
B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 1

Enrico Nardelli

Logic Circuits and

Computer Architecture

Appendix B

The design of VS0: a very simple CPU

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 2

Instruction set

• Just 4 instructions

LOAD M - Copy into Accumulator the value

from memory at address M

STORE M - Save Accumulator value into memory

at address M

ADD M - Sum values of Accumulator and of memory

at address M and put the result into the Accumulator

JUMP A - Execute in the next step the instruction

stored at address A of memory

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 3

Registers and Memory

• The bare minimum

PC - Program Counter

IR - Instruction Register

MAR - Memory Address Register

MBR - Memory Buffer Register

AC - Accumulator

• All registers have 8 bits

• 64 (26) bytes of memory, each with 8 bits

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 4

Instruction format

• 2 bits for the opcode

• 6 bits for the address (b5 is the MSB, b0 is the
LSB)

LOAD 0 0 b5 b4 b3 b2 b1 b0
STORE 1 1 b5 b4 b3 b2 b1 b0
ADD 0 1 b5 b4 b3 b2 b1 b0
JUMP 1 0 b5 b4 b3 b2 b1 b0
• No interrupt mechanism

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 5

ALU’s organization

• Only capable of adding (signal CA) two 8 bits
number with a possible carry-in (signal CC)

• No overflow signal

• One addend is the Accumulator

• The other addend is the selection between PC
and a memory address (through C6 and C14)

• ALU’s output is stored into an internal buffer
register

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 6

ALU’s internal structure

Full Adder

CACC

C6

C14

C7

Buffer

Register

C9 C15

ALU

Carry-in Enable

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 7

t1

Internal schema

M

B

R

M

A

R

C5

C12

C0

PC IR

AC

Control

Unit

ALU

C11

C9C7

C10

C6

C4

C13

C2

CC CA

C14

C15

C16

Clock

clocks

for

mOPs

t2

t3

CC CR CW CA

t4

A
d
d
re

ss
 B

u
s

D
a
ta

 B
u
s

All C
n

, n=0..16, but for n=1,3,8

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 8

Micro-operations (1)

• Fetch
t1: MAR <- PC C2
t2: MBR <- memory; PC+1;

C0 C5 C14 CA CC CR
t3: PC <- ALU; IR <- MBR

C4 C15
• Execute ADD
t1: MAR <- IRaddr C16
t2: MBR <- memory C0 C5 CR
t3: AC+MBR C6 C7 CA
t4: AC <- ALU C9

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 9

Micro-operations (2)

• Execute LOAD

t1: MAR <- IRaddr C16

t2: MBR <- memory C0 C5 CR

t3: AC <- MBR C10

• Execute STORE

t1: MAR <- IRaddr; MBR <- AC

C11 C16

t2: memory <- MBR C0 C12 CW

• Execute JUMP

t1: PC <- IRaddr C13

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 10

Decoding instructions

• Inside the Control Unit a 2-to-4 decoder
provides L, S, A, J signals denoting which
instruction is currently in IR

Instruction
Register

L

S

A

J

b6

b7

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 11

Micro-operations (3)

• Generate t1,t2,t3,t4 from the clock through a
base-4 counter and a 2-to-4 decoder

• Distinguish between Fetch and Execute with a 1-
bit state register (can be inside the Control Unit)

• For each control signal Cn write the boolean
expression for its activation in terms of status
(Fetch/Execute), mOP step being executed
(t1,t2,t3,t4), and operation to be executed
(L,S,A,J), by scanning the list of activated control
signals for each step of each mOP

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 12

Generating clocks for mOPs

• Counter can be reset at the last step of each
mOP to optimize performances

• Reset signal: Ft3 + F’t1J + F’t2S + F’t3L

• N.B.: t1=00, t2=01, t3=10, t4=11 !!!

Clock
Base 4
counter

t1

t2

t3

t4

b0

b1

Reset

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 13

State representation

• Control unit can be in the state of fetch (F=1) or in
the state of execute (F=0)

• Status changes are activated during the last mOP
step of each phase of fetch or execute

• There is just one (why?) boolean expression for the
transition condition of the unique state variable

Fn+1 = Fnt3’ + Fn’ t4A + Fn’ t3L + Fn’ t2S + Fn’ t1J

F=1
Fetch

F=0
Execute

t3

t4A, t3L, t2S, t1J

NOT(t3)
NOT(t4A, t3L, t2S, t1J)

