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Scaling algebras for charge carrying quantum fields
and superselection structure at short distances

Claudio D’Antoni, Gerardo Morsella, and Rainer Verch

Dedicated to Detlev Buchholz, on the occasion of his 60th birthday.

Abstract. We report on a recent work on the extension to the case of fields
carrying superselection charges of the method of scaling algebras, which has

been introduced earlier as a means for analysing the short-distance behaviour
of quantum field theories in the setting of the algebraic approach. This gen-
eralization is used to study the relation between the superselection structures

of the underlying theory and the one of its scaling limit, and, in particular, to
propose a physically motivated criterion for the preservation of superselection

charges in the scaling limit. This allows the formulation of an intrinsic notion

of charge confinement as proposed by D. Buchholz.

1. Introduction

A great deal of information about the short distance properties of quantum field
theory can be obtained through the use of renormalization group (RG) methods
(consider, just to mention one example, the parton distributions in deep inelastic
scattering processes). From a conceptual point of view, however, such applications
are not completely satisfactory, as they always rely on a description of the theory
in terms of (unobservable) fields, which, as is well known, is in general not unique
(think for instance of Borchers classes, of bosonization in two dimensional models or
of the more recent discoveries of dualities in supersymmetric d = 4 gauge theories).

In order to overcome these problems, a framework for a model-independent,
canonical analysis of the short distance behaviour of QFT was developed in [3] in
the context of the algebraic approach to QFT [13], in which a theory is defined only
in terms of its algebras of local observables, and therefore the ambiguities inherent
to the use of unobservable fields completely disappear. This has been accomplished
through the introduction of the scaling algebra. We will give a summary of this
work in section 2. A major result of this programme has been the formulation of an

2000 Mathematics Subject Classification. Primary 81T05; Secondary 46L60, 81T17.
C. D’Antoni was supported by MIUR, INdAM-GNAMPA and the EU.
G. Morsella was supported by MIUR, INdAM-GNAMPA, the EU and DAAD.

R. Verch was supported by INdAM-GNAMPA.

c©0000 (copyright holder)

1



2 CLAUDIO D’ANTONI, GERARDO MORSELLA, AND RAINER VERCH

intrinsic confinement criterion [2], not relying on attaching a physical interpretation
to unobservable fields (see section 4 below for some more details).

In this context, it is also interesting to study the short distance properties of
superselection charges. As we will briefly recall in section 3, it has been one of
the most relevant achievements of algebraic quantum field theory to show that the
set of charges, as well as the unobservable fields carrying them, are completely
encoded in the structure of the representations of the algebra of observables. It is
therefore natural to try to analyse the short distance behaviour of charges through
a generalization of the scaling algebra method to charge carrying fields. Such a
generalization has been performed in [8], where it has also been used to formulate
a notion of preservation of charges under the scaling (short distance) limit. We
will describe the main results of this work in sections 4 and 5, the first one dealing
with the case of charges which are localizable in bounded regions of Minkowski
spacetime, while the second one treats the case of charges localizable in certain
unbounded regions called spacelike cones.

2. An algebraic approach to the renormalization group

The basic principle of the algebraic approach to quantum field theory is that
a theory is completely characterized by an assignment O → A (O) of open double
cones O in Minkowski space R4 (i.e. O is the non-void intersection of a forward and a
backward light cone) to von Neumann algebras A (O) acting on a separable Hilbert
space H (the vacuum space), the algebras A (O) having the physical interpretation
of being generated by the observables of the system under consideration which can
be measured with an experiment performed in the region O. Such a correspondence
is subject to the following basic assumptions:

(1) isotony : if O1 ⊂ O2 then A (O1) ⊂ A (O2);
(2) locality : if O1 is spacelike separated from O2, then A (O1) and A (O2)

commute;
(3) covariance: there is a unitary, strongly continuous representation U on H

of the (proper, orthocronous) Poincarè group P↑
+, such that , if α(Λ,a) :=

AdU(Λ, a), α(Λ,a)(A (O)) = A (ΛO + a);
(4) spectrum condition: the spectrum of the representation of the translations

group a ∈ R4 → U(1, a) is contained in the closed forward light cone;
(5) existence of the vacuum: there exists a unique (up to a phase) translation

invariant unit vector Ω ∈ H , furthermore Ω is cyclic for
⋃

O A (O).
Each assignment O → A (O) satisfying the above assumptions will be called a

local, covariant net of observable algebras on H , and will also be denoted with A
for brevity. By the same symbol we will indicate the C∗-algebra which is the norm
closure of

⋃
O A (O), called the quasi-local algebra of the given net. We also define,

for an arbitrary region R ⊂ R4, the C∗-algebra A (R) ⊂ A as the one generated
by the algebras A (O) with O ⊂ R.

