PENCILS OF HERMITIAN FORMS
MAURO NACINOVICH

AssTrACT. We consider Hermitian symmetric matrices H under the stan-
dard action a*Ha of the complex linear group.

Rank and signature give a complete set of discrete invariants for a
single Hermitian symmetric matrix.

For a pair (H;, H,) of Hermitian symmetric matrices, a complete set
of invariants consists of the rank r, defined as the complement of the
dimension of the intersection of their two kernels; of a set of minimal
indices, that are positive integers that appear only when no linear com-
bination aH; + bH, has rank r; and by some relative eigenvalues, with
multiplicities, of H, with respect to Hy, that can be real, complex or in-
finity (they are points of the complex projective line). This description
is related to a canonical biorthogonal decomposition. The case of larger
sets of linearly independent Hermitian matrices is an open question in
algebra.

The linear groups act naturally on the space of matrices. We shall con-
sider in the following the question of finding canonical forms for pairs of
general and of Hermitian matrices. The use of a large group in the first case,
and the special structure of the Hermitian matrices in the second, allow to
reduce part of the discussion to the Jordan form of endomorphisms. How-
ever, an extra feature appears, which is related to the Hilbert resolutions of
polynomial modules, when we deal with singular pencils.

I used canonical forms for pairs of Hermitian matrices in the study of a
class or real submanifolds of complex manifolds (see [4]).

We give two different proofs of the main Theorem [2.8] The first utilize
the canonical form for pencils of linear maps of [2]], that we rehearse in §I}

In §4 we give an independent direct proof of Theorem [2.8] which allows
to better understand the geometrical significance.

1. PENCILS OF LINEAR MAPS
Denote by M,,«,(C) the space of complex m xn matrices. The group
G,.,(C) = GL,,(C) x GL,(C) acts on M,,x,(C) by
Myxn(C) X GLy(C) 3 (A, (@, ) — @AB™ € Mn(C).

Canonical forms, through the associated invariants, are a tool to discuss the

congruence of the subsets of M,,x,(C) under the action of G, ,(C).
1
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Remark 1.1. The only invariant of a single matrix A € M,,,,(C) is its rank.
A matrix A of rank r is congruent to

Ir Orx(n—r)
O(m—r)xr O(m—r)x(n—r) ’

The next natural question, that we shall discuss in the following, is to find
a canonical form for a pair of linearly independent linear maps. To describe
the result, we shall essentially follow [2]].

Since canonical forms for matrices correspond to canonical forms of their
transposes, we can and we shall assume, in the following, that m < n.

A pencil of complex matrices is a linear plane[rl

(Ao, A1) = tkoAo + k1A; | ko, ki € C} C Myn(C),

where A; and A, are linearly independent matrices.
The pair Ay, A; can be conveniently associated to the first degree poly-
nomial Ay + AA; € M,,,,(C)[A1], or to the corresponding affine line

{A(1) = Ap+ 1A, | 1 € C} C M, (C).

Definition 1.2. Let Ay, A; € M,,«,(C) be complex n>n matrices, with m < n.
We say that the pencil (Ay, A,) is nondegenerate if

(1.1) kerAgNnkerA; =0, ImAy+ImA, =C".

Remark 1.3. By Grassmann intersection formula, a necessary condition for
(Ao, A1) C M,,x,(C) being nondegenerate, is that n < 2m.

We can always reduce the study of a pencil of complex matrices to the
non degenerate case. We have indeed

Proposition 1.4. Let (Ay, A1) C M,;x,(C) be a degenerate pencil.

If k = dimkerAg NnkerA; > 0, £ = m —dim(ImAy + ImA,), then we
can find a € GL(m,C),B € GL(n,C) and A}, A} € Murpi)(C) such that
(Af,A}) is nondegenerate and

(1.2) (Ao + 4B = [ Ok Oexon )

O(m—[)€><k A6 + /IA/1 )
Definition 1.5. Let Ay, A; € M,,«,(C). The rank of the pencil (Ay, A;) is
(1.3) rank(Ag, A1) = sup, ,crank(koAo + k1Ap).

If either m # n, or rank(A(, A1) < n the pencil (A, A;) is called singular.
Ifrank (Ag, A1) < n, we say that the pencil (A, A;) is singular for columns.
If rank (A, A;) < m, we say that the pencil (A, A;) is singular for rows.
If m = n and rank(A(, A;) = n the pencil (A(, A,) is called regular.

Remark 1.6. The rank of the pencil (A, A;) is the generic rank of A(1) =
Aog+AA;. This means that the set of A € C for which rank A(1) < rank{A, A;)
1s finite.

'We may consider the pencil as a line in the projective space PM,,,,(C) ~ CP™!.
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.

Example 1.7. Let

- o O
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S = O
_D>
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o O
- o O
O -
N ——

Then

21 /1Z3
A(/l) 221 = 23 .
73 71 + Az

Thus (Ap, A;) is nondegenerate, but
ImA) ={z€C*| Az, = 21}

has dimension 2 for all A € C. Therefore rank (Ay,A;) = 2, and the pencil
is singular.

1.1. Regular pencils.

Proposition 1.8. Assume that m = n and that the pencil (Ay, A1) is regular.
Then we can find a, B € GL(n, C) such that

Ji()
J2 ()
(1.4) a(Ay+ AA)) =
J5(D)
where the matrices J,(1) have either the form
A+ 4, 1
A+, 1
(15  JiW= - . € Hyxn, (©),
A+ 4 1
A+ /lh
with A, € C, or
0 A
0 A
(1.6) Ja() = € H,,x,, (©).
0 4
0

Proof. By the assumption, we can fix a 4y € C for which B = A(4y) =
Ap + ApA; 1s invertible.

Then Ly = AgB™! and L, = A;B™! are matrices corresponding to com-
muting endomorphisms. Indeed, Ly = I, — AgL;.

Consider the decomposition
(L7) T =Woee W, with Wo=| |

e

ker L, Wi = () Li@.
heN
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Then L, is invertible on W; and nilpotent on W,,. We claim that L, is invert-
ible on W,,.

Indeed, since [Lo, L] = LoLy — LiLy = 0, we have Lo(Wy) € W,. If
Ly and L; were both nilpotent on W, then ker Ly N ker L; N Wy # 0 by
Engel’s theorem. But this implies that ker AgNker A; # 0, contradicting the
assumption that (Ay, A;) is regular.

Consider
-1 Lg' L
By = A1A0 |W0 Wy — Wy — Wy e El’ld@(W()),
1 Ly! Lo
B, = A()AI |W1 W, — W() — W() S End@(Wl).
We note that By is nilpotent. We can find a basis ey, ...,e, of Wy and a
basis e,.1,...,e, of Wi in which the matrices of By and B, are in Jordan
form. Then Agey,...,Aoes, Areyei,...,Are, is also a basis of C" and, in
these bases, the matrices A(A) have the desired form. O

Definition 1.9. The string

((/ll’ rl)a cees (/ls” rs’)’ (OO, rs’+l)9 cee (009 rs))’

’

r=r

where A4y, ..., A, are the eigenvalues of B, repeated with their multiplicity,
ri,...,ry the size of their Jordan blocks, and ry.1,...,r the size of the
Jordan blocks of By, is said to be associated to the pair (Ag, A1).

