Short Distance Analysis in Algebraic Quantum Field Theory I: General Framework

Gerardo Morsella

Tor Vergata University, Roma

Erwin Schrödinger Institute, Vienna June 27, 2012

Outline

- Introduction
- Scaling Algebras and Scaling Limit
- 3 Examples
- Back to Quantum Fields

1/3

Standard approach to study short distance limit in QFT (of a bosonic field ϕ of mass m and coupling constant g):

define rescaled field

$$\phi_{\lambda}(x) = Z_{\lambda}\phi(\lambda x), \qquad \lambda > 0$$

- renormalization constant Z_{λ} fixed by requiring that, e.g., $\langle \Omega, \phi_{\lambda}(x)\phi_{\lambda}(y)\Omega \rangle$ has finite limit for $\lambda \to 0$
- actual calculation of Z_{λ} can be performed via Renormalization Group (Callan-Symanzik) Equations, providing

$$Z_{\lambda} = \lambda \exp \left[- \int_{g}^{g_{\lambda}} rac{\gamma(g')}{eta(g')} dg'
ight], \quad \lambda rac{dg_{\lambda}}{d\lambda} = -eta(g_{\lambda})$$

 $\beta,\,\gamma$ functions obtained from coupling constant and field renormalization

2/3

- with this choice ϕ_{λ} has mass λm and coupling g_{λ}
- if $\beta(g_{\infty})=0$ and $(g-g_{\infty})\beta(g)<0$ (ultraviolet fixed point)

$$g_{\lambda} \to g_{\infty}, \qquad Z_{\lambda} \sim \lambda^{1+\gamma(g_{\infty})} \ \langle \Omega, \phi_{\lambda}(x_1) \dots \phi_{\lambda}(x_n) \Omega \rangle \to \langle \Omega_0, \phi_0(x_1) \dots \phi_0(x_n) \Omega_0 \rangle$$

 ϕ_0 massless field with coupling g_{∞}

e.g. for QCD one finds, perturbatively,

$$\beta(g) = -\frac{7}{(4\pi)^2}g^3 + O(g^5)$$

- $\implies g_{\infty} = 0$ (asymptotic freedom, important in explaining experimental results of deep inelastic lepton-hadron scattering)
- several other important applications (confinement, operator product expansions, critical phenomena...)

3/3

Drawbacks of the standard approach

- difficult to use when perturbation theory is not reliable
- model dependent
- Lagrangian may not be always present (e.g., 2d integrable models)
- basic fields in general not observable (fermionic, gauge fields...)
 interpretation of results may be ambiguous (e.g., confinement, see talk II)

Scaling Algerbas [Buchholz-Verch '95

Approach to RG and short distance limit in AQFT

- model independent
- fixed by the knowledge of the net of observables

3/3

Drawbacks of the standard approach

- difficult to use when perturbation theory is not reliable
- model dependent
- Lagrangian may not be always present (e.g., 2d integrable models)
- basic fields in general not observable (fermionic, gauge fields...)
 interpretation of results may be ambiguous (e.g., confinement, see talk II)

Scaling Algerbas [Buchholz-Verch '95]

Approach to RG and short distance limit in AQFT

- model independent
- fixed by the knowledge of the net of observables

Outline

- Introduction
- Scaling Algebras and Scaling Limit
- 3 Examples
- Back to Quantum Fields

Outline

- Introduction
- Scaling Algebras and Scaling Limit
- 3 Examples
- Back to Quantum Fields

Standard framework of AQFT:

- $\gamma \in \Gamma \mapsto U(\gamma)$ unitary strongly continous representation of geometric symmetry group $\mathbb{R}^{s+1} \subset \Gamma \subset \mathscr{P}$ acting on vacuum Hilbert space \mathscr{H} and with positive energy, $\alpha_{\gamma} := \operatorname{Ad} U(\gamma)$
- $\Omega \in \mathcal{H}$ vacuum vector, unique translation invariant vector: $U(x)\Omega = \Omega, x \in \mathbb{R}^{s+1}$
- $O \mapsto \mathscr{A}(O) \subset B(\mathscr{H})$ local net of von Neumann algebras indexed by open bounded sets $O \subset \mathbb{R}^{s+1}$, covariant w.r.t. U:

$$\alpha_{\gamma}(\mathscr{A}(O)) = \mathscr{A}(\gamma \cdot O), \quad s \in \Gamma,$$

and with Ω cyclic: $\overline{\mathcal{A}\Omega} = \mathcal{H}$

Further structures needed:

C*-algebra of continuous elements w.r.t. Γ

$$\mathfrak{A}(\textit{O}) := \{\textit{A} \in \mathscr{A}(\textit{O}) \, : \, \gamma \mapsto \alpha_{\gamma}(\textit{A}) \text{ norm-continuous} \}$$

$$\mathscr{A}(O) \subset \mathfrak{A}(O_1)^- \text{ if } \bar{O} \subset O_1$$

• space of elements with 4-momentum transfer in compact $\hat{O} \subset \mathbb{R}^{s+1}$

$$\hat{\mathscr{A}}(\hat{O}) := \{ A \in \mathfrak{A} \ : \ \alpha_f(A) = 0 \text{ for all } f \in L^1(\mathbb{R}^{s+1}), \text{ supp } \hat{f} \cap \hat{O} = \emptyset \}$$

$$\alpha_f(A) := \int_{\mathbb{R}^{s+1}} dx \, f(x) \alpha_X(A)$$

Renormalization Group and Scaling Algebras 1/2

Main issue in transferring RG to AQFT: absence of quantum fields used in the conventional approach to identify RG transformation

$$R_{\lambda}: \mathscr{A} \to \mathscr{A}, \qquad R_{\lambda}(\phi(x)) = \phi_{\lambda}(x), \qquad \lambda > 0$$

Key observation: RG scaling leaves fundamental constants c, \hbar unchanged

Abstract RG transformation

- c fixed $\implies R_{\lambda}(\mathscr{A}(O)) = \mathscr{A}(\lambda O)$
- \hbar fixed $\implies R_{\lambda}(\hat{\mathcal{A}}(\hat{\mathcal{O}})) = \hat{\mathcal{A}}(\lambda^{-1}\hat{\mathcal{O}})$
- definition of $Z_{\lambda} \implies \sup_{\lambda>0} \|R_{\lambda}\| < \infty$

Accordingly, for $A \in \mathfrak{A}(O)$,

- $R_{\lambda}(A) \in \mathfrak{A}(\lambda O)$
- $\lim_{x\to 0} \sup_{\lambda>0} \|\alpha_{\lambda x}(R_{\lambda}(A)) R_{\lambda}(A)\| = 0$

Renormalization Group and Scaling Algebras 1/2

Main issue in transferring RG to AQFT: absence of quantum fields used in the conventional approach to identify RG transformation

$$R_{\lambda}: \mathscr{A} \to \mathscr{A}, \qquad R_{\lambda}(\phi(x)) = \phi_{\lambda}(x), \qquad \lambda > 0$$

Key observation: RG scaling leaves fundamental constants c, \hbar unchanged

Abstract RG transformation

- c fixed $\implies R_{\lambda}(\mathscr{A}(O)) = \mathscr{A}(\lambda O)$
- \hbar fixed $\implies R_{\lambda}(\hat{\mathcal{A}}(\hat{\mathcal{O}})) = \hat{\mathcal{A}}(\lambda^{-1}\hat{\mathcal{O}})$
- definition of $Z_{\lambda} \implies \sup_{\lambda>0} \|R_{\lambda}\| < \infty$

