Scaling Limit for Subsystems and Doplicher-Roberts Reconstruction

Gerardo Morsella

Scuola Normale Superiore, Pisa

joint work with R. Conti

Operator Algebras and Conformal Field Theory

ESI, September 8th, 2008

Motivation

- Study of subsystems $\mathscr{A}\subset\mathscr{B}$ aims at an intrinsic description of the observables of a QFT and their superselection charges.
- Buchholz-Verch Scaling Algebras provide tools for analysing the short distance (high energy) properties of QFT in a model independent setting.
- Natural question: given subsystem A ⊂ B, what can be said about scaling limit theories A₀, B₀? In particular:
 - ▶ It is possible to find $\mathscr{A} \subsetneq \mathscr{B}$ such that $\mathscr{A}_0 = \mathscr{B}_0$?
 - ▶ Relation between type of scaling limits of \mathscr{A} and \mathscr{B} (in Buchholz-Verch classification).
 - ▶ Relation between superselection structures of \mathscr{A}_0 and \mathscr{B}_0 .

Outline

- Motivation
- DR Theory and Subsystems
 - Superselection Theory
 - Superselection Theory for Subsystems
 - Classification of Subsystems
- Scaling Algebras and DR Theory
 - Scaling Algberas
 - Scaling Limits
 - Scaling Limits and Superselection Sectors
- Scaling Limit for Subsystems and DR Theory
 - Scaling Limit of Subsystems
 - Scaling for Subsystems and DR Theory
- Summary & Outlook

Superselection Theory

1/2

Data:

- # separable;
- $O \subset \mathbb{R}^4 \to \mathscr{A}(O) \subset B(\mathscr{H})$ net of observable algebras satisfying Haag duality

$$\mathscr{A}(O) = \mathscr{A}(O')';$$

• $\gamma \to {\it U}(\gamma)$ unitary representation of \mathscr{P}_+^\uparrow with positive energy, such that

$$U(\gamma)\mathscr{A}(O)U(\gamma)^* = \mathscr{A}(\gamma.O);$$

• $\Omega \in \mathcal{H}$ unique such that $U(x)\Omega = \Omega$ (vacuum).

Superselection sectors are described by classes of localized endomorphisms:

$$\Delta(O) := \{ \rho \in \mathsf{End}(\mathscr{A}) : \rho(A) = A \ \forall A \in \mathscr{A}(O') \}$$

Superselection Theory

2/2

Theorem ([Doplicher-Roberts '90])

 $\exists O \rightarrow \mathscr{F}(O)$ field net, $g \in G \rightarrow V(g)$, G compact, such that:

- $\mathscr{F}(O)^G = \mathscr{A}(O)$;
- $\forall \rho \in \Delta(O) \; \exists \psi_1, \dots, \psi_d \in \mathscr{F}(O)$ orthogonal isometries, $v_{[\rho]}$ d-dimensional irrep of G, with

$$\operatorname{Ad} V(g)(\psi_i) = \sum_{j=1}^d v_{[\rho]}(g)_{ij}\psi_j, \quad \rho(A) = \sum_{j=1}^d \psi_j A \psi_j^*;$$

• \mathscr{F} has normal commutation relations, defined by $k \in Z(G)$ with $k^2 = e$.

Superselection Theory for Subsystems

1/2

 \mathcal{B}, \mathcal{F} field nets.

Definition

 $\mathscr{B} \subset \mathscr{F}$ is a subsystem if

$$\mathscr{B}(O)\subset\mathscr{F}(O)$$
,

$$U(\gamma)\mathscr{B}(O)U(\gamma)^* = \mathscr{B}(\gamma.O).$$

Main examples:

- $\mathscr{B} \subset \mathscr{F} = \mathscr{B} \hat{\otimes} \tilde{\mathscr{B}}$ for some net $\tilde{\mathscr{B}}$;
- $\mathscr{A} \subset \mathscr{F}$ with \mathscr{A} observable net and \mathscr{F} its DR-net;
- $\mathscr{C} \subset \mathscr{F}$ with \mathscr{C} the net generated by the canonical local implementation of translations of \mathscr{F} .

Superselection Theory for Subsystems

2/2

Theorem ([Conti-Doplicher-Roberts '01])

 $\mathcal{A} \subset \mathcal{B}$ observable nets.

