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Introduction

Introduction 1/2

It is a common belief that the structure of hadronic matter at small
scales can be interpreted in terms of charged particles (quarks and
gluons) which do not appear at large scales because of confinement.
The basis for this interpretation are:

quark model of hadronic spectrum
parton picture of DIS
perturbative treatment of QCD

Conceptual problem: One should not attribute a physical interpretation
to unobservable gauge fields. There may be another formulation of the
theory, in terms of a different set of fields, which yields the same
observables. Examples:

Schwinger model (2d massless QED)
bosonization of 3d Chern-Simons QED
Seiberg-Witten dualities in 4d SUSY YM
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Introduction

Introduction 2/2

The problem can in principle be solved by a version of the
Renormalization Group adapted to the Algebraic framework of QFT
(AQFT), in which a theory is defined entirely by its algebra of
observables.
In this way one obtains a (ultraviolet) Scaling Limit theory which
describes particles and symmetries which are regarded as the
particles and symmetries of the underlying theory at small scales.

Confinement is then unambiguously defined by comparing the charge
structures of the two theories.
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Algebraic Quantum Field Theory

Algebras of Local Observables 1/2

Main assumption of [Haag-Kastler ’64]: A QFT is fixed by the
knowledge of its local observables
Basic input: assignment of algebras A (O) of bounded (i.e. with
bounded spectrum) operators on the Hilbert space H to bounded
Minkowski space-time regions O, where (hermitian) A ∈ A (O)
represents an observable measurable in the region O
=⇒ if O1 and O2 spacelike separated, then for all A1 ∈ A (O1),
A2 ∈ A (O2)

[A1,A2] = 0 (Einstein causality)

Ω ∈H vacuum vector, such that
⋃

O A (O)Ω = H (cyclicity of the
vacuum)
GNS reconstruction theorem: knowledge of 〈Ω,AΩ〉 for all A allows
reconstruction of A (O), H , Ω (see Streater-Wightman reconstruction
for QFT)
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Algebraic Quantum Field Theory

Algebras of Local Observables 2/2

In concrete model: φ(x) combinations of the basic fields in the
Lagrangian which are observable, i.e.

[φ(x), φ(y)] = 0 if (x − y)2 < 0

Then (after all cut-offs are removed)

φ(f ) :=

∫
dx f (x)φ(x)

well defined (unbounded) operator on H for suitable f .
Define A (O) as the algebra generated by (bounded) operators eiφ(f )

for supp f ⊂ O.
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Algebraic Quantum Field Theory

States and representations
Physical states are represented by linear, positive, normalized
expectation functionals ϕ : A → C. Examples:

ϕ(A) := 〈Φ,AΦ〉 with (normalized) Φ ∈H , neutral states, since
H = A Ω

charged states: ϕ(A) := limx→∞,x2<0〈Φx ,AΦx〉 with Φx ∈H
representing a charge at the origin and an opposite charge at x
("shifting a compensating charge behind the moon"), can also be
induced by vectors in other representations of A

Problem: identify states of interest in particle physics

Definition (DHR selection criterion [Doplicher-Haag-Roberts ’71])
A state ϕ is DHR if ϕ(A) = ω(A) := 〈Ω,AΩ〉 for all A ∈ A (O1) with O1
spacelike from some sufficiently large O (i.e. ϕ is a localized excitation
of the vacuum)
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Algebraic Quantum Field Theory

Doplicher-Roberts reconstruction 1/2
One would like to have a more explicit description of DHR states

Theorem (DR reconstruction [Doplicher-Roberts ’90])
There exist local field algebras F (O) ⊃ A (O) generated by
charge carrying Bose/Fermi (bounded) operators
There exists a compact global gauge group G acting on F such
that A (O) is the invariant part of F (O)

The Hilbert space K := FΩ is made by vectors inducing all DHR
states, and if ϕ is localized in O there exist ψ1, . . . ψd ∈ F (O)
orthogonal isometries (ψ∗j ψk = δjk ) transforming like a
d-dimensional representation of G such that

ϕ(A) =
∑

j

〈Ω, ψjAψ∗j Ω〉

F and G are unique
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Algebraic Quantum Field Theory

Doplicher-Roberts reconstruction 2/2

Coherent subspaces of K (superselection sectors) are spanned by
vectors ψ∗j Ω for a fixed irreducible representation of G.
They provide representations of A disjoint from the fundamental one
(on H ) and represent the possible "values" of the charges of physical
states.