1.2. Singular pencils. We turn now to the case of a singular pencil. Recall
that we assumed m < n.

Lemma 1.10. If the pencil (Ao, A,) is singular for columns, then there is
some non zero polynomial

) =20+ 1A+ - + 744 € CI[A]
such that
(1.8) (Ag — AAz(D) = 0.

Proof. Let C(A) be the field of complex rational function of one variable.
By the assumption, Ay — AA; defines a matrix in M,,x,,(C(1)) having rank r
less than n. Then dimc, ker(Ag — AA;) = n — r > 0 and there exists Z(1) €
[C()]"\ {0} such that (Ag—1A)Z(A) = 0. We can write Z(1) = (1/f(1))z(1)
with f(2) € C[4] \ {0} and z(2) € C"[4] \ {0}. Clearly z(2) solves (I.§). O

Remark 1.11. We note that (1.8)) is equivalent to
Apzo =0,

(1.9) Apzj = A1zjoy, for 1< j<d,
0 :Alzd.
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Equation (1.9) can be rewritten as

—-Ay 20
A A <1
A -A Z
(1.10) - 1o
Ay —Ao ||z
A )\ z4

A,

where M, is a matrix with m(d + 2) rows and n(d + 1) columns. Then a
necessary and sufficient condition to find a non zero solution z(1) of (L.8)
of degree d is that the rank of M, be less than n(d + 1).

Definition 1.12. We denote by Z(Ag,A;) € C"[4] the set of polynomial
solutions of (I.§).

Lemma 1.13. The set Z(Ag,A)) is a C[A]-module. This means that
p1(DZ (D) + prDZ (D) € Z(Ag, Ay),
vz (1), 22(A) € Z(Ag, A1) and  pi(A), pa(d) € C[A].

Theorem 1.14. Let (Ay, A1) be a nondegenerate singular pencil in M,,,,(C)
and let d be the smallest degree of a non zero polynomial in Z(Ay,A;). We
have:

(1) If 2(A) = zo + - - + 2924 € Z(Ao, A)) has minimal degree, then

20, - - - » 2 are linearly independent,
Aozi, . ..,Aozq are linearly independent.
(2) We can find a € GL(m, C), B € GL(n, C) such that
_ [Na(D)
(1.11) a(A0+/lA1),B—( A6+/1A1’)
where AE), A,l S M(m—d)x(n—d—l)(c) and
A1
A 1
(112) Nd(/l) = .. . € May(d_H)(C)
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Proof. Let z(1) = zo + zyd + - - + z44% € Z(Ap, A}) be a non zero solution
of (1.8)), with minimal degree. Note that d > 1 because (A, A;) is nonde-
generate, and that z, # 0, because otherwise (1) = z; + oA + - - + z44%7!
would be an element of Z(Ay, A;), with degree d—1 < d.

We divide the proof in several steps.

Step 1. Aozy, ..., Apzq are linearly independent in C".

We first show that Apz; # 0. Otherwise,

0=Apz1 = A1z = 0 #z9 € kerAg Nker A,

contradicts the assumption that (Ay, A;) is nondegenerate.

Assume, by contradiction, that Ayz;, .. ., Agzg are linearly dependent. Then
there is a smallest 2 > 2 for which Az, is linearly dependent from {Ayz; |
1 <i<h} Let

Aozp = iAoz + - + ap-1AoZpot-
This equation yields
Alzh_l = alAlzo +---+ ah_lAlzh_z.

Hence, setting

ZZ_l =Zp-1 —A1%0 —° — Ap-1Zp-2
we obtain
Az, =0, Aoz, =Ai(zna — a0 = = ap12n-3) = A1z,
with
Tpn = Tn-2 — @220 — *** — Ap_1Zp-3-
Let us define the chain
Z = 20,
ZZ_j =Zp-j—AjZ0 — Aj4121 — - .- — Ap-132p—j-1 for1 <j<h.
Then .
* * .
Aoz; = Aizj,y, for 1<j<h-1,
0 = Alz;;_l.

Indeed we already know that the first and the last equalities hold. For 2 <
Jj < h we obtain

AoZZ_,- = Ao(Zh—j — @jz0 — @js121 — - .. — Ap-1Zp-j-1)
= Ath—j—l - aj+1A1ZO .. ah—lAIZh—j—2
= AlZZ—j—Z'

Hence z*(1) = g+ zjA+ - - +2,_ A" € Z(Ay, A)), yielding a contradic-
tion, because h—1 < d.

StEP 2. 20,21, - - . , 24 are linearly independent.
Indeed, if apzy + ajz; + - - - + ag4zy = 0, we obtain a1Agz; + - - - agApzg = 0.
Hence a; =0, ..., a; = 0 by Step 1. Then ayzy = 0 implies that also ay = 0,

because zo # 0.
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Step 3. If

V :<ZO’ .. ,Zd> - Cn,
w :<A0Zl9 cee 7A0Zd> = <A1Z0’ cee ’Alzd—l> - Cm7
we have A(A)(V) = Wforall 1 € C.
Choosing a new basis of C" in which the first d+1 vectors are zg, 21, - - - , Z4»

and a basis of C™ in which the first vectors are Ayzi,...,A9zs, WE can as-
sume that the matrices Ay and A; have the form

_(Ja Co _(Ka Cy
AO‘(O BJ’ Al‘(o B,
where J; = (6, j-1) 1<i<a1<j<a+1 > Ka = (6ij) 1<i<d1<j<a+1 € Mgqas+1)(C) are the
matrices

010 - 00 1 00 00
o001 -- 00 010 00
Jo=|toor oo i Ke=|0 00 00
000 1 0 S S S
00O 01 000 -- 10

and Cy,C, € MMn—d—l)(C), By, B € M(m—d)x(n—d—l)(©)~ Set
L(/l) =J;+ AK,, C(/l) = Co + ACq, B(/l) = By + AB;.

Step 4. We conclude now the proof of the theorem.
To this aim we show that we can find matrices X € M ag1yma1)(C) and
Ye Mcb(n—d)(c) such that

I Y\(LQ) C@\(I -X\_ (L) 0
o 7){lo Bwllo 1]\ 0o BW

This equation is equivalent to

01 L)X = C(1) + YBQ),
' X e M(d—i—l)(nfd—l)(c)’ Y € Mnb{n—d)(c)

Write
X
X = ,  with Xj € Mlx(m—d—l)-
Xd+1
Then
X, X
L)X =] : [+4
X Xa-1
Thus
U, Vi
U+AV=|  [+2]  |€L)Mysxm-d-1

Uit Va1
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if and only if
U, Vs
Ui Vaa
Since
U, U, V, Vi
=K b | = Kaa U, S =daa| b = deaVs
Ui Ui Vaa Va

this equation can be rewritten by
U
(Ky-2,—Ja-1) (V) = 0.

Hence (T.13)) admits a solution (X, Y) if and only if the equation|
(1.14) Ja1C1 — K4-1Co = Kg1YBy — Jo1YBy, Y € My

is solvable. Let us write

with y/ being an (n—d) row matrix. Then
1

y
Koo Y =| ¢ |, Jaa¥Y = ,
yi-1
and the right hand side of (1.14)) becomes
leo - )’231
¥*By - y’B,
1By — y'B,
This can also be written as
By
-B1 By
-B, B
(1.15) 0Ly YYD R
-B; By
_B1

By the assumption that d is the minimal degree of a polynomial in Z(Ag, A1),
the matrix My_(By, —B;) in (I.15)) has rank > d(n —d — 1). Thus (I.14),
and hence equation (I.13)) is solvable for every Co, C; € Myx(s—a—1)(C). This
completes the proof. O

2We have Ky_1Ja = Ja-1Ka = (0-1yx1> Li-1, Oa—1yx1) € Mig_1yxa+1(C).