There holds

$$\mathscr{B} \subset \mathscr{F}(\mathscr{B})$$
 \cup \cup \cup $\mathscr{A} \subset \mathscr{F}(\mathscr{A})$

and \exists homomorphism $\phi : G(\mathscr{B}) \to G(\mathscr{A})$ induced by restriction.

• If $\mathscr{A} \subset \mathscr{B} \subset \mathscr{F}(\mathscr{A})$ and \mathscr{A} has no infinite statistics sectors, then \mathscr{B} has no infinite statistics sectors and $\mathscr{F}(\mathscr{A}) = \mathscr{F}(\mathscr{B}) \ (\Longrightarrow \ G(\mathscr{B})$ is a closed subgroup of $G(\mathscr{A})$.

In particular for $\mathscr{B} = \mathscr{F}(\mathscr{A})^b$ (bosonic part), $\mathscr{F}(\mathscr{A})^b = \mathscr{F}(\mathscr{A})^{\mathbb{Z}_2}$ has precisely two sectors.

Classification of Subsystems

1/2

- ${\mathscr F}$ field net satisfying standard assumptions plus
 - geometric modular action: modular groups of wedges act like Lorentz boosts;
 - split property: for every $O_1 \subset\subset O_2$ exists a type I factor

$$\mathscr{F}(O_1) \subset \mathscr{N} \subset \mathscr{F}(O_2);$$

• triviality of superselection structure: \mathscr{F}^b has precisely two sectors (assuming $\mathscr{F}^b \subsetneq \mathscr{F}$).

A subsystem $\mathscr{B} \subset \mathscr{F}$ is full if the coset subsystem

$$\mathscr{B}^{c}(O) := \mathscr{B}' \cap \mathscr{F}(O)$$

is trivial.

2/2

Theorem ([Carpi-Conti '05])

A local subsystem $\mathscr{B} \subset \mathscr{F}$ is canonically isomorphic to

$$\mathscr{F}(\mathscr{B})^{G(\mathscr{B})}\otimes \mathbb{C}\mathbb{1}\subset \mathscr{F}(\mathscr{B})\hat{\otimes}\mathscr{B}^{\mathsf{c}}.$$

In particular: $\mathscr{B} \subset \mathscr{F}$ full $\Longrightarrow \mathscr{F} = \mathscr{F}(\mathscr{B})$.

Applications:

- \mathscr{F} generated by a free scalar field of mass $m \geq 0 \implies \mathscr{F}^{\mathbb{Z}_2}$ is the only proper subsystem;
- $\mathscr{C}^d = \mathscr{F}^{G_{\text{max}}}$, with G_{max} the (compact) group of $V \in \mathscr{U}(\mathscr{H}_{\mathscr{F}})$ such that $V\mathscr{F}(O)V^* = \mathscr{F}(O)$, $V\Omega = \Omega$;
- hence $\mathscr{C}^d = \mathscr{A} \iff G(\mathscr{A}) = G_{\text{max}}$.

Scaling Algebras

1/2

On C*-algebra of bounded functions $\lambda \in \mathbb{R}_+^{\times} \to \underline{F}_{\lambda} \in \mathscr{F}$ define:

$$\begin{split} \|\underline{F}_{\lambda}\| &:= \sup_{\lambda} \|\underline{F}_{\lambda}\|, \ \underline{lpha}_{(\Lambda,x)}(\underline{F})_{\lambda} := \operatorname{Ad} U(\Lambda,\lambda x)(\underline{F}_{\lambda}), \qquad (\Lambda,x) \in \mathscr{P}_{+}^{\uparrow}, \ \underline{eta}_{g}(\underline{F})_{\lambda} := \operatorname{Ad} V(g)(\underline{F}_{\lambda}), \qquad g \in G. \end{split}$$

Definition

Local scaling algebra of O:

$$\underline{\mathfrak{F}}(O) := \left\{ \underline{F} : \underline{F}_{\lambda} \in \mathscr{F}(\lambda O), \lim_{\gamma \to e} \|\underline{\alpha}_{\gamma}(\underline{F}) - \underline{F}\| = 0, \\ \lim_{g \to e} \|\underline{\beta}_{g}(\underline{F}) - \underline{F}\| = 0 \right\}$$