The following notation will be useful: for R ⊂ R4, R′ is the set of all points
which are spacelike to all points of R.

We will now describe the main results in [3], which give an adaptation to this
framework of the renormalization group ideas.

The key observation in this analysis is that the conventional renormalization
group transformations (Rλ)λ>0 possess the characteristic feature of scaling local-
izations of operators by λ, and their 4-momentum transfer by λ−1, so that the
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“phase space occupation” of orbits λ → Rλ(A) of (bounded) operators under RG
transformation is independent of λ. This can be shown to be equivalent to the
following uniform continuity property with respect to Poincaré transformations:

(2.1) lim
(Λ,a)→(1,0)

sup
λ>0

‖α(Λ,λa)(Rλ(A))−Rλ(A)‖ = 0.

Of course this property does not fix the RG transformations (Rλ)λ>0 uniquely, but
we will see that it contains enough information as to enable us to perform the short
distance scaling limit of a given theory.

In order to show this, we consider the C∗-algebraB(R+,A ) of all norm bounded
functions A from the positive reals to the quasi-local algebra, with pointwise defined
operations and with the uniform norm ‖A‖ := supλ>0 ‖Aλ‖, and define on it an
automorphic action α of P↑

+ by

(2.2) α(Λ,a)(A)λ := α(Λ,λa)(Aλ), (Λ, a) ∈ P↑
+.

Then, keeping in mind equation (2.1) above, we make the following

Definition 2.1. The scaling algebra associated to the double cone O is the
C∗-algebra A(O) of functions A ∈ B(R+,A ) such that:

(1) Aλ ∈ A (λO) for each λ > 0;
(2) lim(Λ,a)→(1,0) ‖α(Λ,a)(A)−A‖ = 0;

The corresponding quasi-local algebra will be denoted by A.

According to the above discussion, the conditions (1) and (2) in the previous
definition implement the renormalization group phase space properties on the func-
tions λ→ Aλ in the scaling algebras, so that A has to be thought of as comprising
the orbits of observables in A under all possible choices of the RG transformations.

To any given locally normal state ϕ on A (i.e. ϕ is a state on A such that its
restriction to each local algebra A (O) is a normal state of A (O)), we associate a
family of states (ϕ

λ
)λ>0 on the scaling algebra A defined by

(2.3) ϕ
λ
(A) := ϕ(Aλ), λ > 0, A ∈ A,

and we denote by SLA (ϕ) the set of limit points, in the weak* topology on the
dual of A, of the net (ϕ

λ
)λ>0, as λ → 0, i.e. ω0 ∈ SLA (ϕ) if there exists a subnet

(λκ)κ ⊂ R+, λκ → 0, such that ω0(A) = limκ ϕλκ
(A) for each A ∈ A. SLA (ϕ)

is called the set of scaling limit states of ϕ, and is always non-empty by general
compactness arguments.

Theorem 2.2. The set SLA (ϕ) is independent of ϕ. For ω0 ∈ SLA , let
(π0,H0,Ω0) be the corresponding GNS representation of A and define, for each
double cone O,

(2.4) A0(O) := π0(A(O))′′.

Then there exists a representation U0 of P↑
+ with respect to which the net O →

A0(O) is a local, Poincaré covariant net with Ω0 as vacuum vector.1

1This result holds true also in d = 2, 3 spacetime dimensions, but for d = 2 the vacuum need

not be a pure state of A0.
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Each net A0 arising as in the previous theorem will be called a scaling limit net
of A , and, in view of their construction, it is natural to regard them as describing
the short distance limit of the underlying theory A .