PENCILS OF HERMITIAN FORMS 9

Example 1.15. Consider the singular pencil of We obtain

0 1
(Ag — AA)(A)(z9 + Az1) =0 with zp = [1] = [O]
0 0

Taking in the domain the basis

() ) F)

and in the codomain the basis

B () 1

we obtain, in the new basis, the matrix

410
0 0 4.
0 01

Using Theorem [I.14] we obtain
Theorem 1.16. The C[A] module N(Ay, A}) is free.
Proof. The statement means that there exists a set of generators
'), ..., 2P () € N(Ay, A)

such that every element of N(Ap, A;) can be expressed in a unique way as
a linear combination, with coefficients in C[A], of z'(A),...,z"(1). It can
be obtained after reducing, by applying several times Theorem [I.14] to the
case where
Ny, (D)
Ndz (/1)
A =
Ng, ()
B(A)
with B(1) nonsingular for columns. O

Definition 1.17 (minimal indices for columns). If (A, A;) is a nondegener-
ate singular pencil, the degrees

dy = degz' (D) < dy = deg (1) < - --d, = deg 2’ (A).

of the elements z'(1),...,z7(1) of a basis of the free module N(Ag,A)),
with Y7 deg Z'(1) minimal are called the minimal indices for columns of
(A, A1).
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Definition 1.18 (minimal indices for rows). If (Aj, A}) is a nondegenerate
singular pencil, the degrees

di = degu'(1) < dj = degu’() < ---d;, = degu’(A).

of the elements u'(X),...,u?(2) of a basis of the free module N(A! JAD,
with Y37 | deg u'(1) minimal are called the minimal indices for rows of (Ao, A;).

1.3. Canonical form of a pencil of linear maps. Let Ay, A; € M,,,(C)
be linearly independent matrices. By Proposition the orbit of A(1) by
G,,.,(C) contains a matrix of the form

Opske  Opxn—ioy
1.16 ,
( ) (O(m—t’)xf A'()

with A’(1) = Aj+1A7, and A}, A| € M—r)xn-k) and (A{,, A7) nondegenerate.

Definition 1.19. The minimal indices for columns (respectively. for rows)
of (A[,A’) are called the minimal indices for columns (respectively. for
rows) of the pencil (Ag, Ay).

Using Theorem and Proposition [1.8] to decompose A’(1), we con-
clude that the orbit of A(1) by G,,,(C) contains a matrix of the form

0
1.17) BCY ) ,

D(1)

where 0 € Hu:(C), with £ + dim(Im Ay + ImA,), k = dim(ker Ag NkerA,),
and B(1), C(1), D(1) nondegenerate and, respectively, of the form

Ng, (1)
B(/l) = ‘e . ’
Ny, ()
t
Ny ()
C) = - ,
t
N, ()
J1(D)
D(/l) = T . ’
J(D
where (d,, . .., d),) are the minimal indices for columns, (d1, ..., d;) the min-

imal indices for rows, and the J;,(1) are described by (1.3) and (I1.6).

Definition 1.20. The polynomials (1 — A;,)™, for J,(1) of the form (1.5]),
and the rational functions A" for J,(A) of the form (1.6]), are called the
invariant factors of A(A).
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Theorem 1.21 (Kronecker [3l]). The integers k = dim(ker Ag NkerA,), £ =
dim(Im Ag+Im A,), the minimal indices for columns and for rows of (Ag, A1)

and the invariant factors of the pair (Ay, A,) are uniquely determined and
characterize the orbit of A(1) by GL,, ,(C).

For the complete proof we refer to [2].

2. PencILs oF HERMITIAN MATRICES

Let H, denote the space of nxXn Hermitian symmetric matrices:
(2.1 H, = {H € M,,(C) | H" = H},

where, for H = (1 j)1<i jn the matrix H* = (h;)1<i j<, has entries /] ; = hj;.
The set H,, is an n>-dimensional real linear space of complex matrices.
The group GL,(C) acts on H,, by

H, x GL,(C) > (H,a) — aHa" € H,,.

Denote by ®r,(H,,) the Grassmannian of k-dimensional subspaces of H,,
and by O,(H,,) the space of orbits of Gr,(H,) for the action of GL,,(C).

Given a k-tuple (Hy, ..., Hy) of linearly independent Hermitian symmet-
ric forms, we denote by F =< Hy,..., H, > the subspace of H, that they
generate, and by [F] € O(H,,) the orbit of F.

More generally, we shall use the notation H(V) for the space of Hermitian
symmetric forms on a finite dimensional complex linear space V and G¢(V)
for the group of linear automorphisms of V.

Definition 2.1. A linear subspace F' C H,, is called nondegenerate if
2.2) Yve C'\ {0} IJH € F suchthat Hv # 0.

The subspace F is called regular if F contains a nondegenerate form H,
and singular if all forms H € F are degenerate.

Remark 2.2. Regular F’s are nondegenerate, but a nondegenerate F can be
singular if dimg F' > 2.

Remark 2.3. For every H € H,, we can find @ € GL,(C) such that
1

p

2.3) aHo' =| -,

2

O(npq)X(npq)]

where p + ¢ is the rank of H and (p, g) its signature.
Other canonical forms for a Hermitian matrix use the matrices

1

Ja= - . € Mgwa(C).
1
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A matrix H of signature (p,q), with dimker H = k and v = min(p, q),
h = p + g — 2v is equivalent to the matrix

Jy

. Jpiq )
ilv ifh>1, J_r( 0)1f0£h$1.

Note that, for 7 = 0, the two matrices with the plus and minus sign are
equivalent.

Remark 2.4. If H,,H, € H, and H, is positive definite, i.e. if v"H;v >0
for all v € C" \ {0}, then there is @ € GL,,(C) such that

A

A
aH,a" = ) , with A, e R, aHa" =1,
An
The real numbers A4, ..., 4, are the eigenvalues of H, with respect to Hy,
and in fact are the eigenvalues of the endomorphism H;'H,. Indeed, from
(@) 'H{'a " = I,, we obtain that
A
/12 _ * s\—1ry—1 -1 * #\—1 -1 *
=aH)a' = (") H] o aHa = () (H Hy)a'.
An

The general case of a pair (H,, H,) of Hermitian symmetric matrices is
actually more complicated when no matrix in F = (H;, H,)r is positive
definite.

The discussion relates to that for a pencil of linear maps by the following

Theorem 2.5. Let (H,, H,) and (K1, K>) be two pairs of linearly indepen-
dent Hermitian symmetric matrices in H,, and set H(1) = H, + AH|,
K(1) = K; — AK. Then the following are equivalent:

(1) da,B € GL,(C) such that aH(A1)B = K(A);
(2) da € GL,(C) such that o H(D)a = K(A).

