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Motivations

Main motivation: intrinsic understanding of charge
confinement phenomenon in Quantum Field Theory.

Conventional notion of confinement is based on at-
taching a physical interpretation to unobservable de-
grees of freedom in the lagrangian.

D. Buchholz [Nucl. Phys. B 469 (1996)]: confined
charges are those charges of the scaling limit theory
which are not also charges of the underlying theory.

Intrinsic: scaling limit construction and superselection
(i.e. charge) structure canonically determined by the
net of observables.

Example BV, RMP 11 (1998)]: Schwinger model
(massless QED5)

Problem: find a canonical way to identify charges
of the scaling limit as coming from charges of the
underlying theory which are preserved in the limit.

Then a confined charge is a charge of the scaling limit
which doesn’t come from a preserved charge.

Idea: try characterizing the preservance of charges by
the scaling behaviour of the fields carrying them.

—> study the scaling limit for charge carrying fields.
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Scaling algebras and scaling limit
(A€,24,U, Q) a Poincaré covariant local net, i.e.
(i) & — A(0) local net of C*-algebras on 7
(ii)) U : @1 — % () unitary repn such that
U(s)A(O)U(s)* =A(s-0), sc P,
and SpU(1,-) CV;
(iii) © € S unique vacuum, AQ = 7

(Rx)x>0 RG transformations. RG orbits A — Ry (A)
occupy a fixed phase space volume at all scales <=

(A,:c)1—>m(1,0)§li%||a(*’\”\ )(BA(A4)) — BA(A)]

BV, RMP 7 (1995)]
A:X— AN € 2, morally A(\) = Ry(A)
IA]| == sup[|A(A)]
A>0

a(A)(A) == a5, (A(N), (A, z)x:= (A, Az)
Definition. The local scaling algebra of O is

AO) = (AR, — AN € ANO)
A < +oo, lim o, (4) — 4] = 0}.



¢ (locally normal) state on 2 ~~ (EA) states on 2A:

¢, (A) == p(AN))
SLo () := {weak* limit pts of (fA)

A>0

A>0}'

Theorem. BV95| SLg (¢) is independent of ¢. For
(0, 7, o) and Uy the GNS and 331 representa-
tions determined by w, € SLg, and with 44(0) :
o (A(0)), (7, A0,Up, Qo) is a Poincaré covariant
local net (if d = 2 the vacuum may not be pure).

Ao is called a scaling limit net of 2. Possibilities:

(i) degenerate scaling limit: the various 2y non-
isomorphic (cfr. theories without ultraviolet
fixed points);

(ii) unique (quantum) scaling limit: the various g
isomorphic and non-trivial (e.g. scalar field in
d = 3,4 [BV98], dilation invariant theories);

(iii) classical scaling limit: each Ap(0) = C1, (linked
to exceptional quantum behaviour of observables
at small scales as in e.g. non-renormalizable

theories).



Superselection theory

Superselection sectors are equivalence classes of irreps

of 2 describing localized excitations of the vacuum.

Definition.DHR, CMP 23 (1971)] A representation 7
is DHR (or describes a localizable charge) if

T IAO) 2 A, VO, (1)

with ¢ the vacuum (identical) representation.

Excludes states carrying electric charge, due to Gauss’
law. Also, in massive theories the most general local-

ization property for charges is

Definition. BF, CMP 84 (1982)] A representation 7 is
BF (or describes a topological charge) if

T [ AE) =0 [ A(E)
for all spacelike cones € = a + R, 0, ¢ C {0}, €
causally complete.

Expected to show up in nonabelian gauge theories
(cone = flux string).



Superselection structure can be described by localized

endomorphisms:
A:={pecEnd®) : p(A) = AVAcA(O")}
Charge carrying unobservable fields (e.g. fermionic

fields) are encoded in (A, A).

Theorem. DR, CMP 131 (1990)] 40 — #(0),
g € G —V(g), G compact, such that

(i) 7 ﬁl—covariant net with normal commutation

relations;
(ii) Z(0)° = Z(0) = A(0O)";

(iii) Vpe A(ﬁ) irr. dYq,...90q € 9(@), Up] d-dim.
irrep of GG, such that

d
Yl =051, Y s =1,
j=1

By (i) =Y vi51(9)ij ¥y,

J=1

d
p(A) =) Apr,  Ae
j=1

For BF sectors, 0 — % (0) replaced by € — F (7).
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Scaling algebras for localized fields
and preservance of DHR charges

Field scaling algebra §, scaling limit field net %
defined in analogy to 2L, 2o, and .%o (0)¢ = 24 (0)
Ag(0)".

