Corso di Fondamenti di Analisi Matematica a.a. 2015-16

G. Morsella

Esercizi del 2/3/16

- 1. Siano $X = C^1([a,b]), Y = C^0([a,b])$ e $D: X \to Y$ definito da Df := f'. Mostrare che:
 - (a) se su X si mette la norma $||f||_{(1)}:=||f||_{\infty}+||f'||_{\infty}$ e su Y la norma $||\cdot||_{\infty}$, D è limitato e ||D||=1 (sugg.: considerare le funzioni $f(t)=e^{\alpha t}$ e fare $\alpha\to+\infty$);
 - (b) se si mette la norma $\|\cdot\|_{\infty}$ sia su X che su Y, D non è limitato.
- 2. Sia $T:\mathbb{C}^n\to\mathbb{C}^n$, con \mathbb{C}^n dotato della norma euclidea, e si indichi con $\sigma(T)$ lo spettro di T. Dimostrare:
 - (a) se $T = \operatorname{diag}[\lambda_1, \dots, \lambda_n]$ è diagonale, allora $||T|| = \max_j |\lambda_j|$;
 - (b) se T è hermitiana $(T^* = T)$, allora $||T|| = \max_{\lambda \in \sigma(T)} |\lambda|$ (sugg.: se T è hermitiana, $T = UDU^*$ con D diagonale e $U^*U = UU^* = 1$);
 - (c) per T generica, $||T|| = \max_{\lambda \in \sigma(T^*T)} |\lambda|^{1/2}$.
- 3. Siano X,Y spazi normati con X finito-dimensionale, e $T:X\to Y$ lineare. Dimostrare che T è limitato.
- 4. Su $X:=\{x=(x_1,x_2)\in\mathbb{R}^2\,:\,x_1^2+x_2^2\leq 1\},$ la palla unitaria in $\mathbb{R}^2,$ si definisca

$$d(x,y) := \begin{cases} |x-y| & \text{se } x \text{ e } y \text{ sono allineati con l'origine,} \\ |x|+|y| & \text{altrimenti} \end{cases} x,y \in X$$

- $(|\cdot| \text{ norma euclidea in } \mathbb{R}^2)$. Dimostrare che (X,d) è uno spazio metrico.
- 5. Siano (X,d) uno spazio metrico e $(x_n)_{n\in\mathbb{N}}\subset X$ convergente. Mostrare che (x_n) è di Cauchy.