Corso di Fondamenti di Analisi Matematica a.a. 2012-13

G. Morsella

Esercizi del 19/3/13

- 1. Sia $(x_{\alpha})_{\alpha \in I}$ un net in uno spazio topologico X. Un $x \in X$ è un punto limite per (x_{α}) se per ogni intorno U di x ed ogni $\alpha \in I$ esiste $\alpha' \geq \alpha$ tale che $x_{\alpha'} \in U$. Dimostrare:
 - (a) se esiste un sottonet $(y_{\beta})_{\beta \in J}$ di (x_{α}) convergente a $x \in X$, allora x è un punto limite per (x_{α}) ;
 - (b) se $x \in X$ è un punto limite di (x_{α}) , allora definendo un ordine parziale diretto su $J := \mathscr{I}_x \times I$ tramite

$$(U', \alpha') \ge (U, \alpha) \Leftrightarrow U' \subset U, \alpha' \ge \alpha,$$

e definendo $f: J \to I$ tramite $f(U, \alpha) := \alpha'$, dove $\alpha' \in I$ è tale che $\alpha' \ge \alpha$ e $x_{\alpha'} \in U$, si ha che $(x_{f(\beta)})_{\beta \in J}$ è un sottonet di (x_{α}) convergente a x.

In sostanza: (x_{α}) ammette un sottonet convergente a x se e solo se x è un suo punto limite.

- 2. Siano X, Y spazi topologici con X compatto, e $f: X \to Y$ continua. Mostrare che allora f(X) è compatto in Y (con la topologia relativa).
- 3. Sia X compatto e $C \subset X$ chiuso. Mostrare che allora C è compatto (con la topologia relativa).
- 4. Sia X spazio di Hausdorff e $K \subset X$ compatto. Mostrare che allora K è chiuso.
- 5. Siano X compatto, Y di Hausdorff e $f:X\to Y$ continua e biunivoca. Mostrare che allora $f^{-1}:Y\to X$ è continua.
- 6. Sia X spazio normato di dimensione infinita, e $K \subset X$ compatto. Mostrare che K ha interno vuoto.
- 7. Sia X uno spazio topologico. La famiglia di sottoinsiemi di X

$$\mathscr{B}(X) := \bigcap \{ \mathfrak{M} : \mathfrak{M} \subset \mathscr{P}(X) \, \sigma\text{-algebra t.c.} \, A \in \mathfrak{M} \, \forall A \subset X \text{ aperto} \}$$

è la più piccola σ -algebra su X che contiene tutti gli insiemi aperti.