In general, the nets A0 determined by the different states ω0 ∈ SLA will be
non-isomorphic to each other, and this is expected to be the case for theories that, in
the conventional framework, don’t possess an ultraviolet fixed point. In this case we
say that A has a degenerate scaling limit. On the converse, it may happen that all
the scaling limit nets are isomorphic to each other. There are then two possibilities.
The first one is that A0(O) = C1 for all O, and this occurs for theories in which
the algebras of small regions contain, apart from the multiples of the identity, only
operators which have a 4-momentum transfer which diverges much faster than the
inverse of the radius of the localization region, so that it is impossible to find
RG orbits with the right phase space properties. If this is the case, we speak of
a classical scaling limit. The second possibility is that not all the local algebras
are trivial, implying that A0 is actually non-commutative and infinite dimensional.
This is of course the more interesting case, as the short distance properties of A are
described by a single non-trivial theory, and when it is realized we say that A has a
unique quantum scaling limit. This happens for dilatation invariant theories (which
comply with the Haag-Swieca compactness condition, see [3] for details), which are
isomorphic to their own scaling limits, and for the theory of the free scalar field in
d = 3, 4 spacetime dimension, whose scaling limit theories are all isomorphic to the
theory of the massless free scalar field [4].

3. Superselection charges and reconstruction of fields

Superselection theory is the study of the structure of the set of (unitary equiva-
lence classes of irreducible) representations of the quasi-local algebra of observables
which describe, in some specified sense, localized excitations of the vacuum. These
classes are called superselection sectors or charges. Here we will limit ourselves to
a brief expository account of the results of superselection theory which we will be
of relevance in the subsequent analysis of the short distance behaviour of sectors,
referring the reader to [16, 13] or to the original papers cited below for further
discussion and details.

In order to formulate a precise notion of “localized excitation” we follow [6], and
state the criterion below (where � denotes restriction, and ∼= unitary equivalence).

Definition 3.1 (DHR selection criterion). A representation π of the quasi-
local algebra is a DHR representation if, for every double cone O,

(3.1) π � A (O′) ∼= ι � A (O′),

with ι the (defining) vacuum representation of A .

Assuming that the net A satisfies Haag duality, A (O) = A (O′)′, and using the
above unitary equivalence to identify the Hilbert space of the representation π with
the vacuum Hilbert space H , it is possible to equivalently describe the set of DHR
representations by the set ∆DHR

t of localizable, transportable endomorphisms ρ of
A , such a ρ being localizable if for some double cone O, ρ(A) = A for A ∈ A (O′),
and transportable if for each O1 there exists ρ1

∼= ρ localized in O1. By ∆DHR
t (O) we

denote the ρ’s localizable in O. For ρ, σ ∈ ∆DHR
t the set of their (global) intertwiners

is the set I (ρ, σ) of the T ∈ A such that Tρ(A) = σ(A)T for each A ∈ A , while
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local intertwiners T ∈ I (ρ, σ)O are defined by requiring that this holds only for
A ∈ A (O).

In the following we will only consider covariant endomorphisms ρ ∈ ∆DHR
t ,

namely those for which there exists a unitary, strongly continuous representation
Uρ on H of the (universal covering of the) Poincaré group, which satisfies the
spectrum condition and such that

Uρ(Λ, a)ρ(A)Uρ(Λ, a)∗ = ρ(α(Λ,a)(A)), A ∈ A , (Λ, a) ∈ P↑
+.

Also, we will restrict to finite statistics endomorphisms, where this means, essen-
tially, that the charge described by the sector of which such an endomorphism is
a representative has exchange statistics which is (a suitable generalization of) or-
dinary Bose or Fermi statistics (see [6] for details). We denote by ∆DHR

c the set
of localizable, transportable, covariant endomorphisms with finite statistics. We
remark that, under fairly general additional assumptions on the net A , ∆DHR

t =
∆DHR

c [10, 11]. We denote by DHR(A ) the set of (covariant, finite statistics) DHR
sectors of A , i.e. the set of equivalence classes of irreducible elements of ∆DHR

c .
In models, one usually starts from a net of field algebras O → F (O), whose

(self-adjoint) elements are not observables in general, on which one as an action of
a compact symmetry group G (the global gauge group) by a unitary representation
V which leaves the field algebras globally invariant, V (g)F (O)V (g)∗ = F (O), and
the observables are then defined as the gauge invariant part of the fields

A (O) := F (O)G := {F ∈ F (O) : βg(F ) = F, ∀g ∈ G},
where βg := AdV (g). Superselection sectors of A then arise through the factorial
decomposition of V , and are hence in 1-1 correspondence with irreducible represen-
tations of the gauge group G [5].