Scaling Algebras

2/2

- Continuity condition w.r.t. translations $\iff \underline{F}_{\lambda}$ has a "phase space occupation" independent of $\lambda \iff \hbar$ not rescaled.
- Continuity condition w.r.t. $G \iff \underline{F}_{\lambda}$ has a "charge transfer" independent of λ
- Typical elements

$$\underline{F}_{\lambda} = \int dx \, dg \, h(x,g) V(g) U(\lambda x) e^{i\phi_{\lambda}(f)} U(\lambda x)^* V(g)^*,$$

where $\phi_{\lambda}(x) = Z_{\lambda}\phi(\lambda x)$ is the usual renormalized field.

- We consider "all possible renormalization schemes" compatible with above requirements.
- Keep in mind: construction of \mathfrak{F} depends on G (acting faithfully).

Scaling Limits

1/2

 φ locally normal state on $\mathscr{F} \leadsto \underline{\varphi}_{\lambda}(\underline{F}) := \varphi(\underline{F}_{\lambda})$ states on $\underline{\mathfrak{A}}$,

 $\mathsf{SL}^{\mathscr{F}}(\varphi) := \{\mathsf{weak^*} \ \mathsf{limit} \ \mathsf{points} \ \mathsf{of} \ (\underline{\varphi}_{\lambda})_{\lambda > 0} \ \mathsf{for} \ \lambda \to 0\}.$

Theorem ([D'Antoni-M.-Verch '04])

- $SL^{\mathscr{F}}(\varphi) = (\underline{\omega}_{0,\iota})_{\iota \in I}$ is independent of φ .
- $\underline{\omega}_{0,\iota} \in \mathsf{SL}^{\mathscr{F}}$ with GNS representation $\pi_{0,\iota}$. Then $\mathscr{F}_{0,\iota}(\mathcal{O}) := \pi_{0,\iota}(\underline{\mathfrak{F}}(\mathcal{O}))''$ is a field net in vacuum representation.
- $\exists G_{0,\iota} = G/N_{0,\iota}$ such that $\mathscr{A}_{0,\iota} = \mathscr{F}_{0,\iota}^{G_{0,\iota}}$.

 $O \to \mathscr{F}_{0,\iota}(O)$ is the scaling limit net of \mathscr{F} . Physical interpretation: $\mathscr{F}_{0,\iota}$ describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

2/2

Classification:

- If $\mathscr{F}_{0,\iota}=\mathbb{C}\mathbb{1}$ for all $\underline{\omega}_{0,\iota}$ then \mathscr{F} has trivial scaling limit.
- If all nets $\mathscr{F}_{0,\iota}$ corresponding to different $\underline{\omega}_{0,\iota}$ are isomorphic and non-trivial \mathscr{F} has unique scaling limit.
- Otherwise F has degenerate scaling limit.

Examples:

- $\mathscr{F}^{(m)}$ net generated by free scalar field of mass $m \geq 0$ $\Longrightarrow \mathscr{F}^{(m)}_{0,\iota} \simeq \mathscr{F}^{(0)} \colon \mathscr{F}^{(m)}$ has unique limit [Buchholz-Verch '97];
- F Lutz model (suitable subnet of a generalized free field) has trivial limit [Lutz '98].

Scaling Limits and Superselection Sectors

1/3

 $\mathscr{F}(\mathscr{A})_{0,\iota}$ is not in general the canonical DR field net for $\mathscr{A}_{0,\iota}$ General situation:

 $H(\mathscr{A}_{0,\iota}) \subset G(\mathscr{A}_{0,\iota})$ normal subgroup such that

$$G(\mathscr{A})_{0,\iota} = G(\mathscr{A})/N(\mathscr{A})_{0,\iota} = G(\mathscr{A}_{0,\iota})/H(\mathscr{A}_{0,\iota}).$$

 $\mathscr{F}(\mathscr{A}_{0,\iota})\supsetneq\mathscr{F}(\mathscr{A})_{0,\iota}\implies\mathscr{A}$ has confined charges.

E.g. in the Schwinger model:

$$\mathscr{F}(\mathscr{A}) = \mathscr{A} \implies \mathscr{F}(\mathscr{A})_{0,\iota} = \mathscr{A}_{0,\iota} \subsetneq \mathscr{F}(\mathscr{A}_{0,\iota})$$
 [Buchholz-Verch '97]

Scaling Limits and Superselection Sectors

2/3

Which sectors *survive* the scaling limit?

