Corso di Fondamenti di Analisi Matematica a.a. 2017-18

G. Morsella

Esercizi del 26/3/18

1. Sia X uno spazio topologico. Verificare che la famiglia di sottoinsiemi di X

$$\mathscr{B}(X) := \bigcap \{\mathfrak{M} \,:\, \mathfrak{M} \subset \mathscr{P}(X)\, \sigma\text{-algebra t.c. } A \in \mathfrak{M} \; \forall A \subset X \text{ aperto}\}$$

è la più piccola σ -algebra su X che contiene tutti gli insiemi aperti.

2. Indicato con $Q_r(x) = (x_1 - r, x_1 + r) \times \cdots \times (x_n - r, x_n + r) \subset \mathbb{R}^n$ l'*n*-cubo aperto di semilato r > 0 e centro $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, si mostri che se $A \subset \mathbb{R}^n$ è aperto vale

$$A = \bigcup \{Q_{1/k}(x) : x \in \mathbb{Q}^n \cap A, Q_{1/k}(x) \subset A\}.$$

- 3. Dato $A \in \mathfrak{M}(\mu)$ e $n \in \mathbb{N}$, si mostri che esisteno un insieme aperto $G_n \supset A$ e un insieme chiuso $F_n \subset A$ tali che $\mu(G_n \setminus A) < 1/n$, $\mu(A \setminus F_n) < 1/n$. (Sugg.: se $A \in \mathfrak{M}_F(\mu)$ si ponga $G_n = \bigcup_{k=1}^{+\infty} E_{k,n}$ con $E_{k,n}$ plurintervalli aperti opportuni; per dimostrare l'esistenza di F_n si ragioni sui complementari.)
- 4. Mostrare che la misura di Lebesgue-Stieltjes associata alla funzione non decrescente e continua a destra $F = \chi_{[x,+\infty)}$ è la misura di Dirac concentrata in $x \in \mathbb{R}$.