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Introduction 1/3

Standard approach to study short distance limit in QFT (of a bosonic
field ¢ of mass m and coupling constant g):

@ define rescaled field
oA (x) = Zxo(\x), A>0

@ renormalization constant Z, fixed by requiring that, e.g.,
(2, o2(X)PA(¥)S2) has finite limit for A — 0

@ actual calculation of Z, can be performed via Renormalization
Group (Callan-Symanzik) Equations, providing

9 4(9) } dg
dag'|, 22
g B I

B, v functions obtained from coupling constant and field
renormalization
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Introduction 2/3
@ with this choice ¢, has mass Am and coupling g,
@ if B(gx) =0and (g — g=)B(g) < 0 (ultraviolet fixed point)
g\ — Goo; Z)\ ~ )\1+7(goo)

(Q,oA(x1) .. &A(Xn)S2) — (Q0, Po(X1) - - - Po(Xn)S20)

¢o massless field with coupling g
@ e.g. for QCD one finds, perturbatively,

B(g) = - g°+ 0(g°)

(4)2
= 0~ = 0 (asymptotic freedom, important in explaining
experimental results of deep inelastic lepton-hadron scattering)

@ several other important applications (confinement, operator
product expansions, critical phenomena...)
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Introduction 3/3

Drawbacks of the standard approach
@ difficult to use when perturbation theory is not reliable
@ model dependent

@ Lagrangian may not be always present (e.g., 2d integrable
models)

@ basic fields in general not observable (fermionic, gauge fields...)
— interpretation of results may be ambiguous (e.g.,
confinement, see talk Il)
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Introduction 3/3

Drawbacks of the standard approach
@ difficult to use when perturbation theory is not reliable
@ model dependent

@ Lagrangian may not be always present (e.g., 2d integrable
models)

@ basic fields in general not observable (fermionic, gauge fields...)
— interpretation of results may be ambiguous (e.g.,
confinement, see talk Il)

Scaling Algerbas [Buchholz-Verch *95]
Approach to RG and short distance limit in AQFT
@ model independent
@ fixed by the knowledge of the net of observables
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Basic Assumptions 1/2

Standard framework of AQFT:

@ v €I — U(v) unitary strongly continous representation of
geometric symmetry group R$t! ¢ I' ¢ & acting on vacuum
Hilbert space . and with positive energy, a, := Ad U()

@ Q € s vacuum vector, unique translation invariant vector:
Ux)Q =Q, x € RsH!

@ O~ &/(0) C B() local net of von Neumann algebras indexed
by open bounded sets O ¢ RS, covariant w.r.t. U:

a,(#(0)) = (- 0), sel,

and with Q cyclic: #/Q = #
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Basic Assumptions 2/2

Further structures needed:
@ Cr*-algebra of continuous elements w.r.t. T

2A(0) :={Ae #(O) : v — ay(A) norm-continuous}

2/ (0) C A(0y)~ if O c O
@ space of elements with 4-momentum transfer in compact
é C RS—H

A(0):={AcA: ap(A)=0forall fe L'(RS*"), suppfn O = 0}
ar(A) = dx f(X)ax(A)

Rs+1
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Scaling Algebras and Scaling Limit

Renormalization Group and Scaling Algebras 12

Main issue in transferring RG to AQFT: absence of quantum fields
used in the conventional approach to identify RG transformation

R, .« — o, R,\((b(X)) = (ﬁ)\(X)7 A>0
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Scaling Algebras and Scaling Limit

Renormalization Group and Scaling Algebras 12

Main issue in transferring RG to AQFT: absence of quantum fields
used in the conventional approach to identify RG transformation

R, .« — o, R,\((b(X)) = (ﬁ)\(X), A>0

Key observation: RG scaling leaves fundamental constants c, &
unchanged

Abstract RG transformation
o cfixed = R\(Z(0)) = &/(\O)
o hfixed = Ry\(#(0)) = # (A 10)
@ definition of Zy, = sup,-( ||Ax]| < 0

Gerardo Morsella (Roma 2) Short Distances in AQFT | ESI 2012 10/31



Scaling Algebras and Scaling Limit

Renormalization Group and Scaling Algebras 12
Main issue in transferring RG to AQFT: absence of quantum fields
used in the conventional approach to identify RG transformation