Accordingly, for $A \in \mathfrak{A}(O)$,

- $R_{\lambda}(A) \in \mathfrak{A}(\lambda O)$
- $\lim_{x\to 0} \sup_{\lambda>0} \|\alpha_{\lambda x}(R_{\lambda}(A)) R_{\lambda}(A)\| = 0$

Renormalization Group and Scaling Algebras 1/2

Main issue in transferring RG to AQFT: absence of quantum fields used in the conventional approach to identify RG transformation

$$R_{\lambda}: \mathscr{A} \to \mathscr{A}, \qquad R_{\lambda}(\phi(x)) = \phi_{\lambda}(x), \qquad \lambda > 0$$

Key observation: RG scaling leaves fundamental constants c, \hbar unchanged

Abstract RG transformation

- c fixed $\implies R_{\lambda}(\mathscr{A}(O)) = \mathscr{A}(\lambda O)$
- \hbar fixed $\implies R_{\lambda}(\hat{\mathcal{A}}(\hat{O})) = \hat{\mathcal{A}}(\lambda^{-1}\hat{O})$
- definition of $Z_{\lambda} \implies \sup_{\lambda>0} \|R_{\lambda}\| < \infty$

Accordingly, for $A \in \mathfrak{A}(O)$,

- $R_{\lambda}(A) \in \mathfrak{A}(\lambda O)$
- $\lim_{x\to 0} \sup_{\lambda>0} \|\alpha_{\lambda x}(R_{\lambda}(A)) R_{\lambda}(A)\| = 0$

Renormalization Group and Scaling Algebras 2/2

Spirit of the algebraic approach: physical information is encoded in the net, not in individual elements \implies all choices of $(R_{\lambda})_{\lambda>0}$ should be equivalent \implies we can consider them all the same time

Definition ([Buchholz, Verch '95])

In the C*-algebra $B(\mathbb{R}_+, \mathscr{A})$ of bounded functions $\lambda \in \mathbb{R}_+ \mapsto \underline{A}_{\lambda} \in \mathscr{A}$, with:

- pointwise defined operations
- \bullet norm $\|\underline{A}\| := \sup_{\lambda > 0} \|\underline{A}_{\lambda}\|$
- Γ -action $\underline{\alpha}_{\gamma}(\underline{A})_{\lambda} := \alpha_{\gamma_{\lambda}}(\underline{A}_{\lambda}), (x, \Lambda)_{\lambda} := (\lambda x, \Lambda)$

the local scaling algebra attached to the region O is

$$\underline{\mathfrak{A}}(O) := \{\underline{A} \in B(\mathbb{R}_+, \mathscr{A}) \, : \, \underline{A}_{\lambda} \in \mathscr{A}(\lambda O), \lim_{\gamma \to e} \|\underline{\alpha}_{\gamma}(\underline{A}) - \underline{A}\| = 0\}$$

 $O \mapsto \underline{\mathfrak{A}}(O)$ is a local net, covariant w.r.t. Γ -action $\underline{\alpha}$ $\mathfrak{A} := \overline{\Box}_{\sigma} \mathfrak{A}(O)$ scaling algebra

Renormalization Group and Scaling Algebras 2/2

Spirit of the algebraic approach: physical information is encoded in the net, not in individual elements \implies all choices of $(R_{\lambda})_{\lambda>0}$ should be equivalent \implies we can consider them all the same time

Definition ([Buchholz, Verch '95])

In the C*-algebra $\mathcal{B}(\mathbb{R}_+,\mathscr{A})$ of bounded functions $\lambda \in \mathbb{R}_+ \mapsto \underline{\mathcal{A}}_{\lambda} \in \mathscr{A}$, with:

- pointwise defined operations
- $\bullet \mathsf{ norm } \|\underline{A}\| := \mathsf{sup}_{\lambda > 0} \|\underline{A}_{\lambda}\|$
- Γ -action $\underline{\alpha}_{\gamma}(\underline{A})_{\lambda} := \alpha_{\gamma_{\lambda}}(\underline{A}_{\lambda}), (x, \Lambda)_{\lambda} := (\lambda x, \Lambda)$

the local scaling algebra attached to the region O is

$$\underline{\mathfrak{A}}(\textit{O}) := \{\underline{\textit{A}} \in \textit{B}(\mathbb{R}_+,\mathscr{A}) \, : \, \underline{\textit{A}}_{\lambda} \in \mathscr{A}(\lambda \textit{O}), \lim_{\gamma \to \textit{e}} \|\underline{\alpha}_{\gamma}(\underline{\textit{A}}) - \underline{\textit{A}}\| = 0\}$$

 $O \mapsto \underline{\mathfrak{A}}(O)$ is a local net, covariant w.r.t. Γ-action $\underline{\alpha}$ $\underline{\mathfrak{A}} := \overline{\bigcup_{O} \underline{\mathfrak{A}}(O)}$ scaling algebra

1/2

 φ (locally normal) state on $\mathscr{A} \leadsto \underline{\varphi}_{\lambda}(\underline{A}) := \varphi(\underline{A}_{\lambda})$ states on $\underline{\mathfrak{A}}$,

 $\mathsf{SL}^{\mathscr{A}}(\varphi) := \{\mathsf{weak^*} \ \mathsf{limit} \ \mathsf{points} \ \mathsf{of} \ (\underline{\varphi}_{\lambda})_{\lambda > 0} \ \mathsf{for} \ \lambda \to 0\}.$

Theorem ([Buchholz, Verch '95])

- $SL^{\mathscr{A}}(\varphi) = (\underline{\omega}_{0,\iota})_{\iota \in I}$ is independent of φ .
- $\underline{\omega}_{0,\iota} \in \mathsf{SL}^{\mathscr{A}}$ with GNS representation $(\pi_{0,\iota}, \mathscr{H}_{0,\iota}, \Omega_{0,\iota})$. Then $\mathscr{A}_{0,\iota}(O) := \pi_{0,\iota}(\underline{\mathfrak{A}}(O))''$ is a net of local algebras with Γ action defined by

$$U_{0,\iota}(\gamma)\pi_{0,\iota}(\underline{A})\Omega_{0,\iota}=\pi_{0,\iota}(\underline{\alpha}_{\gamma}(\underline{A}))\Omega_{0,\iota}$$

(If s=1 the vacuum $\Omega_{0,\iota}$ may be not unique, i.e. $\mathscr{A}_{0,\iota}$ not irreducible)

 $O \mapsto \mathscr{A}_{0,\iota}(O)$ is the scaling limit net of \mathscr{A} .

Physical interpretation: $\mathscr{A}_{0,\iota}$ describes the short-distance (i.e.