The most remarkable result of superselection theory is that all this structure
is actually encoded in the set ∆DHR

c , i.e. one can canonically reconstruct the unob-
servable fields and the gauge group starting only from the observable net and its
DHR representations [9].

Theorem 3.2 (Doplicher-Roberts reconstruction). There exists a Poincaré co-
variant net O → F (O) on a Hilbert space HF containing H , and a unitary
strongly continuous representation V of a compact group G on H , leaving F (O)
and Ω invariant and commuting with U(P↑

+), such that:
(1) there exists k ∈ G, k2 = 1G, such that F satisfies normal commutation

relations with respect to the Bose-Fermi grading defined by k (i.e. F± :=
1/2(F ± βk(F )) are the Bose and Fermi parts of F ∈ F (O));

(2) A (O) = F (O)G � H ;
(3) for each irreducible ρ ∈ ∆DHR

c (O) there exist ψ1, . . . , ψd ∈ F (O), and an
irreducible d-dimensional unitary representation vρ of G, whose equiva-
lence class depends only on the class of ρ, such that

ψ∗i ψj = δij1,
d∑

j=1

ψjψ
∗
j = 1, βg(ψi) =

d∑
j=1

ψjvρ(g)ji,(3.2)

ρ(A) =
d∑

j=1

ψjAψ
∗
j , A ∈ A ;(3.3)

(4) F (O) is generated by A (O) and the multiplets ψ1, . . . , ψd as above.
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The pair (F , V ) is unique up to unitary equivalence.

Even restricting attention to purely massive theories, the DHR sectors do not
exhibit the most general possible localization properties: as it is shown in [1], in
general a sector in such a theory is localized in unbounded regions C called spacelike
cones, of the form C := a+

⋃
λ>0 λOx,y, where a ∈ R4 and Ox,y = (x+V+)∩(y+V−)

is a double cone spacelike to the origin such that x2 = y2. More precisely we have
the following:

Theorem 3.3. If π is an irreducible translation covariant representation of A
in which the single particle states are separated from the continuum by a gap in the
spectrum, there exists an irreducible vacuum representation πvac of A such that

(3.4) π � A (C ′) ∼= πvac � A (C ′)

for each spacelike cone C.

The analysis of the representations satisfying (3.4) can be developed in close
parallel to the one for DHR representations. Also in this case it suffices to consider
morphisms ρ : A → B(H ) which are localized in spacelike cones and transportable,
and to introduce as before the set ∆BF

c of such morphisms which are also covari-
ant and with finite statistics [1], and the set BF(A ) of equivalence classes of the
irreducible ones. Finally, a version of the reconstruction theorem 3.2 holds in this
case, too, the only essential difference being that one gets a field net C → F (C)
indexed by spacelike cones instead of double cones [9].

4. Short distance analysis of sectors: DHR case

In order to study the short distance behaviour of superselection charges, and
to characterize their preservation under scaling limits, it is natural, in view of the
results summarized in the previous section, to look at the short distance behaviour
of the associated charge carrying fields, and therefore to generalize the construction
of the scaling limit of the observable algebra, outlined in section 2, to the canonical
Doplicher-Roberts field net discussed in the previous section. In the present and
following sections we will report on the results of [8] in which these problems are
addressed. We refer the interested reader to this paper for proofs and further
discussion.

Let then A be a local, covariant observable net satisfying Haag duality, and F
the associated Doplicher-Roberts field net determined by the set ∆DHR

c of covariant,
finite statistics localized morphisms of A , and G the corresponding gauge group.
The construction of the scaling algebra associated to F and of its scaling limits
proceeds in close parallel to the discussion of section 2: on the C∗-algebra B(R+,F )
of all norm bounded functions F : R+ → F , equipped with the sup-norm ‖F‖ =
supλ>0 ‖Fλ‖, we define automorphic actions of P↑

+ and G by

(4.1) α(Λ,a)(F )λ := α(Λ,λa)(Fλ), β
g
(F )λ := βg(Fλ), (Λ, a) ∈ P↑

+, g ∈ G.