Ry:of —of, By(6(X)=odr(x), A>0

Key observation: RG scaling leaves fundamental constants c, &
unchanged

Abstract RG transformation
o cfixed = R\(Z(0)) = &/(\O)
o hfixed = Ry\(#(0)) = # (A 10)
@ definition of Zy, = sup,-( ||Ax]| < 0

Accordingly, for A € 2(0O),
@ R\(A) e 2A(\O)
@ limy_0SUPy~g [laax(Ar(A)) — Ar(A)[[ =0



Scaling Algebras and Scaling Limit

Renormalization Group and Scaling Algebras 22
Spirit of the algebraic approach: physical information is encoded in the

net, not in individual elements = all choices of (R)),~o should be
equivalent = we can consider them all the same time
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Scaling Algebras and Scaling Limit

Renormalization Group and Scaling Algebras 22
Spirit of the algebraic approach: physical information is encoded in the
net, not in individual elements = all choices of (R))\~0 should be
equivalent = we can consider them all the same time

Definition ([Buchholz, Verch ’95])

In the C*-algebra B(R., <) of bounded functions A € R} — A, € 7,
with:

@ pointwise defined operations

@ norm [|A| := sup,- |4,

@ l-action a., (A)x == ay, (Ay), (X, A)x = (AX, A)
the local scaling algebra attached to the region O is

A(0) i= {A€ BR:, o) : Ay € #(A\O), i |a,(4) - A = 0}

O — 2(0) is a local net, covariant w.r.t. I'-action

A = [Jp A(O) scaling algebra




Scaling Algebras and Scaling Limit

Scaling Limits 1/2
¢ (locally normal) state on & ~» ¢, (A) := ¢(A,) states on 2,

SL () := {weak* limit points of (,)x0 for A — 0}.
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Scaling Algebras and Scaling Limit

Scaling Limits 1/2
¢ (locally normal) state on o/ ~» EA(A) = p(A,) states on &,

SL () := {weak* limit points of (¢,)as0 for A — 0}.
Theorem ([Buchholz, Verch ’95])

® SL”(¢) = (wo,).e/ is independent of .

® wy, € SL” with GNS representation (o, #4,,0,.). Then

,(0) = m,,(A(0))" is a net of local algebras with T action
defined by

UO,L(’Y)T(O,L(A)QO,L = T0,. (Q»y (A))QO,L

(If s = 1 the vacuum Sy, may be not unique, i.e. <%, not
irreducible)
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Scaling Algebras and Scaling Limit

Scaling Limits 1/2
¢ (locally normal) state on o/ ~» EA(A) = p(A,) states on &,

SL () := {weak* limit points of (,)x0 for A — 0}.
Theorem ([Buchholz, Verch ’95])

@ SLY(p) = (wo,).e1 s independent of .

® wy, € SL” with GNS representation (o, #4,,0,.). Then

,(0) = m,,(A(0))" is a net of local algebras with T action
defined by

UO,L(’Y)T(O,L(A)QO,L = T0,. (Q»y (A))QO,L

(If s = 1 the vacuum Sy, may be not unique, i.e. <%, not
irreducible)

O — #,(0) is the scaling limit net of <7
Physical interpretation: o7 , describes the short-distance (i.e.
high-energy) behaviour of <.
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Scaling Algebras and Scaling Limit

Scaling Limits 2/2
Classification of short-distance behavior:
@ o/ has trivial scaling limit if o, = C1 for all wy ,

@ &/ has unique quantum scaling limit if all nets . , are isomorphic
and # C1
@ 7 has degenerate scaling limit otherwise
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Scaling Algebras and Scaling Limit

Scaling Limits 2/2
Classification of short-distance behavior:
@ &/ has trivial scaling limit if o, = C1 for all wy,

@ &/ has unique quantum scaling limit if all nets . , are isomorphic
and # C1

@ &/ has degenerate scaling limit otherwise

Theorem ([Buchholz, Verch '95])

If o7 has unique quantum scaling limit, then 3 (6,80’”) 1>0
automorphisms of <7 , S.t.

