy Enrico Nardelli Address Data Control 14 -12
P prmancom e e o

Micro-operation sequencing
for the execution phase (1)

e Different for each instruction

e MUL R1 X - add the contents of location X to
Register 1 and store result in Register 1 and 2

Assuming that content of cell at address X is in MBR
after the operand fetch phase:

“ t;; ALU <- (R1) * (MBR)
" t,; Rl<-(ALU),,,
R2 <- (ALU)yign

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -13

Micro-operation sequencing
for the execution phase (2)

e |SZ X - Increment memory cell X and skip If it's zero

Assuming that content of cell at address X is in MBR after
the operand fetch phase:

=t MBR <- (MBR) + 1
"t memory <- (MBR)
IF (MBR) == 0 THEN PC <- (PC) + 1
* Note:
= |[F-THEN Iis a single micro-operation

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -14

Micro-operation sequencing
for the execution phase (3)

e PPJ X - Save In stack the return address and
jump to address X

=1 MBR <- (PC)
MAR <- (SP)

"t memory <- (MBR)
SP<-(SP) +1

PC <- (I Raddress)

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -15

A simplified flow diagram for the
execution of instruction cycle

ICC = Instruction Cycle Code

\ 4
11 (Interrupt) / \ 00 (Fetch)
ICC?
N/
I 10 (Execution) 01 (Indirect Addressing) = v -
etc

Execute v . .

interrupt ¥ Executs instruction
handling Opcode? indirect

micro-ops addressing

micro-ops
Execute micro-ops v
v for the given opcode v No Indirect Yes
ICC =00 ICC=10 addressing?
Interrupt v
enabled? Fdetch
ata Y
ICC=01
\ 4 \ 4 4
ICC=11 ICC=00 ICC =10

\ 4

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -16

Functions of Control Unit

e Sequencing
= Causing the CPU to step through a series of micro-
operations

e Execution
= Causing the execution of each micro-op

e ALL THESE ACTIONS are performed by means
of Control Signals

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -17

A simplified data flow diagram
of a Control Unit

Instruction
Register

Signals internal to CPU>

Control mE—
. ontro Ignals
Unit g

Clock >
Control Signals

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -18

\ 4

Flags

sng |0Jju0)

\ 4

Input Signals

e Clock

= One micro-op (or set of parallel ops) per clock cycle
= Different signals are needed for different steps

e [Instruction register

= Op-code for current instruction

= Determines which micro-instructions are performed
 Flags

= State of CPU

= Results of previous operations

e Control Bus
= [nterrupts
= Acknowledgments

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -19

Output Signals

 To other CPU components
= For data movement
= To activate specific functions

e To the Control Bus
= To control memory
= To control 1/0 modules

e Output signals from the control unit make all
micro-operations happen

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -20

Example of Control Signal use
In a simplified schema of a CPU

C1l

)
4_@%

M |« 7'y
B
R) 4
Cl)| (C3
C8

) 4
ﬁ:@

i

IR

| A L
3

—>

Flags

—>

The flow of data is

Control
Unit

AC
©

X

C1

Clock

enabled when the Control
Signal x is enabled

.

l

Control signals Cx

Rev. 3.1 (2005-06) by Enrico Nardelli

AL

T

T

Control signals Cx

14 -21

Example of Control Signal
Sequence - Instruction Fetch (1)

* 1;: MAR <- (PC)
= Control unit (CU) activates signal C2 to open gate
between PC and MAR
* t,; MBR <- (memory)
= CU activates CO to open gate between MAR and
address bus

= CU activates the memory read control signal (CR -
not shown) to the memory

= CU activates C5 to open gate between data bus and
MBR

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -22

Example of Control Signal
Sequence - Instruction Fetch (2)

* t;: PC <- (PC) +1
= In the simple schema shown there is no direct data
path from ALU to PC hence the micro-op has to be
split in two (ALU has internally an output buffer to
store result):

= t;,: ALU <- (PC) CU activates C14

= increment ALU CU act. control signal CA (not
: shown) for ALU
= t,,: AC <- (ALU) CU activates C9

. PC <- (AC) CU activates C15

° t,; IR <- (MBR)
= CU activates C4

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -23

Example of Control Signal
Sequence - Instruction Fetch (3)

e Optimization
= t, and t; ; can be executed together
= t,, and t, can be executer together

 New organization

=t MAR <- (PC) C2

= 1, MBR <- (memory) CO CR C5
(PC)+1 in ALU Cl4 CA

o P AC <- (ALV) C9
PC <- (AC) C15

IR <- (MBR) C4

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -24

Example of Control Signal
Sequence - Indirect Addressing

® tl: MAR <- (IRaddress)
= CU activates C16 to open gate between IR and MAR
* t,; MBR <- (memory)
= CU act. CO to open gate between MAR and address bus

= CU act. the memory read control signal (CR)
= CU act. C5 to open gate between data bus and MBR

* 1, MAR <- (MBR)

= CU activates C8 to open gate between MBR and MAR
* t,; MBR <- (memory)

= CU activates CO, CR and C5 as above

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -25

Other Examples of Control
Sighal Sequence

e Direct Addressing
e Relative Addressing

e Try them yourself !

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -26

Limitations

e The simplified schema of a CPU’s does not show
registers, hence we cannot show
= Register addressing
= Register indirect addressing
= Base addressing
* Indexed addressing
= Combination of displacement and indirect addressing

= Try adding to the simplified schema one or more of
the above addressing modalities and derive the
required micro-operations!

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -27

Internal Organization of CPU

e Usually a single internal bus

= less complex then having direct data paths between
registers and ALU

e Gates control movement of data onto and off
the internal bus

e Control signals control also data transfer to and
from external systems bus

e Temporary registers in input to ALU are now
needed for proper operation of ALU

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -28

Hardwired Implementation (1)

e Consider the control unit as a combinational circuit

= Qutputs of the circuit are the control signals

= Inputs of the circuit are status signal for ICC and opcode
bits

= For each configuration of inputs produce a proper output

= That Is, the activation of a given control signal Cn has to
happen when this condition is true OR this condition is

true OR ...

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -29

Hardwired Implementation (2)

e Example:

= Control signals P and Q code ICC: then fetch is coded by
P'Q’, Indirect by P'Q, execute by PQ’, and interrupt by PQ

= Opcode bits are further control signals

= Boolean expression activating C5 in the simplified schema
of a CPU:

C5 = P'Q't, + P'Q(t,+ t,) + PQ'B

e where Bis the boolean expression representing, for all opcodes
activating C5, all micro-operations actually activating it

e E.g.: if C5 is activated by opcode 3 during t, and t, and by opcode
7 during t; and t, then Bis: OC3(t,+t,)+0OC7(t;+t,)

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -30

A simplified data flow diagram

of a Control Unit for the hardwired
Implementation

Instruction
Register
/ Decoder \
OCl " OCm
A\ 4
O
g o
Flags . Signals internal to CPU> g
s S
0
Control _ =
t - Control Signals
clocks [— unit
Clock » for -
mOPs |
h Control Signals

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -31

Problems with the
Hardwired Implementation

e« Complex sequencing & micro-operation logic
e Difficult to design and test
e Inflexible design

e Difficult to add new instruction

Rev. 3.1 (2005-06) by Enrico Nardelli 14 -32

