Scaling Algebras for Charge Carrying Quantum Fields and Superselection Structure at Short Distances

Gerardo Morsella Institut für Theoretische Physik, Göttingen

Young Researchers Symposium of ICMP2003 Lisbon, 25/7/2003

joint work with C. D'Antoni (Roma 2) and R. Verch (MPI-MIS)

Contents

- 1. Motivations.
- 2. Scaling algebras for observables.
- 3. Superselection theory.
- 4. Scaling algebras for localized fields and preservance of DHR charges.
- 5. Scaling algebras for fields in cones and preservance of BF charges.
- 6. Conclusions and outlook

Motivations

Main motivation: intrinsic understanding of charge confinement phenomenon in Quantum Field Theory.

Conventional notion of confinement is based on attaching a physical interpretation to unobservable degrees of freedom in the lagrangian.

D. Buchholz [Nucl. Phys. B 469 (1996)]: confined charges are those charges of the scaling limit theory which are not also charges of the underlying theory.

Intrinsic: scaling limit construction and superselection (i.e. charge) structure canonically determined by the net of observables.

Example [BV, RMP 11 (1998)]: Schwinger model (massless QED_2)

Problem: find a canonical way to identify charges of the scaling limit as coming from charges of the underlying theory which are *preserved* in the limit.

Then a confined charge is a charge of the scaling limit which doesn't come from a preserved charge.

Idea: try characterizing the preservance of charges by the scaling behaviour of the fields carrying them.

⇒ study the scaling limit for charge carrying fields.

Scaling algebras and scaling limit

 $(\mathcal{H}, \mathfrak{A}, U, \Omega)$ a Poincaré covariant local net, i.e.

- (i) $\mathscr{O} \to \mathfrak{A}(\mathscr{O})$ local net of C*-algebras on \mathscr{H} ;
- (ii) $U: \mathscr{P}_{+}^{\uparrow} \to \mathscr{U}(\mathscr{H})$ unitary repn such that $U(s)\mathfrak{A}(\mathscr{O})U(s)^{*} = \mathfrak{A}(s \cdot \mathscr{O}), \qquad s \in \mathscr{P}_{+}^{\uparrow},$ and $\operatorname{Sp} U(1, \cdot) \subset \overline{V}_{+};$
- (iii) $\Omega \in \mathcal{H}$ unique vacuum, $\overline{\mathfrak{A}\Omega} = \mathcal{H}$;

 $(R_{\lambda})_{\lambda>0}$ RG transformations. RG orbits $\lambda \to R_{\lambda}(A)$ occupy a fixed phase space volume at all scales \iff

$$\lim_{(\Lambda,x)\to(\mathbb{1},0)} \sup_{\lambda>0} ||\alpha_{(\Lambda,\lambda x)}(R_{\lambda}(A)) - R_{\lambda}(A)|| = 0$$

[BV, RMP 7 (1995)]

$$\underline{A}: \lambda \to \underline{A}(\lambda) \in \mathfrak{A}, \text{ morally } \underline{A}(\lambda) = R_{\lambda}(A)$$

$$||\underline{A}|| := \sup_{\lambda > 0} ||\underline{A}(\lambda)||$$

$$\underline{\alpha}_{s}(\underline{A})(\lambda) := \alpha_{s_{\lambda}}(\underline{A}(\lambda)), \quad (\Lambda, x)_{\lambda} := (\Lambda, \lambda x)$$

Definition. The local scaling algebra of \mathscr{O} is

$$\underline{\mathfrak{A}}(\mathscr{O}) := \{ \lambda \in \mathbb{R}_+ \to \underline{A}(\lambda) \in \mathfrak{A}(\lambda\mathscr{O}) : \\ ||\underline{A}|| < +\infty, \ \lim_{s \to e} ||\underline{\alpha}_s(\underline{A}) - \underline{A}|| = 0 \}.$$

 φ (locally normal) state on $\mathfrak{A}\leadsto \left(\underline{\varphi}_{\lambda}\right)_{\lambda>0}$ states on $\underline{\mathfrak{A}}$: $\underline{\varphi}_{\lambda}(\underline{A}):=\varphi(\underline{A}(\lambda))$

 $\operatorname{SL}_{\mathfrak{A}}(\varphi) := \{ \operatorname{weak}^* \text{ limit pts of } (\underline{\varphi}_{\lambda})_{\lambda > 0} \}.$

