
William Stallings

Computer Organization

and Architecture

Chapter 12

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 1

Chapter 12

CPU Structure and Function

CPU Functions

• CPU must:

� Fetch instructions

� Decode instructions

� Fetch operands

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 2

� Fetch operands

� Execute instructions / Process data

� Store data

� Check (and possibly serve) interrupts

CPU Components

ALU

Registri

C
P

U
 I
n

te
rn

a
l B

u
s

PC

IR

D
a

ta
 L

in
e

s

A
d

d
re

s
s
 L

in
e

s

C
o

n
tr

o
l
L

in
e

s

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 3

Control Unit

ALU
C

P
U

 I
n

te
rn

a
l B

u
s

Control Signals

MAR
MBR
AC

A
d

d
re

s
s
 L

in
e

s

C
o

n
tr

o
l
L

in
e

s

Kind of Registers

• User visible and modifiable

� General Purpose

� Data (e.g. accumulator)

� Address (e.g. base addressing, index addressing)

• Control registers (not visible to user)

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 4

• Control registers (not visible to user)

� Program Counter (PC)

� Instruction Decoding Register (IR)

� Memory Address Register (MAR)

� Memory Buffer Register (MBR)

• State register (visible to user but not directly modifiable)

� Program Status Word (PSW)

Kind of General Purpose Registers

• May be used in a general way or be restricted to
contains only data or only addresses

• Advantages of general purpose registers

� Increase flexibility and programmer options

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 5

� Increase flexibility and programmer options

� Increase instruction size & complexity

• Advantages of specialized (data/address)
registers

� Smaller (faster) instructions

� Less flexibility

How Many General Purposes

Registers?

• Between 8 - 32

• Fewer = more memory references

• More does not reduce memory references and
takes up processor real estate

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 6

takes up processor real estate

How many bits per register?

• Large enough to hold full address value

• Large enough to hold full data value

• Often possible to combine two data registers to
obtain a single register with a double length

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 7

obtain a single register with a double length

State Registers

• Sets of individual bits

� e.g. store if result of last operation was zero or not

• Can be read (implicitly) by programs

� e.g. Jump if zero

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 8

� e.g. Jump if zero

• Can not (usually) be set by programs

• There is always a Program Status Word (see later)

• Possibly (for operating system purposes):

� Interrupt vectors

� Memory page table (virtual memory)

� Process control blocks (multitasking)

Program Status Word

• A set of bits, including condition code bits,
giving the status of the program
� Sign of last result

� Zero

Carry

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 9

� Carry

� Equal

� Overflow

� Interrupt enable/disable

� Supervisor mode (allow to execute privileged
instructions)
• Used by operating system (not available to user programs)

Example Register

Organizations

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 10

Instruction Cycle (with Interrupt)

Fetch Phase Execute Phase Interrupt Phase

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 11

Instruction Cycle (with

Indirect Addressing)

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 12

• Execute

• Decode – Execute

• Decode – Fetch Operand – Execute

A closer look at the execution phase

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 13

• Decode – Fetch Operand – Execute

• Decode – Calculate Address – Fetch Operand – Execute

• Decode – Calculate Address – Fetch Address – Fetch Operand – Execute

• Decode – Calculate … – … – … Operand – Execute – Write Result

Instruction Cycle State

Diagram (with Indirection)

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 14

Data Flow for Instruction Fetch

• PC contains address of next instruction

• Sequence of actions needed to execute instruction
fetch:

1. PC is moved to MAR

2. MAR content is placed on address bus

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 15

2. MAR content is placed on address bus

3. Control unit requests memory read

4. Memory read address bus and places result on data bus

5. Data bus is copied to MBR

6. MBR is copied to IR

7. Meanwhile, PC is incremented by 1

• Action 7 can be executed in parallel with any other
action after the first

Diagrams representing Data Flows

• The previous example shows 7 distinct actions,
each corresponding to a DF (= data flow)

• Distinct DFs are not necessarily executed at
distinct time steps (i.e.: DFn and DFn+1 might be
executed during the same time step – see

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 16

n n+1

executed during the same time step – see
chapter 14)

• Large arrows in white represents DFs with a
true flow of data

• Large hatched arrows represents DFs where
flow of data acts as a control: only the more
relevant controls are shown

Data Flow Diagram for

Instruction Fetch

MAR
Memory

CPU

PC
2

3

4

4

1

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 17

IR MBR

Control

Unit

Data

Bus

Address

Bus

Control

Bus

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

3

5
6

7

Data Flow for Data Fetch:

Immediate and Register Addressing

• ALWAYS:

� IR is examined to determine addressing mode

• Immediate addressing:

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 18

• Immediate addressing:

� The operand is already in IR

• Register addressing:

� Control unit requests read from register selected
according to value in IR

Data Flow Diagram for Data

Fetch with Register Addressing

CPU

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 19

IR

Control

Unit
Registers

Data

Bus

Address

Bus

Control

Bus

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Data Flow for Data Fetch:

Direct Addressing

• Direct addressing:

