Corso di Fondamenti di Analisi Matematica a.a. 2013-14

G. Morsella

Esercizi del 27/5/14

Gli esercizi contrassegnati da un asterisco (*) sono piuttosto impegnativi.

- 1. Sia π una rappresentazione della C*-algebra \mathscr{A} . Verificare che un sottospazio chiuso $K \subset H_{\pi}$ è invariante per π se e solo se il rispettivo proiettore ortogonale P_K appartiene a $\pi(\mathscr{A})'$.
- 2. Siano π una rappresentazione della C*-algebra \mathscr{A} e $A \in \pi(\mathscr{A})'$ autoaggiunto. Si mostri che, se P è la misura spettrale associata ad A, $P(I) \in \pi(\mathscr{A})'$ per ogni intervallo $I \subset \mathbb{R}$.
- *3. Sia π una rappresentazione della C*-algebra \mathscr{A} . Si mostri che π è irriducibile se e solo se $\pi(\mathscr{A})' = \mathbb{C}\mathbb{1}$ (lemma di Schur).
- 4. Siano \mathscr{A} una C*-algebra con untià e $\omega, \omega' \in \mathscr{S}(\mathscr{A})$. Si verifichi che ω' è dominato da ω se e solo se esiste $\varphi \in \mathscr{S}(\mathscr{A})$ tale che ω è combinazione convessa di ω' e φ .
- 5. Sia \mathscr{A} C*-algebra commutativa con unità. Mostrare che $\Omega(\mathscr{A}) = \mathscr{P}(\mathscr{A})$ (sugg.: $\omega \in \Omega(\mathscr{A})$ se e solo se $\pi_{\omega}(a) = \omega(a)\mathbbm{1}$).
- 6. Siano $\mathscr{A} = M_n(\mathbb{C})$ e $E_{jk} \in \mathscr{A}$ tali che $(E_{jk})_{il} = \delta_{ji}\delta_{kl}$, $i, j, k, l = 1, \ldots, n$. Dato $\omega \in \mathscr{S}(\mathscr{A})$ e posto $\rho_{jk} := \omega(E_{jk})$, $j, k = 1, \ldots, n$, si mostri:
 - (a) $\rho \geq 0$ e tr $\rho = 1$;
 - (b) $\omega(T) = \operatorname{tr}(\rho T)$ per ogni $T \in \mathscr{A}$;
 - *(c) ω è puro se e solo se esiste $x \in \mathbb{C}^n$ tale che $\rho = |x\rangle\langle x|$ (cioè $\rho y = \langle x, y\rangle x$ per ogni $y \in \mathbb{C}^n$), e quindi $\omega(T) = \langle x, Tx \rangle$ per ogni $T \in \mathscr{A}$.