
Rev. 1-3 (2006-07) by Enrico Nardelli 1B -

Enrico Nardelli
Logic Circuits and
Computer Architecture

Appendix B
The design of VS0: a very simple CPU

Rev. 1-3 (2006-07) by Enrico Nardelli 2B -

Instruction set

• Just 4 instructions
LOAD M - Copy into Accumulator the value

from memory at address M
STORE M - Save Accumulator value into memory

at address M
ADD M - Sum values of Accumulator and of memory

at address M and put the result into the Accumulator
JUMP A - Execute in the next step the instruction

stored at address A of memory

Rev. 1-3 (2006-07) by Enrico Nardelli 3B -

Registers and Memory

• The bare minimum
PC - Program Counter
IR - Instruction Register
MAR - Memory Address Register
MBR - Memory Buffer Register
AC - Accumulator
• All registers have 8 bits
• 64 (26) bytes of memory, each with 8 bits

Rev. 1-3 (2006-07) by Enrico Nardelli 4B -

Instruction format

• 2 bits for the opcode
• 6 bits for the address (b5 is the MSB, b0 is the

LSB)
LOAD 0 0 b5 b4 b3 b2 b1 b0

STORE 1 1 b5 b4 b3 b2 b1 b0

ADD 0 1 b5 b4 b3 b2 b1 b0

JUMP 1 0 b5 b4 b3 b2 b1 b0

Rev. 1-3 (2006-07) by Enrico Nardelli 5B -

ALU’s organization

• Only capable of adding (signal CA) two 8 bits
number with a possible carry-in (signal CC)

• No overflow signal
• One addend is the Accumulator
• The other addend is the selection between PC

and a memory address (through C6 and C14)
• ALU’s output is stored into an internal buffer

register

Rev. 1-3 (2006-07) by Enrico Nardelli 6B -

ALU’s internal structure

Full Adder

CACC

C6
C14

C7

Buffer
Register

C9 C15

ALU

Carry-in Enable

Rev. 1-3 (2006-07) by Enrico Nardelli 7B -

t1

Internal schema

M
B
R

M
A
R

C5

C12

C0

PC IR

AC

Control
Unit

ALU

C11

C9C7

C10

C6

C4

C13

C2

CC CA

C14

C15

C16

Clock

clocks
for

mOPs

t2
t3

CC CR CW CA

t4

Rev. 1-3 (2006-07) by Enrico Nardelli 8B -

Micro-operations (1)

• Fetch
t1: MAR <- PC C2
t2: MBR <- (memory); (PC)+1;

C0 C5 C14 CA CC CR
t3: PC <- (ALU); IR <- (MBR)

C4 C15
• Execute ADD
t1: MAR <- (IRaddr) C16
t2: MBR <- (memory) C0 C5 CR
t3: (AC)+(MBR) C6 C7 CA
t4: AC <- (ALU) C9

Rev. 1-3 (2006-07) by Enrico Nardelli 9B -

Micro-operations (2)

• Execute LOAD
t1: MAR <- (IRaddr) C16
t2: MBR <- (memory) C0 C5 CR
t3: AC <- (MBR) C10
• Execute STORE
t1: MAR <- (IRaddr); MBR <- (AC)

C11 C16
t2: memory <- (MBR) C0 C12 CW
• Execute JUMP
t1: PC <- (IRaddr) C13

Rev. 1-3 (2006-07) by Enrico Nardelli 10B -

Decoding instructions

• Inside the Control Unit a 2-to-4 decoder
provides L, S, A, J signals denoting which
instruction is currently in IR

Instruction
Register

L

S

A

J

b6

b7

Rev. 1-3 (2006-07) by Enrico Nardelli 11B -

Micro-operations (3)

• Generate t1,t2,t3,t4 from the clock through a
base-4 counter and a 2-to-4 decoder

• Distinguish between Fetch and Execute with a 1-
bit state register (can be inside the Control Unit)

• For each control signal Cn write the boolean
expression for its activation in terms of status
(Fetch/Execute), mOP step being executed
(t1,t2,t3,t4), and operation to be executed
(L,S,A,J), by scanning the list of activated control
signals for each step of each mOP