30 (#,(0)) = 0, (10),  50IalP) = o350

(In general 1 — 5&0") not a representation of dilation group)

51> induced by the fact that if 7,,(A)x := A,, A € , scaling limit

states wy , and wy , o g,, give rise to isomorphic nets
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e

Dilation invariant theories
Local net «:
@ satisfies Haag-Swieca compactness if
Ac o/ (0) — E(0)AQ € 7

is compact for all O, O
@ is dilation invariant if 3 € RY — §,, € Aut(</) representation of
dilation group s.t.

6u(#(0)) = Z(n0), duay =y, 0y, woy =w
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e

Dilation invariant theories
Local net «:
@ satisfies Haag-Swieca compactness if
Ac o/ (0) — E(0)AQ € 7
is compact for all O, O

@ is dilation invariant if 3 € RY — §,, € Aut(</) representation of
dilation group s.t.

6u(#(0)) = Z(n0), duay =y, 0y, woy =w

Theorem ([Buchholz, Verch '95])

</ dilation invariant and satisfying Haag-Swieca (e.g. massless free
field [Buchholz, Jacobi ‘87]) = o4, ~ o/ through

¢(7TO,L(A)) = W’Lim 5)\;1 (A)\N)

In particular o7 has unique quantum scaling limit

v
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Free scalar field for s = 2,3
Theorem ([Buchholz, Verch '97])

/(M) net generated by mass m > 0 free scalar field in s = 2, 3 spatial

dimension — %(,T) ~ o7/ In particular 7™ has unique quantum
scaling limit
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Free scalar field for s = 2,3
Theorem ([Buchholz, Verch '97])

/(M) net generated by mass m > 0 free scalar field in s = 2, 3 spatial

dimension — ,;zf()("f) ~ o7/ In particular 7™ has unique quantum
scaling limit

Main ingredient: local normality of w(™ w.r.t. w(®) [Eckmann, Frohlich
'74]
: , Y
@ existence of representation of 7(™ on #(® such that
o/ M(0p) = 7 )(Op)

for double cones Op based on t = 0 plane
@ massless dilations 4, act on .7 (™
Isomorphism <7, 7" ~ «7(®) defined through

¢(7TO,L(A)) = W',Lim 5)\;1 (AAK,)
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Lutz model

Local covariant net <7, defined by:

@ ¢ generalized free scalar field with mass measure dp(m) = dmin
s=2,3

@ 7 (0) = {exp(iD™O¢(f)) : suppf c O} with n(O) — 4o
monotonically as “radius of O” — 0
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Lutz model

Local covariant net <7, defined by:
@ ¢ generalized free scalar field with mass measure dp(m) = dmin
s=2,3
@ 7 (0) = {exp(iD™O¢(f)) : suppf c O} with n(O) — 4o
monotonically as “radius of O” — 0
Morally: <7 (AO) contains only observables with energy transfer
growing faster than A\~ (apart from ¢1) = RG orbits A — R\(A)
converge to multiples of 1
Theorem ([Lutz '97])
/) has trivial scaling limit J
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2d Models with factorizing S-matrix 1/4

“m 2d local net with mass m > 0 and factorizing S-matrix S [Lechner
'08]:
@ /m(W,, r) generated by Zamolodchikov-Schroer wedge-local
fields ¢m, o,
@ non-trivial local algebras obtained as intersections of wedge
algebras
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2d Models with factorizing S-matrix 1/4

“m 2d local net with mass m > 0 and factorizing S-matrix S [Lechner
'08]:

@ /m(W,, r) generated by Zamolodchikov-Schroer wedge-local
fields ¢m, o,

@ non-trivial local algebras obtained as intersections of wedge
algebras
Scaling limit of .7, difficult to compute: local operators not sufficiently
explicit
Some information can be obtained through the scaling limit of wedge
local fields
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2d Models with factorizing S-matrix 2/4
Theorem ([Bostelmann, Lechner, M. "11])
Iff, € 7 (R?) are derivatives of test functions and f; ,(x) = A\~2f;(A\~"x)

1M (Qm, @H(F1.0) - 613 (Fn)2m) = (0,601 (1) ... 61 (1)20)

with ¢ the Zamolodchikov-Schroer field associated to

S(0) = pg <0
: S(0) p=q=0
So(p,q) := lim S ,q) =
o(p. ) A0+ (P, ) S(logp — log q) p>0,g>0

