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Abstract. We consider Hermitian symmetric matrices H under the stan-
dard action a∗Ha of the complex linear group.

Rank and signature give a complete set of discrete invariants for a
single Hermitian symmetric matrix.

For a pair (H1,H2) of Hermitian symmetric matrices, a complete set
of invariants consists of the rank r, defined as the complement of the
dimension of the intersection of their two kernels; of a set of minimal
indices, that are positive integers that appear only when no linear com-
bination aH1 + bH2 has rank r; and by some relative eigenvalues, with
multiplicities, of H2 with respect to H1, that can be real, complex or in-
finity (they are points of the complex projective line). This description
is related to a canonical biorthogonal decomposition. The case of larger
sets of linearly independent Hermitian matrices is an open question in
algebra.

The linear groups act naturally on the space of matrices. We shall con-
sider in the following the question of finding canonical forms for pairs of
general and of Hermitian matrices. The use of a large group in the first case,
and the special structure of the Hermitian matrices in the second, allow to
reduce part of the discussion to the Jordan form of endomorphisms. How-
ever, an extra feature appears, which is related to the Hilbert resolutions of
polynomial modules, when we deal with singular pencils.

I used canonical forms for pairs of Hermitian matrices in the study of a
class or real submanifolds of complex manifolds (see [4]).

We give two different proofs of the main Theorem 2.8. The first utilize
the canonical form for pencils of linear maps of [2], that we rehearse in §1.

In §4 we give an independent direct proof of Theorem 2.8, which allows
to better understand the geometrical significance.

1. Pencils of linear maps

Denote by Mm×n(C) the space of complex m× n matrices. The group
Gm,n(C) = GLm(C) ×GLn(C) acts onMm×n(C) by

Mm×n(C) ×GLm,n(C) 3 (A, (α, β)) −→ αAβ−1 ∈ Mm×n(C).

Canonical forms, through the associated invariants, are a tool to discuss the
congruence of the subsets ofMm×n(C) under the action of Gm,n(C).
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Remark 1.1. The only invariant of a single matrix A ∈ Mm×n(C) is its rank.
A matrix A of rank r is congruent to(

Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
.

The next natural question, that we shall discuss in the following, is to find
a canonical form for a pair of linearly independent linear maps. To describe
the result, we shall essentially follow [2].

Since canonical forms for matrices correspond to canonical forms of their
transposes, we can and we shall assume, in the following, that m ≤ n.

A pencil of complex matrices is a linear plane1

〈A0, A1〉 = {k0A0 + k1A1 | k0, k1 ∈ C} ⊂ Mm×n(C),

where A1 and A2 are linearly independent matrices.
The pair A0, A1 can be conveniently associated to the first degree poly-

nomial A0 + λA1 ∈ Mm×n(C)[λ], or to the corresponding affine line

{A(λ) = A0 + λA1 | λ ∈ C} ⊂ Mm×n(C).

Definition 1.2. Let A0, A1 ∈ Mm×n(C) be complex m×n matrices, with m ≤ n.
We say that the pencil 〈A0, A1〉 is nondegenerate if

(1.1) ker A0 ∩ ker A1 = 0, Im A0 + Im A1 = Cm.

Remark 1.3. By Grassmann intersection formula, a necessary condition for
〈A0, A1〉 ⊂ Mm×n(C) being nondegenerate, is that n ≤ 2m.

We can always reduce the study of a pencil of complex matrices to the
non degenerate case. We have indeed

Proposition 1.4. Let 〈A0, A1〉 ⊂ Mm×n(C) be a degenerate pencil.
If k = dim ker A0 ∩ ker A1 > 0, ` = m − dim(Im A0 + Im A1), then we

can find α ∈ GL(m,C), β ∈ GL(n,C) and A′0, A
′
1 ∈ M(m−̀ )×(n−k)(C) such that

〈A′0, A
′
1〉 is nondegenerate and

(1.2) α(A0 + λA1)β =

(
0`×k 0`×(n−k)

0(m−`)`×k A′0 + λA′1

)
.

Definition 1.5. Let A0, A1 ∈ Mm×n(C). The rank of the pencil 〈A0, A1〉 is

(1.3) rank〈A0, A1〉 = supa,b∈Crank(k0A0 + k1A1).

If either m , n, or rank〈A0, A1〉 < n the pencil 〈A0, A1〉 is called singular.
If rank 〈A0, A1〉 < n, we say that the pencil 〈A0, A1〉 is singular for columns.
If rank 〈A0, A1〉 < m, we say that the pencil 〈A0, A1〉 is singular for rows.
If m = n and rank〈A0, A1〉 = n the pencil 〈A0, A1〉 is called regular.

Remark 1.6. The rank of the pencil 〈A0, A1〉 is the generic rank of A(λ) =

A0+λA1. This means that the set of λ ∈ C for which rank A(λ) < rank〈A0, A1〉

is finite.
1We may consider the pencil as a line in the projective space PMm×n(C) ' CPmn−1.
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Example 1.7. Let

A0 =

0 0 0
0 0 1
1 0 0

 , A1 =

0 0 1
0 0 0
0 1 0

 .
Then

A(λ)

z1

z2

z3

 =

 λz3

z3

z1 + λz2

 .
Thus 〈A0, A1〉 is nondegenerate, but

Im A(λ) = {z ∈ C3 | λz2 = z1}

has dimension 2 for all λ ∈ C. Therefore rank 〈A0, A1〉 = 2, and the pencil
is singular.

1.1. Regular pencils.

Proposition 1.8. Assume that m = n and that the pencil 〈A0, A1〉 is regular.
Then we can find α, β ∈ GL(n,C) such that

(1.4) α(A0 + λA1) =


J1(λ)

J2(λ)
. . .

Js(λ)


where the matrices Jh(λ) have either the form

(1.5) Jrh
λh

(λ) =


λ + λh 1

λ + λh 1
. . .

. . .

λ + λh 1
λ + λh


∈ Hrh×rh(C),

with λh ∈ C, or

(1.6) Jrh
∞(λ) =


0 λ

0 λ
. . .

. . .

0 λ
0


∈ Hrh×rh(C).

Proof. By the assumption, we can fix a λ0 ∈ C for which B = A(λ0) =

A0 + λ0A1 is invertible.
Then L0 = A0B−1 and L1 = A1B−1 are matrices corresponding to com-

muting endomorphisms. Indeed, L0 = In − λ0L1.
Consider the decomposition

(1.7) Cn = W0 ⊕W1, with W0 =
⋃

h∈N
ker Lh

1, W1 =
⋂
h∈N

Lh
1(Cn).
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Then L1 is invertible on W1 and nilpotent on W0. We claim that L0 is invert-
ible on W0.

Indeed, since [L0, L1] = L0L1 − L1L0 = 0, we have L0(W0) ⊂ W0. If
L0 and L1 were both nilpotent on W0, then ker L0 ∩ ker L1 ∩ W0 , 0 by
Engel’s theorem. But this implies that ker A0∩ker A1 , 0, contradicting the
assumption that 〈A0, A1〉 is regular.

Consider

B0 = A1A−1
0 |W0 : W0

L−1
0
−−→ W0

L1
−→ W0 ∈ EndC(W0),

B1 = A0A−1
1 |W1 : W1

L−1
1
−−→ W0

L0
−→ W0 ∈ EndC(W1).

We note that B0 is nilpotent. We can find a basis e1, . . . , eq of W0 and a
basis eq+1, . . . , en of W1 in which the matrices of B0 and B1 are in Jordan
form. Then A0e1, . . . , A0eq, A1eq+1, . . . , A1en is also a basis of Cn and, in
these bases, the matrices A(λ) have the desired form. �

Definition 1.9. The string(
(λ1, r1), . . . , (λs′ , rs′), (∞, rs′+1), . . . , (∞, rs)︸                     ︷︷                     ︸

r−r′

)
,

where λ1, . . . , λ
′
s are the eigenvalues of B1, repeated with their multiplicity,

r1, . . . , rs′ the size of their Jordan blocks, and rs′+1, . . . , rs the size of the
Jordan blocks of B0, is said to be associated to the pair (A0, A1).

1.2. Singular pencils. We turn now to the case of a singular pencil. Recall
that we assumed m ≤ n.

Lemma 1.10. If the pencil 〈A0, A1〉 is singular for columns, then there is
some non zero polynomial

z(λ) = z0 + z1λ + · · · + zdλ
d ∈ Cd[λ]

such that

(1.8) (A0 − λA1)z(λ) = 0.