Physical picture → pointlike charges survive.

- $\psi_j(\lambda) \in \mathscr{F}(\lambda O)$ of class $[\rho] \implies \psi_j(\lambda)\Omega$ charge $[\rho]$ in λO .
- $[\rho]$ pointlike \implies energy of $\psi_j(\lambda)\Omega \sim \lambda^{-1}$.

Theorem ([D'Antoni-M.-Verch '04])

With $\psi_i(\lambda)$ as above and

$$(\underline{\alpha}_h \psi_j)_{\lambda} := \int_{\mathbb{R}^4} dx \ h(x) \operatorname{Ad} U(\lambda x)(\psi_j(\lambda)),$$

there exists

$$\psi_j^0 = \mathbf{s}^*\text{-}\lim_{h o \delta} \pi_{0,\iota}(\underline{lpha}_h\psi_j) \in \mathscr{F}_{0,\iota}(\mathcal{O})$$

and ψ_{j}^{0} is a $G_{0,\iota}$ -multilplet which implements a DHR sector of $\mathscr{A}_{0,\iota}$.

Scaling Limits and Superselection Sectors

3/3

Non-preserved sectors can actually appear:

Theorem ([D'Antoni-M. '06])

For each Lie group G and closed normal subgroup $N \subset G$, exists \mathscr{F} with action of G such that only sectors corresponding to representations of G/N are preserved.

Proof uses Lutz model and free fields.

Scaling Limit of Subsystems

1/3

Data:

- •
 \$\mathcal{B}\$ ⊂ \$\mathcal{F}\$ subsystem;
- $E: \mathscr{F} \to \mathscr{B}$ normal conditional expectation of nets, such that

$$\operatorname{Ad} U(\gamma)E = E\operatorname{Ad} U(\gamma), \quad \operatorname{Ad} V(k)E = E\operatorname{Ad} V(k), \quad \omega E = \omega.$$

 \rightarrow \underline{E} : $\underline{\mathfrak{F}}$ \rightarrow $\underline{\mathfrak{B}}$ conditional expectation defined by $\underline{E}(\underline{F})_{\lambda} := E(\underline{F}_{\lambda})$.

Theorem

- $\underline{\omega}_{0,\iota} \in \mathsf{SL}^{\mathscr{B}} \to \underline{\omega}_{0,\iota} \circ \underline{E} \in \mathsf{SL}^{\mathscr{F}}$ is bijection;
- $\mathscr{B}_{0,\iota}$, $\mathscr{F}_{0,\iota}$ defined by corresponding s.l. states $\Longrightarrow \mathscr{B}_{0,\iota} \subset \mathscr{F}_{0,\iota}$ and $\exists E_{0,\iota}$; $\mathscr{F}_{0,\iota} \to \mathscr{B}_{0,\iota}$ normal conditional expectation determined by

$$E_{0,\iota}(\pi_{0,\iota}^{\mathscr{F}}(\underline{F})) = \pi_{0,\iota}^{\mathscr{B}}(\underline{E}(\underline{F})).$$

Scaling Limit of Subsystems

2/3

Application:

- $\mathscr{F}^{(m)}$ generated by free scalar field ϕ of mass $m \geq 0$;
- $\mathscr{B}^{(m)} = (\mathscr{F}^{(m)})^{\mathbb{Z}_2}$ with respect to $\phi \to -\phi$;
- then $\mathscr{B}_{0,\iota}^{(m)} \simeq \mathscr{B}^{(0)}$.

Can be generalized to free field multiplets.

Question: \mathscr{F} has unique limit $\implies \mathscr{B}$ has unique limit? In free field case, this depends on

$$\theta_{\iota',\iota} \circ E_{0,\iota} = E_{0,\iota'} \circ \theta_{\iota',\iota},$$

where $\theta_{\iota',\iota}: \mathscr{F}_{0,\iota} \xrightarrow{\simeq} \mathscr{F}_{0,\iota'}$.