Definition 4.1. The field scaling algebra associated to the double cone O is
the C∗-algebra F(O) of functions F ∈ B(R+,F ) such that:

(1) Fλ ∈ F (λO);
(2) lim(Λ,a)→(1,0) ‖α(Λ,a)(F )− F‖ = 0;
(3) limg→e ‖βg

(F )− F‖ = 0.
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The corresponding quasi-local algebra will be denoted by F.

Remark 4.2. As in the case of observables, conditions (1) and (2) in the above
definition are again dictated by the phase space properties of renormalization group
orbits, which are of course the same for observables as for charged fields. For what
concerns condition (3), it is easy to see that, in view of the definition of the lifted
action β

g
of the gauge group, eq. (4.1), in which the action of G is not rescaled,

it selects orbits λ → Fλ which essentially transfer the same charge at all scales.
This means that we consider here only dimensionless charges, which however is
not really restrictive in d = 4, where Noether currents are believed not to acquire
anomalous dimension.

For a locally normal state ϕ on F , we again define a net (ϕ
λ
)λ>0 of states on

F by ϕ
λ
(F ) := ϕ(Fλ), and the set SLF (ϕ) of scaling limit states of ϕ as the set of

limit points of such a net.

Theorem 4.3. The set SLF (ϕ) is independent of ϕ. For ω0 ∈ SLF , let
(π0,H0,Ω0) be the corresponding GNS representation of F and define, for each
double cone O,

(4.2) F0(O) := π0(F(O))′′.

Then there exist representations U0 of P↑
+ and V0 of a suitable factor group G0 =

G/N0 with respect to which O → F0(O) is a normal, Poincaré covariant field net
with Ω0 as vacuum vector, such that

(4.3) A0(O) := π0(A(O))′′ = F0(O)G0 .

Each of the nets F0 arising as in the above theorem will be referred to as a
scaling limit (field) net of F .

We stress the fact that, in general, F0 is not a canonical Doplicher-Roberts
net for A0. This is essentially due to the fact that F0 describes sectors of A0

which may be thought of as short distance remnants of sectors of A , which are, in
general, only a proper subset of the sectors of A0: apart from technical problems
(e.g. A0 and F0 need not satisfy Haag duality), it follows from equation (4.3) and
from the general theory of [9] that, denoting by F (0) and G(0) the canonical field
net and gauge group of A0, F0 ⊂ F (0) and G0 = G(0)/N (0) for an appropriate
normal subgroup N (0) of G(0), so that the sectors of A0 induced by F0 are only
those which are associated to irreducible representations of G(0) which are trivial
on N (0). The situation is suggestively summarized in the following diagram [2]:

A
SL

||xx
xx

xx DR

""EE
EE

EE

A0

DR
��4

44
44

F

SL
��		

		
	

F (0) ⊇ F0

Charges of A0 have been named ultracharges of A in [2], because they can
be naturally interpreted as the charges described by the underlying theory in the
ultraviolet (short distance) limit. If the inclusion F0 ⊂ F (0) is proper, the sec-
tors induced by F (0) but not by F0 will then be naturally considered as confined
ultracharges of A0 because they are only visible in the scaling limit, but cannot
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be created by operations at finite scales. An example of this situation is given by
the Schwinger model (QED2 with massless fermions): it can be shown that the
observable algebra A of this model is isomorphic to (a central extension of) the net
of the massive free scalar field, and therefore has no sectors, which entails F = A ,
and F0 = A0. But, as shown in [2, 4], A0 has nontrivial (BF) sectors, so that
F0 ( F (0). We remark that this notion of confinement of ultracharges does not
suffer from the ambiguities of the conventional confinement notion (which is based
on giving a physical interpretation to unobservable objects like quark and gluon
fields), as everything is canonically fixed once the observables of the theory are
known, as the diagram above makes clear.

We address here a sort of converse problem, and try to characterize charges
that are preserved under the scaling limit operation. We remark that on physical
grounds it cannot be expected that all sectors of a theory are preserved, as it may
happen that localizing a charge in a region of radius λ requires energy that grows too
fast as λ→ 0 (think for instance of the composition of two charges which strongly
repel each other), and, recalling the discussion about the phase space properties
of renormalization group orbits, it is to be expected that such a charge will not
be preserved. Indeed, following this idea, it is possible to construct a class of field
nets F such that the sectors associated to representations which are non-trivial on
some proper normal subgroup N ⊂ G disappear in the scaling limit [7] (while the
other sectors are preserved in the sense of definition 4.4 below).