Proof. Let C(λ) be the field of complex rational function of one variable.
By the assumption, A0 − λA1 defines a matrix inMm×n(C(λ)) having rank r
less than n. Then dimC(λ) ker(A0 − λA1) = n − r > 0 and there exists Z(λ) ∈
[C(λ)]n\{0} such that (A0−λA1)Z(λ) = 0. We can write Z(λ) = (1/ f (λ))z(λ)
with f (λ) ∈ C[λ] \ {0} and z(λ) ∈ Cn[λ] \ {0}. Clearly z(λ) solves (1.8). �

Remark 1.11. We note that (1.8) is equivalent to

(1.9)


A0z0 = 0,
A0z j = A1z j−1, for 1 ≤ j ≤ d,

0 = A1zd.
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Equation (1.9) can be rewritten as

(1.10)



−A0

A1 −A0

A1 −A0
. . .

. . .

A1 −A0

A1





z0

z1

z2
...

zd−1

zd


= 0.

Consider the sequence of matrices

M0 =

(
−A0

A1

)
, M1 =

−A0

A1 −A0

A1

 , . . . , Md =



−A0

A1 −A0

A1 −A0
. . .

. . .

A1 −A0

A1


where Md is a matrix with m(d + 2) rows and n(d + 1) columns. Then a
necessary and sufficient condition to find a non zero solution z(λ) of (1.8)
of degree d is that the rank of Md be less than n(d + 1).

Definition 1.12. We denote by Z(A0, A1) ⊂ Cn[λ] the set of polynomial
solutions of (1.8).

Lemma 1.13. The setZ(A0, A1) is a C[λ]-module. This means that

p1(λ)z1(λ) + p2(λ)z2(λ) ∈ Z(A0, A1),

∀z1(λ), z2(λ) ∈ Z(A0, A1) and p1(λ), p2(λ) ∈ C[λ].

Theorem 1.14. Let 〈A0, A1〉 be a nondegenerate singular pencil inMm×n(C)
and let d be the smallest degree of a non zero polynomial in Z(A0, A1). We
have:

(1) If z(λ) = z0 + · · · + λdzd ∈ Z(A0, A1) has minimal degree, then

z0, . . . , zd are linearly independent,
A0z1, . . . , A0zd are linearly independent.

(2) We can find α ∈ GL(m,C), β ∈ GL(n,C) such that

(1.11) α(A0 + λA1)β =

(
Nd(λ)

A′0 + λA1
′

)
where A′0, A

′
1 ∈ M(m−d)×(n−d−1)(C) and

(1.12) Nd(λ) =


λ 1

λ 1
. . .

. . .

λ 1

 ∈ Md×(d+1)(C).
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Proof. Let z(λ) = z0 + z1λ + · · · + zdλ
d ∈ Z(A0, A1) be a non zero solution

of (1.8), with minimal degree. Note that d ≥ 1 because 〈A0, A1〉 is nonde-
generate, and that z0 , 0, because otherwise ζ(λ) = z1 + z2λ + · · · + zdλ

d−1

would be an element ofZ(A0, A1), with degree d−1 < d.
We divide the proof in several steps.
Step 1. A0z1, . . . , A0zd are linearly independent in Cn.
We first show that A0z1 , 0. Otherwise,

0 = A0z1 = A1z0 =⇒ 0 , z0 ∈ ker A0 ∩ ker A1

contradicts the assumption that 〈A0, A1〉 is nondegenerate.
Assume, by contradiction, that A0z1, . . . , A0zd are linearly dependent. Then

there is a smallest h ≥ 2 for which A0zh is linearly dependent from {A0zi |

1 ≤ i < h}. Let
A0zh = a1A0z1 + · · · + ah−1A0zh−1.

This equation yields

A1zh−1 = a1A1z0 + · · · + ah−1A1zh−2.

Hence, setting
z∗h−1 = zh−1 − a1z0 − · · · − ah−1zh−2

we obtain

A1z∗h−1 = 0, A0z∗h−1 = A1(zh−2 − a2z0 − · · · − ah−1zh−3) = A1z∗h−2,

with
z∗h−2 = zh−2 − a2z0 − · · · − ah−1zh−3.

Let us define the chainz∗0 = z0,

z∗h− j = zh− j − a jz0 − a j+1z1 − . . . − ah−1zh− j−1 for 1 ≤ j < h.

Then 
A0z∗0 = 0,
A0z∗j = A1z∗j−1, for 1 ≤ j ≤ h − 1,

0 = A1z∗h−1.

Indeed we already know that the first and the last equalities hold. For 2 ≤
j < h we obtain

A0z∗h− j = A0(zh− j − a jz0 − a j+1z1 − . . . − ah−1zh− j−1)
= A1zh− j−1 − a j+1A1z0 − . . . − ah−1A1zh− j−2

= A1z∗h− j−2.

Hence z∗(λ) = z∗0 + z∗1λ+ · · ·+ z∗h−1λ
h−1 ∈ Z(A0, A1), yielding a contradic-

tion, because h−1 < d.
Step 2. z0, z1, . . . , zd are linearly independent.
Indeed, if a0z0 + a1z1 + · · ·+ adzd = 0, we obtain a1A0z1 + · · · adA0zd = 0.

Hence a1 = 0, . . ., ad = 0 by Step 1. Then a0z0 = 0 implies that also a0 = 0,
because z0 , 0.
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Step 3. If

V =〈z0, . . . , zd〉 ⊂ C
n,

W =〈A0z1, . . . , A0zd〉 = 〈A1z0, . . . , A1zd−1〉 ⊂ C
m,

we have A(λ)(V) = W for all λ ∈ C.
Choosing a new basis of Cn in which the first d+1 vectors are z0, z1, . . . , zd,

and a basis of Cm in which the first vectors are A0z1, . . . , A0zd, we can as-
sume that the matrices A0 and A1 have the form

A0 =

(
Jd C0

0 B0

)
, A1 =

(
Kd C1

0 B1

)
where Jd = (δi, j−1) 1≤i≤d,1≤ j≤d+1 ,Kd = (δi, j) 1≤i≤d,1≤ j≤d+1 ∈ Md×(d+1)(C) are the
matrices

Jd =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


, Kd =


1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0


and C0,C1 ∈ Md×(n−d−1)(C), B0, B1 ∈ M(m−d)×(n−d−1)(C). Set

L(λ) = Jd + λKd, C(λ) = C0 + λC1, B(λ) = B0 + λB1.

Step 4. We conclude now the proof of the theorem.
To this aim we show that we can find matrices X ∈ M(d+1)×(m−d−1)(C) and

Y ∈ Md×(n−d)(C) such that(
I Y
0 I

) (
L(λ) C(λ)

0 B(λ)

) (
I −X
0 I

)
=

(
L(λ) 0

0 B(λ)

)
.

This equation is equivalent to

(1.13)

L(λ)X = C(λ) + YB(λ),
X ∈ M(d+1)×(m−d−1)(C), Y ∈ Md×(n−d)(C).

Write

X =


X1
...

Xd+1

 , with X j ∈ M1×(m−d−1).

Then

L(λ)X =


X2
...

Xd+1

 + λ


X1
...

Xd−1

 .
Thus

U + λV =


U1
...

Ud−1

 + λ


V1
...

Vd−1

 ∈ L(λ)M(d+1)×(n−d−1)



8 M. NACINOVICH

if and only if 
U1
...

Ud−2

 =


V2
...

Vd−1

 .
Since

U1
...

Ud−2

 = Kd−1


U1
...

Ud−1

 = Kd−1U,


V2
...

Vd−1

 = Jd−1


V1
...

Vd−1

 = Jd−1V,

this equation can be rewritten by

(Kd−2,−Jd−1)
(
U
V

)
= 0.

Hence (1.13) admits a solution (X,Y) if and only if the equation2

(1.14) Jd−1C1 − Kd−1C0 = Kd−1YB0 − Jd−1YB1, Y ∈ Md×n−d

is solvable. Let us write

Y =


y1

...
yd


with y j being an (n−d) row matrix. Then

Kd−1Y =


y1

...
yd−1

 , Jd−1Y =


y2

...
yd

 ,
and the right hand side of (1.14) becomes

y1B0 − y2B1

y2B0 − y3B1
...

yd−1B0 − ydB1

 .
This can also be written as

(1.15) (y1, y2, y3, . . . , yd−1, yd)



B0

−B1 B0

−B1 B0
. . .

. . .

−B1 B0

−B1


.

By the assumption that d is the minimal degree of a polynomial inZ(A0, A1),
the matrix Md−1(B0,−B1) in (1.15) has rank ≥ d(n − d − 1). Thus (1.14),
and hence equation (1.13) is solvable for every C0,C1 ∈ Md×(n−d−1)(C). This
completes the proof. �

2We have Kd−1Jd = Jd−1Kd = (0(d−1)×1, Id−1, 0(d−1)×1) ∈ M(d−1)×d+1(C).
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Example 1.15. Consider the singular pencil of 1.7. We obtain

(A0 − λA1)(λ)(z0 + λz1) = 0 with z0 =

01
0

 , z1 =

10
0

 .
Taking in the domain the basis01

0

 ,
10
0

 ,
00
1

 ,
and in the codomain the basis00

1

 ,
10
0

 ,
01
0


we obtain, in the new basis, the matrixλ 1 0

0 0 λ
0 0 1

 .
Using Theorem 1.14, we obtain

Theorem 1.16. The C[λ] module N(A0, A1) is free.