S(log(—q) —log(—p)) p<0,g<0
Sm(p, q) = S(Om(p) — Om(q))
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2d Models with factorizing S-matrix 2/4
Theorem ([Bostelmann, Lechner, M. "11])

Iff, € 7 (R?) are derivatives of test functions and f; ,(x) = A\~2f;(A\~"x)

1M (Qm, @H(F1.0) - 613 (Fn)2m) = (0,601 (1) ... 61 (1)20)

with ¢ the Zamolodchikov-Schroer field associated to

S(0) = pg <0
: S(0) p=q=0
So(p,q) := lim S ,q) =
o(p. ) A0+ (P, ) S(logp — log q) p>0,g>0

S(log(—q) —log(—p)) p<0,g<0

Sm(p, q) = S(0m(p) — Im(q))

Massless model defined by ¢ is at least a subnet (tensor factor?)
the complete scaling limit and it is also interesting in its own right

of
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2d Models with factorizing S-matrix 3/4
So(p,q) =1 forpg <0 = ¢ splits into (translation-dilation
covariant) chiral fields on the real line

p(x) = /0 m dp(e ™ z(p) + eP*Zi(p)), xeR

with z, zT Zamolodchikov operators defined by Sy:
z(p)z(q) = So(p, 9)2(q)z(p)

z(p)z'(q) = So(9.p)2'(q)2(p) + %5(/0 —q P77 °
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2d Models with factorizing S-matrix 3/4
So(p,q) =1 forpg <0 = ¢ splits into (translation-dilation
covariant) chiral fields on the real line

p(x) = /0 m dp(e ™ z(p) + eP*Zi(p)), xeR

with z, zT Zamolodchikov operators defined by Sy:
z(p)z(q) = So(p, 9)2(q)z(p)

z(p)z'(q) = So(9.p)2'(q)2(p) + %5(/0 —q P77 °

“Half-line” and interval algebras:
My = {e¥D : fe S0, +o00)Y, M =M,
o (a,b) := aa( M) O ap(A-)
I — <7(I) local translation-dilation-reflection covariant net on R
Question: are they non-trivial?
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2d Models with factorizing S-matrix 4/4
©1/r, <) copies of ¢, o7 on left/right light . o
ray < Y
, yl /
Theorem ([BLM '11]) o R ()
@ ¢o(x) = " i~
2 (#(x) ® 1+ S(co)™ ® or(x1)) A
o (I x J) > () @ (J) e
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2d Models with factorizing S-matrix 4/4
o1/r, )y cOpies of p, o7 on left/right light -
ray o (@) @ ()
Ty yl
Theorem ([BLM '11]) » YT aw
® go(x) = "IN
2 (21(%1) ® 1 + S(c0)M @ or(xr)) ‘ 20)

o (I xJ) > () ® (J) ga, (@)

Examples of chiral nets:
@ for S = 1 we have the free U(1) current:
» Q cyclic and separating for <7(/)
» conformal symmetry with ¢ = 1
@ for S = —1 we have the critical Ising model

> e = </ (1)Q2 states of even particle number
» /(I) generted by energy density of free Fermi field
» conformal symmetry on J#,. with c = 1/2
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Back to Quantum Fields

Pointlike Fields from Local Algebras 1/3
Basic idea [Haag, Ojima '96]: assume

Yer={o [ (O) : 0 € P(E)B(s¢).P(E)}
is compact and “does not change” for small r

= “finite” number of states describe short distance behaviour
= basis (¢;) of Z , are pointlike fields.
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Back to Quantum Fields

Pointlike Fields from Local Algebras 1/3
Basic idea [Haag, Ojima '96]: assume
Yer={o [ (O) : 0 € P(E)B(s¢).P(E)}
is compact and “does not change” for small r
= “finite” number of states describe short distance behaviour
= basis (¢;) of ¢ , are pointlike fields.
Quantitative version:
@ ¥ = B()., C®(X) = NyoR'TRY, R= (1 + H)™";
o [lo]® = ||R~‘oR~"|, o € C=(X);
@ =:0ecC®X)—oek.

Definition ([Bostelmann ’05])
O — #/(0O) satisfies the microscopic phase space condition | if ¥y > 0,
3¢ > 0,9 : C>*°(X) — X of finite rank such that

191 < oo,

= 4
I(E —$)() 1 Z(0)]® = o(r?).