We need therefore some condition selecting sectors which are preserved under
the scaling limit. In order to find such a criterion, we note that it is natural to
expect that “pointlike” objects will survive the scaling limit, simply because they
are scale invariant. But, quantum mechanically, this means that the energy required
to localize such an object in a region of radius λ is not more than λ−1, i.e., since
there is no “internal structure” that has to be “squeezed”, the localization energy
is only limited by Heisenberg principle.

In order to implement this idea, consider, for a sector ξ, the associated Dopli-
cher-Roberts multiplets ψj(λ) ∈ F (λO) at each scale λ (see theorem 3.2). Then
the states ψj(λ)Ω can be thought of as roughly describing a charge ξ localized in
λO. The condition of ξ being pointlike can then be expressed as

(4.4) lim
∆↗R4

(
sup
λ>0

‖[E(λ−1∆)− 1]ψj(λ)Ω‖+ sup
λ>0

‖[E(λ−1∆)− 1]ψj(λ)∗Ω‖
)

= 0,

(with ∆ a compact subset of momentum space, and E the spectral measure of the
translation), i.e. we require that ψj(λ)Ω, ψj(λ)∗Ω have energy that scales essentially
as λ−1.

We give below a slightly more general definition of charge preservation, were
ω := 〈Ω, (·)Ω〉 denotes the vacuum state of F .

Definition 4.4. A sector ξ ∈ DHR(A ) is preserved in the scaling limit state
ω0 = limκ ωλκ

if, for each double cone O1 and each λ > 0, there exist multiplets of
class ξ, ψj(λ) ∈ F (λO1), j = 1, . . . , d, such that, for each ε > 0 and each double
cone O containing the closure of O1, there exist F j , F

′
j ∈ F(O) with

(4.5) lim sup
κ

(
‖(ψj(λκ)− F jλκ

)Ω‖+ ‖(ψj(λκ)− F ′jλκ
)∗Ω‖

)
< ε.

It can be shown that if ψj(λ) satisfies (4.4) the corresponding sector is preserved
in all scaling limit states.
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For a scaled multiplet ψj(λ) as in the above definition, we introduce the nota-
tion

(4.6) (αhψj)λ :=
∫

P↑
+

dΛ da h(Λ, a)α(Λ,λa)(ψj(λ)),

where h ∈ L1(P↑
+) and dΛ da is the Haar measure on P↑

+, and we note that, while
in general ψj(·) does not belong to F(O1), there holds αhψj ∈ F(O) if h has compact
support and O is sufficiently large. We will write h→ δ to denote limit with respect
to the partial ordering on the set of non-negative, continuous, compactly supported
functions on P↑

+ with
∫

P↑
+
h = 1, defined by g � h if supp g ⊆ supph.

Theorem 4.5. Let ξ be a DHR sector preserved in ω0, and ψj(λ) ∈ F (λO1)
be as above. Then, with F0 the scaling limit net determined by ω0, there exists

ψj := s∗- lim
h→δ

π0(αhψj) ∈ F0(O),

(limit in the strong∗ operator topology) for each O ⊃ O1. If the ψj(λ) are chosen
to transform like a multiplet according to the irreducible representation vξ, inde-
pendent of λ, under the action β of G (cf. (3.2)) – which is always possible –, then
the ψj transform under the action β(0) = AdV0 of G0 like a multiplet according

to the irreducible representation v
(0)
ξ of G0 given by v

(0)
ξ (gN0) = vξ(g), g ∈ G.

Furthermore the equation

ρ(a) :=
d∑

j=1

ψjaψ
∗
j , a ∈ A0,

defines an irreducible, covariant, finite statistics endomorphism of A0 localized in
O.

In view of the above results, and in particular of the fact that the gauge group
representation does not change in passing to the scaling limit, it is natural to regard
the sector of A0 induced by the DHR endomorphism ρ as the scaling limit of the
preserved sector ξ.

We mention that all the sectors in the theory of a G-multiplet of free scalar
fields, with G a compact Lie group, are preserved in every scaling limit state [7].

As an application of this notion of preservation, we state the following general-
ization of a result of Roberts [15] on the equivalence of local and global intertwiners
in dilation invariant theories.