Proof. The statement means that there exists a set of generators

z1(λ), . . . , zp(λ) ∈ N(A0, A1)

such that every element of N(A0, A1) can be expressed in a unique way as
a linear combination, with coefficients in C[λ], of z1(λ), . . . , zp(λ). It can
be obtained after reducing, by applying several times Theorem 1.14, to the
case where

A(λ) =


Nd1(λ)

Nd2(λ)
. . .

Ndp(λ)
B(λ)


with B(λ) nonsingular for columns. �

Definition 1.17 (minimal indices for columns). If 〈A0, A1〉 is a nondegener-
ate singular pencil, the degrees

d1 = deg z1(λ) ≤ d2 = deg z2(λ) ≤ · · · dp = deg zp(λ).

of the elements z1(λ), . . . , zp(λ) of a basis of the free module N(A0, A1),
with

∑p
i=1deg zi(λ) minimal are called the minimal indices for columns of

〈A0, A1〉.
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Definition 1.18 (minimal indices for rows). If 〈At
0, A

t
1〉 is a nondegenerate

singular pencil, the degrees

d′1 = deg u1(λ) ≤ d′2 = deg u2(λ) ≤ · · · d′q = deg uq(λ).

of the elements u1(λ), . . . , uq(λ) of a basis of the free module N(At
0, A

t
1),

with
∑q

i=1deg ui(λ) minimal are called the minimal indices for rows of 〈A0, A1〉.

1.3. Canonical form of a pencil of linear maps. Let A0, A1 ∈ Mm×n(C)
be linearly independent matrices. By Proposition 1.4, the orbit of A(λ) by
Gm,n(C) contains a matrix of the form

(1.16)
(

0`×k 0`×(n−k)

0(m−`)×` A′(λ)

)
with A′(λ) = A′0+λA′1, and A′0, A

′
1 ∈ M(m−`)×(n−k) and 〈A′0, A

′′
1 〉 nondegenerate.

Definition 1.19. The minimal indices for columns (respectively. for rows)
of 〈A′0, A

′
1〉 are called the minimal indices for columns (respectively. for

rows) of the pencil 〈A0, A1〉.

Using Theorem 1.16 and Proposition 1.8 to decompose A′(λ), we con-
clude that the orbit of A(λ) by Gm,n(C) contains a matrix of the form

(1.17)


0

B(λ)
C(λ)

D(λ)

 ,
where 0 ∈ H`×k(C), with ` + dim(Im A0 + Im A1), k = dim(ker A0 ∩ ker A1),
and B(λ), C(λ), D(λ) nondegenerate and, respectively, of the form

B(λ) =


Nd1(λ)

. . .

Ndp(λ)

 ,
C(λ) =


N t

d′1
(λ)

. . .

N t
d′q

(λ)

 ,
D(λ) =


J1(λ)

. . .

Jr(λ)

 ,
where (d1, . . . , dp) are the minimal indices for columns, (d′1, . . . , d

′
q) the min-

imal indices for rows, and the Jh(λ) are described by (1.5) and (1.6).

Definition 1.20. The polynomials (λ − λh)rh , for Jh(λ) of the form (1.5),
and the rational functions λ−rh for Jh(λ) of the form (1.6), are called the
invariant factors of A(λ).
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Theorem 1.21 (Kronecker [3]). The integers k = dim(ker A0 ∩ ker A1), ` =

dim(Im A0+Im A1), the minimal indices for columns and for rows of 〈A0, A1〉

and the invariant factors of the pair (A0, A1) are uniquely determined and
characterize the orbit of A(λ) by GLm,n(C).

For the complete proof we refer to [2].

2. Pencils of Hermitian matrices

Let Hn denote the space of n×n Hermitian symmetric matrices:

(2.1) Hn = {H ∈ Mn×n(C) | H∗ = H},

where, for H = (hi, j)1≤i, j≤n the matrix H∗ = (h∗i, j)1≤i, j≤n has entries h∗i, j = h̄ j,i.
The set Hn is an n2-dimensional real linear space of complex matrices.

The group GLn(C) acts on Hn by

Hn ×GLn(C) 3 (H, α) −→ αHα∗ ∈ Hn.

Denote by Grk(Hn) the Grassmannian of k-dimensional subspaces of Hn

and by Ok(Hn) the space of orbits of Grk(Hn) for the action of GLn(C).
Given a k-tuple (H1, . . . ,Hk) of linearly independent Hermitian symmet-

ric forms, we denote by F =< H1, . . . ,Hk > the subspace of Hn that they
generate, and by [F] ∈ Ok(Hn) the orbit of F.

More generally, we shall use the notation H(V) for the space of Hermitian
symmetric forms on a finite dimensional complex linear space V and GC(V)
for the group of linear automorphisms of V .

Definition 2.1. A linear subspace F ⊂ Hn is called nondegenerate if

(2.2) ∀v ∈ Cn \ {0} ∃H ∈ F such that Hv , 0.

The subspace F is called regular if F contains a nondegenerate form H,
and singular if all forms H ∈ F are degenerate.

Remark 2.2. Regular F’s are nondegenerate, but a nondegenerate F can be
singular if dimRF ≥ 2.

Remark 2.3. For every H ∈ Hn we can find α ∈ GLn(C) such that

(2.3) αHα∗ =

Ip

−Iq

0(n−p−q)×(n−p−q)

 ,
where p + q is the rank of H and (p, q) its signature.

Other canonical forms for a Hermitian matrix use the matrices

Jd =


1

·
·
·

1

 ∈ Md×d(C).
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A matrix H of signature (p, q), with dim ker H = k and ν = min(p, q),
h = p + q − 2ν is equivalent to the matrix

±


Jν

Ih

Iν
0

 if h > 1, ±

(
Jp+q

0

)
if 0 ≤ h ≤ 1.

Note that, for h = 0, the two matrices with the plus and minus sign are
equivalent.

Remark 2.4. If H1,H2 ∈ Hn and H1 is positive definite, i.e. if v∗H1v > 0
for all v ∈ Cn \ {0}, then there is α ∈ GLn(C) such that

αH2α
∗ =


λ1

λ2
. . .

λn

 , with λi ∈ R, αH1α
∗ = In.

The real numbers λ1, . . . , λn are the eigenvalues of H2 with respect to H1,
and in fact are the eigenvalues of the endomorphism H−1

1 H2. Indeed, from
(α∗)−1H−1

1 α−1 = In, we obtain that
λ1

λ2
. . .

λn

 = αH2α
∗ = (α∗)−1H−1

1 α−1αH2α
∗ = (α∗)−1(H−1

1 H2)α∗.

The general case of a pair (H1,H2) of Hermitian symmetric matrices is
actually more complicated when no matrix in F = 〈H1,H2〉R is positive
definite.

The discussion relates to that for a pencil of linear maps by the following

Theorem 2.5. Let (H1,H2) and (K1,K2) be two pairs of linearly indepen-
dent Hermitian symmetric matrices in Hn, and set H(λ) = H2 + λH1,
K(λ) = K2 − λK1. Then the following are equivalent:

(1) ∃α, β ∈ GLn(C) such that αH(λ)β = K(λ);
(2) ∃α ∈ GLn(C) such that α∗H(λ)α = K(λ).

Proof. Clearly (2)⇒ (1). Assume vice versa that there exist α, β ∈ GLn(C)
such that

αH(λ)β = K(λ).
Since K1,K2 are Hermitian symmetric, we also have

β∗H(λ)α∗ = K(λ).

With γ = α−1β∗ ∈ GLn(C), we obtain that

γH(λ) = H(λ)γ∗.

From this equality, it follows that

f (γ)H(λ) = H(λ) f (γ∗), ∀ f ∈ C[λ].



PENCILS OF HERMITIAN FORMS 13

If we take f with real coefficients, we have f (γ∗) = [ f (γ)]∗. Take f ∈ R[λ]
with f (γ) ∈ GLn(C). Then we have

f (γ)H(λ)[ f (γ∗)]−1 = H(λ)

and therefore
K(λ) = α f (γ)H(λ)[ f (γ∗)]−1β.

We want to prove that f can be chosen in such a way that

α f (γ) =
(
[ f (γ∗)]−1β

)∗
= β∗[ f (γ)]−1,

i.e.
[ f (γ)]2 = α−1β∗ = γ.

This is always possible, because γ ∈ GLn(C). �

This Theorem reduces the classification of the pencils of Hermitian sym-
metric forms to the results for pencils of linear maps, after recognizing the
pairs of (H1,H2) corresponding to canonical forms of H(λ) = H2 + λH1.
Indeed we have

Corollary 2.6. Two pairs of Hermitian forms (H1,H2) and (K1,K2) are
equivalent if and only if they have the same invariant factors and minimal
indices.