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 14

Activation of control signals

Control
Signal

Boolean expression

C0 Ft2 + F’ t2A + F’ t2L + F’ t2S

C2 Ft1

C4 Ft3

C5 Ft2 + F’ t2A + F’ t2L

C6 F’ t3A

C7 F’ t3A

C9 F’ t4A

C10 Ft3L

C11 Ft3 + F’ t1S

Control
Signal

Boolean expression

C12 F’ t2S

C13 F’ t1J

C14 Ft2

C15 Ft3

C16 F’ t1A + F’ t1L + F’ t1S

CC Ft2

CA Ft2 + F’ t3A

CR Ft2 + F’ t2A + F’ t2L

CW F’ t2S

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 15

A note on boolean expressions (1)

• Boolean expressions written have been derived
directly from inspection of mOPs

• The theory of circuit synthesis tells us to examine
what happens in general to each output signal for
each possible combination of input signals (t1, t2, t3,
t4, L, S, A, J) and state signal (F)

• Writing, e.g., F’ t2L could be wrong, since the exact
and complete term is F’ t1’ t2 t3’ t4’ LS’A’J’ : this is not
equivalent to the former, which corresponds to
F’(t1+t1’)t2(t3+t3’)(t4+t4’)L(S+S’)(A+A’)(J+J’)

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 16

A note on boolean expressions (2)

• But we know that among t1, t2, t3, and t4 only and exactly
one can be true, therefore we can substitute, e.g., t1’ t2 with
(t1+t1’)t2 knowing that the condition t1t2 can never be true
and hence derive the correct simpler term t2 (in other
words, t1t2 is a don’t care condition)

• For signals L, S, A, and J, if one of them is true then all the
others are false and the same reasoning above applies.

• Finally, there are also those situations (e.g., for C2
activation in mOP t1 during the fetch phase) where we
don’t care at all about which of signals L,S,A,J is true

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 17

Global optimization of signals

Signal Boolean expression

CC, C14 Ft2

C2 Ft1

C4, C15 Ft3

C5, CR CC + F’ t2A + F’ t2L

C6, C7 F’ t3A

C9 F’ t4A

C10 F’ t3L

C11 C4 + F’ t1S

Signal Boolean expression

C13 F’ t1J

CW, C12 F’ t2S

C16 F’ t1A + F’ t1L + F’ t1S

C0 C5 + CW

CA CC + C6

Fn+1 Ft3’ + C9 + C10 + CW + C13

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 18

Additional considerations

• Do we need both state signal and instruction
signals L,S,A,J to activate control signals?
� e.g. in the activation expression for C7, instead of F’ t3A,
can we just write t3A ?
• no, because if the previously fetched instruction was also an ADD
then C7 is (wrongly) activated also during mOP step t3 in the
fetch phase

� hence we need both state signal and instruction signals

• Do we need an explicit representation for state ?
� no, if we use for the execution phases a different set of
clock signals t4,t5,t6,t7

� What changes using this approach? What do we lose?

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 19

No Explicit State:

Micro-operations (1)

• Fetch
t1: MAR <- PC C2
t2: MBR <- memory; PC+1;

C0 C5 C14 CA CC CR
t3: PC <- ALU; IR <- MBR

C4 C15
• Execute ADD
t4: MAR <- IRaddr C16
t5: MBR <- memory C0 C5 CR
t6: AC+MBR C6 C7 CA
t7: AC <- ALU C9

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 20

No Explicit State:

Micro-operations (2)

• Execute LOAD

t4: MAR <- IRaddr C16

t5: MBR <- memory C0 C5 CR

t6: AC <- MBR C10

• Execute STORE

t4: MAR <- IRaddr; MBR <- AC

C11 C16

t5: memory <- MBR C0 C12 CW

• Execute JUMP

t4: PC <- IRaddr C13

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 21

No Explicit State:

Micro-operations (3)

• Generate t1,t2,t3,t4,t5,t6,t7 from the clock through
a base-8 counter and a 3-to-8 decoder (possibly
use a counter with reset for optimization)

• For each control signal Cn write the boolean
expression for its activation in terms of mOP step
being executed (t1,t2,t3,t4,t5,t6,t7), and operation
to be executed (L,S,A,J), by scanning the list of
activated control signals for each step of each
mOP

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 22

No Explicit State:

Activation of control signals

Control
Signal

Boolean expression

C0 t2 + t5A + t5L + t5S

C2 t1

C4 t3

C5 t2 + t5A + t5L

C6 t6A

C7 t6A

C9 t7A

C10 t3L

C11 t3 + t4S

Control
Signal

Boolean expression

C12 t5S

C13 t4J

C14 t2

C15 t3

C16 t4A + t4L + t4S

CC t2

CA t2 + t6A

CR t2 + t5A + t5L

CW t5S

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 23

The complete circuit

• All circuital elements (including the Control Unit)
have now been defined and it is known how to
realize them

• Try drawing the complete circuit for the CPU and
the memory!!