Gerardo Morsella (Roma 2)

◆ロト ◆問ト ◆三ト ◆三ト ●1章 かなべ

1/2

 $\varphi \text{ (locally normal) state on } \mathscr{A} \leadsto \underline{\varphi}_{\lambda}(\underline{A}) := \varphi(\underline{A}_{\lambda}) \text{ states on } \underline{\mathfrak{A}},$

 $\operatorname{SL}^{\mathscr{A}}(\varphi) := \{ \operatorname{weak^* limit points of } (\underline{\varphi}_{\lambda})_{\lambda > 0} \text{ for } \lambda \to 0 \}.$

Theorem ([Buchholz, Verch '95])

- $SL^{\mathscr{A}}(\varphi) = (\underline{\omega}_{0,\iota})_{\iota \in I}$ is independent of φ .
- $\underline{\omega}_{0,\iota} \in \mathsf{SL}^{\mathscr{A}}$ with GNS representation $(\pi_{0,\iota}, \mathscr{H}_{0,\iota}, \Omega_{0,\iota})$. Then $\mathscr{A}_{0,\iota}(O) := \pi_{0,\iota}(\underline{\mathfrak{A}}(O))''$ is a net of local algebras with Γ action defined by

$$U_{0,\iota}(\gamma)\pi_{0,\iota}(\underline{A})\Omega_{0,\iota}=\pi_{0,\iota}(\underline{\alpha}_{\gamma}(\underline{A}))\Omega_{0,\iota}$$

(If s=1 the vacuum $\Omega_{0,\iota}$ may be not unique, i.e. $\mathscr{A}_{0,\iota}$ not irreducible)

 $O \mapsto \mathscr{A}_{0,\iota}(O)$ is the scaling limit net of \mathscr{A} . Physical interpretation: $\mathscr{A}_{0,\iota}$ describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

1/2

 φ (locally normal) state on $\mathscr{A} \leadsto \underline{\varphi}_{\lambda}(\underline{A}) := \varphi(\underline{A}_{\lambda})$ states on $\underline{\mathfrak{A}}$,

 $\mathsf{SL}^{\mathscr{A}}(\varphi) := \{\mathsf{weak^*} \ \mathsf{limit} \ \mathsf{points} \ \mathsf{of} \ (\underline{\varphi}_{\lambda})_{\lambda > 0} \ \mathsf{for} \ \lambda \to 0\}.$

Theorem ([Buchholz, Verch '95])

- $SL^{\mathscr{A}}(\varphi) = (\underline{\omega}_{0,\iota})_{\iota \in I}$ is independent of φ .
- $\underline{\omega}_{0,\iota} \in \mathsf{SL}^{\mathscr{A}}$ with GNS representation $(\pi_{0,\iota}, \mathscr{H}_{0,\iota}, \Omega_{0,\iota})$. Then $\mathscr{A}_{0,\iota}(O) := \pi_{0,\iota}(\underline{\mathfrak{A}}(O))''$ is a net of local algebras with Γ action defined by

$$U_{0,\iota}(\gamma)\pi_{0,\iota}(\underline{A})\Omega_{0,\iota}=\pi_{0,\iota}(\underline{\alpha}_{\gamma}(\underline{A}))\Omega_{0,\iota}$$

(If s=1 the vacuum $\Omega_{0,\iota}$ may be not unique, i.e. $\mathscr{A}_{0,\iota}$ not irreducible)

 $O \mapsto \mathscr{A}_{0,\iota}(O)$ is the scaling limit net of \mathscr{A} .

Physical interpretation: $\mathscr{A}_{0,\iota}$ describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

2/2

Classification of short-distance behavior:

- ullet \mathscr{A} has trivial scaling limit if $\mathscr{A}_{0,\iota}=\mathbb{C}\mathbb{1}$ for all $\underline{\omega}_{0,\iota}$
- $\mathscr A$ has unique quantum scaling limit if all nets $\mathscr A_{0,\iota}$ are isomorphic and $\neq \mathbb C\mathbb 1$
- A has degenerate scaling limit otherwise

Theorem ([Buchholz, Verch '95])

If \mathscr{A} has unique quantum scaling limit, then $\exists (\delta_{\mu}^{(0,\iota)})_{\mu>0}$ automorphisms of $\mathscr{A}_{0,\iota}$ s.t.

$$\delta_{\mu}^{(0,\iota)}(\mathscr{A}_{0,\iota}(O)) = \mathscr{A}_{0,\iota}(\mu O), \quad \delta_{\mu}^{(0,\iota)}\alpha_{\gamma}^{(0,\iota)} = \alpha_{\gamma_{\mu}}^{(0,\iota)}\delta_{\mu}^{(0,\iota)}$$

(In general $\mu \mapsto \delta_{\mu}^{(0,\iota)}$ not a representation of dilation group)

 $\delta_{\mu}^{(0,\iota)}$ induced by the fact that if $\underline{\sigma}_{\mu}(\underline{A})_{\lambda}:=\underline{A}_{\mu\lambda},\underline{A}\in\underline{\mathfrak{A}}$, scaling limit states $\underline{\omega}_{0,\iota}$ and $\underline{\omega}_{0,\iota}\circ\underline{\sigma}_{\mu}$ give rise to isomorphic nets

2/2

Classification of short-distance behavior:

- ullet \mathscr{A} has trivial scaling limit if $\mathscr{A}_{0,\iota}=\mathbb{C}\mathbb{1}$ for all $\underline{\omega}_{0,\iota}$
- $\mathscr A$ has unique quantum scaling limit if all nets $\mathscr A_{0,\iota}$ are isomorphic and $\neq \mathbb C\mathbb 1$
- A has degenerate scaling limit otherwise

Theorem ([Buchholz, Verch '95])

If \mathscr{A} has unique quantum scaling limit, then $\exists (\delta_{\mu}^{(0,\iota)})_{\mu>0}$ automorphisms of $\mathscr{A}_{0,\iota}$ s.t.

$$\delta_{\mu}^{(0,\iota)}(\mathscr{A}_{0,\iota}(O)) = \mathscr{A}_{0,\iota}(\mu O), \quad \delta_{\mu}^{(0,\iota)}\alpha_{\gamma}^{(0,\iota)} = \alpha_{\gamma\mu}^{(0,\iota)}\delta_{\mu}^{(0,\iota)}$$

(In general $\mu \mapsto \delta_{\mu}^{(0,\iota)}$ not a representation of dilation group)

 $\delta_{\mu}^{(0,\iota)}$ induced by the fact that if $\underline{\sigma}_{\mu}(\underline{A})_{\lambda}:=\underline{A}_{\mu\lambda},\underline{A}\in\underline{\mathfrak{A}}$, scaling limit states $\underline{\omega}_{0,\iota}$ and $\underline{\omega}_{0,\iota}\circ\underline{\sigma}_{\mu}$ give rise to isomorphic nets

Outline

- Introduction
- Scaling Algebras and Scaling Limit
- 3 Examples
- Back to Quantum Fields

Dilation invariant theories

Local net \mathscr{A} :

satisfies Haag-Swieca compactness if

$$A \in \mathscr{A}(O) \mapsto E(\hat{O})A\Omega \in \mathscr{H}$$

is compact for all O, \hat{O}

• is dilation invariant if $\exists \mu \in \mathbb{R}^+ \mapsto \delta_{\mu} \in \operatorname{Aut}(\mathscr{A})$ representation of dilation group s.t.

$$\delta_{\mu}(\mathscr{A}(\mathcal{O})) = \mathscr{A}(\mu\mathcal{O}), \quad \delta_{\mu}\alpha_{\gamma} = \alpha_{\gamma_{\mu}}\delta_{\mu}, \quad \omega\delta_{\mu} = \omega$$

Theorem ([Buchholz, Verch '95]

 \mathscr{A} dilation invariant and satisfying Haag-Swieca (e.g. massless free field [Buchholz, Jacobi '87]) $\implies \mathscr{A}_{0,\iota} \simeq \mathscr{A}$ through

$$\phi(\pi_{0,\iota}(\underline{A})) = \operatorname{w-lim}_{\kappa} \delta_{\lambda_{\kappa}^{-1}}(\underline{A}_{\lambda_{\kappa}})$$

