
Rev. 3.1.1 (2006-07) by Enrico Nardelli 114 -

William Stallings

Computer Organization

and Architecture

Chapter 14

Control Unit Operations

Rev. 3.1.1 (2006-07) by Enrico Nardelli 214 -

Execution of the

Instruction Cycle

• It has many elementary phases, each executed in a
single clock cycle (remember pipelining)

• In each phase only very simple operations (called
micro-operations) are executed:

� Move contents between registers (internals, interface with ALU,
interface with memory)

� Activate devices (ALU, memory)

• Micro-operations are the CPU atomic operations, hence
define its low-level behaviour

• A micro-operation is the set of actions (data flows and
controls) that can be completed in a single clock cycle

Rev. 3.1.1 (2006-07) by Enrico Nardelli 314 -

Constituent Elements of

Program Execution

Rev. 3.1.1 (2006-07) by Enrico Nardelli 414 -

Sequence of micro-operations

for instruction fetch

• t1: MAR <- (PC) <DF1 >

• t2: MBR <- (memory) <DF2 DF3 DF4 DF5 >

PC <- (PC) +1 <DF7 >

• t3: IR <- (MBR) <DF6 >

(each ti is a clock cycle,

i.e. an atomic time unit)

An alternative organization

• t1: MAR <- (PC)

• t2: MBR <- (memory)

• t3: PC <- (PC) +1

IR <- (MBR)

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

PC
2

3

3

4

4

5

1

6

7

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

PC
2

3

3

4

4

5

1

6

7

Rev. 3.1.1 (2006-07) by Enrico Nardelli 514 -

Rules for micro-operation

sequencing

• Proper precedence must be observed
� MAR <- (PC) must precede MBR <- (memory)

• Conflicts must be avoided
� Must not read & write same register at same time

� MBR <- (memory) & IR <- (MBR) must not be in same
cycle

• Also: PC <- (PC) +1 involves addition
� Depending on the kind of ALU may need additional
micro-operations, hence it may be better to have it in t2

• Minimization of the number of micro-operations is
an algorithmic problem on graphs

Rev. 3.1.1 (2006-07) by Enrico Nardelli 614 -

Sequence of micro-operations

for direct addressing

• t1: MAR <- (IR) <DF1 >

• t2: MBR <- (memory) <DF2 DF3 DF4 DF5 >

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

2

3

3

4

4

5

1

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

2

3

3

4

4

5

1

Rev. 3.1.1 (2006-07) by Enrico Nardelli 714 -

Sequence of micro-operations

for register indirect addressing

• t1: MAR <- ((IRregister-address)) <DF1 DF2 >

• t2: MBR <- (memory) <DF3 DF4 DF5 DF6 >

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

3

4

4

5

5

6

1

1

2

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

3

4

4

5

5

6

1

1

2

Rev. 3.1.1 (2006-07) by Enrico Nardelli 814 -

Sequence of micro-operations

for indirect addressing

• t1: MAR <- (IRaddress) <DF1 >

• t2: MBR <- (memory) <DF2 DF3 DF4 DF5 >

• t3: MAR <- (MBR) <DF6 >

• t4: MBR <- (memory) <DF7 DF8 DF9 DF10 >

MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

2 - 7

3 - 8

3 - 8

4 - 9

4 - 9

5 - 10

1

IR

6

MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

2 - 7

3 - 8

3 - 8

4 - 9

4 - 9

5 - 10

1

IR

6

Rev. 3.1.1 (2006-07) by Enrico Nardelli 914 -

Sequence of micro-operations

for relative addressing

• t1: MAR <- (IR) + (PC) <DF1 DF2 DF3 DF4 >

• t2: MBR <- (memory) <DF5 DF6 DF7 DF8 >

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

ALU

PC

5

6

6

7

7

8

1

2

3

4

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

ALU

PC

5

6

6

7

7

8

1

2

3

4

Rev. 3.1.1 (2006-07) by Enrico Nardelli 1014 -

Sequence of micro-operations

for base and indexed addressing

• t1: MAR <- ((IRregister-address)) + (IRaddress)
<DF1 DF2 DF3 DF4 DF5 >

• t2: MBR <- (memory) <DF6 DF7 DF8 DF9 >

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

Registers

1

1

2

3

5

ALU

4

6

7

7

8

8

9

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

Registers

1

1

2

3

5

ALU

4

6

7

7

8

8

9

Rev. 3.1.1 (2006-07) by Enrico Nardelli 1114 -

Sequence of micro-operations for

combination of displacement and

indirect addressing

• Try them yourself !