Theorem 4.6. If the von Neumann field algebras F (O) are factors, F (O) ∩
F (O)′ = C1, and if each sector of A is preserved in some scaling limit state, then
there holds the equivalence of local and global intertwiners:

I (ρ, σ) = I (ρ, σ)O

Hence if all charges are well behaved in the ultraviolet limit, much of the
superselection structure can be determined purely locally.

5. Short distance analysis of sectors: BF case

In view of possible applications to physically interesting models, the analysis
of the above section, being restricted to DHR sectors, is too narrow: sectors in
nonabelian gauge theories are generically expected to be of BF type (the localization
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cone being viewed as a fattened version of the gauge flux string attached to a
gauge charge), so that, if colour in QCD is not confined, it should be a BF charge.
But the scaling limit theory of QCD ought to be a free theory of “quarks” and
“gluons” (asymptotic freedom), and therefore colour should become a DHR charge
in the limit, which however should not be identifiable with the limit of a preserved
DHR charge of the underlying theory. Thus, without generalizing the result of
the previous section to BF sectors, we would not be able to identify all the DHR
sectors of a scaling limit theory which are the short distance limit of sectors of the
underlying theory.

The main problem in performing such a generalization lies in the fact that
fields creating BF sectors are themselves localized in spacelike cones (see the end
of section 3), and such regions are (essentially) invariant under scaling, so that it
is not a priori clear how to implement the phase space requirements characteristic
of renormalization group orbits in this case. But, as just remarked, it is natural to
expect that BF sectors in asymptotically free theories should become DHR sectors
in the scaling limit, as the gauge string attached to charges should become weaker
and weaker at small scales. Correspondingly, the associated fields should become
more and more localized in bounded regions. We will therefore restrict attention
to BF sectors whose associated fields are asymptotically localized in double cones,
in a sense which we will readily make precise, and this will allow us to generalize
the scaling algebra construction and the notion of charge preservation.

We consider a local, Poincaré covariant observable net A and the corresponding
normal, Poincaré covariant Doplicher-Roberts field net C → F (C) determined
by the set of Poincaré covariant, finite statistics BF sectors of A .2 We will also
assume that F satisfies a condition of geometric modular action stating that the
modular group of the right wedge W = {x ∈ R4 : x1 > |x0|} coincides with
the Lorentz boosts in the x1 direction (see [8] for precise definitions), which is
generically satisfied (e.g. if the theory is defined by Wightman fields), and which
follows from an analogous condition for A [12]. We will then again define on the
C∗-algebra B(R+,F ) actions α and β of P↑

+ and G as in (4.1), and we will say
that F ∈ B(R+,F ) is asymptotically localized in the double cone O if

(5.1) lim sup
λ→0

sup
A∈A(O′)
‖A‖≤1

‖[Fλ, Aλ]‖ = 0.

Definition 5.1. Let C be a spacelike cone and O ⊂ C a double cone. The
scaling algebra of asymptotically localized fields associated to C and O is the C∗-
algebra F(C,O) of functions F ∈ B(R+,F ) such that:

(1) Fλ ∈ F (λC);
(2) F is asymptotically localized in O;
(3) lim(Λ,a)→(1,0) ‖α(Λ,a)(F )− F‖ = 0;
(4) limg→e ‖βg

(F )− F‖ = 0.

By F we will denote the C∗-algebra generated by all the algebras F(C,O).

Let ϕ be a normal state on B(HF ). We associate to it the net of states (ϕ
λ
)λ>0

on F and the set SLF (ϕ) of scaling limit states as in the previous section.

2We refer the reader to [9] for a precise formulation of the conditions on A under which such

a field net exists and for a thorough discussion of its properties.
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Theorem 5.2. If, for O containing the origin, A (O) =
∨

O030 A (O ∩ O′0),3

then SLF (ϕ) is independent of ϕ. For ω0 ∈ SLF (ω), let (π0,H
×

0 ,Ω0) be the
corresponding GNS representation of F and define, for each double cone O,

(5.2) F0(O) :=
⋂

C⊃O

π0(F(C,O))′′.

Then, identifying F0 with the net obtained by restricting it to the cyclic Hilbert
space H0 := F0Ω0, there exist representations U0 of P↑

+ and V0 of a suitable
factor group G0 = G/N0 with respect to which O → F0(O) is a normal, Poincaré
covariant field net with Ω0 as vacuum vector.

