Corso di Fondamenti di Analisi Matematica a.a. 2012-13

G. Morsella

Esercizi del 24/5/13

Gli esercizi contrassegnati da un asterisco (*) sono particolarmente impegnativi.

- 1. Sia π una rappresentazione regolare dell'algebra di Weyl \mathscr{W} . Verificare che per ogni $x,y\in H_{\pi}$ la funzione $z\in\mathbb{C}\mapsto \langle x,\pi(W(z))y\rangle$ è continua.
- 2. Mostrare che lo spazio $C_c(\mathbb{R})$ delle funzioni continue a supporto compatto su \mathbb{R} è denso in $L^p(\mathbb{R})$ per ogni $p \in [1, +\infty)$.
- *3. In unità generiche le relazioni di Weyl diventano

$$W(z_1)W(z_2) = e^{-\frac{i\hbar}{2}\sigma(z_1, z_2)}W(z_1 + z_2), \qquad z_1, z_2 \in \mathbb{C}.$$

Data allora una rappresentazione regolare π dell'algebra di Weyl, e indicata con $\pi(W(f))$ la quantizzazione di Wigner-Weyl della funzione $f \in L^1(\mathbb{R}^2) \cap L^1(\mathbb{R}^2)$, si mostri:

(a)
$$\pi(W(f))\pi(W(g)) = \pi(W(f \times_{\hbar} g))$$
 dove

$$(f \times_{\hbar} g)\hat{\,}(z) = \int_{\mathbb{R}^2} d^2 \zeta \, \hat{f}(\zeta) \hat{g}(z - \zeta) e^{-\frac{i\hbar}{2}\sigma(z,\zeta)};$$

(b) per $f,g\in C_c^\infty(\mathbb{R}^2)$ (funzioni C^∞ a supporto compatto) si ha

$$\lim_{\hbar \to 0} \left\| \left[\pi(W(f)), \pi(W(g)) \right] - i\hbar \pi(W(\{f, g\})) \right\| = 0,$$

dove $\{f,g\} = \partial_q f \partial_p g - \partial_p f \partial_q g$ è la parentesi di Poisson di f,g.