
Rev. 3.2.3 (2007-08) by Enrico Nardelli 111 -

William Stallings

Computer Organization

and Architecture

Chapter 11

CPU Structure and Function

Rev. 3.2.3 (2007-08) by Enrico Nardelli 211 -

CPU Functions

• CPU must:

� Fetch instructions

� Decode instructions

� Fetch operands

� Execute instructions / Process data

� Store data

� Check (and possibly serve) interrupts

Rev. 3.2.3 (2007-08) by Enrico Nardelli 311 -

CPU Components

Control Unit

ALU

Registri

C
P

U
 I

n
te

rn
a

l
B

u
s

Control Signals

PC

MAR

IR

MBR
AC

D
a

ta
 L

in
e

s

A
d

d
re

s
s

L
in

e
s

C
o

n
tr

o
l
L

in
e

s

Rev. 3.2.3 (2007-08) by Enrico Nardelli 411 -

Kind of Registers

• User visible and modifiable

� General Purpose

� Data (e.g. accumulator)

� Address (e.g. base addressing, index addressing)

• Control registers (not visible to user)

� Program Counter (PC)

� Instruction Decoding Register (IR)

� Memory Address Register (MAR)

� Memory Buffer Register (MBR)

• State register (visible to user but not directly modifiable)

� Program Status Word (PSW)

Rev. 3.2.3 (2007-08) by Enrico Nardelli 511 -

Kind of General Purpose Registers

• May be used in a general way or be restricted to
contains only data or only addresses

• Advantages of general purpose registers

� Increase flexibility and programmer options

� Increase instruction size & complexity

• Advantages of specialized (data/address)
registers

� Smaller (faster) instructions

� Less flexibility

Rev. 3.2.3 (2007-08) by Enrico Nardelli 611 -

How Many General Purposes

Registers?

• Between 8 - 32

• Fewer = more memory references

• More does not reduce memory references and
takes up processor real estate

Rev. 3.2.3 (2007-08) by Enrico Nardelli 711 -

How many bits per register?

• Large enough to hold full address value

• Large enough to hold full data value

• Often possible to combine two data registers to
obtain a single register with a double length

Rev. 3.2.3 (2007-08) by Enrico Nardelli 811 -

State Registers

• Sets of individual bits

� e.g. store if result of last operation was zero or not

• Can be read (implicitly) by programs

� e.g. Jump if zero

• Can not (usually) be set by programs

• There is always a Program Status Word (see later)

• Possibly (for operating system purposes):

� Interrupt vectors

� Memory page table (virtual memory)

� Process control blocks (multitasking)

Rev. 3.2.3 (2007-08) by Enrico Nardelli 911 -

Program Status Word

• A set of bits, including condition code bits,
giving the status of the program
� Sign of last result

� Zero

� Carry

� Equal

� Overflow

� Interrupt enable/disable

� Supervisor mode (allow to execute privileged
instructions)
• Used by operating system (not available to user programs)

Rev. 3.2.3 (2007-08) by Enrico Nardelli 1011 -

Example Register

Organizations

Rev. 3.2.3 (2007-08) by Enrico Nardelli 1111 -

Instruction Cycle (with Interrupt)

Fetch Phase Execute Phase Interrupt Phase

Rev. 3.2.3 (2007-08) by Enrico Nardelli 1211 -

Instruction Cycle (with

Indirect Addressing)

Rev. 3.2.3 (2007-08) by Enrico Nardelli 1311 -

• Execute

• Decode – Execute

• Decode – Fetch Operand – Execute

• Decode – Calculate Address – Fetch Operand – Execute

• Decode – Calculate Address – Fetch Address – Fetch Operand – Execute

• Decode – Calculate … – … – … Operand – Execute – Write Result

A closer look at the execution phase

Rev. 3.2.3 (2007-08) by Enrico Nardelli 1411 -

Instruction Cycle State

Diagram (with Indirection)

Rev. 3.2.3 (2007-08) by Enrico Nardelli 1511 -

Data Flow for Instruction Fetch

• PC contains address of next instruction

• Sequence of actions needed to execute instruction
fetch:

1. PC is moved to MAR

2. MAR content is placed on address bus

3. Control unit requests memory read

4. Memory read address bus and places result on data bus

5. Data bus is copied to MBR

6. MBR is copied to IR

7. Meanwhile, PC is incremented by 1

• Action 7 can be executed in parallel with any other
action after the first

Rev. 3.2.3 (2007-08) by Enrico Nardelli 1611 -

Diagrams representing Data Flows

• The previous example shows 7 distinct actions,
each corresponding to a DF (= data flow)

• Distinct DFs are not necessarily executed at
distinct time steps (i.e.: DFn and DFn+1 might be
executed during the same time step – see
chapter 14)

• Large arrows in white represents DFs with a
true flow of data

• Large hatched arrows represents DFs where
flow of data acts as a control: only the more
relevant controls are shown

Rev. 3.2.3 (2007-08) by Enrico Nardelli 1711 -

Data Flow Diagram for

Instruction Fetch

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

PC
2

3

3

4

4

5

1

6

7

Rev. 3.2.3 (2007-08) by Enrico Nardelli 1811 -

Data Flow for Data Fetch:

Immediate and Register Addressing

• ALWAYS:

� IR is examined to determine addressing mode

• Immediate addressing:

� The operand is already in IR

• Register addressing:

� Control unit requests read from register selected
according to value in IR

Rev. 3.2.3 (2007-08) by Enrico Nardelli 1911 -

Data Flow Diagram for Data

Fetch with Register Addressing

IR

Control

Unit
Registers

Data

Bus

Address

Bus

Control

Bus

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Rev. 3.2.3 (2007-08) by Enrico Nardelli 2011 -

Data Flow for Data Fetch:

Direct Addressing

• Direct addressing:

1. Address field is moved to MAR

2. MAR content is placed on address bus

3. Control unit requests memory read

4. Memory reads address bus and places result on data
bus

5. Data bus (= operand) is copied to MBR

Rev. 3.2.3 (2007-08) by Enrico Nardelli 2111 -

Data Flow Diagram for Data

Fetch with Direct Addressing

MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

2

3

3

4

4

5

1

IR

Rev. 3.2.3 (2007-08) by Enrico Nardelli 2211 -

Data Flow for Data Fetch:

Register Indirect Addressing

• Register indirect addressing:

1. Control unit requests read from register selected
according to value in IR

2. Selected register value is moved to MAR

3. MAR content is placed on address bus

4. Control unit requests memory read

5. Memory reads address bus and places result on
data bus

6. Data bus (= operand) is moved to MBR

Rev. 3.2.3 (2007-08) by Enrico Nardelli 2311 -

Data Flow Diagram for Data Fetch

with Register Indirect Addressing

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

3

4

4

5

5

6

1

1

2

Rev. 3.2.3 (2007-08) by Enrico Nardelli 2411 -

Data Flow for Data Fetch:

Indirect Addressing

• Indirect addressing:

1. Address field is moved to MAR

2. MAR content is placed on address bus

3. Control unit requests memory read

4. Memory reads address bus and places result on data bus

5. Data bus (= address of operand) is moved to MBR

6. MBR is transferred to MAR

7. MAR content is placed on address bus

8. Control unit requests memory read

9. Memory reads address bus and places result on data bus

10. Data bus (= operand) is copied to MBR

Rev. 3.2.3 (2007-08) by Enrico Nardelli 2511 -

Data Flow Diagram for Data

Fetch with Indirect Addressing

MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

2 - 7

3 - 8

3 - 8

4 - 9

4 - 9

5 - 10

1

IR

6

Rev. 3.2.3 (2007-08) by Enrico Nardelli 2611 -

Data Flow for Data Fetch:

Relative Addressing

• Relative addressing (a form of displacement):
1. Address field is moved to ALU

2. PC is moved to ALU

3. Control unit requests sum to ALU

4. Result from ALU is moved to MAR

5. MAR content is placed on address bus

6. Control unit requests memory read

7. Memory reads address bus and places result on
data bus

8. Data bus (= operand) is copied to MBR

Rev. 3.2.3 (2007-08) by Enrico Nardelli 2711 -

Data Flow Diagram for Data

Fetch with Relative Addressing

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

ALU

PC

5

6

6

7

7

8

1

2

3

4

Rev. 3.2.3 (2007-08) by Enrico Nardelli 2811 -

Data Flow for Data Fetch: Base

Addressing

• Base addressing (a form of displacement):