Pointlike Fields from Local Algebras 2/3
ranky minimal, ¢ = 3, 0;¢;, 0j € ¥, ¢ € C*(X)".
Define &, := span{¢;}. ¢, C &/ if y < 7.

Gerardo Morsella (Roma 2)
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Back to Quantum Fields

Pointlike Fields from Local Algebras 2/3

ranky minimal, ¢ = 3, 0;¢;, 0j € ¥, ¢ € C*(X)".
Define @, := span{¢;}. &, C &/ if v <4/

Theorem ([Bostelmann ’05])
@ &, independent of 1),
@ pc b, = JA € &(0O),¢ > 0 such that

l6 — A = O(r).

o) = [ xfpUXeUK),  oe o,
Wightman field on C*(H) = Ny~oR‘H#, and ¢(f)ne/ (O).
Gerardo Morsella (Roma 2)
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Back to Quantum Fields

Pointlike Fields from Local Algebras 2/3

ranky minimal, ¢ = 3, 0;¢;, 0j € ¥, ¢ € C*(X)".
Define @, := span{¢;}. &, C &/ if v <4/

Theorem ([Bostelmann ’05])
@ &, independent of 1),
@ pc b, = JA € &(0O),¢ > 0 such that

l6 — A = O(r).

o(F) = / K FNUKUKX),  de b,

Wightman field on C>®(H) = Nyso R, and ¢(f)n.e/ (O).
¢ free: &y = CL, &1 = span{1, ¢}, ®p = span{®y,9,¢,: ¢? :}, ...

Gerardo Morsella (Roma 2)
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Pointlike Fields from Local Algebras 3/3

According to phase space condition, if A € &/ (O;):

A~ oi(A¢  asr—0.
J

Can be generalized to local fields by /3 argument.

Gerardo Morsella (Roma 2) Short Distances in AQFT | ESI 2012

25/31



Pointlike Fields from Local Algebras 3/3

According to phase space condition, if A € &/ (O;):

A~ oi(A¢  asr—0.
J

Can be generalized to local fields by /3 argument.

Theorem ([Bostelmann ’05])
¢,¢' € . Forall 3 > 0 existo; € X, ¢; € -/, £ > 0 such that

lo(fa)¢' (fg) = D _ o(&fa) ' (1)) 11| = o(d?),

J

where f,f' € .7 and fy(x) = d=*f(d~"x).

Operator product expansion of ¢(f)¢'(f').
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Renormalization of Pointlike Fields: Basic Idea

@ |s the microscopic phase space condition valid for <7 ,?
@ Can we recover Z) such that ¢o(x) = limy_,0 Zx¢(Ax)?
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Renormalization of Pointlike Fields: Basic Idea

@ Is the microscopic phase space condition valid for <7 ,?
@ Can we recover Z) such that ¢o(x) = limy_,0 Zx¢(Ax)?

¢ : C*°(X) — X as above of rank 1:

w = U¢7 (S Z, ¢ € U’Y>O¢’Y'

Typically ||o | &/ (AO)|| — 0as A — 0 (e.g. as O() for free fields).
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Renormalization of Pointlike Fields: Basic Idea

@ Is the microscopic phase space condition valid for <7 ,?
@ Can we recover Z) such that ¢o(x) = limy_,0 Zx¢(Ax)?

¢ : C*°(X) — X as above of rank 1:

w = O-¢7 (S Z, ¢ € U’Y>0¢’Y'

Typically ||o | &/ (AO)|| — 0as A — 0 (e.g. as O() for free fields).
Let A € 2(O): ¢v*(Ay) = o(A,)¢ should be thought as a field at scale A
= we can choose Z, = g(A,) ~ A.
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Renormalization of Pointlike Fields: Basic Idea

@ Is the microscopic phase space condition valid for <7 ,?
@ Can we recover Z) such that ¢o(x) = limy_,0 Zx¢(Ax)?

¢ : C*°(X) — X as above of rank 1:
w = 0-¢7 (S Z, ¢ € U’Y>0¢’Y'

Typically ||o [ &/(AO)|| — 0as A — 0 (e.g. as O(\) for free fields).
Let A € 2(O): ¢v*(Ay) = o(A,)¢ should be thought as a field at scale A
—> we can choose 2\ = g(A,) ~ A.