Rev. 1-3 (2006-07) by Enrico Nardelli 12B -

Generating clocks for mOPs

• Counter can be reset to optimize at the last step
of each mOP

• Reset signal: Ft3 + F’t1J + F’t2S + F’t3L

Clock Base 4
counter

t1

t2

t3

t4

b0

b1

Reset

Rev. 1-3 (2006-07) by Enrico Nardelli 13B -

State representation

• Control unit can be in the state of fetch (F=1) or
in the state of execute (F=0)

• Status changes are activated during the last
mOP step of each phase of fetch or execute

• There is just one boolean expression for the
transition condition of the unique state variable
Fn+1 = Fnt3’ + Fn’ t4A + Fn’ t3L + Fn’ t2S + Fn’ t1J

F=1
Fetch

F=0
Execute

t3

t4A, t3L, t2S, t1J

NOT(t3) NOT(t4A, t3L, t2S, t1J)

Rev. 1-3 (2006-07) by Enrico Nardelli 14B -

Activation of control signals

Ft3 + F’ t1SC11

Ft3LC10

F’ t4AC9

F’ t3AC7

F’ t3AC6

Ft2 + F’ t2A + F’ t2LC5

Ft3C4

Ft1C2

Ft2 + F’ t2A + F’ t2L + F’ t2SC0

Boolean expressionControl
Signal

Ft3C15

F’ t2SCW

Ft2 + F’ t2A + F’ t2LCR

Ft2 + F’ t3ACA

Ft2CC

F’ t1A + F’ t1L + F’ t1SC16

Ft2C14

F’ t1JC13

F’ t2SC12

Boolean expressionControl
Signal

Rev. 1-3 (2006-07) by Enrico Nardelli 15B -

A note on boolean expressions (1)

• Boolean expressions written have been derived
directly from inspection of mOPs

• The theory of circuit synthesis tells us to examine
what happens in general to each output signal for
each possible combination of input signals (t1, t2, t3,
t4, L, S, A, J) and state signal (F)

• Writing, e.g., F’ t2L could be wrong, since the exact
and complete term is F’ t1’ t2 t3’ t4’ LS’A’J’ : this is not
equivalent to the former, which corresponds to
F’(t1+t1’)t2(t3+t3’)(t4+t4’)L(S+S’)(A+A’)(J+J’)

Rev. 1-3 (2006-07) by Enrico Nardelli 16B -

A note on boolean expressions (2)

• But we know that among t1, t2, t3, and t4 only and exactly
one can be true, therefore we can substitute, e.g., t1’ t2 with
(t1+t1’)t2 knowing that the condition t1t2 can never be true
and hence derive the correct simpler term t2 (in other
words, t1t2 is a don’t care condition)

• For signals L, S, A, and J, if one of them is true then all the
others are false and the same reasoning above applies.

• Finally, there are also those situations (e.g., for C2
activation in mOP t1 during the fetch phase) where we
don’t care at all about which of these signals is true

Rev. 1-3 (2006-07) by Enrico Nardelli 17B -

Global optimization of signals

C4 + F’ t1SC11

F’ t3LC10

F’ t4AC9

F’ t3AC6, C7

CC + F’ t2A + F’ t2LC5, CR

Ft3C4, C15

Ft1C2

Ft2CC, C14

Boolean expressionSignal

Ft3’ + C9 + C10 + CW + C13Fn+1

CC + C6CA

C5 + CWC0

F’ t1A + F’ t1L + F’ t1SC16

F’ t2SCW, C12

F’ t1JC13

Boolean expressionSignal

Rev. 1-3 (2006-07) by Enrico Nardelli 18B -

Additional considerations

• Do we need both state signal and instruction
signals L,S,A,J to activate control signals?

e.g. in the activation expression for C7, instead of F’ t3A,
can we just write t3A ?

• no, because if the previously fetched instruction was also an ADD
then C7 is (wrongly) activated also during mOP step t3 in the
fetch phase

hence we need both state signal and instruction signals
• Do we need an explicit representation for state ?

no, if we use for the execution phases a different set of
clock signals t4,t5,t6,t7
What changes using this approach? What do we lose?