In particular A has unique quantum scaling limit

Dilation invariant theories

Local net \mathscr{A} :

satisfies Haag-Swieca compactness if

$$A \in \mathscr{A}(O) \mapsto E(\hat{O})A\Omega \in \mathscr{H}$$

is compact for all O, \hat{O}

• is dilation invariant if $\exists \mu \in \mathbb{R}^+ \mapsto \delta_{\mu} \in Aut(\mathscr{A})$ representation of dilation group s.t.

$$\delta_{\mu}(\mathscr{A}(\mathcal{O})) = \mathscr{A}(\mu \mathcal{O}), \quad \delta_{\mu}\alpha_{\gamma} = \alpha_{\gamma_{\mu}}\delta_{\mu}, \quad \omega\delta_{\mu} = \omega$$

Theorem ([Buchholz, Verch '95])

 \mathscr{A} dilation invariant and satisfying Haag-Swieca (e.g. massless free field [Buchholz, Jacobi '87]) $\implies \mathscr{A}_{0,\iota} \simeq \mathscr{A}$ through

$$\phi(\pi_{0,\iota}(\underline{A})) = \operatorname{w-lim}_{\kappa} \delta_{\lambda_{\kappa}^{-1}}(\underline{A}_{\lambda_{\kappa}})$$

In particular A has unique quantum scaling limit

Free scalar field for s = 2, 3

Theorem ([Buchholz, Verch '97])

 $\mathscr{A}^{(m)}$ net generated by mass $m \geq 0$ free scalar field in s = 2,3 spatial dimension $\implies \mathscr{A}_{0}^{(m)} \simeq \mathscr{A}^{(0)}$. In particular $\mathscr{A}^{(m)}$ has unique quantum scaling limit

• existence of representation of $\mathcal{A}^{(m)}$ on $\mathcal{H}^{(0)}$ such that

$$\mathcal{A}^{(m)}(O_0) = \mathcal{A}^{(0)}(O_0)$$

• massless dilations δ_{λ} act on $\mathscr{A}^{(m)}$

$$\phi(\pi_{0,\iota}(\underline{A})) := \operatorname{w-lim}_{\kappa} \delta_{\lambda_{\kappa}^{-1}}(\underline{A}_{\lambda_{\kappa}})$$

Free scalar field for s = 2,3

Theorem ([Buchholz, Verch '97])

 $\mathscr{A}^{(m)}$ net generated by mass $m\geq 0$ free scalar field in s=2,3 spatial dimension $\Longrightarrow \mathscr{A}_{0,\iota}^{(m)}\simeq \mathscr{A}^{(0)}$. In particular $\mathscr{A}^{(m)}$ has unique quantum scaling limit

Main ingredient: local normality of $\omega^{(m)}$ w.r.t. $\omega^{(0)}$ [Eckmann, Fröhlich '74]

• existence of representation of $\mathscr{A}^{(m)}$ on $\mathscr{H}^{(0)}$ such that

$$\mathscr{A}^{(m)}(O_0) = \mathscr{A}^{(0)}(O_0)$$

for double cones O_0 based on t = 0 plane

• massless dilations δ_{λ} act on $\mathscr{A}^{(m)}$

Isomorphism $\mathscr{A}_{0,\iota}^{(m)} \simeq \mathscr{A}^{(0)}$ defined through

$$\phi(\pi_{0,\iota}(\underline{A})) := \operatorname{w-lim}_{\kappa} \delta_{\lambda_{\kappa}^{-1}}(\underline{A}_{\lambda_{\kappa}})$$

Lutz model

Local covariant net \mathscr{A}_L defined by:

- ϕ generalized free scalar field with mass measure $d\rho(m)=dm$ in s=2,3
- $\mathscr{A}_L(O) := \{ \exp(i\Box^{n(O)}\phi(f)) : \operatorname{supp} f \subset O \}'' \text{ with } n(O) \to +\infty$ monotonically as "radius of O" $\to 0$

Morally: $\mathscr{A}_L(\lambda O)$ contains only observables with energy transfer growing faster than λ^{-1} (apart from $c\mathbb{1}$) \Longrightarrow RG orbits $\lambda \mapsto R_{\lambda}(A)$ converge to multiples of $\mathbb{1}$

Theorem ([Lutz '97])

AL has trivial scaling limit

Lutz model

Local covariant net \mathscr{A}_L defined by:

- ϕ generalized free scalar field with mass measure $d\rho(m)=dm$ in s=2,3
- $\mathscr{A}_L(O) := \{ \exp(i\Box^{n(O)}\phi(f)) : \operatorname{supp} f \subset O \}'' \text{ with } n(O) \to +\infty$ monotonically as "radius of O" $\to 0$

Morally: $\mathscr{A}_L(\lambda O)$ contains only observables with energy transfer growing faster than λ^{-1} (apart from $c\mathbb{1}$) \Longrightarrow RG orbits $\lambda \mapsto R_{\lambda}(A)$ converge to multiples of $\mathbb{1}$

Theorem ([Lutz '97])

A has trivial scaling limit

 \mathscr{A}_m 2d local net with mass m > 0 and factorizing S-matrix S [Lechner '08]:

- $\mathscr{A}_m(W_{L/R})$ generated by Zamolodchikov-Schroer wedge-local fields ϕ_m , ϕ'_m
- non-trivial local algebras obtained as intersections of wedge algebras

Scaling limit of \mathcal{A}_m difficult to compute: local operators not sufficiently explicit

Some information can be obtained through the scaling limit of wedge local fields

 \mathscr{A}_m 2d local net with mass m > 0 and factorizing S-matrix S [Lechner '08]:

- $\mathscr{A}_m(W_{L/R})$ generated by Zamolodchikov-Schroer wedge-local fields ϕ_m , ϕ'_m
- non-trivial local algebras obtained as intersections of wedge algebras

Scaling limit of \mathcal{A}_m difficult to compute: local operators not sufficiently explicit

Some information can be obtained through the scaling limit of wedge local fields

2/4

Theorem ([Bostelmann, Lechner, M. '11])

If $f_j \in \mathscr{S}(\mathbb{R}^2)$ are derivatives of test functions and $f_{j,\lambda}(x) = \lambda^{-2} f_j(\lambda^{-1} x)$

$$\lim_{\lambda \to 0} \langle \Omega_m, \phi_m^{[l]}(f_{1,\lambda}) \dots \phi_m^{[l]}(f_{n,\lambda}) \Omega_m \rangle = \langle \Omega_0, \phi_0^{[l]}(f_1) \dots \phi_0^{[l]}(f_n) \Omega_0 \rangle$$

with ϕ_0 the Zamolodchikov-Schroer field associated to

$$S_0(p,q) := \lim_{\lambda o 0^+} S_{\lambda m}(p,q) = egin{cases} S(\infty) = \pm 1 & pq < 0 \ S(0) & p = q = 0 \ S(\log p - \log q) & p > 0, q > 0 \ S(\log (-q) - \log (-p)) & p < 0, q < 0 \end{cases}$$
 $S_m(p,q) = S(heta_m(p) - heta_m(q))$

Massless model defined by ϕ_0 is at least a subnet (tensor factor?) of the complete scaling limit and it is also interesting in its own right

2/4

Theorem ([Bostelmann, Lechner, M. '11])