Rev. 3.1.1 (2006-07) by Enrico Nardelli 1214 -

Sequence of micro-operations

for interrupt handling

• t1: MBR <- (PC) <DF1a >

MAR <- (Stack-Pointer) <DF1b>

• t2: Memory <- (MBR) <DF1c DF1d DF1e >

• t3: MAR <- Interrupt_Code <DF2a >

• t4: MBR <- (Memory) <DF2b DF2c DF2d DF2e >

• t5: PC <- (MBR) <DF2f >

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

PC

Control

Unit

MBR

1b

1a

1b

1c - 2b

1c

1d - 2c

1d - 2c

1e

1e - 2d

2a

2d

2e2f

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

PC

Control

Unit

MBR

1b

1a

1b

1c - 2b

1c

1d - 2c

1d - 2c

1e

1e - 2d

2a

2d

2e2f

Rev. 3.1.1 (2006-07) by Enrico Nardelli 1314 -

Micro-operation sequencing

for the execution phase (1)

• Different for each instruction

• MUL R1 X - multiply the contents of location X to
Register 1 and store result in Register 1 and 2

Assuming that content of cell at address X is in MBR
after the operand fetch phase:

� t1: ALU <- (R1) * (MBR)

� t2: R1 <- (ALU)low
R2 <- (ALU)high

Rev. 3.1.1 (2006-07) by Enrico Nardelli 1414 -

Micro-operation sequencing

for the execution phase (2)

• ISZ X - increment memory cell X and skip if it’s zero

Assuming that content of cell at address X is in MBR after
the operand fetch phase:

� t1: MBR <- (MBR) + 1

� t2: memory <- (MBR)

IF (MBR) == 0 THEN PC <- (PC) + 1

• Note:

� IF-THEN is a single micro-operation

Rev. 3.1.1 (2006-07) by Enrico Nardelli 1514 -

Micro-operation sequencing

for the execution phase (3)

• PPJ X - Save in stack the return address and
jump to address X

� t1: MBR <- (PC)

MAR <- (SP)

� t2: memory <- (MBR)

SP <- (SP) + 1

PC <- (IRaddress)

Rev. 3.1.1 (2006-07) by Enrico Nardelli 1614 -

A simplified flow diagram for the

execution of instruction cycle

Interrupt
enabled?

Execute
interrupt
handling
micro-ops

Opcode?

ICC?

Indirect
addressing?

Fetch
instruction

Execute
indirect

addressing
micro-ops

ICC = 10

ICC = 01

ICC = 10ICC = 00ICC = 11

ICC = 00

Execute micro-ops
for the given opcode

11 (Interrupt) 00 (Fetch)

01 (Indirect Addressing)10 (Execution)

ICC = Instruction Cycle Code

YesNo

Fetch
data

Rev. 3.1.1 (2006-07) by Enrico Nardelli 1714 -

Functions of Control Unit

• Sequencing

� Causing the CPU to step through a series of micro-
operations

• Execution

� Causing the execution of each micro-op

• ALL THESE ACTIONS are performed by means
of Control Signals

Rev. 3.1.1 (2006-07) by Enrico Nardelli 1814 -

A simplified data flow diagram

of a Control Unit

Control

Unit

Instruction

Register

C
o
n
tro

l B
u
s

Control Signals

Control Signals

Signals internal to CPU

Clock

Flags

…

Rev. 3.1.1 (2006-07) by Enrico Nardelli 1914 -

Input Signals

• Clock
� One micro-op (or set of parallel ops) per clock cycle

� Different signals are needed for different steps

• Instruction register
� Op-code for current instruction

� Determines which micro-instructions are performed

• Flags
� State of CPU

� Results of previous operations

• Control Bus
� Interrupts

� Acknowledgments

Rev. 3.1.1 (2006-07) by Enrico Nardelli 2014 -

Output Signals

• To other CPU components

� For data movement

� To activate specific functions

• To the Control Bus

� To control memory

� To control I/O modules

• Output signals from the control unit make all
micro-operations happen

Rev. 3.1.1 (2006-07) by Enrico Nardelli 2114 -

Example of Control Signal use

in a simplified schema of a CPU

M

B

R

M

A

R

C5

C12

C0

PC IR

AC

Control

Unit

ALU

C11

C9C7

C10

C6

C4

C13

C3C1

C2

C8

Clock

…
Control signals Cx

Flags

Cx

The flow of data is

enabled when the Control

Signal x is enabled

…
Control signals Cx

C14

C15

C16 Decod.