Rev. 1-3 (2006-07) by Enrico Nardelli 19B -

No Explicit State:
Micro-operations (1)

• Fetch
t1: MAR <- PC C2
t2: MBR <- (memory); (PC)+1;

C0 C5 C14 CA CC CR
t3: PC <- (ALU); IR <- (MBR)

C4 C15
• Execute ADD
t4: MAR <- (IRaddr) C16
t5: MBR <- (memory) C0 C5 CR
t6: (AC)+(MBR) C6 C7 CA
t7: AC <- (ALU) C9

Rev. 1-3 (2006-07) by Enrico Nardelli 20B -

No Explicit State:
Micro-operations (2)
• Execute LOAD
t4: MAR <- (IRaddr) C16
t5: MBR <- (memory) C0 C5 CR
t6: AC <- (MBR) C10

• Execute STORE
t4: MAR <- (IRaddr); MBR <- (AC)

C11 C16
t5: memory <- (MBR) C0 C12 CW

• Execute JUMP
t4: PC <- (IRaddr) C13

Rev. 1-3 (2006-07) by Enrico Nardelli 21B -

No Explicit State:
Micro-operations (3)

• Generate t1,t2,t3,t4,t5,t6,t7 from the clock through
a base-8 counter and a 3-to-8 decoder (possibly
use a counter with reset for optimization)

• For each control signal Cn write the boolean
expression for its activation in terms of mOP step
being executed (t1,t2,t3,t4,t5,t6,t7), and operation
to be executed (L,S,A,J), by scanning the list of
activated control signals for each step of each
mOP

Rev. 1-3 (2006-07) by Enrico Nardelli 22B -

No Explicit State:
Activation of control signals

t3 + t4SC11

t3LC10

t7AC9

t6AC7

t6AC6

t2 + t5A + t5LC5

t3C4

t1C2

t2 + t5A + t5L + t5SC0

Boolean expressionControl
Signal

t3C15

t5SCW

t2 + t5A + t5LCR

t2 + t6ACA

t2CC

t4A + t4L + t4SC16

t2C14

t4JC13

t5SC12

Boolean expressionControl
Signal

Rev. 1-3 (2006-07) by Enrico Nardelli 23B -

The complete circuit

• All circuital elements (including the Control Unit)
have now been defined and it is known how to
realize them

• Try drawing the complete circuit for the CPU and
the memory!!

• It is a long but worthwhile task
• Do it in hierarchical stages: first layout modules

and afterwards layout gates within modules
• In the real life they use CAD systems for

electronic circuit design !

Rev. 1-3 (2006-07) by Enrico Nardelli 24B -

A trivial program

• Give at location SUM the sum of four numbers
stored in locations of memory N1, N2, N3, N4

; Location SUM is distinct from N1, N2, N3, N4
LOAD N1 ; AC <- N1
ADD N2 ; AC <- N1+N2
ADD N3 ; AC <- N1+N2+N3
ADD N4 ; AC <- N1+N2+N3+N4
STORE SUM ; SUM <- N1+N2+N3+N4

Rev. 1-3 (2006-07) by Enrico Nardelli 25B -

Control Unit’s implementation
with micro-programmed control

• For the implementation of CU with a micro-
programmed approach we do not need:

signals t1 … tn marking different mOPs
state register distinguishing between fetch and execute

• Even the IR decoder is not really needed, but we
may use it depending on the CW structure

• Structure of CW and structure of Sequencing Logic
are strictly related: a CW with more information
needs a simpler Sequencing Logic and vice-versa

Rev. 1-3 (2006-07) by Enrico Nardelli 26B -

CW and sequencing mOPs
• CW has two address fields (SmA and JmA) of 5 bits each

SmA is the next CW address in case of sequential execution
JmA is the next CW address in case of jump
Fields are empty when the choice is forced

• A 2-way multiplexer is used to select between SmA and
JmA and hence choose the next CW to be executed

• Selection line (SEL) for multiplexer is activated by a circuit
in the Sequential Logic whose structure depends on the
structure of jump conditions in CW