1. Control unit requests read from register selected according to
value in IR (explicit selection)

2. Selected register value is moved to ALU

3. Address field is moved to ALU

4. Control unit requests sum to ALU

5. Result from ALU is moved to MAR

6. MAR content is placed on address bus

7. Control unit requests memory read

8. Memory reads address bus and places result on data bus

9. Result (= operand) is moved to MBR

Rev. 3.2.3 (2007-08) by Enrico Nardelli 2911 -

Data Flow Diagram for Data

Fetch with Base Addressing

IR MBR

Control

Unit

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

ALU = Arithmetic Logic Unit

Registers

1

1

2

3

5

ALU

4

6

7

7

8

8

9

Rev. 3.2.3 (2007-08) by Enrico Nardelli 3011 -

Data Flow for Data Fetch:

Indexed Addressing

• Same data flow as Base addressing

• Indexed addressing (a form of displacement):

1. Control unit requests read from register selected according to
value in IR (explicit selection)

2. Selected register value is moved to ALU

3. Address field is moved to ALU

4. Control unit requests sum to ALU

5. Result from ALU is moved to MAR

6. MAR content is placed on address bus

7. Control unit requests memory read

8. Memory reads address bus and places result on data bus

9. Result (= operand) is moved to MBR

Rev. 3.2.3 (2007-08) by Enrico Nardelli 3111 -

Data Flow Diagram for Data

Fetch with Indexed Addressing

• The diagram is the same as for Base addressing

Rev. 3.2.3 (2007-08) by Enrico Nardelli 3211 -

Data Flow for Data Fetch with

indirection and displacement

• Two different combinations of displacement and
indirection (pre-index and post-index)

• See chapter 10 for the logical diagrams

• The data flow is a combination of what happens
with the two techniques

• Try drawing the data flow diagrams yourself !

Rev. 3.2.3 (2007-08) by Enrico Nardelli 3311 -

Data Flow for Execute

• May take many forms

• Depends on the actual instruction being
executed

• May include

� Memory read/write

� Input/Output

� Register transfers

� ALU operations

Rev. 3.2.3 (2007-08) by Enrico Nardelli 3411 -

Data Flow for Interrupt

• Current PC has to be saved (usually to stack) to allow resumption
after interrupt and execution has to continue at the interrupt handler
routine
1. Save the content of PC

a. Contents of PC is copied to MBR
b. Special memory location (e.g. stack pointer) is loaded to MAR
c. Contents of MAR and MBR are placed, respectively, on address and data bus
d. Control unit requests memory write
e. Memory reads address and data bus and store to memory location

2. PC is loaded with address of the handling routine for the specific interrupt
(usually by means of indirect addressing through the Interrupt Vector)
a. Move to MAR the address into the interrupt vector for the specific interrupt
b. MAR content is placed on address bus
c. Control unit requests memory read
d. Memory reads address bus and places result on data bus
e. Data bus is copied to MBR
f. MBR is moved to PC

• Next instruction (first of the specific interrupt handler) can now be
fetched

Rev. 3.2.3 (2007-08) by Enrico Nardelli 3511 -

Data Flow Diagram for Interrupt

MAR

Data

Bus

Address

Bus

Control

Bus

Memory

CPU

MAR = Memory Address Register

MBR = Memory Buffer Register

IR = Instruction Register

PC = Program Counter

Registers

PC

Control

Unit

MBR

1b

1a

1b

1c - 2b

1c

1d - 2c

1d - 2c

1e

1e - 2d

2a

2d

2e2f

Rev. 3.2.3 (2007-08) by Enrico Nardelli 3611 -

Prefetch

• Fetch accesses main memory

• Execution usually does not access main memory

• CPU could fetch next instruction during the
execution of current instruction

• Requires two sub-parts in CPU able to operate
independently

• Called instruction prefetch

Rev. 3.2.3 (2007-08) by Enrico Nardelli 3711 -

Improved Performance

• But performance is not doubled:

� Fetch usually shorter than execution (but for simple
operations with many operands)

• Prefetch more than one instruction?