…

Rev. 3.1.1 (2006-07) by Enrico Nardelli 2214 -

Example of Control Signal

Sequence – Instruction Fetch (1)

• t1: MAR <- (PC)

� Control unit (CU) activates signal C2 to open gate
between PC and MAR

• t2: MBR <- (memory)

� CU activates C0 to open gate between MAR and
address bus

� CU activates the memory read control signal (CR -
not shown) to the memory

� CU activates C5 to open gate between data bus and
MBR

Rev. 3.1.1 (2006-07) by Enrico Nardelli 2314 -

Example of Control Signal

Sequence – Instruction Fetch (2)

• t3: PC <- (PC) +1
� In the simple schema shown there is no direct data
path from ALU to PC hence the micro-op has to be
split in two (ALU has internally an output buffer to
store result):

� t3-1: ALU <- (PC) CU activates C14

� increment ALU CU act. control signal CA (not

� shown) for ALU

� t3-2: AC <- (ALU) CU activates C9

� PC <- (AC) CU activates C15

• t4: IR <- (MBR)
� CU activates C4

Rev. 3.1.1 (2006-07) by Enrico Nardelli 2414 -

Example of Control Signal

Sequence – Instruction Fetch (3)

• Optimization

� t2 and t3-1 can be executed together

� t3-2 and t4 can be executer together

• New organization

� t1: MAR <- (PC) C2

� t2: MBR <- (memory) C0 CR C5

(PC)+1 in ALU C14 CA

� t3: AC <- (ALU) C9

PC <- (AC) C15

IR <- (MBR) C4

Rev. 3.1.1 (2006-07) by Enrico Nardelli 2514 -

Example of Control Signal

Sequence - Indirect Addressing

• t1: MAR <- (IRaddress)

� CU activates C16 to open gate between IR and MAR

• t2: MBR <- (memory)

� CU act. C0 to open gate between MAR and address bus

� CU act. the memory read control signal (CR)

� CU act. C5 to open gate between data bus and MBR

• t3: MAR <- (MBR)

� CU activates C8 to open gate between MBR and MAR

• t4: MBR <- (memory)

� CU activates C0, CR and C5 as above

Rev. 3.1.1 (2006-07) by Enrico Nardelli 2614 -

Other Examples of Control

Signal Sequence

• Direct Addressing

• Relative Addressing

• Try them yourself !

Rev. 3.1.1 (2006-07) by Enrico Nardelli 2714 -

Limitations

• The simplified schema of a CPU’s does not show
registers, hence we cannot show
� Register addressing

� Register indirect addressing

� Base addressing

� Indexed addressing

� Combination of displacement and indirect addressing

� Try adding to the simplified schema one or more of
the above addressing modalities and derive the
required micro-operations!

Rev. 3.1.1 (2006-07) by Enrico Nardelli 2814 -

Internal Organization of CPU

• Usually a single internal bus

� less complex then having direct data paths between
registers and ALU

• Gates control movement of data onto and off
the internal bus

• Control signals control also data transfer to and
from external systems bus

• Temporary registers in input to ALU are now
needed for proper operation of ALU

Rev. 3.1.1 (2006-07) by Enrico Nardelli 2914 -

Hardwired Implementation (1)

• Consider the control unit as a combinational circuit

� Outputs of the circuit are the control signals

� Inputs of the circuit are status signal for ICC and opcode
bits

� For each configuration of inputs produce a proper output

� That is, the activation of a given control signal Cn has to
happen when this condition is true OR this condition is
true OR …

Rev. 3.1.1 (2006-07) by Enrico Nardelli 3014 -

Hardwired Implementation (2)

• Example:

� Control signals P and Q code ICC: then fetch is coded by
P’Q’, indirect by P’Q, execute by PQ’, and interrupt by PQ

� Opcode bits are further control signals

� Boolean expression activating C5 in the simplified schema
of a CPU:

C5 = P’Q’t2 + P’Q(t2+ t4) + PQ’B
• where B is the boolean expression representing, for all opcodes
activating C5, all micro-operations actually activating it

• E.g.: if C5 is activated by opcode 3 during t2 and t4 and by opcode
7 during t3 and t4 then B is: OC3(t2+t4)+OC7(t3+t4)

Rev. 3.1.1 (2006-07) by Enrico Nardelli 3114 -

A simplified data flow diagram

of a Control Unit for the hardwired

implementation

Control

Unit

Instruction

Register

C
o
n
tro

l B
u
s

Control Signals

Control Signals

Signals internal to CPU

Clock

Flags

…

clocks

for

mOPs

…t1

tn

Decoder

…OC1 OCm

Rev. 3.1.1 (2006-07) by Enrico Nardelli 3214 -

Problems with the

Hardwired Implementation

• Complex sequencing & micro-operation logic

• Difficult to design and test

• Inflexible design

• Difficult to add new instruction

