Corso di Fondamenti di Analisi Matematica

a.a. 2015-16

G. Morsella

Esercizi del 20/4/16

Gli esercizi contrassegnati da un asterisco (*) sono piuttosto impegnativi.

1. Siano H uno spazio di Hilbert, e $(x_n)_{n\in\mathbb{N}}\subset H$ una successione di vettori linearmente indipendenti. Definita una successione $(f_n)_{n\in\mathbb{N}}$ tramite il procedimento di ortogonalizzazione di Gram-Schmidt:

$$f_1 := x_1, \quad f_2 := x_2 - \frac{\langle x_2, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1, \quad f_3 := x_3 - \frac{\langle x_3, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1 - \frac{\langle x_3, f_2 \rangle}{\langle f_2, f_2 \rangle} f_2, \quad \dots$$

dimostrare che i vettori $e_n := f_n/\|f_n\|$, $n \in \mathbb{N}$, sono un sistema ortonormale in H tale che, per ogni $n \in \mathbb{N}$, $\langle e_1, \ldots, e_n \rangle = \langle x_1, \ldots, x_n \rangle$.

2. Verificare che se $(e_k)_{k\in\mathbb{N}}$ è una base ortonormale di uno spazio di Hilbert H, allora l'insieme

$$\left\{ \sum_{k=1}^{n} \alpha_k e_k : \alpha_k \in \mathbb{Q} + i\mathbb{Q}, \ k = 1, \dots, n, \ n \in \mathbb{N} \right\}$$

è numerabile e denso in H.

*3. Sia $f \in L^1(\mathbb{R})$ tale che $e^{\delta|x|}f \in L^1(\mathbb{R})$ per qualche $\delta > 0$. Mostrare allora che la trasformata di Fourier

$$\hat{f}(p) = \int_{\mathbb{D}} f(x)e^{-ipx} dx, \qquad p \in \mathbb{R}$$

di f si estende ad una funzione analitica nella striscia $\{p \in \mathbb{C} : |\text{Im } p| < \delta\}$ e che si ha lo sviluppo di MacLaurin

$$\hat{f}(p) = \sum_{n=0}^{+\infty} \frac{(-ip)^n}{n!} \int_{\mathbb{R}} f(x) x^n \, dx, \qquad |p| < \delta$$

(sugg.: l'estensione di \hat{f} soddisfa le equazioni di Cauchy-Riemann per l'esercizio 6 del 12/4/16, e si può scambiare l'integrale con lo sviluppo in serie di e^{-ipx} per l'esercizio 5 del 12/4/16).

- 4. Le funzioni di Hermite $\psi_n \in L^2(\mathbb{R})$, $n \in \mathbb{N}$, sono definite applicando il procedimento di Gram-Schmidt alle funzioni $x \in \mathbb{R} \mapsto x^n e^{-x^2/2}$ e pertanto hanno la forma $\psi_n(x) = H_n(x) e^{-x^2/2}$, con gli H_n polinomi di grado n, detti polinomi di Hermite. Dimostrare:
 - (a) $\{x^n e^{-x^2/2} : n \in \mathbb{N}\}^{\perp} = \{0\}$ (sugg.: se $\psi \in \{x^n e^{-x^2/2} : n \in \mathbb{N}\}^{\perp}$, applicare l'esercizio 3.14 a $f = \psi e^{-x^2/2}$):
 - (b) $(\psi_n)_{n\in\mathbb{N}}$ è una base ortonormale in $L^2(\mathbb{R})$;
 - (c) vale la formula di Rodrigues:

$$H_n(x) = \frac{(-1)^n}{\sqrt{2^n n!} \pi^{1/4}} e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

(sugg.: basta verificare, integrando per parti, che se H_n è dato dalla formula di sopra, allora $\langle x^k e^{-x^2/2}, H_n e^{-x^2/2} \rangle = 0, k = 0, 1, \dots, n-1, e ||H_n e^{-x^2/2}||_2 = 1$);

1

(d) si ha

$$\frac{1}{\sqrt{2}} \left(x - \frac{d}{dx} \right) \psi_n = \sqrt{n+1} \psi_{n+1}, \qquad \frac{1}{\sqrt{2}} \left(x + \frac{d}{dx} \right) \psi_n = \begin{cases} \sqrt{n} \psi_{n-1}, & n \ge 1, \\ 0, & n = 0, \end{cases}$$
$$\left(-\frac{d^2}{dx^2} + x^2 \right) \psi_n = (2n+1)\psi_n.$$

5. Dimostrare che applicando il procedimento di Gram-Schmidt in $L^2([0,+\infty))$ alle funzioni $x\mapsto x^ne^{-x}$ si ottengono funzioni $x\mapsto L_n(x)e^{-x}$, con gli L_n polinomi di grado n detti polinomi di Laguerre, che formano una base ortonormale in $L^2([0,+\infty))$.