Corso di Fondamenti di Analisi Matematica a.a. 2013-14

G. Morsella

Esercizi del 16/5/14

- 1. Sia $T \in B(H)$, H spazio di Hilbert. Mostrare che ker $T = (\operatorname{ran} T^*)^{\perp}$.
- 2. Sia $A \in B(H)$ autoaggiunto e tale che esista C>0 per cui $\|Ax\| \geq C\|x\|$ per ogni $x \in H$. Si mostri:
 - (a) $\ker A = \{0\};$
 - (b) $\operatorname{ran} A$ è denso in H;
 - (c) $\operatorname{ran} A$ è chiuso;
 - (d) A è invertibile.
- 3. Siano μ_1 , μ_2 misure di Borel regolari finite su uno spazio metrico X. Mostrare che per ogni funzione boreliana limitata $f: X \to \mathbb{C}$ esiste una successione $(f_n) \subset C_b(X)$ tale che $f_n \to f$ sia in $L^1(X, \mu_1)$ che in $L^1(X, \mu_2)$.
- 4. Verificare che l'applicazione $S_f: H \times H \to \mathbb{C}, f \in \text{Bor}(X)$, definita a lezione, è sesquilineare.
- 5. Verif
care che per il calcolo funzionale boreliano $\tilde{\rho}: \mathrm{Bor}(X) \to B(H)$, definito a lezione, vale $\tilde{\rho}(\bar{f}) = \tilde{\rho}(f)^*$.
- 6. Siano $P_1, P_2 \in B(H)$ proiettori ortogonali. Mostrare che sono equivalenti:
 - (a) $P_1 \leq P_2$;
 - (b) $\operatorname{ran} P_1 \subset \operatorname{ran} P_2$;
 - (c) $P_1P_2 = P_1 = P_2P_1$.