Proof. Clearly (2) = (1). Assume vice versa that there exist a, 8 € GL,(C)
such that

aH(A)B = K().
Since K, K, are Hermitian symmetric, we also have

B HA)a" = K().
With y = a™'8* € GL,(C), we obtain that

YHW) = HQ)y'.
From this equality, it follows that

JH@) = HAOf(y), YfeClal
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If we take f with real coefficients, we have f(y*) = [f(y)]*. Take f € R[A1]
with f(y) € GL,(C). Then we have
FOHUfGOT™ = HWQ)
and therefore
K@) = af(HOLF)]'B.
We want to prove that f can be chosen in such a way that
af(y) = (fOOIB) =B L,
1.e.
P =a'B =.

This is always possible, because y € GL,,(C). O

This Theorem reduces the classification of the pencils of Hermitian sym-
metric forms to the results for pencils of linear maps, after recognizing the

pairs of (H,, H,) corresponding to canonical forms of H(1) = H, + AH,.
Indeed we have

Corollary 2.6. Two pairs of Hermitian forms (H, H,) and (K, K;) are
equivalent if and only if they have the same invariant factors and minimal
indices.

Remark 2.7. Note that for a pair of Hermitian matrices (H;, H,) the rank
for rows and the rank for columns coincide.

We have the following (see [, [S]]):

Theorem 2.8. Let H|,H, € H,, and assume that F = (H|, Hy)r is a two-
dimensional nondegenerate linear subspace of H,.
Then there is a direct sum decomposition:
(2.4) C'=VieV,® -8V,
having the following properties:
(1) Vi is orthogonal to V; for every 1 <i # j < mand every H € F
(BIORTHOGONALITY),
(ii) for each i = 1,...,m the subspace V; is not a direct sum of

two nontrivial subspaces that are orthogonal with respect to all the
forms H € F' (INDECOMPOSABILITY).

Foreachi=1,...,mwe can find a basis of V; such that, the restrictions of
H, and H, to V; has one of the following forms:

1 4
) [H1|V,-] =€ ’ , [H2|V,-] =€ to s

1 v 1

which are e-square matrices for some positive integer e, where vy is a real
number and € = +1;
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1

1 .

» [Haly ] =
Op

ri

ri

O

which are 2E-square matrices for a positive integer E, and where I is a
complex number with ImI" > 0;

0 1
1
(1D [Hilv,] =€ s [(Haly,] =€ )
0 1 1
which are e-square matrices for a positive integer e;
1 0~ 0
. 1
0411 - Oa+1 :
0 - 0 1
(Iv) [Hilv,] = , [Haly] = ,
1 0 01
10 0 1

which are (2d+1)-square matrices of odd size 2d+ 1 for a positive integer d.

The decomposition (2.4)) is essentially unique: by this we mean that the
number and the dimensions of the subspaces involved and also the kind of
the blocks and the parameters involved are uniquely determined.

Definition 2.9. Let the basis (H;, H,) of F be fixed.

A basis of C", subordinated to a biorthogonal decomposition (2.4) and
for which the matrices corresponding to H; and H, are block diagonal with
blocks of the types (I), (I), (IIT) and (IV) described in the theorem, will be
called canonical for the pair (H,, H,).

The parameters € = +1 appearing in the blocks of type (I) and (II) are
called sign or inertial signature.

The parameters y € R appearing in the blocks of type (I), I' and I ap-
pearing in the blocks of type (II), and oo if there are blocks of type (III), are
called roots or eigenvalues of the pair (H,, H,). The set X(H,, H,) C CP! of
all roots (including oo if there are blocks of type (II1)), is called the spectrum
of (H] , Hz)

The integers d characterizing the blocks of type (IV) are called the mini-
mal indices of F. Note that they are independent of the choice of the basis
(Hy, Hp).

A block of type (III) for the basis (H;, H,) becomes a block of type (I)
for the basis (H,, H;). Accordingly, we shall distinguish only three types
of subspaces in the decomposition (2.4)): a subspace V; will be called of the
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real type if it corresponds to blocks of the types (I) or (III); of the com-
plex type if it corresponds to a block of type (II); of the singular type if it
corresponds to a block of type (IV).

Proof. We note that the minimal indices for rows and columns of (H,, H;)
coincide, and that also roots and multiplicities of (H;, H,) are invariant by
conjugation. Then we can construct a Hermitian pair with the correct data
using blocks of the types I, 11, III, 1V,. O

3. THE STRING OF DATA

Having fixed a basis (H;, H,) of F, by the preceding theorem we can
have, in a canonical basis, a block decomposition of the matrices represent-
ing the two forms into blocks of the types (I), (II), (IIT), (IV). We shall as-
sociate to (H;, H,) a string of data to describe the different blocks; namely:

(1) we shall list the minimal indices in increasing order:
(3.1 dy<d,<---<d,

and denote by m;, for 1 < i < s, the number of singular subspaces
of dimension 2d; + 1 of the decomposition (2.4));

(2) we shall list all eigenvalues I'y, ..., [, in 2(H;, H,) with ImI’; > 0
for 1 < I < L, together with their complex conjugated, and we shall
order the sizes 2E;; of the blocks in which appear the parameters
I';,T; in decreasing order:

(32) El,l > E1,2 > e > EI,S[

and denote by M, ; the number of blocks of size 2E; ; (for 1 < I < L,
1<J<8);

(3) finally we list all distinct eigenvalues vy, ..., 7y, € RU{co} in 2(H,, H,);
for each y;, 1 <i < ¢, we list in decreasing order the sizes

(3.3) €1 >€p> > ey

of the corresponding blocks of type (I) or (III) with parameter vy;
and denote by ija m; the number of those with e = 1, € = -1
respectively; we set m; ; for the sum m;; +m; ;.

We organize these informations, that describe all the invariants of the pair
of Hermitian forms (H,, H,), into its string of data:

dl’ my,... 9dS’ myg
rlarl’Ml,la"-aMl,S]
(34) A(HI’HZ) = FL’FL7ML,17'--7ML,SL
+ - + -
71’ el,b ml,l’ ml,l’ ey el,sla ml,sl’ ml,s1
+ - + -
Yes€en, mé’,l’ mé’,l’ e €l mg’sf, mf»S{
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3.1. The effect of a change of basis in F. We consider the way in which
the string of data changes if we change the basis of F'. If (H{, H)) is another

basis, there is a matrix B = (Ccl Z) in GL,(R) such that
H! =aH, + bH.

(3.5) | = ar 25
H) = cH, +dH,.

The canonical form relative to (H{, H}) has blocks of the same type (only
those of type (I) and (III) can be changed one into the other), corresponding
to a same biorthogonal decomposition (2.4)). The string of data A(H], H})
is obtained from A(H,, H,) by keeping all the integral parameters fixed, but
changing the spectrum: X(H{, H)) is obtained from X(H,, H,) by letting

-1 0\, (-1 0\ ([d c
(36 (o 1)3 (o 1)‘(b a)
act as a real linear fractional transformation. This indeed trivially follows
from

3.7 H,-AVH|=(d-Ab)H, — (Va-c)H,,
showing that the eigenvalues A of the pair (H;, H,) and A" of (H|, H)) are
related by:
Aa-c dl+c
3.8 A= —— A= .
(3-8) d—- b’ bl+a

The inertial signatures remain the same or change to their opposite.

4. A DIRECT PROOF OF THEOREM [2.8]
It is convenient to introduce the notation:
VO={weC" w=0}
VE=[HWI ={weC"|v'Hw=0, Yv eV},
Vi=[HW)]’ ={weC" | vHyw =0, Yv eV},
VE=VinVi={weC" |V Hw=0, v'How =0, Yv e V}.