In concrete models:
F (O) generated by eiφ(f ) for all fields in the Lagrangian
G fixed by the Lagrangian
Bose/Fermi alternative put in by assumption

Main result of AQFT superselection theory: all this structure is fixed by
the knowledge of the local observables.
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Algebraic Renormalizaton Group

Conventional approach
Conventional approach to the Renormalization Group:

Pass from φ to renormalized field φλ(x) = Zλφ(λx)

Renormalization constants Zλ fixed by requiring e.g.
〈Ω, φλ(f )φλ(f )Ω〉 ∼ const as λ→ 0
in favourable cases (e.g. asymptotically free theories)

∃ lim
λ→0
〈Ω, φλ(x1) . . . φλ(xn)Ω〉 = 〈Ω0, φ0(x1) . . . φ0(xn)Ω0〉

new field φ0 defines the scaling limit of the theory
Problems:

in general Zλ → 0 due to singular ultraviolet behaviour
need to have detailed information on short-distance behaviour of
Zλ to control the limit (solvable in favourable cases through RG
equations and perturbative methods)
unobservable fields do not have direct physical interpretation

Gerardo Morsella (Roma 2) Confinement: A Mathematical Perspective LNFI-2011-1 13 / 28



Algebraic Renormalizaton Group

Conventional approach
Conventional approach to the Renormalization Group:

Pass from φ to renormalized field φλ(x) = Zλφ(λx)

Renormalization constants Zλ fixed by requiring e.g.
〈Ω, φλ(f )φλ(f )Ω〉 ∼ const as λ→ 0
in favourable cases (e.g. asymptotically free theories)

∃ lim
λ→0
〈Ω, φλ(x1) . . . φλ(xn)Ω〉 = 〈Ω0, φ0(x1) . . . φ0(xn)Ω0〉

new field φ0 defines the scaling limit of the theory
Problems:

in general Zλ → 0 due to singular ultraviolet behaviour
need to have detailed information on short-distance behaviour of
Zλ to control the limit (solvable in favourable cases through RG
equations and perturbative methods)
unobservable fields do not have direct physical interpretation

Gerardo Morsella (Roma 2) Confinement: A Mathematical Perspective LNFI-2011-1 13 / 28



Algebraic Renormalizaton Group

Scaling Algebras

Algebraic approach [Buchholz-Verch ’95]:
Zλ not needed
based only on observables and model independent

Main idea: what really matters is that c and ~ are kept fixed in the
rescaling =⇒ one should only consider observables that at scale λ
transfer to states 4-momentum of order λ−1 (uncertainty principle)
Typical example:

Aλ =

∫
dx g(x)U(λx)eiφλ(f )U(λx)∗, supp f + supp g ⊂ O

with Zλ arbitrary.
For the "wrong" Zλ, Aλ converges (in correlation functions) to a
multiple of the identity for λ→ 0
Scaling algebras A(O) generated by such functions λ→ Aλ
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Algebraic Renormalizaton Group

Scaling Limit

Consider state on the scaling algebra

ω0(A) := lim
λ→0
〈Ω,AλΩ〉

(technical problem: limit may exist only along subsequences)
Applying GNS reconstruction theorem to state ω0 one obtains new
local algebras A0(O), on new Hilbert space H0, with new vacuum
vector Ω0: the scaling limit theory
Morally, A0(O) is generated by eiφ0(f ) with supp f ⊂ O

Again: Scaling limit theory is fixed by the knowledge of the local
observables at scale λ = 1
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Preservation of charges and confinement

Scaling limit of charged fields
Field scaling algebra F and scaling limit field net F0 defined in analogy
to A, A0 [D’Antoni-M-Verch ’04]
∃G0 = G/N0 acting on F0 such that A0(O) is the invariant part of
F0(O)
General situation:

A
SL

yysssssssssss
DR

%%KKKKKKKKKKK

A0

DR
  A

AA
AA

AA
F

SL
��~~

~~
~~

~~

F (0) ⊇ F0

A0 may describe "more" charges than those obtained by scaling limit
of charges of A . These should be confined.
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Preservation of charges and confinement

Preservation of charges and confinement
Problem: find a canonical way of identifying charges of A which are
preserved in the limit

Theorem ([D’Antoni-M-Verch ’04])
The preserved charges are those associated to orthogonal isometries
ψj(λ) ∈ F (λO) such that ψj(λ)∗Ω has energy scaling as λ−1

This means that preserved charges are pointlike (their localization only
requires energy according to uncertainty principle, no internal
structure)⇒ they survive in the limit
This gives an intrinsic notion of confinement

Definition ([D’Antoni-M-Verch ’04])
A confined charge of the theory defined by A is a charge of A0 which
does not come from a preserved charge of A
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Example: the Schwinger model

The model

Schwinger model:
2d QED with massless fermions
algebra of observables A generated by 2d neutral free field φ of
mass m > 0 [Lowenstein-Swieca ’71]
no charged states⇒ F = A [Fröhlich-Morchio-Strocchi ’79]
interpreted as confinement of fermions: 2d electric potential rises
linearly
interpretation questionable form the point of view of observables
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Example: the Schwinger model

Scaling algebra
Consider scaling algebra elements

A(j)
λ =

∫
d2y gj(y) exp

(
i
∫

d2x fj(x − y)Zj,λφ(λx)
)

One has, if Zj,λ → Zj,0 and
∑

j Zj,0 f̂j(0) = 0,

〈Ω,A(1)
λ . . .A(n)

λ Ω〉 ∼
∫
. . .

