Corso di Fondamenti di Analisi Matematica

a.a. 2017-18

G. Morsella

Esercizi del 9/5/18

Gli esercizi contrassegnati da un asterisco (*) sono piuttosto impegnativi.

- 1. Siano X, Y spazi metrici con X completo, e $f: X \to Y$ isometrica. Mostrare che $f(X) \subset Y$ è chiuso
- 2. Siano \mathscr{B} un'algebra di Banach con unità, e $a \in \mathscr{B}$ tale che $\sigma(a) = \{0\}$ (un tale elemento è detto topologicamente nilpotente), e sia $\mathscr{A} := \overline{\langle 1, a, a^2, \dots \rangle} \subset \mathscr{B}$ la sottoalgebra chiusa di \mathscr{B} generata da a. Si mostri:
 - (a) $x \in \mathscr{A}$ se e solo se $x = \sum_{k=0}^{+\infty} \lambda_k a^k$ (serie convergente in \mathscr{B});
 - (b) $\Omega(\mathscr{A}) = \{\omega_0\}, \text{ con } \omega_0(x) = \lambda_0;$
 - (c) la trasformata di Gelfand $\hat{}:\mathscr{A}\to C(\Omega(\mathscr{A}))$ non è iniettiva.

*3. Si dimostri:

(a) dati $a, b \in \ell^1(\mathbb{Z})$ la serie

$$(a*b)_n := \sum_{k \in \mathbb{Z}} a_{n-k} b_k, \qquad n \in \mathbb{Z},$$

è assolutamente convergente e $\|a*b\|_1 \le \|a\|_1 \|b\|_1$; a*b è detto la convoluzione di $a,b \in \ell^1(\mathbb{Z})$;

- (b) definendo, per $a \in \ell^1(\mathbb{Z})$, $a_n^* := \overline{a_{-n}}$, si ha che $\ell^1(\mathbb{Z})$, con il prodotto di convoluzione, è una *-algebra di Banach commutativa con identità;
- (c) l'elemento $\zeta := (\delta_{n,1})_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$ è tale che, rispetto alla convoluzione, $\zeta^{-1} = (\delta_{n,-1})_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$ e $\langle \zeta^n : n \in \mathbb{Z} \rangle$ è denso in $\ell^1(\mathbb{Z})$;
- (d) per ogni $\lambda \in \mathbb{T}$, $\omega_{\lambda} : \ell^{1}(\mathbb{Z}) \to \mathbb{C}$ definito da

$$\omega_{\lambda}(a) := \sum_{n \in \mathbb{Z}} a_n \lambda^n, \qquad a \in \ell^1(\mathbb{Z}),$$

è un carattere di $\ell^1(\mathbb{Z})$;

- (e) per ogni $\omega \in \Omega(\ell^1(\mathbb{Z}))$ esiste un'unico $\lambda \in \mathbb{T}$ tale che $\omega = \omega_{\lambda}$ (sugg.: $\lambda := \omega(\zeta)$);
- (f) l'applicazione $\lambda \in \mathbb{T} \mapsto \omega_{\lambda} \in \Omega(\ell^{1}(\mathbb{Z}))$ è biunivoca, continua e con inversa continua (cioè è un *omeomorfismo* di spazi topologici) (sugg.: l'inversa $\omega \mapsto \omega(\zeta)$ è continua da uno spazio compatto a uno di Hausdorff);
- (g) identificando, come spazi topologici, $\Omega(\ell^1(\mathbb{Z}))$ con il cerchio unitario \mathbb{T} tramite l'applicazione del punto (f), la trasformata di Gelfand di $a \in \ell^1(\mathbb{Z})$ si identifica con la funzione $\hat{a} \in C(\mathbb{T})$ data da

$$\hat{a}(e^{i\theta}) = \sum_{n \in \mathbb{Z}} a_n e^{in\theta}, \qquad e^{i\theta} \in \mathbb{T},$$

cioè con la serie (o la trasformata) di Fourier della successione $(a_n)_{n\in\mathbb{Z}}$.

4. Siano ${\mathscr A}$ una C*-algebra, ${\mathscr S}\subset{\mathscr A}$ un sottoinsieme, e

$$C^*(\mathscr{S}) := \bigcap \{\mathscr{B} \subset \mathscr{A} \text{ \mathbf{C}*-sottoalgebra contenente \mathscr{S}}\}.$$

la C*-sottoalgebra di $\mathscr A$ generata da $\mathscr S$. Si verifichi che, usando la notazione $a^\sharp=a$ o $a^*,$

$$C^*(\mathscr{S}) = \overline{\langle a_1^{\sharp} \dots a_n^{\sharp} : a_i \in \mathscr{S}, i = 1, \dots, n, n \in \mathbb{N} \rangle}.$$

- 5. Siano $H=\ell^2(\mathbb{Z})$ e $U\in B(H)$ l'operatore definito da $Ue_n=e_{n+1},\ n\in\mathbb{Z},\ \mathrm{con}\ (e_n)_{n\in\mathbb{Z}}$ la base ortonormale canonica. Si mostri:
 - (a) esiste un operatore unitario $V:L^2([0,2\pi])\to \ell^2(\mathbb{Z})$ tale che $U=VM_gV^*,$ con $M_g\in B(L^2([0,2\pi])$ l'operatore di moltiplicazione per la funzione $g(\theta)=e^{i\theta},\ \theta\in[0,2\pi];$
 - (b) U è unitario e $\sigma(U) = \mathbb{T}$;
 - (c) se $\mathscr{B} := \overline{\langle \mathbb{1}, U, U^2, \dots \rangle}$ è la sottoalgebra di Banach con unità di B(H) generata da U, si ha $0 \in \sigma_{\mathscr{B}}(U)$ (sugg: se $p \in \mathscr{B}$ è un polinomio, $\langle U^*e_n, pe_n \rangle = 0$, da cui $\|U^* p\| \ge 1$).