Theorem.[BV95] $\operatorname{SL}_{\mathfrak{A}}(\varphi)$ is independent of φ . For $(\pi_0, \mathscr{H}_0, \Omega_0)$ and U_0 the GNS and \mathscr{P}_+^{\uparrow} representations determined by $\underline{\omega}_0 \in \operatorname{SL}_{\mathfrak{A}}$, and with $\mathfrak{A}_0(\mathscr{O}) := \pi_0(\underline{\mathfrak{A}}(\mathscr{O}))$, $(\mathscr{H}_0, \mathfrak{A}_0, U_0, \Omega_0)$ is a Poincaré covariant local net (if d = 2 the vacuum may not be pure).

 \mathfrak{A}_0 is called a scaling limit net of \mathfrak{A} . Possibilities:

- (i) degenerate scaling limit: the various \mathfrak{A}_0 non-isomorphic (cfr. theories without ultraviolet fixed points);
- (ii) unique (quantum) scaling limit: the various \mathfrak{A}_0 isomorphic and non-trivial (e.g. scalar field in d=3,4 [BV98], dilation invariant theories);
- (iii) classical scaling limit: each $\mathfrak{A}_0(\mathscr{O}) = \mathbb{C}1$, (linked to exceptional quantum behaviour of observables at small scales as in e.g. non-renormalizable theories).

Superselection theory

Superselection sectors are equivalence classes of irreps of \mathfrak{A} describing localized excitations of the vacuum.

Definition. [DHR, CMP 23 (1971)] A representation π is DHR (or describes a *localizable charge*) if

$$\pi \upharpoonright \mathfrak{A}(\mathscr{O}') \cong \iota \upharpoonright \mathfrak{A}(\mathscr{O}'), \qquad \forall \mathscr{O}, \tag{1}$$

with ι the vacuum (identical) representation.

Excludes states carrying electric charge, due to Gauss' law. Also, in massive theories the most general localization property for charges is

Definition.[BF, CMP 84 (1982)] A representation π is BF (or describes a topological charge) if

$$\pi \upharpoonright \mathfrak{A}(\mathscr{C}') \cong \iota \upharpoonright \mathfrak{A}(\mathscr{C}')$$

for all spacelike cones $\mathscr{C} = a + \mathbb{R}_+ \mathscr{O}$, $\mathscr{O} \subseteq \{0\}'$, \mathscr{C} causally complete.

Expected to show up in nonabelian gauge theories (cone = flux string).

Superselection structure can be described by localized endomorphisms:

$$\Delta := \{ \rho \in \operatorname{End}(\mathfrak{A}) : \rho(A) = A \ \forall A \in \mathfrak{A}(\mathscr{O}') \}$$

Charge carrying unobservable fields (e.g. fermionic fields) are encoded in (\mathfrak{A}, Δ) .

Theorem.[DR, CMP **131** (1990)] $\exists \mathscr{O} \to \mathscr{F}(\mathscr{O})$, $g \in G \to V(g)$, G compact, such that

- (i) $\mathscr{F} \overset{\tilde{\mathscr{P}}_+}{\mathscr{P}_+}$ -covariant net with normal commutation relations;
- (ii) $\mathscr{F}(\mathscr{O})^G = \mathscr{A}(\mathscr{O}) := \mathfrak{A}(\mathscr{O})'';$
- (iii) $\forall \rho \in \Delta(\mathcal{O})$ irr. $\exists \psi_1, \dots \psi_d \in \mathcal{F}(\mathcal{O}), v_{[\rho]}$ d-dim. irrep of G, such that

$$\psi_i^* \psi_j = \delta_{ij} \mathbb{1}, \qquad \sum_{j=1}^d \psi_j \psi_j^* = \mathbb{1},$$

$$\beta_g(\psi_i) = \sum_{j=1}^d v_{[\rho]}(g)_{ij} \psi_j,$$

$$\rho(A) = \sum_{j=1}^{d} \psi_j A \psi_j^*, \qquad A \in \mathfrak{A}.$$

For BF sectors, $\mathscr{O} \to \mathscr{F}(\mathscr{O})$ replaced by $\mathscr{C} \to \mathscr{F}(\mathscr{C})$.