1. Address field is moved to MAR

2. MAR content is placed on address bus

3. Control unit requests memory read

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 20

4. Memory reads address bus and places result on data
bus

5. Data bus (= operand) is copied to MBR

Data Flow Diagram for Data

Fetch with Direct Addressing

MAR
Memory

CPU

2

3

4

4

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 21

MBR

Control

Unit

Data

Bus

Address

Bus

Control

Bus

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

3

5

1

IR

Data Flow for Data Fetch:

Register Indirect Addressing

• Register indirect addressing:

1. Control unit requests read from register selected
according to value in IR

2. Selected register value is moved to MAR

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 22

2. Selected register value is moved to MAR

3. MAR content is placed on address bus

4. Control unit requests memory read

5. Memory reads address bus and places result on
data bus

6. Data bus (= operand) is moved to MBR

Data Flow Diagram for Data Fetch

with Register Indirect Addressing

MAR
Memory

CPU

3

4

5

5
2

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 23

IR MBR

Control

Unit

Data

Bus

Address

Bus

Control

Bus

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers
4

6

1

1

Data Flow for Data Fetch:

Indirect Addressing

• Indirect addressing:

1. Address field is moved to MAR

2. MAR content is placed on address bus

3. Control unit requests memory read

4. Memory reads address bus and places result on data bus

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 24

4. Memory reads address bus and places result on data bus

5. Data bus (= address of operand) is moved to MBR

6. MBR is transferred to MAR

7. MAR content is placed on address bus

8. Control unit requests memory read

9. Memory reads address bus and places result on data bus

10. Data bus (= operand) is copied to MBR

Data Flow Diagram for Data

Fetch with Indirect Addressing

MAR
Memory

CPU

2 - 7

3 - 8

4 - 9

4 - 9

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 25

MBR

Control

Unit

Data

Bus

Address

Bus

Control

Bus

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

3 - 8

5 - 10

1

IR

6

Data Flow for Data Fetch:

Relative Addressing

• Relative addressing (a form of displacement):
1. Address field is moved to ALU

2. PC is moved to ALU

3. Control unit requests sum to ALU

4. Result from ALU is moved to MAR

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 26

4. Result from ALU is moved to MAR

5. MAR content is placed on address bus

6. Control unit requests memory read

7. Memory reads address bus and places result on
data bus

8. Data bus (= operand) is copied to MBR

Data Flow Diagram for Data

Fetch with Relative Addressing

MAR
Memory

CPU

ALU

PC

5

6

7

7

2

4

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 27

IR MBR

Control

Unit

Data

Bus

Address

Bus

Control

Bus

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

ALU

6

8

1

3

Data Flow for Data Fetch: Base

Addressing

• Base addressing (a form of displacement):

1. Control unit requests read from register selected according to
value in IR (explicit selection)

2. Selected register value is moved to ALU

3. Address field is moved to ALU

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 28

3. Address field is moved to ALU

4. Control unit requests sum to ALU

5. Result from ALU is moved to MAR

6. MAR content is placed on address bus

7. Control unit requests memory read

8. Memory reads address bus and places result on data bus

9. Result (= operand) is moved to MBR

Data Flow Diagram for Data

Fetch with Base Addressing

MAR
Memory

CPU

2

5

ALU

6

7

8

8

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 29

IR MBR

Control

Unit

Data

Bus

Address

Bus

Control

Bus

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

Registers

1

1

2

3

4

7

9

Data Flow for Data Fetch:

Indexed Addressing

• Same data flow as Base addressing

• Indexed addressing (a form of displacement):

1. Control unit requests read from register selected according to
value in IR (explicit selection)

2. Selected register value is moved to ALU

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 30

2. Selected register value is moved to ALU

3. Address field is moved to ALU

4. Control unit requests sum to ALU

5. Result from ALU is moved to MAR

6. MAR content is placed on address bus

7. Control unit requests memory read

8. Memory reads address bus and places result on data bus

9. Result (= operand) is moved to MBR

Data Flow Diagram for Data

Fetch with Indexed Addressing

• The diagram is the same as for Base addressing

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 31

Data Flow for Data Fetch with

indirection and displacement

• Two different combinations of displacement and
indirection (pre-index and post-index)

• See chapter 11 for the logical diagrams

• The data flow is a combination of what happens

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 32

• The data flow is a combination of what happens
with the two techniques

• Try drawing the data flow diagrams yourself !

Data Flow for Execute

• May take many forms

• Depends on the actual instruction being
executed

• May include

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 33

• May include

� Memory read/write

� Input/Output

� Register transfers

� ALU operations

Data Flow for Interrupt

• Current PC has to be saved (usually to stack) to allow resumption
after interrupt and execution has to continue at the interrupt handler
routine
1. Save the content of PC

a. Contents of PC is copied to MBR
b. Special memory location (e.g. stack pointer register) is loaded to MAR
c. Contents of MAR and MBR are placed, respectively, on address and data bus

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 34

c. Contents of MAR and MBR are placed, respectively, on address and data bus
d. Control unit requests memory write
e. Memory reads address and data bus and store to memory location
f. Stack pointer register is updated (data flow not shown)