Remark 2.7. Note that for a pair of Hermitian matrices (H1,H2) the rank
for rows and the rank for columns coincide.

We have the following (see [1], [5]):

Theorem 2.8. Let H1,H2 ∈ Hn and assume that F = 〈H1,H2〉R is a two-
dimensional nondegenerate linear subspace of Hn.

Then there is a direct sum decomposition:

(2.4) Cn = V1 ⊕ V2 ⊕ · · · ⊕ Vm

having the following properties:
(i) Vi is orthogonal to V j for every 1 ≤ i , j ≤ m and every H ∈ F
(biorthogonality);

(ii) for each i = 1, . . . ,m the subspace Vi is not a direct sum of
two nontrivial subspaces that are orthogonal with respect to all the
forms H ∈ F (indecomposability).

For each i = 1, . . . ,m we can find a basis of Vi such that, the restrictions of
H1 and H2 to Vi has one of the following forms:

(I) [H1|Vi] = ε


1

·

·

·

1

 , [H2|Vi] = ε


γ

· 1
· ·

· ·

γ 1

 ,
which are e-square matrices for some positive integer e, where γ is a real
number and ε = ±1;
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(II) [H1|Vi] =


0E

1
·
·
·

1

1
·
·
·

1

0E


, [H2|Vi] =


0E

Γ
· 1
· ·
· ·

Γ 1

Γ̄
· 1
· ·
· ·

Γ̄ 1

0E


,

which are 2E-square matrices for a positive integer E, and where Γ is a
complex number with Im Γ > 0;

(III) [H1|Vi] = ε


0

· 1
· ·

· ·

0 1

 , [H2|Vi] = ε


1

·

·

·

1

 ,
which are e-square matrices for a positive integer e;

(IV) [H1|Vi] =


0d+1

1
...

1
0 ··· 0

1 0
...

...
1 0

0d


, [H2|Vi] =


0d+1

0 ··· 0
1
...

1

0 1...
...

0 1
0d


,

which are (2d+1)-square matrices of odd size 2d+1 for a positive integer d.

The decomposition (2.4) is essentially unique: by this we mean that the
number and the dimensions of the subspaces involved and also the kind of
the blocks and the parameters involved are uniquely determined.

Definition 2.9. Let the basis (H1,H2) of F be fixed.
A basis of Cn, subordinated to a biorthogonal decomposition (2.4) and

for which the matrices corresponding to H1 and H2 are block diagonal with
blocks of the types (I), (II), (III) and (IV) described in the theorem, will be
called canonical for the pair (H1,H2).

The parameters ε = ±1 appearing in the blocks of type (I) and (III) are
called sign or inertial signature.

The parameters γ ∈ R appearing in the blocks of type (I), Γ and Γ̄ ap-
pearing in the blocks of type (II), and∞ if there are blocks of type (III), are
called roots or eigenvalues of the pair (H1,H2). The set Σ(H1,H2) ⊂ CP1 of
all roots (including∞ if there are blocks of type (III)), is called the spectrum
of (H1,H2).

The integers d characterizing the blocks of type (IV) are called the mini-
mal indices of F. Note that they are independent of the choice of the basis
(H1,H2).

A block of type (III) for the basis (H1,H2) becomes a block of type (I)
for the basis (H2,H1). Accordingly, we shall distinguish only three types
of subspaces in the decomposition (2.4): a subspace Vi will be called of the
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real type if it corresponds to blocks of the types (I) or (III); of the com-
plex type if it corresponds to a block of type (II); of the singular type if it
corresponds to a block of type (IV).

Proof. We note that the minimal indices for rows and columns of (H1,H2)
coincide, and that also roots and multiplicities of (H1,H2) are invariant by
conjugation. Then we can construct a Hermitian pair with the correct data
using blocks of the types I, II, III, IV,. �

3. The string of data

Having fixed a basis (H1,H2) of F, by the preceding theorem we can
have, in a canonical basis, a block decomposition of the matrices represent-
ing the two forms into blocks of the types (I), (II), (III), (IV). We shall as-
sociate to (H1,H2) a string of data to describe the different blocks; namely:

(1) we shall list the minimal indices in increasing order:

(3.1) d1 < d2 < · · · < ds

and denote by mi, for 1 ≤ i ≤ s, the number of singular subspaces
of dimension 2di + 1 of the decomposition (2.4);

(2) we shall list all eigenvalues Γ1, . . . ,ΓL in Σ(H1,H2) with ImΓI > 0
for 1 ≤ I ≤ L, together with their complex conjugated, and we shall
order the sizes 2EI,J of the blocks in which appear the parameters
ΓI , Γ̄I in decreasing order:

(3.2) EI,1 > EI,2 > · · · > EI,S I

and denote by MI,J the number of blocks of size 2EI,J (for 1 ≤ I ≤ L,
1 ≤ J ≤ S I);

(3) finally we list all distinct eigenvalues γ1, . . . , γ` ∈ R∪{∞} in Σ(H1,H2);
for each γi, 1 ≤ i ≤ `, we list in decreasing order the sizes

(3.3) ei,1 > ei,2 > · · · > ei,si

of the corresponding blocks of type (I) or (III) with parameter γi

and denote by m+
i, j, m−i, j the number of those with ε = 1, ε = −1

respectively; we set mi, j for the sum m+
i, j + m−i, j.

We organize these informations, that describe all the invariants of the pair
of Hermitian forms (H1,H2), into its string of data:

(3.4) ∆(H1,H2) =



d1,m1, . . . , ds,ms

Γ1, Γ̄1,M1,1, . . . ,M1,S 1

. . .
ΓL, Γ̄L,ML,1, . . . ,ML,S L

γ1, e1,1,m+
1,1,m

−
1,1, . . . , e1,s1 ,m

+
1,s1
,m−1,s1

. . .
γ`, e`,1,m+

`,1,m
−
`,1, . . . , e`,s` ,m

+
`,s`
,m−`,s`
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3.1. The effect of a change of basis in F. We consider the way in which
the string of data changes if we change the basis of F. If (H′1,H

′
2) is another

basis, there is a matrix B =

(
a b
c d

)
in GL2(R) such that

(3.5)

H′1 = aH1 + bH2 ,

H′2 = cH1 + dH2 .

The canonical form relative to (H′1,H
′
2) has blocks of the same type (only

those of type (I) and (III) can be changed one into the other), corresponding
to a same biorthogonal decomposition (2.4). The string of data ∆(H′1,H

′
2)

is obtained from ∆(H1,H2) by keeping all the integral parameters fixed, but
changing the spectrum: Σ(H′1,H

′
2) is obtained from Σ(H1,H2) by letting

(3.6)
(
−1 0
0 1

)
tB−1

(
−1 0
0 1

)
=

(
d c
b a

)
act as a real linear fractional transformation. This indeed trivially follows
from

(3.7) H′2 − λ
′H′1 = (d − λ′b)H2 − (λ′a − c)H1 ,

showing that the eigenvalues λ of the pair (H1,H2) and λ′ of (H′1,H
′
2) are

related by:

(3.8) λ =
λ′a − c
d − λ′b

, λ′ =
dλ + c
bλ + a

.

The inertial signatures remain the same or change to their opposite.

4. A direct proof of Theorem 2.8

It is convenient to introduce the notation:

V0 = {w ∈ Cn | w∗v = 0},

V⊥ = [H1(V)]0 = {w ∈ Cn | v∗H1w = 0, ∀v ∈ V},

V† = [H2(V)]0 = {w ∈ Cn | v∗H2w = 0, ∀v ∈ V},

Vy = V⊥ ∩ V† = {w ∈ Cn | v∗H1w = 0, v∗H2w = 0, ∀v ∈ V}.

4.1. The subspace N. Subspaces of the singular type appear in the decom-
position (2.4) if and only if F is singular. We have indeed:

Proposition 4.1. Equation

(4.1) H(λ)z(λ) = (H2−λH1)z(λ) = 0, z(λ) = z0 +λz1 + · · ·+zdλ
d ∈ Cn[λ]

admits a non trivial solution if and only if 〈H1,H2〉 is singular.
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Proof. The rank of 〈H1,H2〉 equals the rank of (H2 − λH1), considered as a
matrix with coefficients in the field C(λ) of rational functions. The equation

H(λ)z(λ) = (H2 − λH1)z(λ), z(λ) ∈ [C(λ)]n

has a non trivial solution if and only if

dimC(λ) ker H(λ) = n − rankC(λ)H(λ) > 0.

By chasing denominators, from any non tivial element of ker H(λ) in [C(λ)]n

we obtain non trivial solutions of (4.1). This proves the proposition. �

Remark 4.2. Equation (4.1) is equivalent to

(4.2)


H2z0 = 0,
H2z j = H1z j−1 for 1 ≤ j ≤ m,
0 = H1zd,

that can also be written as

(4.3)



−H2

H1 −H2

H1 −H2
. . .