Scaling algebras for localized fields and preservance of DHR charges

Field scaling algebra \mathfrak{F} , scaling limit field net \mathscr{F}_0 defined in analogy to \mathfrak{A} , \mathfrak{A}_0 , and $\mathscr{F}_0(\mathscr{O})^G = \mathscr{A}_0(\mathscr{O}) := \mathfrak{A}_0(\mathscr{O})''$.

Charges may disappear in the scaling limit. E.g. classical scaling limit \implies all charges disappear.

Idea: study the behaviour, for $\lambda \to 0$, of scaled multiplets $\psi_1(\lambda), \ldots \psi_d(\lambda) \in \mathscr{F}(\lambda \mathscr{O})$ associated to a fixed sector ξ .

In general $\psi_j(\cdot) \notin \mathfrak{F}(\mathscr{O})$.

Definition. DHR sector ξ is preserved in the scaling limit \mathscr{F}_0 if $\forall \mathscr{O}_1, \exists \psi_1(\lambda), \ldots, \psi_d(\lambda) \in \mathscr{F}(\lambda \mathscr{O}_1)$ multiplet of class ξ , such that $\forall \varepsilon > 0, \exists \underline{F}_j, \underline{F}'_j \in \underline{\mathfrak{F}}$ such that

$$\limsup_{\lambda \to 0} \| [\psi_j(\lambda) - \underline{F}_j(\lambda)] \Omega \| + \| [\psi_j(\lambda) - \underline{F}'_j(\lambda)]^* \Omega \| < \varepsilon.$$

Energy of $\psi_j(\lambda)^*\Omega$ restricted only by uncertainty principle $\Longrightarrow \xi$ "pointlike" charge $\Longrightarrow \xi$ survives the scaling limit.

Satisfied in the Majorana-Dirac free field and in dilation invariant theories.

$$h \in C_c(\tilde{\mathscr{P}}_+^{\uparrow}), h \ge 0, \int_{\tilde{\mathscr{P}}_+^{\uparrow}} h = 1$$

$$\underline{\alpha}_h \psi_j(\lambda) := \int_{\tilde{\mathscr{P}}_+^{\uparrow}} ds \ h(s) \alpha_{s_{\lambda}}(\psi_j(\lambda)),$$

$$\underline{\alpha}_h \psi_j \in \underline{\mathfrak{F}}(\mathscr{O}), \, \forall \mathscr{O} \supset \overline{\mathscr{O}_1}.$$

Theorem. There exists

$$\psi_j := {}^*s - \lim_{h \to \delta} \pi_0(\underline{\alpha}_h \psi_j) \in \mathscr{F}_0(\mathscr{O})$$

for each $\mathcal{O} \supset \overline{\mathcal{O}}_1$, and

$$oldsymbol{\psi}_i^*oldsymbol{\psi}_j = \delta_{ij}\mathbb{1}, \qquad \sum_{j=1}^d oldsymbol{\psi}_joldsymbol{\psi}_j^* = \mathbb{1},$$

$$V_0(g)\psi_i V_0(g)^* = \sum_{j=1}^d v_{\xi}(g)_{ij}\psi_j,$$

Furthermore $\rho(a) := \sum_{j=1}^{d} \psi_j a \psi_j^*, \ a \in \mathfrak{A}_0$, is a localized endomorphism of \mathfrak{A}_0 .

Scaling algebras for fields in cones and preservance of BF charges

If quarks are non-confined, they are localized in cones \implies above analysis too narrow

Spacelike cones not affected by rescaling \implies unclear how to implement the RG phase space.

In asymptotically free theories charges in cones become localized in the scaling limit (the flux string vanishes) \implies phase space recoverd asymptotically.

 $\mathscr{C}\to\mathscr{F}(\mathscr{C})$ canonical DR field net determined by BF sectors.