• It is a long but worthwhile task

• Do it in hierarchical stages: first layout modules
and afterwards layout gates within modules

• In the real life they use CAD systems for
electronic circuit design !

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 24

A trivial program

• Give at location SUM the sum of four numbers
stored in locations of memory N1, N2, N3, N4

; Location SUM is distinct from N1, N2, N3, N4

LOAD N1 ; AC <- N1

ADD N2 ; AC <- N1+N2

ADD N3 ; AC <- N1+N2+N3

ADD N4 ; AC <- N1+N2+N3+N4

STORE SUM ; SUM <- N1+N2+N3+N4

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 25

Control Unit’s implementation

with micro-programmed control

• For the implementation of CU with a micro-
programmed approach we do not need:

� signals t1 … tn marking different mOPs

� state register distinguishing between fetch and execute

• Even the IR decoder is not really needed, but we
may use it depending on the CW structure

• Structure of CW and structure of Sequencing Logic
are strictly related: a CW with more information
needs a simpler Sequencing Logic and vice-versa

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 26

CW and sequencing mOPs

• CW has two address fields (SmA and JmA) of 5 bits each
� SmA is the next CW address in case of sequential execution

� JmA is the next CW address in case of jump

� Fields are empty when the choice is forced

• A 2-way multiplexer is used to select between SmA and
JmA and hence choose the next CW to be executed

• Selection line (SEL) for multiplexer is activated by a circuit
in the Sequential Logic whose structure depends on the
structure of jump conditions in CW
� No jump flags

� One jump flag (K) only for end-of-mOP

� Jump flags both for end-of-mOP and for selecting the proper
micro-procedure during the CPU execution phase

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 27

Generic structure of CU

IR

CAR

Jump ConditionsControl Signals Seq. CW Addr

Sequencing
Logic

MUX

CONTROL UNIT

Control
Memory

Jump CW Addr

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 28

CW without jump conditions:

CU’s structure

IR

CAR

Control Signals Seq. CW Addr

Sequencing
Logic

MUX

CONTROL UNIT

Control
Memory

Jump CW Addr

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 29

CW without jump conditions:

Sequencing Logic

• If there are no flags in CW the selection between SmA
and JmA may use only the state of CU, represented by
CAR value

• Towards the end of CU execution cycle, CAR contains the
address of current CW in execution hence the value of
such an address is used to drive the selection of next CW

• A CAR decoder provides In signals telling that CW at
address n is being executed

• A 2-to-4 decoder on the two most significant bits of IR is
needed to understand which CPU instruction is being
executed and to provide L, S, A, and J signals

• Signal for selection line (0 to select SmA, 1 for JmA) is
� SEL = I3 + I6 + I12 + I16 + I17 + I7L + I8S + I9A + I10J

• Both decoders are part of the Sequencing Logic

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 30

CW without jump conditions:

Control Memory

Micro
Procedure

mA C0 C2 C4 C5 C6 C7 C9
C

10

C

11

C

12

C

13

C

14

C

15

C

16
CC CA CR CW

S

mA

J

mA

Fetch 1 1 2

2 1 1 1 1 1 1 3

3 1 1 7

Load 4 1 5

5 1 1 1 6

6 1 1

Execute 7 8 4

8 9 11

9 10 13

10 7 17

Store 11 1 1 12

12 1 1 1 1

Add 13 1 14

14 1 1 1 15

15 1 1 1 16

16 1 1

Jump 17 1 1

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 31

CW with one jump condition:

CU’s structure

IR

CAR

KControl Signals Seq. CW Addr

Sequencing
Logic

MUX

CONTROL UNIT

Control
Memory

Jump CW Addr

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 32

CW with one jump condition:

Sequencing Logic

• A jump flag (K) is used to mark the last mOP of each micro-
procedure (but for the Execute one)

• In signals provided by the CAR decoder now are only needed
during the Execute micro-procedure

• A 2-to-4 decoder on the two most significant bits of IR is
needed to understand which CPU instruction is being
executed and to provide L, S, A, and J signals

• Signal for selection line (0 to select SmA, 1 for JmA) is

� SEL = K + I7L + I8S + I9A + I10J

• Sequencing Logic is independent from the location of any
micro-procedure in Control Memory, but for the Execute one

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 33

CW with one jump condition:

Control Memory

Micro
Procedure

mA C0 C2 C4 C5 C6 C7 C9
C

10

C

11

C

12

C

13

C

14

C

15

C

16
CC CA CR CW K

S

mA

J

mA

Fetch 1 1 2

2 1 1 1 1 1 1 3

3 1 1 1 7

Load 4 1 5

5 1 1 1 6

6 1 1 1

Execute 7 8 4

8 9 11

9 10 13

10 7 17

Store 11 1 1 12

12 1 1 1 1 1

Add 13 1 14

14 1 1 1 15

15 1 1 1 16

16 1 1 1

Jump 17 1 1 1

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 34

CW with many jump conditions:

CU’s structure

IR

CAR

Control Signals Seq. CW Addr

Sequencing
Logic

MUX

CONTROL UNIT

Control
Memory

Jump CW AddrEL ES EA EJ K

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 35

CW with many jump conditions:

Sequencing logic

• A jump flag (K) is used to mark the last mOP of each
micro-procedure

• Four jump flags (EL, ES, EA, EJ) mark the four mOPs in the
Execute micro-procedure

• There is no need now for a CAR decoder: this is obtained
at the cost of a longer CW

• A 2-to-4 decoder on the two most significant bits of IR is
needed to understand which CPU instruction is being
executed and to provide L, S, A, and J signals

• Signal for selection line (0 to select SmA, 1 for JmA) is
� SEL = K + ELL + ESS + EAA + EJJ

• Sequencing Logic is now fully independent from the
location of any micro-procedure in Control Memory

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 36

CW with many jump conditions:

Control Memory

Micro
Procedure

mA C0 C2 C4 C5 C6 C7 C9
C

10

C

11

C

12

C

13

C

14

C

15

C

16
CC CA CR CW EL ES EA EJ K

S

mA

J

mA

Fetch 1 1 2

2 1 1 1 1 1 1 3

3 1 1 1 7

Load 4 1 5

5 1 1 1 6

6 1 1 1

Execute 7 1 8 4

8 1 9 11

9 1 10 13

10 1 7 17

Store 11 1 1 12

12 1 1 1 1 1

Add 13 1 14

14 1 1 1 15

15 1 1 1 16

16 1 1 17 1

Jump 17 1 1 1

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 37

An internal schema with single bus

t1

M

BR

M

AR

C15

C14

C16

PC IR AC

Control

Unit

ALU

C1

C9

C7

C10

C6C4

C11

C2

CT CC CA

C3 C5

C12

Clock

clocks

for

mOPs

t2

t3

CC CR CW CA CT

t4

C8

C13

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 38

ALU changes

• ALU needs a buffer (with reset) also for input

Full Adder

CACC

C9 C7

Output

Buffer

Register

C8

ALU

Carry-in Enable

Input

Buffer

Register

CT

Reset

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 39

Micro-operations (1) Single Bus

• Fetch

� one more step

t1: MAR <- PC C2 C13

t2: MBR <- memory C16 C15 CR

PC+1 C2 C7 CT CA CC

t3: PC <- ALU C8 C1

t4: IR <- MBR C10 C3

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 40

Micro-operations (2) Single Bus

• Execute ADD

� reorganization of micro-operations

t1: MAR <- Iraddr C4 C13

t2: MBR <- memory C16 C15 CR

ALU <- AC C6 C9

t3: MBR+ALU C10 C7 CA

t4: AC <- ALU C8 C5

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 41

Micro-operations (3) Single Bus

• Execute LOAD

t1: MAR <- IRaddr C4 C13

t2: MBR <- memory C16 C15 CR

t3: AC <- MBR C10 C5

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 42

Micro-operations (4) Single Bus

• Execute STORE

� one more step

t1: MAR <- IRaddr C4 C13

t2: MBR <- AC C6 C11

t3: memory <- MBR C14 C16 CW

• Execute JUMP

t1: PC <- IRaddr C14 C2

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 43

Completion of single bus

• Continue development as shown before

• Decide whether to explicitly represent state or
not

• Decide whether to implement a hardwired CU or
a micro-programmed one

• In the latter case, decide the structure of the
control word

B -Rev. 1.4.1 (2010-11) by Enrico Nardelli 44

Other simple design variations

• Try them (even together) to understand consequences
of various design decisions !
1. Add to the ALU the capability to provide Zero or Overflow signal

and use a JUMP conditional to the signal value instead of the
unconditional JUMP

2. Use an internal CPU schema with two internal buses to connect
CPU elements instead of direct paths

3. Use two variants of ADD. One, specified by b5=0, having as
parameter the address of memory cell, written in the byte right
after the one with ADD. The other, specified by b5=1, having as
argument the number to be added written in bits b4-b0

4. Use a micro-programmed CU with just one address field
5. Study if it is possible to avoid the use of the 2-to-4 IR decoder

by means of a different organization of the micro-procedure for
the CPU execution phase