. . .

H1 −H2

H1





z0

z1

z2
...

zd−1

zd


= 0

where the left hand side is a matrix Md with n(d + 2) rows and and (d+1)n
columns. Thus, the necessary and sufficient condition for the existence of a
non trivial solution is that rankCMd < n(d+1).

Lemma 4.3. Let

z(λ) = z0 + λz1 + · · · + λmzd ∈ C
n[λ]

solve equation (4.1). Then the linear subspace 〈z0, z1, . . . , zd〉 generated by
the coefficients of z(λ) is totally isotropic for both H1 and H2 and hence for
all H ∈ F = 〈H1,H2〉.

Proof. We define zi for all i ∈ Z, by setting zi = 0 for i < 0 and i > d. Then
(4.2) can be rewritten as

H1ei = H2ei+1, ∀i ∈ Z.

Then we have

eiH1e∗j = e∗i H2e j+1 = e∗i−1H1e j+1 = · · · = e∗i+ j−dH1ed = 0,
e∗i H2e j = e∗i−1H1e j = e∗i−1H2e j+1 = · · · = e∗0H2ei+ j−d = 0,

for all i, j = 0, . . . , d. �

Definition 4.4. The setZ(H1,H2) ⊂ Cn[λ] of solutions of (4.1) is a module
over the ring C[λ] of complex polynomials in one indeterminate.

Let N be the linear subspace of Cn generated by the coefficients of the
polynomials inZ(H1,H2).
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Corollary 4.5. The subspace N is totally isotropic for all Hermitian matri-
ces H ∈ F = 〈H1,H2〉.

Proof. Let z′(λ), z′′(λ) ∈ Z(H1,H2). If z′ has degree d′, we can consider
the polynomial z′′′(λ) = z′(λ) + λd′+1z′′(λ). It is still contained inZ(H1,H2)
and therefore the vector space generated by the coefficients of z′(λ) and of
z′′(λ), being equal to the vector space generated by the coefficients of z′′′(λ),
is totally isotropic for all H ∈ F by Lemma 4.3. �

Lemma 4.6. Let 〈H1,H2〉 be a nondegenerate singular pencil of Hermitian
matrices and let

z(λ) = z0 + λz1 + · · · + λdzd ∈ Z(H1,H2)

be a non trivial solution of (4.1) having minimal degree. Then

z0, z1, . . . , zd,H2z1, . . . ,H2zd

are linearly independent.

Proof. Step 1. H2z1, . . . ,H2zd are linearly independent in Cn.
We first show that H2z1 , 0. Otherwise,

0 = H2z1 = H1z0 =⇒ 0 , z0 ∈ ker H2 ∩ ker H1

contradicts the assumption that F is nondegenerate.
Assume, by contradiction, that H2z1, . . . ,H2zd are linearly dependent.

Then there is a smallest integer h, with 2 ≤ h ≤ d, for which H2zh is linearly
dependent from {H2zi | 1 ≤ i < h}. Let

H2zh = a1H2z1 + · · · + ah−1H2zh−1.

This equation yields

H1zh−1 = a1H1z0 + · · · + ah−1H1zh−2.

Hence, setting
z′h−1 = zh−1 − a1z0 − · · · − ah−1zh−2

we obtain

H1z′h−1 = 0, H2z′h−1 = H1(zh−2 − a2z0 − · · · − ah−1zh−3) = H1z′h−2,

with
z′h−2 = zh−2 − a2z0 − · · · − ah−1zh−3.

Let us define the chainz′0 = z0,

z′h− j = zh− j − a jz0 − a j+1z1 − . . . − ah−1zh− j−1, for 1 ≤ j < h.

Then 
H2z′0 = 0,
H2z′j = H1z′j−1, for 1 ≤ j ≤ h − 1,

0 = H1z′h−1.
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Indeed we already know that the first and the last equalities hold. For 2 ≤
j < h we obtain

H2z′h− j = H2(zh− j − a jz0 − a j+1z1 − . . . − ah−1zh− j−1)
= H1zh− j−1 − a j+1H1z0 − . . . − ah−1H1zh− j−2

= H1z′h− j−2.

Hence z′(λ) = z′0 + z′1λ+ · · ·+ z′h−1λ
h−1 ∈ Z(H1,H2), yielding a contradic-

tion, because h−1 < d.
Step 2. z0, z1, . . . , zd are linearly independent.
Indeed, if a0z0 + a1z1 + · · ·+ adzd = 0, we obtain a1H2z1 + · · · adH2zd = 0.

Hence a1 = 0, . . ., ad = 0 by Step 1. Then a0z0 = 0 implies that also a0 = 0,
because z0 , 0.

Step 3. z0, z1, . . . , zd,H2z1, . . . ,H2zd are linearly independent. Assume
that

a0z0 + a1z1 · · · + adzd + b1H2z1 + · · · + bdH2zd = 0.
By multiplying to the left by z∗i H2, for i = 1, . . . , d, we obtain that∑d

j=1
b jz∗i H2

2z j = 0, for i = 1, . . . , d.

Since the matrix (z∗i H2
2z j)i, j=1,...,d is positive definite, this implies that b1 =

· · · = bd = 0. Then also a0 = a1 = · · · = ad = 0, because z0, . . . , zd are
linearly independent. �

4.2. The smallest minimal index.

Lemma 4.7. Let 〈H1,H2〉 be a nondegenerate singular pencil of Hermitian
matrices and let

z(λ) = z0 + λz1 + · · · + λdzd ∈ Z(H1,H2)

be a non trivial solution of (4.1) having minimal degree d. Then

z0, z1, . . . , zd,H2z1, . . . ,H2zd

are linearly independent.

Proof. Step 1. H2z1, . . . ,H2zd are linearly independent in Cn.
We first show that H2z1 , 0. Otherwise,

0 = H2z1 = H1z0 =⇒ 0 , z0 ∈ ker H2 ∩ ker H1

contradicts the assumption that F is nondegenerate.
Assume, by contradiction, that H2z1, . . . ,H2zd are linearly dependent.

Then there is a smallest h ≥ 2 for which H2zh is linearly dependent from
{H2zi | 1 ≤ i < h}. Let

H2zh = a1H2z1 + · · · + ah−1H2zh−1.

This equation yields

H1zh−1 = a1H1z0 + · · · + ah−1H1zh−2.
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Hence, setting
z′h−1 = zh−1 − a1z0 − · · · − ah−1zh−2

we obtain

H1z′h−1 = 0, H2z′h−1 = H1(zh−2 − a2z0 − · · · − ah−1zh−3) = H1z′h−2,

with
z′h−2 = zh−2 − a2z0 − · · · − ah−1zh−3.

Let us define the chainz′0 = z0,

z′h− j = zh− j − a jz0 − a j+1z1 − . . . − ah−1zh− j−1 for 1 ≤ j < h.

Then 
H2z′0 = 0,
H2z′j = H1z′j−1, for 1 ≤ j ≤ h − 1,

0 = H1z′h−1.

Indeed we already know that the first and the last equalities hold. For 2 ≤
j < h we obtain

H2z′h− j = H2(zh− j − a jz0 − a j+1z1 − . . . − ah−1zh− j−1)
= H1zh− j−1 − a j+1H1z0 − . . . − ah−1H1zh− j−2

= H1z′h− j−2.

Hence z′(λ) = z′0 + z′1λ+ · · ·+ z′h−1λ
h−1 ∈ Z(H1,H2), yielding a contradic-

tion, because h−1 < d.

Step 2. z0, z1, . . . , zd are linearly independent.
Indeed, if a0z0 + a1z1 + · · ·+ adzd = 0, we obtain a1H2z1 + · · · adH2zd = 0.

Hence a1 = 0, . . ., ad = 0 by Step 1. Then a0z0 = 0 implies that also a0 = 0,
because z0 , 0.

Step 3. Assume that

a0z0 + a1z1 · · · + adzd + b1H2z1 + · · · + bdH2zd = 0.

By multiplying to the left by z∗i H2, for i = 1, . . . , d, we obtain that∑d

j=1
b jz∗i H2

2z j = 0, for i = 1, . . . , d.

Since the matrix (z∗i H2
2z j)i, j=1,...,d is positive definite, this implies that b1 =

· · · = bd = 0. Then also a0 = a1 = · · · = ad = 0 because z0, . . . , zd are
linearly independent. �

Proposition 4.8. Let

z(λ) = z0 + λz1 + · · · + λdzd ∈ Z(H1,H2)



PENCILS OF HERMITIAN FORMS 21

be a non trivial solution of (4.1) of minimal degree d. Then we can complete
z0, . . . , zd to a basis of Cn in such a way that the matrix representing H(λ)
in this basis be of the form  0 L∗(λ) 0

L(λ) 0 0
0 0 Q(λ)


with Q(λ) = Q2(λ) + λQ1(λ) for Q1,Q2 ∈ Hn−2d−1 and Ld(λ) = Jd − λKd,
with

Jd =


0 1

0 1
. . .