If $f_j \in \mathscr{S}(\mathbb{R}^2)$ are derivatives of test functions and $f_{j,\lambda}(x) = \lambda^{-2} f_j(\lambda^{-1} x)$

$$\lim_{\lambda \to 0} \langle \Omega_m, \phi_m^{[l]}(f_{1,\lambda}) \dots \phi_m^{[l]}(f_{n,\lambda}) \Omega_m \rangle = \langle \Omega_0, \phi_0^{[l]}(f_1) \dots \phi_0^{[l]}(f_n) \Omega_0 \rangle$$

with ϕ_0 the Zamolodchikov-Schroer field associated to

$$S_0(p,q) := \lim_{\lambda o 0^+} S_{\lambda m}(p,q) = egin{cases} S(\infty) = \pm 1 & pq < 0 \ S(0) & p = q = 0 \ S(\log p - \log q) & p > 0, q > 0 \ S(\log (-q) - \log (-p)) & p < 0, q < 0 \end{cases}$$
 $S_m(p,q) = S(heta_m(p) - heta_m(q))$

Massless model defined by ϕ_0 is at least a subnet (tensor factor?) of the complete scaling limit and it is also interesting in its own right

3/4

 $S_0(p,q)=\pm 1$ for $pq<0 \implies \phi_0$ splits into (translation-dilation covariant) chiral fields on the real line

$$\varphi(x) = \int_0^{+\infty} dp \big(e^{-ipx} z(p) + e^{ipx} z^{\dagger}(p) \big), \qquad x \in \mathbb{R}$$

with z, z^{\dagger} Zamolodchikov operators defined by S_0 :

$$\begin{split} z(p)z(q) &= S_0(p,q)z(q)z(p) \\ z(p)z^\dagger(q) &= S_0(q,p)z^\dagger(q)z(p) + \frac{1}{p}\delta(p-q) \end{split} \qquad \stackrel{\textbf{p},\textbf{q}}{\longrightarrow} 0 \end{split}$$

"Half-line" and interval algebras

$$\mathcal{M}_{+} := \{e^{i\varphi(f)} : f \in \mathcal{S}_{\mathbb{R}}(0, +\infty)\}'', \quad \mathcal{M}_{-} := \mathcal{M}'_{+}$$
$$\mathcal{A}(a, b) := \alpha_{a}(\mathcal{M}_{+}) \cap \alpha_{b}(\mathcal{M}_{-})$$

 $I \mapsto \mathscr{A}(I)$ local translation-dilation-reflection covariant net on \mathbb{R} Question: are they non-trivial?

3/4

 $S_0(p,q)=\pm 1$ for $pq<0 \implies \phi_0$ splits into (translation-dilation covariant) chiral fields on the real line

$$\varphi(x) = \int_0^{+\infty} dp \big(e^{-ipx} z(p) + e^{ipx} z^{\dagger}(p) \big), \qquad x \in \mathbb{R}$$

with z, z^{\dagger} Zamolodchikov operators defined by S_0 :

$$\begin{split} z(p)z(q) &= S_0(p,q)z(q)z(p) \\ z(p)z^\dagger(q) &= S_0(q,p)z^\dagger(q)z(p) + \frac{1}{p}\delta(p-q) \end{split} \qquad \begin{matrix} p,q>0 \end{matrix}$$

"Half-line" and interval algebras:

$$\mathscr{M}_+ := \{e^{i\varphi(f)} : f \in \mathscr{S}_{\mathbb{R}}(0,+\infty)\}'', \quad \mathscr{M}_- := \mathscr{M}'_+$$

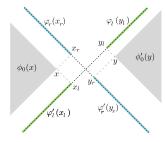
$$\mathscr{A}(a,b) := \alpha_a(\mathscr{M}_+) \cap \alpha_b(\mathscr{M}_-)$$

 $I \mapsto \mathscr{A}(I)$ local translation-dilation-reflection covariant net on \mathbb{R} Question: are they non-trivial?

 $\varphi_{l/r}, \mathscr{A}_{l/r}$ copies of φ, \mathscr{A} on left/right light ray

Theorem ([BLM '11])

- $\phi_0(x) \cong \frac{1}{2\pi} (\varphi_I'(x_I) \otimes \mathbb{1} + S(\infty)^{N_I} \otimes \varphi_I(x_I))$



4/4

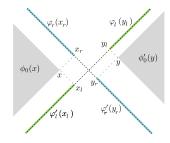
Examples of chiral nets:

- for S = 1 we have the free U(1) current:
 - $\triangleright \Omega$ cyclic and separating for $\mathcal{A}(I)$
 - conformal symmetry with c = ?
- for S = -1 we have the critical Ising model
 - $\mathcal{H}_{loc} = \mathcal{A}(I)\Omega$ states of even particle number
 - ► A(I) generted by energy density of free Fermi field
 - ▶ conformal symmetry on \mathcal{H}_{loc} with c = 1/2

 $\varphi_{l/r}, \mathscr{A}_{l/r}$ copies of φ, \mathscr{A} on left/right light ray

Theorem ([BLM '11])

- $\begin{array}{l} \bullet \ \phi_0(x) \cong \\ \frac{1}{2\pi} \left(\varphi_I'(x_I) \otimes \mathbb{1} + S(\infty)^{N_I} \otimes \varphi_r(x_r) \right) \end{array}$



4/4

Examples of chiral nets:

- for S = 1 we have the free U(1) current:
 - Ω cyclic and separating for $\mathcal{A}(I)$
 - conformal symmetry with c = 1
- for S = -1 we have the critical Ising model
 - $\mathcal{H}_{loc} = \mathcal{A}(I)\Omega$ states of even particle number
 - ► A(I) generted by energy density of free Fermi field
 - conformal symmetry on \mathcal{H}_{loc} with c = 1/2

Outline

- Introduction
- Scaling Algebras and Scaling Limit
- 3 Examples
- Back to Quantum Fields

1/3

Basic idea [Haag, Ojima '96]: assume

$$\Sigma_{E,r} = \{ \sigma \upharpoonright \mathscr{A}(O_r) \, : \, \sigma \in P(E)B(\mathscr{H})_*P(E) \}$$

is compact and "does not change" for small r

- ⇒ "finite" number of states describe short distance behaviour
- \implies basis (ϕ_j) of $\Sigma_{E,r}^*$ are pointlike fields.

Quantitative version:

- $\Sigma = B(\mathcal{H})_*$, $C^{\infty}(\Sigma) = \bigcap_{\ell > 0} R^{\ell} \Sigma R^{\ell}$, $R = (1 + H)^{-1}$;
- $\|\sigma\|^{(\ell)} = \|R^{-\ell}\sigma R^{-\ell}\|, \ \sigma \in C^{\infty}(\Sigma);$
- $\Xi : \sigma \in C^{\infty}(\Sigma) \to \sigma \in \Sigma$.

Definition ([Bostelmann '05])

 $O \to \mathscr{A}(O)$ satisfies the microscopic phase space condition I if $\forall \gamma > 0$ $\exists \ell > 0, \ \psi : C^{\infty}(\Sigma) \to \Sigma$ of finite rank such that

$$\|\psi\|^{(\ell)} < \infty,$$

$$(O_{\ell})\|^{(\ell)} = o(r^{\gamma})$$

1/3

Basic idea [Haag, Ojima '96]: assume

$$\Sigma_{E,r} = \{ \sigma \upharpoonright \mathscr{A}(O_r) : \sigma \in P(E)B(\mathscr{H})_*P(E) \}$$

is compact and "does not change" for small r

- ⇒ "finite" number of states describe short distance behaviour
- \implies basis (ϕ_i) of $\Sigma_{E,r}^*$ are pointlike fields.