Message: maps v are the good scale independent objects.
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Back to Quantum Fields

Phase Space and Scaling Limit 1/2
Scaling: r — Ar, E - \™'E = phase space condition needs
sharpening:

Definition

O — #/(0O) satisfies the microscopic phase space condition Il if

Vv >0, 3c,e > 0and ¢ : C>*(X) — X of finite rank such that for large
E, small r,

1% | S, /(0| < e(1 + Er)",
I(Z =) | e, #(Or)|| < c(Er)'*=.
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Phase Space and Scaling Limit 1/2

Scaling: r — Ar, E - \™'E = phase space condition needs
sharpening:

Definition

O — #/(0O) satisfies the microscopic phase space condition Il if

Vv >0, 3c,e > 0and ¢ : C>*(X) — X of finite rank such that for large
E, small r,

[ I g, &(O)|| < c(1 + Er)?,
IE - ) I Ze,(Or)|| < c(Er)"*=.

Satisfied by free fields in s = 3 [Bostelmann *00].

Reasonable for asymptotically free theories (logarithmic corrections to
naive scaling).

Note: PSC Il = PSCI.
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Back to Quantum Fields

Phase Space and Scaling Limit 2/2
Orbits of pointlike fields under RG transformations ¢, = R\(¢(0)) are
defined in analogy with the scaling algebra

) = sup 1B, Bl By :=(1+AH)™

®:={AeRL g, € CX(D)" 9] < o0, lim flas(9) - ¢) = 0}
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Back to Quantum Fields

Phase Space and Scaling Limit 2/2
Orbits of pointlike fields under RG transformations ¢, = R\(¢(0)) are
defined in analogy with the scaling algebra

o)) = sup 1B, Bl By :=(1+AH)™

®:={AeRL g, € CX(D)" 9] < o0, lim flas(9) - ¢) = 0}

Theorem ([Bostelmann, D’Antoni, M. ’09])
Let O — <7 (0O) satisfy PSC Il. Then:

@ 7o, extends to ® and m ,(¢) € C>*(Xo,)* is a local field of a7,
and3A, € A(0r),¢ >0 s.t.

lg — A = O(r)

@ O— 4,(0) satisfies PSC I;
@ dimdg, ., < dimd,.
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Uniform Operator Product Expansion

Define o = [ dx f(x)a,(¢), unbounded operator ¥ A > 0.
Thanks to uniform approximation of ar¢ by aA,,

mo (b apd’) = a'my, (6)al" o, (8),
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Uniform Operator Product Expansion

Define o = [ dx f(x)a,(¢), unbounded operator ¥ A > 0.
Thanks to uniform approximation of ar¢ by aA,,

mou(arpapd’) = \m, (9)alPm (),

and furthermore:

Theorem ([BDM *09])
For all 3 > 0 exist finitely many o; € ¥, ¢; € ®., and { > 0 such that

H </\ = apd o, ¢A ZU/ ey o, o ‘75,\ ¢/> H( | o(d”).

Therefore OPE terms converge to OPE terms.
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Renormalization Group

Renormalization constants:
® ¢, = ;0j(A\)¢ has well-defined limit ¢o, = 70,,(¢);
@ therefore Z; , = 0;(A,) are renormalization constants.
@ in particular for 2-point Wightman functions:

(Q0.0, 60, (X) 80, (X )0.) = im Y~ Zx, Zi 5 (Q, $(AeX)drc(AeX')),
j.k

where Z} , = ok(A}), ¢h, =m0, (V*(A)).
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Renormalization Group

Renormalization constants:
® ¢, = ;0j(A\)¢ has well-defined limit ¢o, = 70,,(¢);
@ therefore Z; , = 0;(A,) are renormalization constants.
@ in particular for 2-point Wightman functions:

(Q0.0, 60, (X) 80, (X )0.) = im Y~ Zx, Zi 5 (Q, $(AeX)drc(AeX')),
Jik
where Z; \ = ox(A)), ¢, = m0.(¥*(A)).
Scaling of OPE:
@ no Lagrangian in AQFT = flow of coupling constants not visible;

@ OPE coefficients are the “structure constants” of the algebra of
quantum fields;

@ scaling changes OPE coefficients.
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