. . .

0 1

 , Kd =


1 0

1 0
. . .

. . .

1 0

 ∈ Md×(d+1).

Proof. Let us set m = n − 2d − 1. Let N1 = 〈z0, . . . , zd〉. We observe that
H1(N1) = H2(N1) and therefore N⊥1 = N†1 = Ny1 . Choosing a basis e1, . . . , en

of Cn with ei = zi−1 for 1 ≤ i ≤ d + 1, e1, . . . , en−d a basis of Ny1 and
e∗i H2en−d+ j = δi, j for 1 ≤ i, j ≤ d, we can assume that

H(λ) =

 0 0 L∗(λ)
0 B(λ) C∗(λ)

L(λ) C(λ) D(λ)


with B(λ) = B2 − λB1, C(λ) = C2 − λC1, D(λ) = D2 − λD1 for B1, B2 ∈ Hm,
C1,C2 ∈ Md×m(C), D1,D2 ∈ Hd.

We divide the proof in several steps.
Step 1. We show first that the equation

(4.4) B(λ)θ(λ) = 0, with θ(λ) ∈ Cm[λ]

has no non trivial solution of degree less than d.
Set

Φ(λ) = (C(λ),D(λ)), Ψ(λ) =

(
0 L∗d(λ)

B(λ) D(λ)

)
, H(λ) =

(
0 Ψ(λ)

Ld(λ) Φ(λ)

)
.

We claim that we can find matrices

X ∈ M(d+1)×(n−d−1)(C) and Y ∈ Md×(n−d)(C)

such that

(4.5)
(
In−d 0
Y Id

)
H(λ)

(
Id+1 −X
0 In−d−1

)
=

(
0 Ψ(λ)

Ld(λ) 0

)
.

Equation (4.5) is equivalent to

(4.6) Ld(λ)X = YΨ(λ) + Φ(λ).

Set

X =


X1
...

Xd+1

 , with Xi ∈ M1×(n−d−1).
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Then

Ld(λ)X =


X2
...

Xd+1

 − λ

X1
...

Xd

 .
Thus the image of

T : M(d+1)×(n−d−1) 3 X −→ Ld(λ)X ∈ Md×(n−d−1) + λMd×(n−d−1) ' M2d×(n−d−1)

consists of all

U − λV, with U =


U1
...

Ud

 , V =


V1
...

Vd

 , Ui,Vi ∈ M1×(n−d−1),

with


U1
...

Ud−1

 =


V2
...

Vd

 , i.e Kd−1U = Jd−1V.

Thus (4.6) is solvable if and only if

(4.7) 0 = (Kd−1,−Jd−1)Y
(
Ψ0

Ψ1

)
+ (Kd−1,−Jd−1)

(
Φ0

Φ1

)
,

where we set Ψ(λ) = Ψ0 + λΨ1 and Φ(λ) = Φ0 + λΦ1, with Ψ0,Ψ1 ∈

M(n−d)×(n−d−1)(C) and Φ0,Φ1 ∈ Md×(n−d−1)(C).
Set

Y =


Y1
...

Yd

 , with Yi ∈ M1×(n−d)(C).

We have

(Kd−1,−Jd−1)Y
(
Ψ0

Ψ1

)
=


Y1 −Y2

Y2 −Y3
...

...
Yd−1 −Yd


(
Ψ0

Ψ1

)

=
(
Y1, . . . ,Yd

)


Ψ0

−Ψ1 Ψ0

−Ψ1
. . .
. . .

. . .

. . . Ψ0

−Ψ1


Since, by assumption, the equation Ψ(λ)θ(λ) has no non trivial solution
θ(λ) ∈ Cn−d−1[λ] of degree less than d, the matrix in the right hand side of
the last expression has rank larger or equal to (d − 1)(n − d − 1). Hence the
map

T ′ : M(n−d−1)×(d+1) 3 Y −→ (Kd−1,−Jd−1)Y
(
Ψ0

Ψ1

)
∈ M(d−1)×(n−d−1)(C)
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is surjective and (4.7) admits a solution.
Since (

0 Ψ(λ)
Ld(λ) 0

)
=

 0 0 L∗d(λ)
0 B(λ) C∗(λ)

L(λ) 0 0

 ,
if θ(λ) ∈ Cm[λ] is a solution of (4.4), then

θ̃(λ) =

(
−Xθ

0

)
∈ Cn[λ]

is a solution of (4.1) having the same degree of θ(λ). This yields the state-
ment of step 1.

Step 2. There is a matrix

A =

Id+1 0 0
α Im 0
γ β Id

 ,
with α ∈ Mm×(d+1), β ∈ Md×m, γ ∈ Md×(d+1), such that

(4.8) AH(λ)A∗ =

 0 0 L∗(λ)
0 B(λ) 0

L(λ) 0 0

 .
Equation (4.8) is equivalent to

(4.9)

Ld(λ)α∗ + βB(λ) + C(λ) = 0,
Ld(λ)γ∗ + γL∗d(λ) + βB(λ)β∗ + C(λ)β∗ + βC∗(λ) + D(λ) = 0.

Let us consider the map

T : Md×(d+1)(C) 3 γ −→ γL∗d(λ) + Ld(λ)γ∗ ∈ Hd + λHd ' R
2d2
.

Its kernel consists of the matrices γ = (γi, j) 1≤i≤d
1≤ j≤d+1

withγi, j = −γ̄ j,i for 1 ≤ i, j ≤ d,
γi, j+1 = −γ̄ j,i+1 for 1 ≤ i, j ≤ d.

Hence the kernel of T consists of the matrices γ for whichγi, j = γr,s if i + j = r + s,
γi, j ∈ iR if 1 ≤ i ≤ d, 1 ≤ j ≤ d + 1.

Thus dimR ker T = 2d and therefore

rank T = 2d(d + 1) − 2d = 2d2

proves that T is onto.
Therefore, for any choice of α and β, we can choose γ in such a way that

the second equation of (4.9) is satisfied.
Let us show that α, β can be chosen to solve the first equation in (4.9).

The argument is very similar to the one used in step 1.
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Write
α = (α1, . . . , αd+1), with αi ∈ Mm×1.

Then

Ld(λ)α∗ =


α∗2
...

α∗d+1

 − λ

α∗1
...
α∗d

 .
Thus we can solve the equation

U − λV =


U1
...

Ud

 − λ

V1
...

Vd

 = Ld(λ)α∗

if and only if

Kd−1U =


U1
...

Ud−1

 =


V2
...

Vd

 = Jd−1V.

Therefore the first equation in (4.9) is solvable if and only if we can find a
solution β of

(Kd−1,−Jd−1)β
(
B2

B1

)
= (−Kd−1, Jd−1)

(
C2

C1

)
∈ M(d−1)×m(C).

Write

β =


β1
...
βd

 , with βi ∈ M1×m.

We have

(Kd,−Jd)β
(
B2

B1

)
=


β1 −β2

β2 −β1
...

...
βd−1 βd


(
B2

B1

)
= (β1, . . . , βd)


B2

−B1 B2
. . .

. . .

−B1 B2

−B1


.

By step 1, we know that the matrix

Md−1(B1, B2) =


B2

−B1 B2
. . .

. . .

−B1 B2

−B1


has rank greater or equal to m(d − 1). Hence the map

M1×dm 3 (β1, . . . , βd)→ βMd−1(B1, B2) ∈ M(d−1)×m(C)
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is surjective. Thus we can solve (4.8). We obtain the thesis by observing
thatId 0 0

0 0 Id+1

0 Im 0


 0 0 L∗d(λ)

0 B(λ) 0
Ld(λ) 0 0


Id 0 0

0 0 Id+1

0 Im 0

 =

 0 L∗d(λ) 0
Ld(λ) 0 0

0 0 B(λ)

 .
�

4.3. The subspace Ny and the nonsingular core.

Proposition 4.9. Let N be the subspace of Definition 4.4. Then

(4.10) N ⊂ Ny = N⊥ = N†.

Proof. Since the coefficients of the solutions of (4.1) satisfy (4.2), we obtain
H1(N) = H2(N). Therefore

N⊥ = [H1(N)]0 = [N2(N)]0 = N† =⇒ Ny = N⊥ ∩ N† = N⊥ = N†.

The inclusion N ⊂ Ny follows, because N is totally isotropic for both H1

and H2. �

Since N is totally isotropic for both H1 and H2, the Hermitian symmetric
forms

(v,w) −→ w∗H1v, (v,w) −→ w∗H2v

define Hermitian symmetric forms on the quotient V̂ = Ny/N.