Quantitative version:

- $\Sigma = B(\mathcal{H})_*$, $C^{\infty}(\Sigma) = \bigcap_{\ell > 0} R^{\ell} \Sigma R^{\ell}$, $R = (1 + H)^{-1}$;
- $\|\sigma\|^{(\ell)} = \|R^{-\ell}\sigma R^{-\ell}\|, \ \sigma \in C^{\infty}(\Sigma);$
- Ξ : $\sigma \in C^{\infty}(\Sigma) \to \sigma \in \Sigma$.

Definition ([Bostelmann '05])

 $O \to \mathscr{A}(O)$ satisfies the microscopic phase space condition I if $\forall \gamma > 0$, $\exists \ell > 0$, $\psi : C^{\infty}(\Sigma) \to \Sigma$ of finite rank such that

$$\|\psi\|^{(\ell)} < \infty,$$

 $\|(\Xi - \psi)(\cdot) \upharpoonright \mathscr{A}(O_r)\|^{(\ell)} = o(r^{\gamma}).$

2/3

rank ψ minimal, $\psi = \sum_{j} \sigma_{j} \phi_{j}$, $\sigma_{j} \in \Sigma$, $\phi_{j} \in C^{\infty}(\Sigma)^{*}$. Define $\Phi_{\gamma} := \operatorname{span}\{\phi_{j}\}$. $\Phi_{\gamma} \subseteq \Phi_{\gamma'}$ if $\gamma < \gamma'$.

Theorem ([Bostelmann '05])

- Φ_{γ} independent of ψ ;
- $\phi \in \Phi_{\gamma} \implies \exists A_r \in \mathscr{A}(O_r), \ell > 0$ such that

$$\|\phi - A_r\|^{(\ell)} = O(r).$$

$$\phi(f) = \int dx \, f(x) U(x) \phi U(x)^*, \qquad \phi \in \Phi_{\gamma},$$

Wightman field on $C^{\infty}(H) = \bigcap_{\ell > 0} R^{\ell} \mathcal{H}$, and $\phi(f) \eta \mathscr{A}(O)$. ϕ free: $\Phi_0 = \mathbb{C}\mathbb{1}$, $\Phi_1 = \operatorname{span}\{\mathbb{1}, \phi\}$, $\Phi_2 = \operatorname{span}\{\Phi_1, \partial_{\mu}\phi, : \phi^2:\}$, ...

2/3

rank ψ minimal, $\psi = \sum_j \sigma_j \phi_j$, $\sigma_j \in \Sigma$, $\phi_j \in C^{\infty}(\Sigma)^*$. Define $\Phi_{\gamma} := \operatorname{span}\{\phi_j\}$. $\Phi_{\gamma} \subseteq \Phi_{\gamma'}$ if $\gamma < \gamma'$.

Theorem ([Bostelmann '05])

- Φ_{γ} independent of ψ ;
- $\phi \in \Phi_{\gamma} \implies \exists A_r \in \mathscr{A}(O_r), \ell > 0$ such that

$$\|\phi - A_r\|^{(\ell)} = O(r).$$

$$\phi(f) = \int dx \, f(x) U(x) \phi U(x)^*, \qquad \phi \in \Phi_{\gamma},$$

Wightman field on $C^{\infty}(H) = \bigcap_{\ell>0} R^{\ell} \mathcal{H}$, and $\phi(f)\eta \mathcal{A}(O)$. ϕ free: $\Phi_0 = \mathbb{C}\mathbb{1}$, $\Phi_1 = \text{span}\{\mathbb{1}, \phi\}$, $\Phi_2 = \text{span}\{\Phi_1, \partial_{\mu}\phi, : \phi^2:\}$, ...

2/3

rank ψ minimal, $\psi = \sum_{j} \sigma_{j} \phi_{j}$, $\sigma_{j} \in \Sigma$, $\phi_{j} \in C^{\infty}(\Sigma)^{*}$. Define $\Phi_{\gamma} := \operatorname{span}\{\phi_{j}\}$. $\Phi_{\gamma} \subseteq \Phi_{\gamma'}$ if $\gamma < \gamma'$.

Theorem ([Bostelmann '05])

- Φ_{γ} independent of ψ ;
- $\phi \in \Phi_{\gamma} \implies \exists A_r \in \mathscr{A}(O_r), \ell > 0$ such that

$$\|\phi - A_r\|^{(\ell)} = O(r).$$

$$\phi(f) = \int dx \, f(x) U(x) \phi U(x)^*, \qquad \phi \in \Phi_{\gamma},$$

Wightman field on $C^{\infty}(H) = \cap_{\ell>0} R^{\ell} \mathcal{H}$, and $\phi(f) \eta \mathscr{A}(O)$. ϕ free: $\Phi_0 = \mathbb{C}\mathbb{1}$, $\Phi_1 = \operatorname{span}\{\mathbb{1}, \phi\}$, $\Phi_2 = \operatorname{span}\{\Phi_1, \partial_{\mu}\phi, : \phi^2:\}$, ...

3/3

According to phase space condition, if $A \in \mathscr{A}(O_r)$:

$$A \sim \sum_j \sigma_j(A)\phi_j$$
 as $r \to 0$.

Can be generalized to local fields by $\varepsilon/3$ argument.

Theorem ([Bostelmann '05])

 $\phi, \phi' \in \Phi_{\gamma}$. For all $\beta > 0$ exist $\sigma_j \in \Sigma$, $\phi_j \in \Phi_{\gamma'}$, $\ell > 0$ such that

$$\|\phi(f_d)\phi'(f_d') - \sum_j \sigma_j(\phi(f_d)\phi'(f_d'))\phi_j\|^{(\ell)} = o(d^\beta),$$

where $f, f' \in \mathcal{S}$ and $f_d(x) = d^{-4}f(d^{-1}x)$.

Operator product expansion of $\phi(f)\phi'(f')$.

3/3

According to phase space condition, if $A \in \mathcal{A}(O_r)$:

$$A \sim \sum_j \sigma_j(A)\phi_j$$
 as $r \to 0$.

Can be generalized to local fields by $\varepsilon/3$ argument.

Theorem ([Bostelmann '05])

 $\phi, \phi' \in \Phi_{\gamma}$. For all $\beta > 0$ exist $\sigma_j \in \Sigma$, $\phi_j \in \Phi_{\gamma'}$, $\ell > 0$ such that

$$\|\phi(f_d)\phi'(f'_d) - \sum_j \sigma_j(\phi(f_d)\phi'(f'_d))\phi_j\|^{(\ell)} = o(d^\beta),$$

where $f, f' \in \mathcal{S}$ and $f_d(x) = d^{-4}f(d^{-1}x)$.

Operator product expansion of $\phi(f)\phi'(f')$.

- Is the microscopic phase space condition valid for $\mathcal{A}_{0,\iota}$?
- Can we recover Z_{λ} such that $\phi_0(x) = \lim_{\lambda \to 0} Z_{\lambda} \phi(\lambda x)$?