No jump flags
One jump flag (K) only for end-of-mOP
Jump flags both for end-of-mOP and for selecting the proper
micro-procedure during the CPU execution phase

Rev. 1-3 (2006-07) by Enrico Nardelli 27B -

Generic structure of CU

IR

CAR

Jump ConditionsControl Signals Seq. CW Addr

Sequencing
Logic MUX

CONTROL UNIT

Control
Memory

Jump CW Addr

Rev. 1-3 (2006-07) by Enrico Nardelli 28B -

CW without jump conditions:
CU’s structure

IR

CAR

Control Signals Seq. CW Addr

Sequencing
Logic MUX

CONTROL UNIT

Control
Memory

Jump CW Addr

Rev. 1-3 (2006-07) by Enrico Nardelli 29B -

CW without jump conditions:
Sequencing Logic
• If there are no flags in CW the selection between SmA

and JmA may use only the state of CU, represented by
CAR value

• Towards the end of CU execution cycle, CAR contains the
address of current CW in execution hence the value of
such an address is used to drive the selection of next CW

• A CAR decoder provides In signals telling that CW at
address n is being executed

• A 2-to-4 decoder on the two most significant bits of IR is
needed to understand which CPU instruction is being
executed and to provide L, S, A, and J signals

• Signal for selection line (0 to select SmA, 1 for JmA) is
SEL = I3 + I6 + I12 + I16 + I17 + I7L + I8S + I9A + I10J

• Both decoders are part of the Sequencing Logic

Rev. 1-3 (2006-07) by Enrico Nardelli 30B -

CW without jump conditions:
Control Memory

1117Jump

C
11

1116

1611115

1511114

14113Add

111112

121111Store

17710

13109

1198

487Execute

116

61115

514Load

7113

31111112

211Fetch

J
mA

S
mA

CWCRCACC
C
16

C
15

C
14

C
13

C
12

C
10

C9C7C6C5C4C2C0mAMicro
Procedure

Rev. 1-3 (2006-07) by Enrico Nardelli 31B -

CW with one jump condition:
CU’s structure

IR

CAR

KControl Signals Seq. CW Addr

Sequencing
Logic MUX

CONTROL UNIT

Control
Memory

Jump CW Addr

Rev. 1-3 (2006-07) by Enrico Nardelli 32B -

CW with one jump condition:
Sequencing Logic

• A jump flag (K) is used to mark the last mOP of each micro-
procedure (but for the Execute one)

• In signals provided by the CAR decoder now are only needed
during the Execute micro-procedure

• A 2-to-4 decoder on the two most significant bits of IR is
needed to understand which CPU instruction is being
executed and to provide L, S, A, and J signals

• Signal for selection line (0 to select SmA, 1 for JmA) is
SEL = K + I7L + I8S + I9A + I10J

• Sequencing Logic is independent from the location of any
micro-procedure in Control Memory, but for the Execute one

Rev. 1-3 (2006-07) by Enrico Nardelli 33B -

CW with one jump condition:
Control Memory

11117Jump

C
11

1

1

1

1

K

1116

1611115

1511114

14113Add

111112

121111Store

17710

13109

1198

487Execute

116

61115

514Load

7113

31111112

211Fetch

J
mA

S
mA

CWCRCACC
C
16

C
15

C
14

C
13

C
12

C
10

C9C7C6C5C4C2C0mAMicro
Procedure

Rev. 1-3 (2006-07) by Enrico Nardelli 34B -

CW with many jump conditions:
CU’s structure

IR

CAR

Control Signals Seq. CW Addr

Sequencing
Logic MUX

CONTROL UNIT

Control
Memory

Jump CW AddrEL ES EA EJ K

Rev. 1-3 (2006-07) by Enrico Nardelli 35B -

CW with many jump conditions:
Sequencing logic
• A jump flag (K) is used to mark the last mOP of each

micro-procedure
• Four jump flags (EL, ES, EA, EJ) mark the four mOPs in the

Execute micro-procedure
• There is no need now for a CAR decoder: this is obtained

at the cost of a longer CW
• A 2-to-4 decoder on the two most significant bits of IR is

needed to understand which CPU instruction is being
executed and to provide L, S, A, and J signals

