
Rev. 3-1 (2004-05) by Enrico Nardelli 110 -

William Stallings 
Computer Organization 
and Architecture

Chapter 10
Instruction Sets: 
Addressing Modes and Formats



Rev. 3-1 (2004-05) by Enrico Nardelli 210 -

Reference to operands

• How to interpret address field values ?
• Example:

LOAD B can be interpreted as
• Write into the accumulator the value B
• Write into the accumulator the value contained in register B
• Write into the accumulator the value contained in the 

memory cell with address B 
• …

Opcode Address Field 1 Address Field 2



Rev. 3-1 (2004-05) by Enrico Nardelli 310 -

Addressing Modes

• Immediate
• Direct
• Indirect
• Register
• Register Indirect
• Displacement (Indexed) 
• Stack



Rev. 3-1 (2004-05) by Enrico Nardelli 410 -

Immediate Addressing Diagram

OperandOpcode

Instruction



Rev. 3-1 (2004-05) by Enrico Nardelli 510 -

Immediate Addressing

• Operand is part of instruction
• The value of address field is the operand
• e.g. ADD 5

Add 5 to contents of accumulator
5 is operand

• No memory reference to fetch data
• Fast
• Limited range



Rev. 3-1 (2004-05) by Enrico Nardelli 610 -

Direct Addressing Diagram

Address AOpcode

Instruction

Memory

Operand



Rev. 3-1 (2004-05) by Enrico Nardelli 710 -

Direct Addressing

• The value of address field is the address of the operand
• If A is the value then (A) denotes the value contained in 

the memory cell with address A
• e.g.  ADD @5

Look in memory at address 5 for operand
Add contents of cell 5 to accumulator: Acc+(5)→Acc

• Single memory reference to access data
• No additional calculations to work out effective address
• Limited address space



Rev. 3-1 (2004-05) by Enrico Nardelli 810 -

Indirect Addressing Diagram

Address AOpcode

Instruction

Memory

Operand

Pointer to operand



Rev. 3-1 (2004-05) by Enrico Nardelli 910 -

Indirect Addressing (1)

• The memory cell referenced by the address field 
contains the address of (i.e., the pointer to) the operand

• If A is the value of the address field, then EA is the 
Effective Address in memory of the operand and is 
EA=(A)

• e.g. ADD (@5)
Look at address 5, then go to address (5) and look there for 
operand
Add to accumulator the content of the cell pointed to by the 
content of 5 (i.e., add the content of the cell at address (5))
Acc+((5))→Acc



Rev. 3-1 (2004-05) by Enrico Nardelli 1010 -

Indirect Addressing (2)

• Large address space 
• 2n addressable cells where n is the number of 

bits in the memory cell
• May be nested, multilevel, cascaded

e.g. EA = (((A)))
• Draw the diagram yourself

• Multiple memory accesses to find operand
• Hence slower



Rev. 3-1 (2004-05) by Enrico Nardelli 1110 -

Register Addressing Diagram

Register Address ROpcode

Instruction

Registers

Operand



Rev. 3-1 (2004-05) by Enrico Nardelli 1210 -

Register Addressing (1)

• Operand is contained in the register named in the 
address field

• If R is the register name then EA = R
• Since there is a limited number of registers, then a 

very small address field is needed 
Shorter instructions
Faster instruction fetch

• e.g. ADD rA
Look into register A for operand
Add content of register A to accumulator
Acc+(rA)→Acc



Rev. 3-1 (2004-05) by Enrico Nardelli 1310 -

Register Addressing (2)

• No main memory access
• Very fast execution
• Very limited address space (= # registers)
• Multiple registers may help performance

Requires good assembly programming or compiler writing
Example: C programming 

• register int a;

• Conceptually similar to direct addressing…
• But operations on registers require fewer clock cycles



Rev. 3-1 (2004-05) by Enrico Nardelli 1410 -

Register Indirect Addressing Diagram

Register Address ROpcode

Instruction

Memory

OperandPointer to Operand

Registers



Rev. 3-1 (2004-05) by Enrico Nardelli 1510 -

Register Indirect Addressing

• Similar to indirect addressing, but passing through a 
register

• The register referenced by the address field contains the 
address of (i.e., the pointer to) the operand

• If R is the register name then EA = (R)
• e.g. ADD (rA)

Look into register A, then go to address (A) for operand
Add this operand to accumulator and store result in accumulator
Acc+((rA))→Acc

• Large address space (2n, where n is the number of bits in a 
register), like indirect addressing

• One fewer main memory access than indirect addressing



Rev. 3-1 (2004-05) by Enrico Nardelli 1610 -

Displacement Addressing Diagram

Register ROpcode

Instruction

Memory

OperandValue

Registers

Address A

+



Rev. 3-1 (2004-05) by Enrico Nardelli 1710 -

Displacement Addressing
• Address field contains two values: one is a 

register name R and one is a value A
• The effective address is the sum of A and of the 

content of R
• EA = A + (R)
• It allows to implement three logically different 

uses
Relative addressing
Base addressing
Indexed addressing

• Slower execution, since additional time is needed for 
addition



Rev. 3-1 (2004-05) by Enrico Nardelli 1810 -

Relative Addressing

• Displacement with respect to the current 
position in the program

• That is, R = PC, the program counter
• EA = A + (PC)
• Get operand from the cell at the address A cells 

away from the current location pointed to by PC



Rev. 3-1 (2004-05) by Enrico Nardelli 1910 -

Base Addressing

• Register R holds the pointer to a base address
• A is the displacement value
• R may be specified explicitly or implicitly
• EA = A + (R)



Rev. 3-1 (2004-05) by Enrico Nardelli 2010 -

Indexed Addressing

• R contains the displacement (the index)
• A is the base value
• EA = A + (R)
• Good for accessing all array cells in sequence 

(indexed access to the array)
First access address EA = A + (R), then increment 
the content of R, and repeat



Rev. 3-1 (2004-05) by Enrico Nardelli 2110 -

Combination of displacement 
and indirection

• Postindex: first indirection on memory reference 
and then displacement

EA = (A) + (R)

• Preindex: first displacement and then indirection 
on the result

EA = (A+(R))

• Draw the diagrams yourself !



Rev. 3-1 (2004-05) by Enrico Nardelli 2210 -

Stack Addressing

• Operand is (implicitly) on top of stack
• e.g. 

S_ADD Pop top two items from stack
and add



Rev. 3-1 (2004-05) by Enrico Nardelli 2310 -

Instruction Formats

• Layout of bits in an instruction
• How many bits for the opcode (hence how 

many different operations)
• How many fields for references to operands 

(=address fields) and how many bits for each 
field

References may be implicit in opcodes as in the case 
of stack operations 

• Usually the instruction set has more than one 
instruction format



Rev. 3-1 (2004-05) by Enrico Nardelli 2410 -

Instruction Length

• Affected by and affects:
Memory size
Memory organization
Bus structure
CPU complexity
CPU speed

• Trade off between powerful instruction 
repertoire (i.e., more bits = more instructions) 
and saving space



Rev. 3-1 (2004-05) by Enrico Nardelli 2510 -

Allocation of Bits

• Affected by and affects
Number of instructions
Number of addressing modes
Number of operands
Operands in register versus operands in memory
Number of registers and of register sets
Address range
Address granularity


