Corso di Fondamenti di Analisi Matematica a.a. 2016-17

G. Morsella

Esercizi del 14/3/17

- 1. Sia $(X, \|\cdot\|)$ uno spazio normato. Verificare che per ogni $x, y \in X$ si ha $|\|x\| \|y\|| \le \|x y\|$.
- 2. Siano (X,d) uno spazio metrico, $x \in X$ e $\delta > 0$. Dimostrare che le palle

$$B_{\delta}(x) := \{ y \in X : d(x,y) < \delta \}, \qquad \bar{B}_{\delta}(x) := \{ y \in X : d(x,y) \le \delta \}$$

sono, rispettivamente, aperta e chiusa (nella topologia indotta da d).

3. Siano X un insieme e B_{α} , $\alpha \in I$, una collezione di suoi sottoinsiemi (I insieme arbitrario di indici). Dimostrare la dualità di De Morgan:

$$\Big(\bigcap_{\alpha\in I}B_{\alpha}\Big)^{c}=\bigcup_{\alpha\in I}B_{\alpha}^{c}.$$

- 4. Sia X uno spazio topologico. Dimostrare che
 - (a) \emptyset , X sono chiusi;
 - (b) se C_{α} , $\alpha \in I$, sono chiusi, allora $\bigcap_{\alpha \in I} C_{\alpha}$ è chiuso;
 - (c) se C_1, \ldots, C_n sono chiusi, allora $C_1 \cup \cdots \cup C_n$ è chiuso.