• Signal for selection line (0 to select SmA, 1 for JmA) is
SEL = K + ELL + ESS + EAA + EJJ

• Sequencing Logic is now fully independent from the
location of any micro-procedure in Control Memory

Rev. 1-3 (2006-07) by Enrico Nardelli 36B -

CW with many jump conditions:
Control Memory

11117Jump

1

EJ

1

EA

1

ES

1

EL
C
11

1

1

1

1

K

117116

1611115

1511114

14113Add

111112

121111Store

17710

13109

1198

487Execute

116

61115

514Load

7113

31111112

211Fetch

J
mA

S
mA

CWCRCACC
C
16

C
15

C
14

C
13

C
12

C
10

C9C7C6C5C4C2C0mAMicro
Procedure

Rev. 1-3 (2006-07) by Enrico Nardelli 37B -

An internal schema with single bus

t1

M
B
R

M
A
R

C15

C14

C16

PC IR AC

Control
Unit

ALU

C1

C9

C7

C10

C6C4

C11

C2

CT CC CA

C3 C5

C12

Clock

clocks
for

mOPs

t2
t3

CC CR CW CA CT

t4

C8

C13

Rev. 1-3 (2006-07) by Enrico Nardelli 38B -

ALU changes

• ALU needs a buffer (with reset) also for input

Full Adder

CACC

C9 C7

Output
Buffer

Register

C8

ALU

Carry-in Enable

Input
Buffer

Register

CT

Reset

Rev. 1-3 (2006-07) by Enrico Nardelli 39B -

Micro-operations (1) Single Bus

• Fetch
one more step

t1: MAR <- PC C2 C13
t2: MBR <- (memory) C16 C15 CR

(PC)+1 C2 C7 CT CA CC
t3: PC <- (ALU) C8 C1
t4: IR <- (MBR) C10 C3

Rev. 1-3 (2006-07) by Enrico Nardelli 40B -

Micro-operations (2) Single Bus

• Execute ADD
reorganization of micro-operations

t1: MAR <- (IRaddr) C4 C13
t2: MBR <- (memory) C16 C15 CR

ALU <- (AC) C6 C9
t3: (MBR)+(ALU) C10 C7 CA
t4: AC <- (ALU) C8 C5

Rev. 1-3 (2006-07) by Enrico Nardelli 41B -

Micro-operations (3) Single Bus

• Execute LOAD
t1: MAR <- (IRaddr) C4 C13
t2: MBR <- (memory) C16 C15 CR
t3: AC <- (MBR) C10 C5

Rev. 1-3 (2006-07) by Enrico Nardelli 42B -

Micro-operations (4) Single Bus

• Execute STORE
one more step

t1: MAR <- (IRaddr) C4 C13
t1: MBR <- (AC) C6 C11
t2: memory <- (MBR) C14 C16 CW

• Execute JUMP
t1: PC <- (IRaddr) C14 C2

Rev. 1-3 (2006-07) by Enrico Nardelli 43B -

Completion of single bus

• Continue development as shown before
• Decide whether to explicitly represent state or

not
• Decide whether to implement a hardwired CU or

a micro-programmed one
• In the latter case, decide the structure of the

control word

Rev. 1-3 (2006-07) by Enrico Nardelli 44B -

Other simple design variations
• Try them (even together) to understand consequences

of various design decisions !
1. Add to the ALU the capability to provide Zero or Overflow signal

and use a JUMP conditional to the signal value instead of the
unconditional JUMP

2. Use an internal CPU schema with two internal buses to connect
CPU elements instead of direct paths

3. Use two variants of ADD. One, specified by b5=0, having as
parameter the address of memory cell, written in the byte right
after the one with ADD. The other, specified by b5=1, having as
argument the number to be added written in bits b4-b0

4. Use a micro-programmed CU with just one address field
5. Study if it is possible to avoid the use of the 2-to-4 IR decoder

by means of a different organization of the micro-procedure for
the CPU execution phase