Charges may disappear in the scaling limit. E.g.

classical scaling limit == all charges disappear.

Idea: study the behaviour, for A — 0, of scaled
multiplets 11 (N), ... 10q(A) € F(AO) associated to a
fixed sector &.

In general ¥;(-) € §(0).

Definition. DHR sector £ is preserved in the scaling
limit o it VO, AYP1(A), ..., 0qa(N) € F(AO7) multi-
plet of class &, such that Ve > 0, HEJ-,E;- € § such
that

liriljgpll[wj(A) — E; (V)] +

[t (A) — E5(N]" Q| < e.



Energy of ¢;(\)*Q restricted only by uncertainty
principle = ¢ “pointlike” charge =— £ survives
the scaling limit.

Satisfied in the Majorana-Dirac free field and in dila-

tion invariant theories.

heC(P), h>0, f@lh: 1

oty () = [ ds hs)aa, (05 (0),

ap; € §(0), VO D 0.

Theorem. There exists

¥j = "s-lim mo(a,y;) € Fo(0)

for each & D 0, and

d
Y, =041, Z%%’f =1,

Vo(9)®:Vol(g Z

Furthermore p(a) := Z;l:l Y al, a € A, is a
localized endomorphism of 2.



Scaling algebras for fields in cones
and preservance of BF charges

If quarks are non-confined, they are localized in cones

—> above analysis too narrow

Spacelike cones not affected by rescaling = unclear
how to implement the RG phase space.

In asymptotically free theories charges in cones be-
come localized in the scaling limit (the flux string

vanishes) = phase space recoverd asymptotically.

¢ — % (%) canonical DR field net determined by BF

sectors.
A bounded function F : R} — % is asymptotically

localized in O if

lim sup [|[F'(A), A(N)]|| = 0.
A—0 AEA(O")1

Definition. We introduce the C*-algebras, for & C €,

3(€,0) ={NeR} = F(\) € F(\C) : ||E| < +o0
lg%”gs(ﬂ) o EH — 07

F asymptotically localized in &'},
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¢ normal state on B(z) ~ SLg(p) defined as
above.

Theorem. SLgz(y) is independent of . For w, € SLg,
let (7o, 749, o) be the GNS representation. Then

F0(0) = [ m(3(€.0))",
C€OO0

defines a field net with normal commutation relations,
called a scaling limit net of .%.

The direction of the cone is irrelevant =— each
choice of direction should give the same states in the
limit.

Definition. BF sector £ is preserved in the scaling limit
Fo itV O, €1 D O, AYP1(N), ..., Yq(N\) € F(\61)
multiplet of class & asymptotically localized in 0,
and V€ D 0y 3N — w;-g()\) € #(\€) asymptotically
localized in 07, such that

() Tm [ (A) = o5 (VIQU] + 1[5 (V) = (V]2 = 0;
(ii) Ve >0, IFY, F¥ € 3 such that

fim supl|[4 (A) — £ (V)] +

1% (\) = FE' O] < e.
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Theorem. There exists

¢] ) hligsﬂ-o(ghwj )

independent of ¢, so that 1, € F#(&) for each & D
01, and ¥ ; 18 a G-multiplet of class £ of orthogonal

isometries of support 1. Furthermore if

d

we(a) == > (Qlp;ap;Q),  ac U,

J=1

and if 773 is separable, the GNS representation ¢ is
DHR.
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Conclusions and outlook

“Pointlike” charges have no scale = should appear
both at finite scale and in scaling limit.

According to uncertainty principle, they require en-
ergy of order A\™! to be localized in regions of radius

A.

Can be expressed by conditions on scaled multiplets
A — 1;(A) = multiplet of the same class appear in

the scaling limit < charge is preserved.

Further developements:
e mathematical structure of preserved sectors;
e anomalous charge scaling;

e study of BF sectors in lattice gauge models.
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