A bounded function $F: \mathbb{R}_+^{\times} \to \mathscr{F}$ is asymptotically localized in \mathscr{O} if

$$\lim_{\lambda \to 0} \sup_{A \in \underline{\mathfrak{A}}(\mathscr{O}')_1} ||[F(\lambda), \underline{A}(\lambda)]|| = 0.$$

Definition. We introduce the C*-algebras, for $\mathcal{O} \subset \mathcal{C}$,

$$\underline{\mathfrak{F}}(\mathscr{C},\mathscr{O}) := \{ \lambda \in \mathbb{R}_{+}^{\times} \to \underline{F}(\lambda) \in \mathscr{F}(\lambda\mathscr{C}) : ||\underline{F}|| < +\infty$$

$$\lim_{s \to e} ||\underline{\alpha}_{s}(\underline{F}) - \underline{F}|| = 0,$$

 \underline{F} asymptotically localized in \mathcal{O} },

 φ normal state on $B(\mathscr{H}_{\mathscr{F}}) \leadsto \mathrm{SL}_{\underline{\mathfrak{F}}}(\varphi)$ defined as above.

Theorem. $\operatorname{SL}_{\underline{\mathfrak{F}}}(\varphi)$ is independent of φ . For $\underline{\omega}_0 \in \operatorname{SL}_{\underline{\mathfrak{F}}}$, let $(\pi_0, \mathcal{H}_0, \Omega_0)$ be the GNS representation. Then

$$\mathscr{F}_0(\mathscr{O}) := \bigcap_{\mathscr{C} \supset \mathscr{O}} \pi_0(\underline{\mathfrak{F}}(\mathscr{C}, \mathscr{O}))'',$$

defines a field net with normal commutation relations, called a *scaling limit* net of \mathscr{F} .

The direction of the cone is irrelevant \implies each choice of direction should give the same states in the limit.

Definition. BF sector ξ is preserved in the scaling limit \mathscr{F}_0 if $\forall \mathscr{O}_1, \mathscr{C}_1 \supset \mathscr{O}_1, \exists \psi_1(\lambda), \ldots, \psi_d(\lambda) \in \mathscr{F}(\lambda\mathscr{C}_1)$ multiplet of class ξ asymptotically localized in \mathscr{O}_1 , and $\forall \mathscr{C} \supset \mathscr{O}_1 \exists \lambda \to \psi_j^{\mathscr{C}}(\lambda) \in \mathscr{F}(\lambda\mathscr{C})$ asymptotically localized in \mathscr{O}_1 , such that

(i)
$$\lim_{\lambda \to 0} \| [\psi_j^{\mathscr{C}}(\lambda) - \psi_j(\lambda)] \Omega \| + \| [\psi_j^{\mathscr{C}}(\lambda) - \psi_j(\lambda)]^* \Omega \| = 0;$$

(ii)
$$\forall \varepsilon > 0, \exists \underline{F}_j^{\mathscr{C}}, \underline{F}_j^{\mathscr{C}'} \in \underline{\mathfrak{F}}^{\times} \text{ such that}$$

$$\limsup_{\lambda \to 0} \| [\psi_j^{\mathscr{C}}(\lambda) - \underline{F}_j^{\mathscr{C}}(\lambda)] \Omega \| + \| [\psi_j^{\mathscr{C}}(\lambda) - \underline{F}_j^{\mathscr{C}'}(\lambda)]^* \Omega \| < \varepsilon.$$

Theorem. There exists

$$\psi_j := {}^*s - \lim_{h \to \delta} \pi_0(\underline{\alpha}_h \psi_j^{\mathscr{C}})$$

independent of \mathscr{C} , so that $\psi_j \in \mathscr{F}_0(\mathscr{O})$ for each $\mathscr{O} \supset \overline{\mathscr{O}}_1$, and ψ_j is a G-multiplet of class ξ of orthogonal isometries of support $\mathbb{1}$. Furthermore if

$$\omega_{\xi}(\boldsymbol{a}) := \sum_{j=1}^d (\Omega_0 | \boldsymbol{\psi}_j \boldsymbol{a} \boldsymbol{\psi}_j^* \Omega_0), \qquad \boldsymbol{a} \in \mathfrak{A}_0,$$

and if \mathcal{H}_0 is separable, the GNS representation π_{ξ} is DHR.

Conclusions and outlook

"Pointlike" charges have no scale \implies should appear both at finite scale and in scaling limit.

According to uncertainty principle, they require energy of order λ^{-1} to be localized in regions of radius λ .

Can be expressed by conditions on scaled multiplets $\lambda \to \psi_j(\lambda) \implies$ multiplet of the same class appear in the scaling limit \Leftrightarrow charge is preserved.

Further developements:

- mathematical structure of preserved sectors;
- anomalous charge scaling;
- study of BF sectors in lattice gauge models.