∫ ∏
j

d2yj gj(yj)η(y1, . . . , yn)×

exp
(
− π

∫
dp
2|p|

∣∣∣∑
j

Zj,0ei(|p|y0
j −py1

j ) f̂j(|p|,p)
∣∣∣2 − π| logλ|

∣∣∣∑
j

Zj,λ f̂j(0)
∣∣∣2)

The presence of the logλ factor makes clear that the rate of
convergence of Zj,λ matters: if |Zj,λ − Zj,0| ∼ | logλ|−1/2 one gets a
nontrivial limit interpretable as the contribution of a classical gaussian
variable not visibile in the conventional approach, where Zj,λ = 1
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Example: the Schwinger model

Scaling limit and charged states 1/2
Scaling limit of A [Buchholz ’96]:

algebra A0 = W0 ⊗ C0, with W0 (Weyl) algebra generated by
eiφ0(f ), φ0 2d massless free field, and C0 a suitable abelian algebra
vacuum (on W0)

〈Ω0,eiφ0(f )Ω0〉 =

{
exp

[
− π

∫
R

dp
2|p| |̂f (|p|,p)|2

]
if f̂ (0) = 0

0 if f̂ (0) 6= 0

(non-regular because of infrared divergence)
Charged states on A0

ωq(eiφ0(f )) = eiL(f )〈Ω0,eiφ0(f )Ω0〉

where
L(f ) = −

√
π
2

∫
R dx(h(x)− h(−x))

∫ x
−∞ dyρ(y)

ĥ(p) = 1
2 [f̂ (|p|,p) + f̂ (−|p|,p)]

ρ function with support in [−r , r ] and such that
∫

R dxρ(x) = q
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Example: the Schwinger model

Scaling limit and charged states 2/2

Properties of ωq:
ωq is "localized": for supp f in the left/right spacelike complement
of [−r , r ]× {0}

L(f ) = ∓πqf̂ (0)⇒ ωq(eiφ0(f )) = 〈Ω0,eiφ0(f )Ω0〉

ωq has charge q: with jµ(x) = εµν∂
νφ0(x)∫

R
dx ωq(j0(x0, x)) = q

while the integral vanishes for all states induced by vectors in
W0Ω0

Thus F (0) ) F0 = A0 and the Schwinger model has a confined
charge
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Scaling Algebras and Field Renormalization

Local Algebras and Pointlike Fields

It is a quite general situation [Bostelmann ’05] that there exist
functionals σj on A and pointlike fields φj , j = 0,1,2, ... such that for all
γ > 0 there exists N such that for all A ∈ A (Or ) and all states σ of
energy less than E

σ
(

A−
N∑

j=0

σj(A)φj(0)
)

= O((Er)γ)

and typically σj(A) ∼ r [φj ]

The φj are the pointlike fields locally associated to the local algebras
and can be obtained as suitable limits of observables Ar ∈ A (Or ) as
r → 0
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Scaling Algebras and Field Renormalization

Scaling Limit of Pointlike Fields
Theorem ([Bostelmann-D’Antoni-M ’09])

A has pointlike fields⇒ A0 has pointlike fields
with φ

λ
:=
∑

j σj(Aλ)φj =
∑

j Zj,λφj , φ0 := limλ→0 φλ (in correlation
functions) is a pointlike field locally associated to A0

one has, e.g. for the 2-point function:

〈Ω0, φ0(x)φ′0(x ′)Ω0〉 = lim
λ→0

∑
j,k

Zj,λZ ′k ,λ〈Ω, φj(λx)φk (λx ′)Ω〉

It follows:
Mutliplicative renormalization of pointlike fields follows from first
principles and the renormalization constants Zλ are automatically
provided by the scaling algebra framework
scaling of OPE coefficients of fields can be interpreted as coupling
constants renormalization
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Summary and Outlook

Summary and Outlook
Summary:

in AQFT the (ultraviolet) scaling limit is defined in an intrinsic,
model independent fashion
can be used to formulate an intrinsic notion of charge
confinement, not relying on attaching a physical interpretation to
unobservable quantities, that can be tested in concrete models
provides a model independent framework for pointlike field
renormalization

Outlook:
study more realistic, interacting models in 2d (work in progress
with Bostelmann and Lechner)
since YM can be rigorously defined in bounded regions, maybe
possible to verify confinement in physically interesting models
can one understand deconfinement transition in this framework?
(work in slow progress)
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