Proposition 4.10. Assume that the pencil 〈H1,H2〉 is nondegenerate.
Let V be any linear complement of N in Ny. Then we can find a comple-

ment W of Ny in Cn such that

(4.11) Cn = N ⊕ V ⊕W, Ny = N ⊕ V, Vy = N ⊕W, Wy = V ⊕W.

Moreover:

(1) Cn = (N ⊕W) ⊕ V is a biorthogonal decomposition and the restric-
tions of 〈H1,H2〉 to the subspaces N ⊕W and V are both nondegen-
erate.

(2) The restriction of 〈H1,H2〉 to V is regular.
(3) No bihortogonal decomposition of N⊕W for the restriction of 〈H1,H2〉

contains a subspace on which the restriction of 〈H1,H2〉 is regular.

Definition 4.11. The quotient V̂ = Ny/N, or any linear complement V of
N in Ny/N, are called the nonsingular core of 〈H1,H2〉.

To complete the proof of Theorem 2.8 it remains to find the biorthog-
onal decomposition and the associated canonical forms in the case where
〈H1,H2〉 is nonsingular.
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4.4. The nonsingular case. Assume that F = 〈H1,H2〉 is nonsingular and
take a nondegenerate H = a1H1 + a2H2 ∈ F. Set L1 = H−1H1, L2 = H−1H2.
Since a1L1 + a2L2 = In, the two endomorphisms commute. Moreover, all
the elements of C[L1, L2], which are not proportional to the identity, have
the same Jordan decomposition

(4.12) Cn = Q1 ⊕ · · ·Qs

into a direct sum of indecomposable subspaces. Indeed:

Proposition 4.12. Assume that F = 〈H1,H2〉 is nonsingular. Let H,K ∈ F
be linearly independent, with H ∈ F ∩ GLn(C) and set L = H−1K. Then
the ring C[L] contains all endomorphisms of the form A−1B with A, B ∈ F
linearly independent, and A ∈ F ∩GLn(C).

Proof. We can assume for simplicity that H1 ∈ F ∩ GLn(C) and prove the
statement for L = H−1

1 H2. If a, b, c, d ∈ R and aH1 + bH2 ∈ GLn(C), we
have

(aH1 + bH2)−1(cH1 + dH2) = (aIn + bL)−1(cIn + dL)
and the thesis follows because3 (aIn + bL)−1 ∈ C[L]. �

On each Q j, either L1, or L2 is invertible. Indeed, the restriction of Li to
Q j is either invertible or nilpotent. If e.g. L2 is nilpotent on some Q j, then
a1 , 0 because H is not proportional to H2, and a1L1 = In − a2L2 shows
that the restriction of a1L1 to Q j is the sum of the identity and of a nilpotent
element and hence invertible.

Definition 4.13. Take an invertible H = a1H1 + a2H2 ∈ F with a1 , 0,
so that L2 is not proportional to In. If λ′′ ∈ C is an eigenvalue of L2, then
λ′ = a−1

1 (1−a2λ
′′) is the corresponding eigenvalue of L1. The rational value

λ =
a1λ

′′

1 − a2λ′′
∈ CP1 = C ∪ {∞}

is independent of the choice of H and is called a root, or eigenvalue of the
pair (H1,H2).

Let Σ ⊂ CP1 be the set of roots of the pair (H1,H2).

Definition 4.14. Let H = a1H1 + a2H2 ∈ F be nondegenerate, with a1 , 0,
and set L2 = H−1H2. For each λ ∈ Σ \ {∞} we set

(4.13) Eλ =
⋃∞

h=1
ker(λ′′In − L2)h, with λ′′ =

λ

a1 + a2λ
.

If∞ ∈ Σ, we set

(4.14) E∞ =
⋃∞

h=1
ker(In + a2L2)h.

3Indeed, if A ∈ GLn(C) and f (λ) = det(λIn−A) = λn+k1λ
n−1+· · ·+kn is its characteristic

polynomial, we have kn = (−1)n det A , 0. Thus

In = A(−k−1
n [An−1 + k1An−2 + · · · + kn−1In]) = Ag(A),with g(λ) ∈ C[λ].
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Lemma 4.15. The definition of the subspaces Eλ is independent of the
choice of an invertible H = a1H1 + a2H2 ∈ F with a1 , 0.

Proof. If K = b1H1 + b2H2 ∈ F is nondegenerate with b1 , 0 and T2 =

K−1H, then we have, for c1 = b1/a1, c2 = (b2a1 − b1a2)/a1,

T2 = (c1In + c2L2) ∈ GLn(C), T2 = (c1In + c2L2)−1L2.

Then the thesis follows because⋃∞

h=1
ker(ξIn − L2)h =

⋃∞

h=1
ker(c1ξIn − c1L2)h

=
⋃∞

h=1
ker(ξ(c1In + c2L2) − (c1 + c2ξ)L2)h

=
⋃∞

h=1
ker

( ξ

c1+c2ξ
In − T2

)h

for all ξ ∈ C. �

Proposition 4.16. If F is nonsingular, we have a direct sum decomposition

(4.15) Cn =
⊕

λ∈Σ
Eλ.

Lemma 4.17. Eλi y Eλ j if λ j , λ̄i.

Proof. We observe that a change of the basis of F only changes the labels
of the subspaces Eλ by a real fractional transformation of λ. Hence, we can
assume in the proof that H1 is nondegenerate, so that∞ < Σ.

Let λi, λ j ∈ Σ, with λ j , λ̄i. Let vi ∈ Eλi \ {0}, v j ∈ Eλ j \ {0}, and hi, h j be
the smallest positive integers such that (λiIn − L)hivi = 0, (λ jIn − L)h jv j = 0.
Set vi,a = (λiIn − L)hi−avi, v j,b(λ jIn − L)h j−bv j, for 0 ≤ a ≤ hi, 0 ≤ b ≤ h j. We
prove by recurrence that

(Pr) vi,a y v j,b if 1 ≤ a ≤ h1, 1 ≤ b ≤ h2, sup{a + b} ≤ r.

We have
vi,0 = 0,
H2vi,a = λiH1vi,a − H1vi,a−1,

if 1 ≤ a ≤ hi,


v j,0 = 0,
H2v j,b = λ jH1v j,b − H1v j,b−1,

if 1 ≤ b ≤ h j.

Thus (P0) and (P1) are trivially true. Assume that (Pr) holds for some inte-
ger r with 1 ≤ r < h1 + h2. It suffices to show that vi,a y v j,b for every pair
of integers (a, b) with 1 ≤ a ≤ h1, 1 ≤ b ≤ h2 and a + b ≤ r + 1. We have:

v∗i,aH2v j,b = λ jv∗i,aH1v j,b − v∗i,aH1v j,b−1 = λ jv∗i,aH1v j,b

= λ̄iv∗i,aH1v j,b − v∗i,a−1H1v j,b = λ̄iv∗i,aH1v j,b.

This implies that vi,a y v j,b. By recurrence we obtain (Ph1+h2), i.e. vi =

vi,h1 y v j,h2 = v j. �

Corollary 4.18. Assume that F is nonsingular. Then every subspace Vi

of a biorthogonal decomposition (2.4) is contained either in a generalized
eigenspace Eγ, for some γ ∈ R, or in a direct sum EΓ ⊕ EΓ̄, with Γ ∈ C and
Im Γ > 0.
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4.4.1. Real eigenvalues.

Proposition 4.19. Let γ , ∞ be a real root of the pair (H1,H2).
Then the restriction of H1 to Eγ is nondegenerate and we can consider

the endomorphism L ∈ glC(Eγ) defined by

(4.16) w∗H2v = w∗H1Lv, ∀v,w ∈ Eγ.

Then (γIEγ − L) is nilpotent. Let ν be its nilpotency index. Then there is an
L-invariant indecomposable ν-dimensional subspace W of Eγ such that

(4.17) Wy = W⊥, Cn = Wy ⊕W (biorthogonal decomposition).

There exists a Jordan basis e1, . . . , eν of W for L, in which the restrictions
of H1 and H2 to W are represented by matrices of type (I).

Proof. By substituting H2 − γH1 to H2, we can assume that γ = 0.
Let

(4.18) E0 = W1 ⊕W2 ⊕ · · · ⊕W`

be a Jordan decomposition of E0, with dimW1 ≥ dimW2 ≥ · · · ≥ dimW`.
Then dimW1 = ν. Let e1, . . . , eν be a Jordan basis for W1. We have:

(4.19)



H2e1 = 0,
H2e2 = H1e1,

. . . . . .

H2eν = H1eν−1,

0 = H1eν.