4.1. The subspace N. Subspaces of the singular type appear in the decom-
position (2.4) if and only if F is singular. We have indeed:

Proposition 4.1. Equation
(4.1) HWDz(d) = (Hy—AH)z(A) = 0,  2(d) = 20+ Az +- - -+244 € C"[A]

admits a non trivial solution if and only if (H,, H,) is singular.
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Proof. The rank of (H;, H,) equals the rank of (H, — AH), considered as a
matrix with coefficients in the field C(1) of rational functions. The equation
H(D)z(A) = (Hy — AH)z(D),  z(D) € [C]"

has a non trivial solution if and only if
dimcy ker H(A) = n — rankg H(4) > 0.

By chasing denominators, from any non tivial element of ker H(A) in [C(1)]"
we obtain non trivial solutions of (#.1)). This proves the proposition. O

Remark 4.2. Equation (#.1)) is equivalent to

Hzp =0,
(42) Hsz = HIZj—l for 1< ] < m,

0=Hz,,
that can also be written as

-H, 20
H, -H, 21
H, -H, 2
(4.3) . ) . |=0
Hy, —H;||z4-1
Hy )\ z4

where the left hand side is a matrix M, with n(d + 2) rows and and (d+1)n
columns. Thus, the necessary and sufficient condition for the existence of a
non trivial solution is that rankcM,; < n(d+1).

Lemma 4.3. Let
72(AD) =z0+ Az + -+ AMz5 € C'[A]

solve equation @.1)). Then the linear subspace {zy, 21, - - ., Za) generated by
the coefficients of z(A) is totally isotropic for both H, and H, and hence for
allH € F = <H1,H2>.

Proof. We define z; for all i € Z, by setting z; = 0 fori < 0 and i > d. Then
(#.2) can be rewritten as

Hie; = Hye;y, VieZ.

Then we have

* * * *
eHie; = e;Hyej = e Hiej =+ = ei+j_dHled =0,
* * * *
e;Hyej=e;_Hej=e_Hyej="-=¢eyHeyj,=0,
foralli,j=0,...,d. O

Definition 4.4. The set Z(H,, H,) c C"[4] of solutions of (4.1) is a module
over the ring C[A] of complex polynomials in one indeterminate.

Let N be the linear subspace of C" generated by the coefficients of the
polynomials in Z(H,, H,).
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Corollary 4.5. The subspace N is totally isotropic for all Hermitian matri-
ces He F ={(H, Hy).

Proof. Let 7/(1),7"(1) € Z(H;, Hy). If 7’ has degree d’, we can consider
the polynomial z”/(1) = /(1) + A4 +'z”(A). It is still contained in Z(H;, H,)
and therefore the vector space generated by the coeflicients of z'(1) and of
7”’(A), being equal to the vector space generated by the coefficients of 7’/ (1),
is totally isotropic for all H € F by Lemma[4.3| O

Lemma 4.6. Let (H,, H,) be a nondegenerate singular pencil of Hermitian
matrices and let

2(A) =20+ Azy + -+ + A% € Z(Hy, Hy)
be a non trivial solution of {.1) having minimal degree. Then
205215 - - - » 2ds H2Z15 - - ., Hp 2y
are linearly independent.

Proof. Step 1. Hyz4,. .., Hyz,4 are linearly independent in C".
We first show that H>z; # 0. Otherwise,

0= H2Z1 = H1Z0 = 0+ 70 € kerH2 ﬂkerHl

contradicts the assumption that F is nondegenerate.

Assume, by contradiction, that H,zy,..., H>z; are linearly dependent.
Then there is a smallest integer &, with 2 < h < d, for which H,z, is linearly
dependent from {H,z; | 1 <i < h}. Let

Hyzp, = aiHyzy + -+ - + ap1 Hozyy.
This equation yields
Hyzpoy = aHizo+ - + ap-1 Hi 2.

Hence, setting

Z},_l =Zp-1 —aA120 — — Ap-13p-2
we obtain
Hz,_, =0, Hyz,_ = H\(zp2 —arzp — -+ — ap12p-3) = H12),_,,
with
Z;,_z =Zp-2 — a2 — " — Ap-12p-3.
Let us define the chain
7y = 20
Z/”l—j =Zp—j— a3 — Ajy121 — o0 AQp-12p-j-1 for 1 < ] < h.
Then
H2Z6 = O,
HzZ;-:H]Z;_l, for 1 S]Sh—l,

O = HlZ]/’l—l'
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Indeed we already know that the first and the last equalities hold. For 2 <
J < h we obtain

’
Hyz), ;= Hy(zp-j — ajz0 — @js121 = -« . = Ap-12h-j-1)
=Hzp-j1—ajHizo— ... —ap 1 Hizjejo
= H]Z;l_J_2.

Hence /(1) =z, +ZjA+---+2,_ A" € Z(H,, H,), yielding a contradic-
tion, because h—1 < d.

StEP 2. 20,21, - - . , 24 are linearly independent.

Indeed, if apzo+a1z1+---t+agzg = 0, we obtain a1 H,z; + - - - asHrzy = 0.
Hencea; =0, ..., a; = 0 by Step 1. Then ayzy = 0 implies that also ay = 0,
because zo # O.

Step 3. z0,215--.,24s H221, - .., Hyz, are linearly independent. Assume
that

apZo + a1zy -+ + aqzq + biHyzy + - - + byHyzy = 0.
By multiplying to the left by 27 H,, fori = 1, ..., d, we obtain that

d * g2 .
ijlijinZj=0, for i=1,...,d.

.....

---=by; = 0. Then also ag = a; = --- = a4 = 0, because zg,...,7; are
linearly independent. O

4.2. The smallest minimal index.

Lemma 4.7. Let (H, H,) be a nondegenerate singular pencil of Hermitian
matrices and let

Z2(A) =20+ Az + -+ + A%24 € Z(Hy, Hy)
be a non trivial solution of {.1)) having minimal degree d. Then
205205 - -+ 2ds HaZhs o oo HaZg
are linearly independent.

Proof. Step 1. Hyzy,. .., Hyz,4 are linearly independent in C".
We first show that H,z; # 0. Otherwise,

0= Hyzy = Hizg = 0+ 70 € kerH2 ﬂkerHl

contradicts the assumption that F' is nondegenerate.

Assume, by contradiction, that H,z,..., H,z; are linearly dependent.
Then there is a smallest # > 2 for which H,z, is linearly dependent from
{H>z; | 1 <i < h}. Let

Hyzp, = aiHozy + -+ - + ap1 Hozpy.
This equation yields

Hyzpoy = aHyzo + -+ - + ap-1 Hi2p-.
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Hence, setting

’
Zp1 =2n-1 —A120 — - — Ap-13p-2
we obtain
’ ’ ’
Hiz,_, =0, Hyz, = H(zp2 — a2z — - — ap12p-3) = Hi7,_,,
with
7’
Ipo = Zp—2 — Q230 — ** — Ap—13p-3-

Let us define the chain

74 = 20
Z;z—j =2p-j—aj20 —aj+121 — ... — Qp-1Zp—j-1 for1 < _] < h.
Then
Hyz, =0,
r ’ .
— ’
0 _leh—l'

Indeed we already know that the first and the last equalities hold. For 2 <
Jj < h we obtain

Hsz),_; = Hy(zp-j — ajzo — @je121 = -+ = Qp-1Zp-j-1)
= H1Zh—j—1 - aj+1H1Zo .. Clh—lHth—j—z
’
=Hizj_j,.