2. PC is loaded with address of the handling routine for the specific interrupt
(usually by means of indirect addressing through the Interrupt Vector)
a. Move to MAR the address into the interrupt vector for the specific interrupt
b. MAR content is placed on address bus
c. Control unit requests memory read
d. Memory reads address bus and places result on data bus
e. Data bus is copied to MBR
f. MBR is moved to PC

• Next instruction (first of the specific interrupt handler) can now be
fetched

Data Flow Diagram for Interrupt

MAR
Memory

CPU

1b

1c - 2b

1d - 2c

1e

2a

2d

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 35

Data

Bus

Address

Bus

Control

Bus

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

PC

Control

Unit

MBR

1b

1a 1c

1d - 2c

1e - 2d

2a

2e2f

Prefetch

• Fetch accesses main memory

• Execution usually does not access main memory

• CPU could fetch next instruction during the
execution of current instruction

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 36

execution of current instruction

• Requires two sub-parts in CPU able to operate
independently

• Called instruction prefetch

Improved Performance

• But performance is not doubled:

� Fetch usually shorter than execution (but for simple
operations with many operands)

• Prefetch more than one instruction?

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 37

• Prefetch more than one instruction?

� Any conditional jump or branch means that
prefetched instructions may be useless

• Performance can be improved by adding more
stages in instruction processing ...

� … and more independent sub-parts in CPU

Instruction pipelining

• Similar to the use of an assembly line in a
manufacturing plant

� product goes through various stages of production

� products at various stages can be worked on

12 -Rev. (2008-09) by Luciano Gualà 38

� products at various stages can be worked on
simultaneously

• In a pipeline, new inputs are accepted at one
end before previously accepted inputs appear as
outputs at the other end

Pipelining

• Instruction cycle can be decomposed in elementary
phases, for example:

� FI: Fetch instruction

� DI: Decode instruction

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 39

� CO: Calculate operands (i.e. calculate EAs)

� FO: Fetch operands

� EI: Execute instructions

� WO: Write output

• Pipelining improves performance by overlapping these
phases (ideally can all be overlapped)

Timing of Pipeline

Set up time Time

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 40

Some remarks

• An instruction can have only some of the six
phases

• We are assuming that all the phases can be
performed in parallel

12 -Rev. (2008-09) by Luciano Gualà 41

performed in parallel

� e.g., no bus conflicts, no memory conflicts…

• The maximum improvement is obtained when
the phases take more or less the same time

A general principle

• The more overlapping phases are in a pipeline
the more additional processing is needed to
manage each phase and synchronization among
phases

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 42

phases

� Logical dependencies between phases

• There is a trade-off between number of phases
and speed-up of instruction execution

Control

flow (1)

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 43

Branch in a Pipeline (1)

Branch Penalty Time

• Instruction 3 is an conditional branch to instruction 15

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 44

Control

flow (2)

• But an unconditional
branch might be
managed earlier than
EI phase

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 45

Empty

Back Pipe

EI phase

Branch in a Pipeline (2)

• The unconditional branch is managed after CO phase

Branch Penalty Time Branch PenaltyTime

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 46

Control

flow (3)

• But conditional
branches still have a
large penalty

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 47

Empty

Back Pipe

Branch in a Pipeline (3)

Branch Penalty Time

• Here instruction 3 is a conditional branch to instruction 15

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 48

Dealing with Branches

• Prefetch Branch Target

• Multiple Streams

• Loop buffer

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 49

• Branch prediction

• Delayed branching

Prefetch Branch Target

• Target of branch is prefetched, in addition to
instruction following branch, and stored in an
additional dedicated register

• Keep target until branch is executed

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 50

• Keep target until branch is executed

• Used by IBM 360/91

Multiple Streams

• Have two pipelines

• Prefetch each branch into a separate pipeline

• Use appropriate pipeline

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 51

• Leads to bus & register contention (only the
sub-parts making up the pipeline are doubled)

• Additional branches entering the pipeline lead to
further pipelines being needed

Loop Buffer

• Very fast memory internal to CPU

• Record the last n fetched instructions

• Maintained by fetch stage of pipeline

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 52

• Check loop buffer before fetching from memory

• Very good for small loops or close jumps

• The same concept as cache memory

• Used by CRAY-1

Branch Prediction (1)

• Predict never taken

� Assume that jump will not happen

� Always fetch next instruction

� 68020 & VAX 11/780

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 53

� 68020 & VAX 11/780

� VAX will not prefetch after branch if a page fault
would result (O/S v CPU design)

• Predict always taken

� Assume that jump will happen

� Always fetch target instruction

Branch Prediction (2)

• Predict by Opcode

� Some instructions are more likely to result in a jump
than others

� Can get up to 75% success

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 54

� Can get up to 75% success

• Use a Taken/Not taken switch

� Based on previous history of the instruction

� Good for loops

Branch Prediction State

Diagram

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 55

Delayed Branch

• Do not take jump until you have to

• Rearrange instructions

12 -Rev. 3.3 (2009-10) by Enrico Nardelli 56

• Used for RISC (Reduced Instructions Set
Computer) architectures