� Any conditional jump or branch means that
prefetched instructions may be useless

• Performance can be improved by adding more
stages in instruction processing ...

� … and more independent sub-parts in CPU

Rev. 3.2.3 (2007-08) by Enrico Nardelli 3811 -

Pipelining

• Instruction cycle can be decomposed in elementary
phases, for example:

� FI: Fetch instruction

� DI: Decode instruction

� CO: Calculate operands (i.e. calculate EAs)

� FO: Fetch operands

� EI: Execute instructions

� WO: Write output

• Pipelining improves performance by overlapping these
phases (ideally can all be overlapped)

Rev. 3.2.3 (2007-08) by Enrico Nardelli 3911 -

Timing of Pipeline

Set up time Time

Rev. 3.2.3 (2007-08) by Enrico Nardelli 4011 -

A general principle

• The more overlapping phases are in a pipeline
the more additional processing is needed to
manage each phase and synchronization among
phases

� Logical dependencies between phases

• There is a trade-off between number of phases
and speed-up of instruction execution

Rev. 3.2.3 (2007-08) by Enrico Nardelli 4111 -

Control

flow (1)

Rev. 3.2.3 (2007-08) by Enrico Nardelli 4211 -

Branch in a Pipeline (1)

Branch Penalty Time

• Instruction 3 is an conditional branch to instruction 15

Rev. 3.2.3 (2007-08) by Enrico Nardelli 4311 -

Control

flow (2)

Empty

Back Pipe

• But an unconditional
branch might be
managed earlier than
EI phase

Rev. 3.2.3 (2007-08) by Enrico Nardelli 4411 -

Branch in a Pipeline (2)

• The unconditional branch is managed after CO phase

Branch Penalty Time Branch PenaltyTime

Rev. 3.2.3 (2007-08) by Enrico Nardelli 4511 -

Control

flow (3)

Empty

Back Pipe

• But conditional
branches still have a
large penalty

Rev. 3.2.3 (2007-08) by Enrico Nardelli 4611 -

Branch in a Pipeline (3)

Branch Penalty Time

• Here instruction 3 is a conditional branch to instruction 15

Rev. 3.2.3 (2007-08) by Enrico Nardelli 4711 -

Dealing with Branches

• Multiple Streams

• Prefetch Branch Target

• Loop buffer

• Branch prediction

• Delayed branching

Rev. 3.2.3 (2007-08) by Enrico Nardelli 4811 -

Multiple Streams

• Have two pipelines

• Prefetch each branch into a separate pipeline

• Use appropriate pipeline

• Leads to bus & register contention (only the
sub-parts making up the pipeline are doubled)

• Additional branches entering the pipeline lead to
further pipelines being needed

Rev. 3.2.3 (2007-08) by Enrico Nardelli 4911 -

Prefetch Branch Target

• Target of branch is prefetched in addition to
instructions following branch and stored in an
additional dedicated register

• Keep target until branch is executed

• Used by IBM 360/91

Rev. 3.2.3 (2007-08) by Enrico Nardelli 5011 -

Loop Buffer

• Very fast memory internal to CPU

• Record the last n fetched instructions

• Maintained by fetch stage of pipeline

• Check loop buffer before fetching from memory

• Very good for small loops or close jumps

• The same concept as cache memory

• Used by CRAY-1

Rev. 3.2.3 (2007-08) by Enrico Nardelli 5111 -

Branch Prediction (1)

• Predict never taken

� Assume that jump will not happen

� Always fetch next instruction

� 68020 & VAX 11/780

� VAX will not prefetch after branch if a page fault
would result (O/S v CPU design)

• Predict always taken

� Assume that jump will happen

� Always fetch target instruction

Rev. 3.2.3 (2007-08) by Enrico Nardelli 5211 -

Branch Prediction (2)

• Predict by Opcode

� Some instructions are more likely to result in a jump
than others

� Can get up to 75% success

• Taken/Not taken switch

� Based on previous history of the instruction

� Good for loops

Rev. 3.2.3 (2007-08) by Enrico Nardelli 5311 -

Branch Prediction State

Diagram

Rev. 3.2.3 (2007-08) by Enrico Nardelli 5411 -

Delayed Branch

• Used for RISC architectures

• Do not take jump until you have to

• Rearrange instructions