Hence 7'(A) = 2, +ZjA+---+2,_A"' € Z(H,, H,), yielding a contradic-
tion, because h—1 < d.

StEP 2. 20,21, - - . , 24 are linearly independent.

Indeed, if apo+a 71+ t+agzg = 0, we obtain a; Hyz; + - -+ a;H>z, = 0.
Hencea; =0, ..., a; = 0 by Step 1. Then ayzy = 0 implies that also ay = 0,
because zo # O.

SteP 3. Assume that
apZo + a2y + agzy + b]HzZ] + .-+ deZZd =0.

By multiplying to the left by z;H,, fori = 1, ..., d, we obtain that

d * g2 .
ijlijinzj:O, for i=1,...,d.

,,,,,

.-+ = by; = 0. Then also ay = a; = --- = a; = 0 because zg,...,z4 are
linearly independent. O

Proposition 4.8. Let
Z2(A) =z0 + Az + -+ + A2y € Z(Hy, Hy)
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be a non trivial solution of (4.1)) of minimal degree d. Then we can complete
20, - - - » 24 to a basis of C" in such a way that the matrix representing H(Q)
in this basis be of the form

0O L O
L) 0 0
0 0 oW
with Q(1) = Q2(1) + A01(A) for Q1, Q> € H, 291 and Ly(A) = Jq — 1Ky,
with
01 1 0
0 1 1 0
Ji= N , Ka= N € Maxa+1)-
0 1 1 0
Proof. Letussetm = n—2d — 1. Let N; = (29,...,24). We observe that
H,(N,) = H>(N,) and therefore N{- = NlT = N;'. Choosing abasis ey, ..., e,

of C" withe; = zi.y for1 < i < d+1, e,...,e,4 a basis of N;' and
e;Hye, 4.j = 0;;for 1 <i, j <d, we can assume that
0 0 L)
HA)=| 0 BQ) C*)
L) C) DW)

with B(/?.) =B, — 1B, C(/l) =C,—-ACy, D(/l) =D, - AD, for B, B, € Hm,
Ci,Cy € My (©), Dy, D, € Hy.

We divide the proof in several steps.
Step 1. We show first that the equation

(4.4) B()O(A) =0, with 6(1) € C"[1]
has no non trivial solution of degree less than d.
Set

o = €. (0 B Hw- (0 ¥

We claim that we can find matrices
X € Msnxm-a-n(C) and Y € Myxu-0)(C)

such that
@.5) (1’;" g) HQ) (1‘8 L 1) = ( L ‘P(()ﬂ)).
Equation (4.5) is equivalent to
(4.6) Ly (D)X = YY) + O(Q).
Set
X,
X=| ¢ |, with X;e€Mypuuq-1)-

Xd+1
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Then
Xo X1
L)X =| : |-1]:
Xat Xa
Thus the image of
T : Msiyxp-d-1) @ X — Lg(D)X € Myxn-a-1) + AMMaxn-a-1) = Magxn-a-1)

consists of all

U, |
U-aV, with U=|:|, V=|:] U,V €Mxuud-,
Uq Vi
U, V)
with | : |=|:1], ie K. U=J.,V
Ui Va

Thus (4.6) is solvable if and only if

4.7) 0= (Kg-1,-Ja=1)Y (31)) + (Kg-1,=Ja-1) (g?) ’

where we set ¥(1) = ¥y + AY¥; and ®(1) = Py + AD;, with ¥y, ¥, €
M- ayxn-a-1)(C) and @, @y € Myx(s-a-1)(C).

Set
Y
Y= s with Yi (S M]X(n—d)(c)-
Y,
We have
Y, -Y,
¥ Y, -Y|(y
(Kd—]a_-]d—l)Y(\P?) = : : (‘I‘?)
Yioo Y,
Yo
¥ ¥
_y,
= (Yla . 5 Yd)
Yo
_y,

Since, by assumption, the equation ¥(1)8(4) has no non trivial solution
6(1) € C™471[1] of degree less than d, the matrix in the right hand side of
the last expression has rank larger or equal to (d — 1)(n —d — 1). Hence the
map

, Y
T : Mp-g-1yx@+1y 2 Y — (Ky-1, _Jd—l)Y(\I;(l)) € Mg-1)xn-a-1)(C)
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is surjective and (4.7)) admits a solution.

Since
0 0 L)
( 0 W)) -l 0 B c'w|.
Lab 0 ] Ay 0 o0
if (1) € C"[A] is a solution of (4.4), then

6(Q) = (_ém) e C"[1]

is a solution of (@.I]) having the same degree of 6(1). This yields the state-
ment of step 1.
Step 2. There is a matrix
Ii;i 00
A=l a I, O],
Yy B L
with a € me(d+1),ﬁ € Myxm, ¥ € Md)((d+l)7 such that

0 0o L'\
(4.8) AH()A” :( 0 BW O ]
Ly O 0

Equation (4.8) is equivalent to

4.9) L;(Da™ + BB(A) + C(1) =0,
' Ly(D)yy* + yLy (D) + BBAOB* + C()B" + BC* (D) + D(A) = 0.

Let us consider the map
T : Myras1)(C) 3y — yLy(A) + Ly(A)y" € Hy + AH, ~ R**

Its kernel consists of the matrices ¥y = (y; ;) 1<i<a With

1<j<d+1
Yij = ~Yji for 1<i,j<d,
Yij1 = —¥je1 for 1<i,j<d.

Hence the kernel of T consists of the matrices y for which
{%}j =y.s If i+j=r+sys,
vi; €IR if 1<i<d, 1<j<d+1.
Thus dimg ker T = 2d and therefore
rank 7 = 2d(d + 1) - 2d = 2d"

proves that 7 is onto.
Therefore, for any choice of a and 3, we can choose vy in such a way that
the second equation of (#.9) is satisfied.

Let us show that @,/ can be chosen to solve the first equation in (4.9).
The argument is very similar to the one used in step 1.
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Write
a=(a,...,aq1), Wwith q; € M.
Then
a; a;
Lo =| : [-A4
@y, a,

Thus we can solve the equation

U, Vi
U-av=|:|-a|:|=Le
U, V,
if and only if
U, Vs
Ko nU=| = [=JaaV
Uy Vi

Therefore the first equation in (4.9) is solvable if and only if we can find a
solution S8 of

(Kg-1,—Ja-1)B (g?) = (-Kg-1,Ja-1) (g?) € Mz-1)xm(C).

Write
B
B=|:|, with B;e My,
d
We have
B
B =B -
B\ | B ~Bi|(B B B
2 —hi
Koo =I0B| )= "0 L |5 )= BB 3
B)7| : = |\B
-B, B
a-1 P _B,
By step 1, we know that the matrix
B,
-B, B
My-1(By, By) = -
-B, B
_Bl

has rank greater or equal to m(d — 1). Hence the map

Mixgm 2 B1s ..., Ba) = BMa_1(By, By) € My_1)xm(C)
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is surjective. Thus we can solve (4.8). We obtain the thesis by observing
that

I, 0 0y 0 0 L\ 0 0 0 L) 0
(0 0 1d+1][ 0 B@) 0 }[o 0 1[,“]:[Ld(z) 0 0 ]
01, o)l o o Jlo 1, o 0 0 BQ

O

4.3. The subspace N* and the nonsingular core.
Proposition 4.9. Let N be the subspace of Definition Then
(4.10) NcN*=N*-=N"

Proof. Since the coeflicients of the solutions of (.1)) satisfy (4.2)), we obtain
H,(N) = H>(N). Therefore

N* = [H(N)]’ = [N(N)]° =N" = N* =N*nN'=N*=N".