Scaling Limit of Subsystems

3/3

Definition ([Bostelmann-D'Antoni-M., next talk])

 \mathscr{F} has convergent scaling limit if \exists subalgebra $\hat{\underline{\hat{\mathfrak{T}}}}\subset\underline{\mathfrak{F}}$ such that

- $\underline{F} \in \hat{\underline{\mathfrak{F}}} \implies \exists \lim_{\lambda \to 0} \omega(\underline{F}_{\lambda});$
- $\bullet \ \pi_{0,\iota}(\underline{\hat{\mathfrak{F}}}(O))'' = \mathscr{F}_{0,\iota}(O).$

Facts:

- convergent limit \(\infty\) unique limit;
- free field has convergent limit.

Theorem

 $\mathscr{B} \subset \mathscr{F}$ with $E: \mathscr{F} \to \mathscr{B}$. Then \mathscr{F} has convergent limit $\Longrightarrow \mathscr{B}$ has convergent limit.

1/5

 $\mathscr{A} \subset \mathscr{B}$ subsystem of observable nets with $\mathscr{F}(\mathscr{A}) = \mathscr{F}(\mathscr{B}) +$ technical hypotheses $(\mathscr{B}_{0,\iota}$ Haag dual with separable Hilbert space) \rightsquigarrow

- nets $\mathscr{A}_{0,\iota},\mathscr{B}_{0,\iota},\mathscr{F}(\mathscr{A})_{0,\iota},\mathscr{F}(\mathscr{B})_{0,\iota},\mathscr{F}(\mathscr{A}_{0,\iota}),\mathscr{F}(\mathscr{B}_{0,\iota});$
- groups $G(\mathscr{A})_{0,\iota}$, $N(\mathscr{A})_{0,\iota}$, $G(\mathscr{A}_{0,\iota})$, $H(\mathscr{A}_{0,\iota})$ and the same for \mathscr{B} .

Remember: $\mathscr{F}(\mathscr{A}) = \mathscr{F}(\mathscr{B}) \Rightarrow \mathscr{F}(\mathscr{A})_{0,\iota} = \mathscr{F}(\mathscr{B})_{0,\iota}$ because $G(\mathscr{B}) \subsetneq G(\mathscr{A})$.

2/5

Theorem

There holds:

- $N(\mathscr{B})_{0,\iota} \subset N(\mathscr{A})_{0,\iota}$ and $\phi : G(\mathscr{B}_{0,\iota}) \to G(\mathscr{A}_{0,\iota})$ satisfies $\phi(H(\mathscr{B}_{0,\iota})) \subset H(\mathscr{A}_{0,\iota})$ and $\tilde{\phi}(gN(\mathscr{B})_{0,\iota}) = gN(\mathscr{A})_{0,\iota}$;
- $\mathscr{F}(\mathscr{A}_{0,\iota}) = \mathscr{F}(\mathscr{B}_{0,\iota}) \implies \phi \text{ injective;}$
- $\mathscr{F}(\mathscr{A})_{0,\iota} = \mathscr{F}(\mathscr{B})_{0,\iota} \implies \mathsf{N}(\mathscr{B})_{0,\iota} = \mathsf{N}(\mathscr{A})_{0,\iota} \cap \mathsf{G}(\mathscr{B}), \mathsf{H}(\mathscr{B}_{0,\iota}) = \mathsf{H}(\mathscr{A}_{0,\iota}) \text{ and } \tilde{\phi} \text{ injective.}$

3/5

Question: when $\mathscr{F}(\mathscr{A}_{0,\iota}) = \mathscr{F}(\mathscr{B}_{0,\iota})$? Examples:

• $\mathscr{A} \subset \mathscr{B} \subset \mathscr{F} = \mathscr{F}(\mathscr{A}) = \mathscr{F}(\mathscr{B})$ dilation covariant \Longrightarrow

• $\mathscr{B} = \mathscr{F}(\mathscr{B})$ generated by *G*-multiplet of free scalar fields, $\mathscr{A} = \mathscr{B}^G \ (\Longrightarrow \mathscr{F}(\mathscr{A}) = \mathscr{B}, G(\mathscr{A}) = G)$. From [D'Antoni-M. '06]:

$$\mathscr{B}_{0,\iota} = \mathscr{F}(\mathscr{B})_{0,\iota} = \mathscr{F}(\mathscr{B}_{0,\iota})$$
 \cup
 \sqcup
 $\mathscr{A}_{0,\iota} \subset \mathscr{F}(\mathscr{A})_{0,\iota} = \mathscr{F}(\mathscr{A}_{0,\iota})$