Each net F0 defined in this way will be called a scaling limit net of asymptot-
ically localized fields of F . Therefore we obtain, from a net C → F (C) of fields
localized in spacelike cones, a family of nets O → F0(O) of fields localized in double
cones in the scaling limit, as expected in asymptotically free theories.

The notion of preserved BF charge is now a straightforward generalization of
definition 4.4, which is best formulated by introducing, for regions R1, R2 ⊂ R4, the
notation R1 b R2 to mean that there is a neighbourhood of the identity N ⊂ P↑

+,
such that ΛR1 + a ⊂ R2 for each (Λ, a) ∈ N .

Definition 5.3. A sector ξ ∈ BF(A ) is preserved in the scaling limit state
ω0 = limκ ωλκ

if, for each double cone O1, and each spacelike cone C1 ⊃ O1 and
λ > 0, there exist multiplets of class ξ, ψC1

j (λ) ∈ F (λC1), j = 1, . . . , d, which are
asymptotically localized in O1 and fulfill the following conditions:

(1) for each C1, Ĉ1 ⊃ O1,

(5.3) lim
κ

(
‖(ψC1

j (λκ)− ψĈ1
j (λκ))Ω‖+ ‖(ψC1

j (λκ)− ψĈ1
j (λκ))∗Ω‖

)
= 0;

(2) for each ε > 0 and each pair C ⊃ O such that O1 ⊂ O, C1 b C, there
exist F j , F

′
j ∈ F(C,O) with

(5.4) lim sup
κ

(
‖(ψC1

j (λκ)− F jλκ
)Ω‖+ ‖(ψC1

j (λκ)− F ′jλκ
)∗Ω‖

)
< ε.

Actually, the preservation notion given in [8] is slightly more general than the
present one, which is however more simply stated.

Theorem 5.4. Let ξ be a BF sector preserved in ω0, and ψC1
j (λ) ∈ F (λC1),

asymptotically localized in O1, be as above. Then, with F0 determined by ω0, there
exists

ψj := s∗- lim
h→δ

π0(αhψ
C1
j )

(limit in the strong∗ operator topology). ψj is independent of C1 and belongs to
F0(O) for each O ⊃ O1. If the ψC1

j (λ) are chosen to transform like a multiplet
according to the irreducible representation vξ, independent of λ, under the action β
of G, then the ψj transform under the action β(0) = AdV0 of G0 like a multiplet

according to the irreducible representation v
(0)
ξ of G0. Furthermore, if the scaling

limit vacuum Hilbert space H vac
0 := A0Ω0 is separable, the state

ωξ(a) :=
d∑

j=1

〈Ω0,ψjaψ
∗
jΩ0〉, a ∈ A0,

3The validity of this condition has been tested in free field models.
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defines a GNS representation πξ such that for each x ∈ R4,

πξ � A0(O′ + x) ∼= πvac
0 � A0(O′ + x),

i.e., πξ has the DHR property for the class of all translates of O.

We obtain then that preserved BF sectors give rise, in the above sense, to some
kind of DHR charges of the scaling limit theories, even if with somewhat weaker
properties with respect to the full-fledged DHR sectors obtained in the previous
section. The remaining open problem is to decide if F0(O)G0 = A0(O), and if F0

is irreducible. If these two conditions hold, we get a genuine DHR sector in the
scaling limit. We refer the reader to [8] for further discussion of these points.

6. Conclusions and outlook

The discussion of the previous sections can be summarized in the following
diagram:

A
SL //

��

A0

��
BF(A ) BF0(A )? _oo //___ DHR(A0)

where BF0(A ) is the set of preserved BF sectors of A , and were the dashed arrow
is the map associating to each preserved BF sector the corresponding DHR sector
according to theorem 5.4 (and following remarks). This leads to a natural notion
of confinement of ultracharges: a sector ξ ∈ DHR(A0) is confined if it is not in the
image of BF0(A ) under this map.

Future developments of the study exposed here will include a closer analysis of
the problems mentioned at the end of the previous section, as well as the study of
specific models, in particular in order to test the condition of charge preservation
for BF sectors. Also, it would be desirable to develop a short distance analysis
of sectors not relying on the Doplicher-Roberts theorem 3.2, so as to encompass
sectors with braid group statistics. Some work in this direction has been reported
on in [14].
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