Corso di Fondamenti di Analisi Matematica

a.a. 2017-18

G. Morsella

Esercizi del 28/3/18

Nei seguenti esercizi (X, \mathfrak{M}, μ) denota un generico spazio di misura.

1. Sia $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ una successione, e si definiscano

$$\limsup_{n\to +\infty} a_n := \inf_{k\in \mathbb{N}} \sup_{n\geq k} a_n, \qquad \liminf_{n\to +\infty} a_n := \sup_{k\in \mathbb{N}} \inf_{n\geq k} a_n.$$

Si dimostri:

- (a) posto $\alpha_n := \inf_{k \geq n} a_k$, $\beta_n := \sup_{k \geq n} a_k$, le successioni $(\alpha_n)_{n \in \mathbb{N}}$, $(\beta_n)_{n \in \mathbb{N}}$ sono rispettivamente crescente e decrescente;
- (b) $\liminf_{n \to +\infty} a_n = \lim_{n \to +\infty} \inf_{k \ge n} a_k$, $\limsup_{n \to +\infty} a_n = \lim_{n \to +\infty} \sup_{k \ge n} a_k$;
- (c) $\liminf_{n \to +\infty} a_n \le \limsup_{n \to +\infty} a_n$;
- (d) $\liminf_{n\to+\infty} a_n = l'$ (risp. $\limsup_{n\to+\infty} a_n = l''$) se e solo se

$$\forall \varepsilon > 0 \quad \begin{cases} \exists n_{\varepsilon} \in \mathbb{N} : n \geq n_{\varepsilon} \Rightarrow & a_{n} > l' - \varepsilon \text{ (risp. } a_{n} < l'' + \varepsilon), \\ \forall \bar{n} \in \mathbb{N} \ \exists n \geq \bar{n} : & a_{n} < l' + \varepsilon \text{ (risp. } a_{n} > l'' - \varepsilon); \end{cases}$$

- (e) $\exists \lim_{n \to +\infty} a_n = l$ se e solo se $\limsup_{n \to +\infty} a_n = \liminf_{n \to +\infty} a_n = l$.
- 2. Siano Y un insieme e $f:X\to Y$ una funzione. Verificare che

$$\mathfrak{N} := \{ E \subset Y : f^{-1}(E) \in \mathfrak{M} \}$$

è una σ -algebra in Y.

- 3. Verificare che ogni aperto di \mathbb{R} è unione numerabile di intervalli della forma $(a, b), (a, +\infty], [-\infty, b),$ con $a, b \in \mathbb{Q}$.
- 4. Siano $E,F\in\mathfrak{M}$ e $f,g:X\to[0,+\infty]$ funzioni misurabili. Verificare:
 - (a) se $f \leq g$ allora $\int_X f \leq \int_X g$;
 - (b) se $E \subset F$ allora $\int_E f \leq \int_F f$;
 - (c) se $c \geq 0$ è una costante, allora $\int_X cf = c \int_X f$;
 - (d) se $\mu(\{x \in X : f(x) \neq 0\}) = 0$ allora $\int_X f = 0$;
 - (e) se $\mu(E) = 0$ allora $\int_E f = 0$.
- 5. Sia $s:X\to [0,+\infty]$ una funzione semplice. Mostrare che ponendo $\lambda(E):=\int_E s\,d\mu,\ E\in\mathfrak{M},\ \lambda$ è una misura su $\mathfrak{M}.$