 $\psi: C^{\infty}(\Sigma) \to \Sigma$ as above of rank 1:

$$\psi = \sigma \phi, \qquad \sigma \in \Sigma, \phi \in \cup_{\gamma > 0} \Phi_{\gamma}.$$

Typically $\|\sigma \upharpoonright \mathscr{A}(\lambda O)\| \to 0$ as $\lambda \to 0$ (e.g. as $O(\lambda)$ for free fields). Let $\underline{A} \in \underline{\mathfrak{A}}(O)$: $\psi^*(\underline{A}_{\lambda}) = \sigma(\underline{A}_{\lambda})\phi$ should be thought as a field at scale $\lambda \Longrightarrow$ we can choose $Z_{\lambda} = \sigma(\underline{A}_{\lambda}) \sim \lambda.$

- Is the microscopic phase space condition valid for $\mathcal{A}_{0,\iota}$?
- Can we recover Z_{λ} such that $\phi_0(x) = \lim_{\lambda \to 0} Z_{\lambda} \phi(\lambda x)$?

 $\psi: C^{\infty}(\Sigma) \to \Sigma$ as above of rank 1:

$$\psi = \sigma \phi, \qquad \sigma \in \Sigma, \phi \in \cup_{\gamma > 0} \Phi_{\gamma}.$$

Typically $\|\sigma \upharpoonright \mathscr{A}(\lambda O)\| \to 0$ as $\lambda \to 0$ (e.g. as $O(\lambda)$ for free fields).

Let $\underline{A} \in \underline{\mathfrak{A}}(O)$: $\psi^*(\underline{A}_{\lambda}) = \sigma(\underline{A}_{\lambda})\phi$ should be thought as a field at scale λ \Longrightarrow we can choose $Z_{\lambda} = \sigma(\underline{A}_{\lambda}) \sim \lambda$.

- Is the microscopic phase space condition valid for $\mathcal{A}_{0,\iota}$?
- Can we recover Z_{λ} such that $\phi_0(x) = \lim_{\lambda \to 0} Z_{\lambda} \phi(\lambda x)$?

 $\psi: C^{\infty}(\Sigma) \to \Sigma$ as above of rank 1:

$$\psi = \sigma \phi, \qquad \sigma \in \Sigma, \phi \in \cup_{\gamma > 0} \Phi_{\gamma}.$$

Typically $\|\sigma \upharpoonright \mathscr{A}(\lambda O)\| \to 0$ as $\lambda \to 0$ (e.g. as $O(\lambda)$ for free fields). Let $\underline{A} \in \underline{\mathfrak{A}}(O)$: $\psi^*(\underline{A}_{\lambda}) = \sigma(\underline{A}_{\lambda})\phi$ should be thought as a field at scale λ \Longrightarrow we can choose $Z_{\lambda} = \sigma(\underline{A}_{\lambda}) \sim \lambda$.

- Is the microscopic phase space condition valid for $\mathcal{A}_{0,\iota}$?
- Can we recover Z_{λ} such that $\phi_0(x) = \lim_{\lambda \to 0} Z_{\lambda} \phi(\lambda x)$?

 $\psi: C^{\infty}(\Sigma) \to \Sigma$ as above of rank 1:

$$\psi = \sigma \phi, \qquad \sigma \in \Sigma, \phi \in \cup_{\gamma > 0} \Phi_{\gamma}.$$

Typically $\|\sigma \upharpoonright \mathscr{A}(\lambda O)\| \to 0$ as $\lambda \to 0$ (e.g. as $O(\lambda)$ for free fields). Let $\underline{A} \in \underline{\mathfrak{A}}(O)$: $\psi^*(\underline{A}_{\lambda}) = \sigma(\underline{A}_{\lambda})\phi$ should be thought as a field at scale λ \Longrightarrow we can choose $Z_{\lambda} = \sigma(\underline{A}_{\lambda}) \sim \lambda$.

1/2

Scaling: $r \to \lambda r$, $E \to \lambda^{-1}E \implies$ phase space condition needs sharpening:

Definition

 $O \to \mathscr{A}(O)$ satisfies the microscopic phase space condition II if $\forall \gamma > 0, \ \exists c, \varepsilon > 0 \ \text{and} \ \psi : C^{\infty}(\Sigma) \to \Sigma \ \text{of finite rank such that for large}$ E, small r,

$$\|\psi \upharpoonright \Sigma_{E}, \mathscr{A}(O_{r})\| \leq c(1 + Er)^{\gamma},$$

 $\|(\Xi - \psi) \upharpoonright \Sigma_{E}, \mathscr{A}(O_{r})\| \leq c(Er)^{\gamma + \varepsilon}.$

Satisfied by free fields in s = 3 [Bostelmann '00].

Reasonable for asymptotically free theories (logarithmic corrections to naive scaling).

Note: $PSC II \Longrightarrow PSC I$.

1/2

Scaling: $r \to \lambda r$, $E \to \lambda^{-1}E \implies$ phase space condition needs sharpening:

Definition

 $O \to \mathscr{A}(O)$ satisfies the microscopic phase space condition II if $\forall \gamma > 0, \ \exists c, \varepsilon > 0 \ \text{and} \ \psi : C^{\infty}(\Sigma) \to \Sigma \ \text{of finite rank such that for large}$ E, small r,

$$\|\psi \upharpoonright \Sigma_E, \mathscr{A}(O_r)\| \leq c(1+Er)^{\gamma},$$

 $\|(\Xi-\psi) \upharpoonright \Sigma_E, \mathscr{A}(O_r)\| \leq c(Er)^{\gamma+\varepsilon}.$

Satisfied by free fields in s = 3 [Bostelmann '00].

Reasonable for asymptotically free theories (logarithmic corrections to naive scaling).

Note: PSC II \implies PSC I.

2/2

Orbits of pointlike fields under RG transformations $\underline{\phi}_{\lambda}=R_{\lambda}(\phi(0))$ are defined in analogy with the scaling algebra

$$\|\underline{\phi}\|^{(\ell)} := \sup_{\lambda} \|\underline{R}_{\lambda}^{\ell} \underline{\phi}_{\lambda} \underline{R}_{\lambda}^{\ell}\|, \quad \underline{R}_{\lambda} := (1 + \lambda H)^{-1}$$

$$\underline{\Phi}:=\{\lambda\in\mathbb{R}_+\mapsto\underline{\phi}_\lambda\in\textbf{\textit{C}}^\infty(\Sigma)^*\,:\,\|\underline{\phi}\|^{(\ell)}<\infty,\lim_{\gamma\to\textbf{\textit{e}}}\|\alpha_\gamma(\underline{\phi})-\underline{\phi}\|^{(\ell)}=0\}$$

Theorem ([Bostelmann, D'Antoni, M. '09])

Let $O \to \mathscr{A}(O)$ satisfy PSC II. Then

• $\pi_{0,\iota}$ extends to $\underline{\Phi}$ and $\pi_{0,\iota}(\underline{\phi}) \in C^{\infty}(\Sigma_{0,\iota})^*$ is a local field of $\mathscr{A}_{0,\iota}$ and $\exists \underline{A}_r \in \underline{\mathfrak{A}}(O_r), \ell > 0$ s.t.

$$\|\phi - \underline{A}_r\|^{(\ell)} = O(r)$$

- $O \mapsto \mathcal{A}_{0,\iota}(O)$ satisfies PSC I;
- $\dim \Phi_{0,\iota,\gamma} \leq \dim \Phi_{\gamma}$.