Claim: We can assume that e∗1H1e j , 0 for some j with 1 ≤ j ≤ ν.
Indeed, if e∗1H1e j = 0 for all j with 1 ≤ j ≤ ν, then, by the assump-

tion that H1 is nondegenerate, there is some element ea, j of a Jordan basis
ea,1, . . . , ea,na of some Wa, with 2 ≤ a ≤ `, such that e∗1H1ea, j , 0. Set
ea, j = 0 for j ≤ 0, and define

e′1 = e1 + ea,ni−ν+1,

e′2 = e2 + ea,ni−ν+2,

. . . . . .

e′ν = eν + ea,ni .

Then we have 

H2e′1 = 0,
H2e′2 = H1e′1,
. . . . . .

H2e′ν = H1e′ν−1,

0 = H1e′ν,

and we can substitute 〈e′1, . . . , e
′
ν〉 to W1 in the Jordan decomposition (4.18).

The new W1 fulfills our claim.
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Assume therefore that W1 has a basis e1, . . . , eν satisfying (4.19), with
e1 < W⊥

1 .
If ν = 1, we have ey1 = e⊥1 , and then we obtain decomposition (4.20)

because e∗1H1e1 , 0.
Set ei = 0 for i ≤ 0 and i > ν. Then we have

e∗i H2e j = γe∗i H1e j + e∗i H1e j−1

= γe∗i H1e j + e∗i−1H1e j

∀1 ≤ i, j ≤ n.

This implies that e∗i H1e j, for 1 ≤ i, j ≤ n, only depends on the sum (i+ j).
When i + j ≤ n, we have

e∗i H1e j = e∗0H1ei+ j = 0∗H1ei+ j = 0.

In particular, since e∗1H1e j = 0 for 1 ≤ j < ν, we obtain that e∗1H1eν , 0
and, in general

e∗i H1e j = e∗1H1eν , 0, ∀1 ≤ i, j ≤ ν with i + j = ν.

A new Jordan basis v1, . . . , vn is obtained by choosing complex numbers
k0, k1, . . . , kn−1, with k0 , 0, and setting

v j =
∑

0≤a<n,
1≤b≤n,
a+b= j

kaeb, for j = 1, . . . , n.

Having fixed k0, we can choose k1, . . . , kn−1 in such a way that

(4.20) v∗i H1v j = 0 if i + j , n + 1.

We obtain indeed

v∗i H1v j =
∑

0≤a≤i
0≤b≤ j

k̄akbe∗i−aH1e j−b.

As, by the first part of the proof, v∗i H1v j = 0 for i + j ≤ n, it suffices to show
that we can choose k1, . . . , kν in such a way that

(4.21) v∗i H1vn =
∑

0≤a≤i
0≤b≤n

k̄akbe∗i−aH1en−b = 0 for i = 2, . . . , n.

Since e∗aH1eb = 0 when a + b ≤ n, (4.21) can be rewritten by∑
0≤a≤i
0≤b≤n

a+b≤i−1

k̄akbe∗i−aH1en−b = 0 for i = 2, . . . , n,

yielding

(4.22)
∑i−1

ν=0

(∑
a+b=ν

k̄akb
)
e∗i−νH1en = 0.

Equations (4.22) express each sum k̄0ki−1 + k̄i−1k0 as a quadratic polynomial
in ka, k̄a for 1 ≤ a < (i−1) and therefore can be recursively solved. Finally,
we can fix k0 in such a way that v∗1H1vn = ±1. In this way we obtain the
canonical expression (I) for H1,H2. �
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Corollary 4.20. If γ ∈ R is a real root of (H1,H2), then there is a Jordan
decomposition

Eγ = W1 ⊕ · · · ⊕W`

of Eγ for L = H−1
1 H2, which is also a biorthogonal decomposition of Eγ for

F. We can choose a basis in each W j in which the matrices associated to
the restrictions of H1,H2 have the form (I).

Proposition 4.21. If ∞ is a root of (H1,H2), then H2 is nondegenerate on
E∞ and we can define L ∈ glC(E∞) by setting

(4.23) w∗H1v = w∗H2Lv, ∀v,w ∈ E∞.

Then L is nilpotent. Let ν be its nilpotency index. Then there exists an
L-invariant indecomposable ν-dimensional subspace of E∞ such that

(4.24) Wy = W†, Cn = Wy ⊕W (biorthogonal decomposition).

There exists a Jordan basis e1, . . . , eν of W in which the restrictions of
H1,H2 to W are matrices of type (III).

Proof. After exchanging H1 and H2, we repeat the proof of Proposition 4.19.
�

Corollary 4.22. If∞ is a root of (H1,H2), then there is a Jordan decompo-
sition

Eγ = W1 ⊕ · · · ⊕W`

of E∞ for L = H−1
2 H1, which is also a biorthogonal decomposition of E∞

for F. We can choose a basis in each W j in which the matrices associated
to the restrictions of H1,H2 have the form (III).

4.4.2. Complex eigenvalues.

Proposition 4.23. Assume that F = 〈H1,H2〉 is nonsingular. Let Γ ∈ C,
with Im Γ > 0 be a complex root of (H1,H2). Then both H1 and H2 are
nondegenerate on EΓ ⊕ EΓ̄. Define L ∈ glC(EΓ ⊕ EΓ̄) by

(4.25) w∗H2v = w∗H1Lv, ∀v,w ∈ EΓ ⊕ EΓ̄).

Then EΓ and EΓ̄ are L-invariant and (ΓI − L) is nilpotent on EΓ, (Γ̄I − L) is
nilpotent on EΓ̄, with the same nilpotency indices.

We have Jordan decompositions

EΓ = V1 ⊕ · · ·V`,

EΓ̄ = W1 ⊕ · · ·W`

of EΓ, EΓ̄ with respect to L such that

(4.26) EΓ ⊕ EΓ̄ = (V1 ⊕W1) ⊕ · · · ⊕ (V` ⊕W`)

is a biorhtogonal decomposition of EΓ ⊕ EΓ̄ for F.
We can find basis of V j, W j such that the corresponding matrices of the

restrictions of H1,H2 to V j ⊕W j have the form (II).
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Proof. We observe that the Jordan decompositions of EΓ and EΓ̄ with re-
spect to L have the same number of subspaces of the same dimensions,
because the two endomorphisms L and L∗ = H1LH−1

1 are conjugate. We
also know that EΓ and EΓ̄ are totally isotropic for both H1 and H2.

Assume that dimV1 ≥ dimV2 ≥ · · · dimV`. Let e1, . . . , eν be a Jordan basis
of V1 for L. We have, with e0 = 0,

(4.27) H2e j = ΓH1e j + H1e j−1, for 1 ≤ j ≤ ν.

Since H1 is, by assumption, nondegenerate, we can assume that e1 < W⊥
1 .

Let v1, . . . , vµ be a Jordan basis for W1. With v0 = 0 we have

(4.28) H2v j = Γ̄H1v j + H1v j−1, for 1 ≤ j ≤ µ.

Thus we obtain, for all 1 ≤ i ≤ ν and 1 ≤ j ≤ µ,

v∗i H2e j = Γv∗i H1e j + v∗i H1e j−1

= Γv∗i H1e j + v∗i−1H1e j.

This implies that

v∗i H1e j = v∗hH1ek if 0 ≤ i, h ≤ µ, 0 ≤ j, k ≤ ν.

In particular,

v∗i H1e1 = v∗0H1e1+i = 0 if 1 ≤ i ≤ min{µ, ν − 1}

implies that µ = ν and that v∗νH1e1 , 0. By rescaling, we can obtain that

v∗jH1ei = v∗νH1e1 = 1, if 1 ≤ i, j ≤ ν, i + j = ν + 1.

We can modify the Jordan basis e1, . . . , eν by setting, after fixing complex
numbers k1, . . . , kν−1,u1 = e1,

ui = ei + k1ei−1 + · · · + kie1, for 2 ≤ i ≤ ν.

Then to require that v∗i H1u j = 0 for i + j , ν + 1 is equivalent to

v∗νH1u j = v∗νH1e j+k1v∗νH1e j−1+· · ·+k j−2v∗νH1e2+k j−1 = 0, for j = 2, . . . , ν.

This system of linear equations has a unique solution, yielding a basis
u1, . . . , uν such that the restrictions of H1,H2 to V1 ⊕ W1 have in this ba-
sis the canonical form (II).

By recurrence we obtain the thesis, by applying the argument of the proof
to (EΓ ⊕ EΓ̄) ∩ (V1 ⊕W1)y. �
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Via della Ricerca Scientifica, 00133 Roma (Italy)

E-mail address: nacinovi@mat.uniroma2.it


	1. Pencils of linear maps
	1.1. Regular pencils
	1.2. Singular pencils
	1.3. Canonical form of a pencil of linear maps

	2. Pencils of Hermitian matrices
	3. The string of data
	3.1. The effect of a change of basis in F

	4. A direct proof of Theorem 2.8
	4.1. The subspace N
	4.2. The smallest minimal index
	4.3. The subspace N and the nonsingular core
	4.4. The nonsingular case

	References