The inclusion N ¢ N* follows, because N is totally isotropic for both H;
and H. O

Since N is totally isotropic for both H; and H,, the Hermitian symmetric
forms

v,w) — w'Hyv, (v,w)— wHyy

define Hermitian symmetric forms on the quotient V = N*/N.

Proposition 4.10. Assume that the pencil (Hy, H,) is nondegenerate.
Let V be any linear complement of N in N*. Then we can find a comple-
ment W of N* in C" such that

4.11) C'=NeVeW, N' =NoV,Vi=NeW, W' =VaeoW

Moreover:

(1) C*=(Ne W)V is a biorthogonal decomposition and the restric-
tions of (Hy, Hy) to the subspaces N ® W and V are both nondegen-
erate.

(2) The restriction of (Hy, Hy) to V is regular.

(3) No bihortogonal decomposition of N®W for the restriction of (Hy, H)
contains a subspace on which the restriction of (H,, H,) is regular.

Definition 4.11. The quotient ¥ = N*/N, or any linear complement V of
N in N* /N, are called the nonsingular core of (Hy, H,).

To complete the proof of Theorem [2.§] it remains to find the biorthog-
onal decomposition and the associated canonical forms in the case where
(Hy, H») is nonsingular.
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4.4. The nonsingular case. Assume that F = (H;, H,) is nonsingular and
take a nondegenerate H = a H, + a;H, € F. Set L, = H'H,, L, = H™'H>.
Since a,L; + a,L, = I,, the two endomorphisms commute. Moreover, all
the elements of C[L;, L,], which are not proportional to the identity, have
the same Jordan decomposition

(4.12) C'=0io---0;

into a direct sum of indecomposable subspaces. Indeed:

Proposition 4.12. Assume that F = (Hy, H,) is nonsingular. Let H K € F
be linearly independent, with H € F N GL,(C) and set L = H™'K. Then
the ring C[L] contains all endomorphisms of the form A~"'B with A,B € F
linearly independent, and A € F N GL,(C).

Proof. We can assume for simplicity that H; € F N GL,(C) and prove the
statement for L = H;'H,. If a,b,c,d € R and aH; + bH, € GL,(C), we
have

(aH, + bH>) ' (cH, + dH,) = (al, + bL)"\(cI, + dL)
and the thesis follows becauseﬂ (al, + bL)™' € C[L]. O

On each Qj, either Ly, or L, is invertible. Indeed, the restriction of L; to
Q; is either invertible or nilpotent. If e.g. L, is nilpotent on some Q;, then
a; # 0 because H is not proportional to H,, and a;L; = I, — a,L, shows
that the restriction of a;L; to Q; is the sum of the identity and of a nilpotent
element and hence invertible.

Definition 4.13. Take an invertible H = a;H, + a,H, € F with a; # 0,
so that L, is not proportional to /,. If A” € C is an eigenvalue of L,, then
A’ = a;'(1—apA”) is the corresponding eigenvalue of L;. The rational value

_ Cll/l”

= ay”
is independent of the choice of H and is called a root, or eigenvalue of the
pair (Hy, H,).

Let £ c CP! be the set of roots of the pair (Hy, H,).

€ CP!' = C U {o0}

Definition 4.14. Let H = aH, + a,H, € F be nondegenerate, with a; # 0,
and set L, = H'H,. For each 1 € T \ {co} we set
I~ A

4.13 E,= ker(A'I, — L,)", with A" = ——.
(4.13) 1= ke ) "
If o0 € X, we set
(4.14) E. = thl ker(I, + arL,)".

3Indeed, if A € GL,(C) and f(A) = det(AI,—A) = A"+k A"~ +- - -+k, is its characteristic
polynomial, we have k,, = (—=1)"detA # 0. Thus

I, = A(k A" 4 kg A2 4 - 4 ki ,]) = Ag(A), with  g(2) € C[A].
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Lemma 4.15. The definition of the subspaces E, is independent of the
choice of an invertible H = a\H, + a,H, € F with a; # 0.

Proof. If K = biH, + b,H, € F is nondegenerate with by # 0 and T, =
K_lH, then we have, for Cc = bl/al, Cyr = (b2a1 — blaz)/al,

Ty = (11, + c2Ly) € GL,(C), T, = (11, + c2Ly) ' L.
Then the thesis follows because

U::l ker(fln - Lz)h = U;:l ker(clfln — C1L2)h
= U:’:l ker(f(clln + C2L2) - (Cl + C2§)L2)h

— « ¢ h
= Uh:I ker(c1+czgln -T)
forall ¢ € C. 0

Proposition 4.16. [f F is nonsingular, we have a direct sum decomposition

(4.15) C" = @MEA.
Lemma 4.17. E,, L E), if ; # ..

Proof. We observe that a change of the basis of F' only changes the labels
of the subspaces E, by a real fractional transformation of A. Hence, we can
assume in the proof that H, is nondegenerate, so that co ¢ X.

Let A;,4; € X, with 4; # A;. Letv; € Ey, \ {0}, v; € E;; \ {0}, and h;, h; be
the smallest positive integers such that (A;1, — L)"v; = 0, (1;I, — L)"iv; = 0.
Set Via = (/liln - L)h"_“v,-, Vj,b(/ljln - L)hj_ij, forO0<ac< hi, 0<bh< hj. We
prove by recurrence that

(P,) Viedlvip if 1<a<h, 1<b<hy,, supla+b}<r
We have
vio =0, vio =0,
Hyvig = AiH\vig — Hivig4 1, Hyvp, = AiH v, — Hvjp_y,
it1<a<h, it1<b<h,

Thus (Py) and (P;) are trivially true. Assume that (P,) holds for some inte-
ger r with 1 < r < hy + hy. It suffices to show that v;, I v;; for every pair
of integers (a,b) with 1 <a < h;,1 <b<hyanda+ b <r+ 1. We have:

Vl"aHZVj’b = /ljvi’aHlvj,;, vi’aHle,h,l = /ljvi’aHlv],;,
3 oLk
H]Vj’b = /l,-vl.’aHlvj,b.

This implies that v;, 1L v;,. By recurrence we obtain (Pj,44,), 1.€. v; =
Ving L Vip, = Vj. O

3 oLk
= /l,-vl.,aHlvj,b -V

%
ia—1

Corollary 4.18. Assume that F is nonsingular. Then every subspace V;
of a biorthogonal decomposition (2.4) is contained either in a generalized
eigenspace E,, for somey € R, or in a direct sum Er @ Ep, withT" € C and
ImI > 0.
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4.4.1. Real eigenvalues.

Proposition 4.19. Let y # oo be a real root of the pair (H,, H>).
Then the restriction of H to E, is nondegenerate and we can consider
the endomorphism L € gl-(E,) defined by

(4.16) w'Hyy =w'H Ly, Yv,we€E,.