2/2

Orbits of pointlike fields under RG transformations $\underline{\phi}_{\lambda}=R_{\lambda}(\phi(0))$ are defined in analogy with the scaling algebra

$$\begin{split} \|\underline{\phi}\|^{(\ell)} &:= \sup_{\lambda} \|\underline{R}_{\lambda}^{\ell} \underline{\phi}_{\lambda} \underline{R}_{\lambda}^{\ell}\|, \quad \underline{R}_{\lambda} := (1 + \lambda H)^{-1} \\ \underline{\Phi} &:= \{\lambda \in \mathbb{R}_{+} \mapsto \underline{\phi}_{\lambda} \in \textbf{\textit{C}}^{\infty}(\Sigma)^{*} \, : \, \|\underline{\phi}\|^{(\ell)} < \infty, \lim_{\gamma \to \textbf{\textit{e}}} \|\alpha_{\gamma}(\underline{\phi}) - \underline{\phi}\|^{(\ell)} = 0 \} \end{split}$$

Theorem ([Bostelmann, D'Antoni, M. '09])

Let $O \rightarrow \mathscr{A}(O)$ satisfy PSC II. Then:

• $\pi_{0,\iota}$ extends to $\underline{\Phi}$ and $\pi_{0,\iota}(\underline{\phi}) \in C^{\infty}(\Sigma_{0,\iota})^*$ is a local field of $\mathscr{A}_{0,\iota}$ and $\exists \underline{A}_r \in \underline{\mathfrak{A}}(O_r), \ell > 0$ s.t.

$$\|\underline{\phi}-\underline{A}_r\|^{(\ell)}=O(r)$$

- $O \mapsto \mathscr{A}_{0,L}(O)$ satisfies PSC I;
- $\dim \Phi_{0,\iota,\gamma} \leq \dim \Phi_{\gamma}$.

Uniform Operator Product Expansion

Define $\underline{\alpha}_f \underline{\phi} = \int dx \, f(x) \underline{\alpha}_x(\underline{\phi})$, unbounded operator $\forall \, \lambda > 0$. Thanks to uniform approximation of $\underline{\alpha}_f \underline{\phi}$ by $\underline{\alpha}_f \underline{A}_r$,

$$\pi_{0,\iota}(\underline{\alpha_f \underline{\phi} \underline{\alpha_{f'} \underline{\phi'}}}) = \alpha_f^{(0,\iota)} \pi_{0,\iota}(\underline{\phi}) \alpha_{f'}^{(0,\iota)} \pi_{0,\iota}(\underline{\phi'}),$$

and furthermore:

Theorem ([BDM '09]

For all $\beta > 0$ exist finitely many $\sigma_{j,\lambda} \in \Sigma$, $\phi_j \in \Phi_{\gamma'}$ and $\ell > 0$ such that

$$\left\|\left(\lambda\mapsto\underline{\alpha}_{f_{d}}\underline{\phi}_{\lambda}\,\underline{\alpha}_{f'_{d}}\underline{\phi}'_{\lambda}-\sum_{j}\sigma_{j,\lambda}(\underline{\alpha}_{f_{d}}\underline{\phi}_{\lambda}\,\underline{\alpha}_{f'_{d}}\underline{\phi}'_{\lambda})\phi_{j}\right)\right\|^{(\ell)}=o(d^{\beta}).$$

Therefore OPE terms converge to OPE terms.

Uniform Operator Product Expansion

Define $\underline{\alpha}_f \underline{\phi} = \int dx \, f(x) \underline{\alpha}_x(\underline{\phi})$, unbounded operator $\forall \, \lambda > 0$. Thanks to uniform approximation of $\underline{\alpha}_f \underline{\phi}$ by $\underline{\alpha}_f \underline{A}_f$,

$$\pi_{0,\iota}(\underline{\alpha}_f \underline{\phi} \underline{\alpha}_{f'} \underline{\phi}') = \alpha_f^{(0,\iota)} \pi_{0,\iota}(\underline{\phi}) \alpha_{f'}^{(0,\iota)} \pi_{0,\iota}(\underline{\phi}'),$$

and furthermore:

Theorem ([BDM '09])

For all $\beta > 0$ exist finitely many $\sigma_{j,\lambda} \in \Sigma$, $\phi_j \in \Phi_{\gamma'}$ and $\ell > 0$ such that

$$\left\|\left(\lambda\mapsto\underline{\alpha}_{f_{d}}\underline{\phi}_{\lambda}\,\underline{\alpha}_{f'_{d}}\underline{\phi}'_{\lambda}-\sum_{j}\sigma_{j,\lambda}(\underline{\alpha}_{f_{d}}\underline{\phi}_{\lambda}\,\underline{\alpha}_{f'_{d}}\underline{\phi}'_{\lambda})\phi_{j}\right)\right\|^{(\ell)}=o(d^{\beta}).$$

Therefore OPE terms converge to OPE terms.

Renormalization Group

Renormalization constants:

- $\underline{\phi}_{\lambda} = \sum_{j} \sigma_{j}(\underline{A}_{\lambda})\phi_{j}$ has well-defined limit $\phi_{0,\iota} = \pi_{0,\iota}(\underline{\phi})$;
- therefore $Z_{i,\lambda} = \sigma_i(\underline{A}_{\lambda})$ are renormalization constants.
- in particular for 2-point Wightman functions:

$$\langle \Omega_{0,\iota}, \phi_{0,\iota}(x) \phi'_{0,\iota}(x') \Omega_{0,\iota} \rangle = \lim_{\kappa} \sum_{j,k} Z'_{j,\lambda_{\kappa}} Z'_{k,\lambda_{\kappa}} \langle \Omega, \phi_{j}(\lambda_{\kappa} x) \phi_{k}(\lambda_{\kappa} x') \Omega \rangle,$$

where
$$Z'_{k,\lambda} = \sigma_k(\underline{A}'_{\lambda})$$
, $\phi'_{0,\iota} = \pi_{0,\iota}(\psi^*(\underline{A}'))$.

Scaling of OPE:

- no Lagrangian in AQFT

 flow of coupling constants not visible;
- OPE coefficients are the "structure constants" of the algebra of quantum fields;
- scaling changes OPE coefficients.

Renormalization Group

Renormalization constants:

- $\phi_{\lambda} = \sum_{j} \sigma_{j}(\underline{A}_{\lambda})\phi_{j}$ has well-defined limit $\phi_{0,\iota} = \pi_{0,\iota}(\underline{\phi})$;
- therefore $Z_{i,\lambda} = \sigma_i(\underline{A}_{\lambda})$ are renormalization constants.
- in particular for 2-point Wightman functions:

$$\langle \Omega_{0,\iota}, \phi_{0,\iota}(x) \phi'_{0,\iota}(x') \Omega_{0,\iota} \rangle = \lim_{\kappa} \sum_{j,k} Z'_{j,\lambda_{\kappa}} Z'_{k,\lambda_{\kappa}} \langle \Omega, \phi_{j}(\lambda_{\kappa} x) \phi_{k}(\lambda_{\kappa} x') \Omega \rangle,$$

where
$$Z'_{k,\lambda} = \sigma_k(\underline{A}'_{\lambda}), \ \phi'_{0,\iota} = \pi_{0,\iota}(\psi^*(\underline{A}')).$$

Scaling of OPE:

- no Lagrangian in AQFT

 flow of coupling constants not visible;
- OPE coefficients are the "structure constants" of the algebra of quantum fields;
- scaling changes OPE coefficients.

References I

- D. Buchholz, R. Verch, Rev. Math. Phys., 7 (1995) and 10 (1997)
- M. Lutz, Diploma Thesis, Göttingen University, 1997
- H. Bostelmann, C. D'Antoni, G. M., Commun. Math. Phys., **286** (2009), arXiv:0711.4237
- H. Bostelmann, G. Lechner, G. M., Rev. Math. Phys., 23 (2011), arXiv:1105.2781