Theorem

 $\mathscr{A} \subset \mathscr{B}$ with $\mathscr{F}(\mathscr{B}_{0,\iota})$ with trivial superselection structure. Assume $\exists Q$ such that $\mathscr{A}_{0,\iota} = \mathscr{F}(\mathscr{B})_{0,\iota}^Q$. Then $\mathscr{F}(\mathscr{A}_{0,\iota}) = \mathscr{F}(\mathscr{B}_{0,\iota})$.

In particular $\mathscr{A}_{0,\iota} = \mathscr{F}(\mathscr{B})_{0,\iota}^Q$ if $\mathscr{F}(\mathscr{A})_{0,\iota} = \mathscr{F}(\mathscr{B})_{0,\iota}$.

Theorem

 $\mathscr{A} \subset \mathscr{B}$ as above. Assume:

- $G(\mathcal{B})$ normal in $G(\mathcal{A})$;
- $\hat{\underline{\mathfrak{B}}} \subset \underline{\mathfrak{F}}(\mathscr{B})$ globally $G(\mathscr{A})$ -invariant.

Then $\mathscr{F}(\mathscr{A}_{0,\iota}) = \mathscr{F}(\mathscr{B}_{0,\iota})$.

In these hypotheses, $\mathscr{A}_{0,\iota}=\mathscr{F}(\mathscr{B})_{0,\iota}^{G(\mathscr{A})}\Longrightarrow$ apply above theorem to $Q=G(\mathscr{A})^-.$

4/5

5/5

Application:

- $\mathscr{C} \subset \mathscr{A}$ net generated by canonical local implementation of translations of $\mathscr{F}(\mathscr{A})$;
- $\mathcal{\tilde{E}}_{0,\iota} \subset \mathcal{A}_{0,\iota}$ net generated by canonical local implementation of translations of $\mathcal{F}(\mathcal{A}_{0,\iota})$;
- above assumptions;
- then $\tilde{\mathscr{C}}_{0,\iota} \subset \mathscr{C}_{0,\iota}$.

In short: scaling limit of net generated by energy-momentum tensor contains net generated by the energy-momentum tensor in the scaling limit.

Easy to build examples of theories with the split property but with scaling limit without the split property using [Mohrdieck '02].

Summary & Outlook

- Subsystems and Scaling Algebras are useful in understanding structural properties of superselection charges in QFT.
- First steps in the analysis of the interplay between them.
- In particular, sufficient conditions for

$$\mathscr{A}\subset\mathscr{B}\subset\mathscr{F}(\mathscr{A})=\mathscr{F}(\mathscr{B})\implies\mathscr{A}_{0,\iota}\subset\mathscr{B}_{0,\iota}\subset\mathscr{F}(\mathscr{A}_{0,\iota})=\mathscr{F}(\mathscr{B}_{0,\iota}).$$

Outlook

- ▶ Discuss conditions on \mathscr{A} , \mathscr{B} which entail hypotheses made on scaling limit nets (Haag duality for $\mathscr{B}_{0,\iota}$, triviality of superselection structure of $\mathscr{F}(\mathscr{B}_{0,\iota})$).
- ▶ Generalize to $\mathscr{F}(\mathscr{A}) \subseteq \mathscr{F}(\mathscr{B})$ ($\Longrightarrow \mathscr{F}(\mathscr{B}) = \mathscr{F}(\mathscr{A}) \hat{\otimes} \widetilde{\mathscr{F}}$).
- Applications to full quantum Noether theorem? Non-existence of infinite statistics sectors?

References I

- D. Buchholz, R. Verch Rev. Math. Phys., **7** (1995) and **10** (1997)
- R. Conti, S. Doplicher, J. E. Roberts Commun. Math. Phys., 218 (2001)
- S. Carpi, R. Conti Commun. Math. Phys., 217 (2001) and 253 (2005)
- C. D'Antoni, G. Morsella, R. Verch Ann. Henri Poincaré, 5 (2004)
- C. D'Antoni, G. Morsella Rev. Math. Phys., 18 (2006)
- R. Conti, G. Morsella arXiv:0808.1141