Then (ylg, — L) is nilpotent. Let v be its nilpotency index. Then there is an
L-invariant indecomposable v-dimensional subspace W of E,, such that

4.17) Wt =W+, C"=W"'eW (biorthogonal decomposition).

There exists a Jordan basis ey, ...,e, of W for L, in which the restrictions
of Hy and H, to W are represented by matrices of type (I).

Proof. By substituting H, — yH, to H,, we can assume that y = 0.
Let

(4.18) Ey=WeW,®---aW,
be a Jordan decomposition of E,, with dimW; > dimW, > --- > dimW,.
Then dimW; = v. Let ey, ..., e, be a Jordan basis for W;. We have:

Hye, =0,

Hse; = Hyey,
(4.19)

HZev = Hlev—l’

0 = Hlev.

Cram: We can assume that e{H,e; # 0 for some j with1 < j <.

Indeed, if e{Hie; = O for all j with 1 < j < v, then, by the assump-

tion that H; is nondegenerate, there is some element e, ; of a Jordan basis
€uls--->€an, Of some W,, with 2 < a < ¢, such that e{He,; # 0. Set
e,,j = 0 for j <0, and define

’
€ = et ean—vtls

’
€y = e+ €qn—v+2,

’
e, =e,+ ey,

Then we have

Hzell = O,
H,e, = Hyé},
ng; = Hle;_l,
0= Hle;,
and we can substitute (e/, ..., e}) to W; in the Jordan decomposition (4.18]).

The new W, fulfills our claim.
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Assume therefore that W, has a basis ey, ..., e, satisfying @.19), with
(4] ¢ WIJ‘

If v = 1, we have e; = e, and then we obtain decomposition (4.20)
because ejHe; # 0.

Sete; = 0 fori < 0andi > v. Then we have
e;Hye; =ye;He; +e/Hej_;
=vye;He; +e;_He;
V1<i,j<n.

This implies that e;H,e;, for 1 < i, j < n, only depends on the sum (i + j).
When i + j < n, we have

* * *
€iH1€j = eOHlei+j =0 Hlei+j =0.

In particular, since ejHe; = 0 for 1 < j < v, we obtain that e{H,e, # 0
and, in general

e;Hiej=eHie, #0, VY1<i,j<v with i+j=w

A new Jordan basis vy, ..., v, is obtained by choosing complex numbers
ko, ki, ..., k1, with kg # 0, and setting

vj= Zoga<n,kaeb, for j=1,...,n.

1<b<n,

a+b=j
Having fixed ky, we can choose ki, ..., k,_; in such a way that
(4.20) viHiv; =0 ifi+ j#n+1.

We obtain indeed
* 7. *
viHwv; = Z 0<asi kakpe;_ H1ejp.

0<b<j
As, by the first part of the proof, viHv; = 0 for i + j < n, it suffices to show
that we can choose ki, ..., k, in such a way that

@21)  viHwy = ) i kkoel Hieny =0 for i=2,...n.

0<b<n
Since e} H e, = 0 when a + b < n, (4.21)) can be rewritten by
D ocosi Kakvel Hieny =0 for i=2,...,n,
0<b<n

a+b<i-1

yielding
i-1 -
(422) ZV:O(Zch:vkakb)e;k_le €n = 0.

Equations (4.22) express each sum koki_y + k;_ ko as a quadratic polynomial
in k,, k, for 1 < a < (i—1) and therefore can be recursively solved. Finally,
we can fix ko in such a way that viH,v, = £1. In this way we obtain the
canonical expression (I) for Hy, H,. O
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Corollary 4.20. Ify € R is a real root of (H,, H,), then there is a Jordan
decomposition
E,=Weo---oW

of E, for L = H;'H,, which is also a biorthogonal decomposition of E, for
F. We can choose a basis in each W in which the matrices associated to
the restrictions of Hy, H, have the form (I).

Proposition 4.21. [f oo is a root of (Hy, H,), then H, is nondegenerate on
E., and we can define L € gl-(E,) by setting

(4.23) w'Hyv =wH,Lv, VYv,weE,.

Then L is nilpotent. Let v be its nilpotency index. Then there exists an
L-invariant indecomposable v-dimensional subspace of E., such that

(424) W-=w', C"'=W eW (biorthogonal decomposition).
There exists a Jordan basis ey,...,e, of W in which the restrictions of

H,, H, to W are matrices of type (111).

Proof. After exchanging H; and H,, we repeat the proof of Proposition4.19
O

Corollary 4.22. [f oo is a root of (Hy, H,), then there is a Jordan decompo-
sition
E, =W &---0oW,

of Ew for L = H;'H,, which is also a biorthogonal decomposition of E
for F. We can choose a basis in each W; in which the matrices associated
to the restrictions of Hy, H, have the form (I1).

4.4.2. Complex eigenvalues.

Proposition 4.23. Assume that F = (H,, H,) is nonsingular. Let I' € C,
with ImT" > 0 be a complex root of (H, H;). Then both H, and H, are
nondegenerate on Er ® Er. Define L € glc(Er ® Er) by

(4.25) w'Hyy =w"HLv, VYv,w € Er® Ef).

Then Er and Er are L-invariant and (Ul — L) is nilpotent on Er, (Tl — L) is
nilpotent on Ef, with the same nilpotency indices.
We have Jordan decompositions

Er=V,®---V,
Ec=W,&---W,

of Er, Er with respect to L such that

(4.26) EroEr=V,eW)e---a(V,o W)

is a biorhtogonal decomposition of Er @ Er for F.
We can find basis of V;, W; such that the corresponding matrices of the
restrictions of Hy, H, to V; @ W; have the form (I).
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Proof. We observe that the Jordan decompositions of Er and Er with re-
spect to L have the same number of subspaces of the same dimensions,
because the two endomorphisms L and L* = HILHI‘1 are conjugate. We
also know that Er and Ef are totally isotropic for both H; and H,.

Assume that dimV; > dimV, > ---dimV,. Let ey, ..., e, be a Jordan basis
of V; for L. We have, with ¢; = 0,

4.27) Hyej=THe; + Hie;_;, for 1<j<w

Since H, is, by assumption, nondegenerate, we can assume that e; ¢ Wll.
Letvy,...,v, be a Jordan basis for W;. With vy = 0 we have

(4.28) Hyv; = levj +Hwvjy, for 1<j<u.
Thus we obtain, forall 1 <i<vand1 < j<p,
viHye; =TVviHe; +VviHej_,
=IViHe; +v;_ He;.
This implies that
viHie;=v,Hie, if 0<i,h<pu, 0<jk<w.
In particular,
viHie; =voHie;1; =0 if 1<i<minfu,v-1}
implies that 4 = v and that v;H e, # 0. By rescaling, we can obtain that
viHie;=v,Hie; =1, if 1<ij<vi+j=v+1

We can modify the Jordan basis ey, ..., e, by setting, after fixing complex
numbers ki, ..., k,_1,

u =ey,
{ui =e; +kie_1+---+ke, for2<igv
Then to require that v:H u; = 0 for i + j # v + 1 is equivalent to
ViHu; = viHe;+kiv,H e, +---+kj_ov,Hies+k;-; =0, forj=2,...,v.

This system of linear equations has a unique solution, yielding a basis
ui,...,u, such that the restrictions of H;, H, to V; & W, have in this ba-
sis the canonical form (II).

By recurrence we obtain the thesis, by applying the argument of the proof
to (Er @ El_") NV, @ W])lL. O
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