Corso di Fondamenti di Analisi Matematica a.a. 2012-13

G. Morsella

Esercizi del 15/3/13

Gli esercizi contrassegnati da un asterisco (*) sono particolarmente impegnativi.

- 1. Mostrare che $(C^1([a,b]), \|\cdot\|_{(1)})$ è di Banach, mentre $(C^1([a,b]), \|\cdot\|_{\infty})$ non lo è.
- 2. Sia (X,d) metrico. Verificare che $|d(x,y)-d(y,z)| \leq d(x,z)$ per ogni $x,y,z \in X$.
- 3. Siano (X,d) uno spazio metrico completo e $C \subset X$ chiuso. Mostrare che, indicando con d_C la restrizione di d a $C \times C$ (detta la metrica indotta da d su C), (C,d_C) è uno spazio metrico completo.
- *4. Sia (X, d) uno spazio metrico. Dimostrare:
 - (a) la relazione definita sull'insieme delle successioni di Cauchy di X da

$$(x_n) \sim (y_n) \Leftrightarrow \lim_{n \to +\infty} d(x_n, y_n) = 0$$

è di equivalenza;

(b) indicata con $[(x_n)]$ la classe di equivalenza della successione di Cauchy $(x_n) \subset X$ secondo la relazione del punto (a), e con \bar{X} l'insieme delle classi di equivalenza, l'applicazione $\bar{d}: \bar{X} \times \bar{X} \to \mathbb{R}_+$:

$$\bar{d}([(x_n)],[(y_n)]) := \lim_{n \to +\infty} d(x_n,y_n), \qquad [(x_n)],[(y_n)] \in \bar{X},$$

è ben definita, cioè il limite esiste e non dipende dai rappresentanti scelti per le classi, ed è una metrica su \bar{X} (sugg.: per l'esistenza del limite, usare l'esercizio 3);

- (c) indicata, per ogni $x \in X$, con $j(x) \in \bar{X}$ la classe di equivalenza della successione costante $x_n = x, n \in \mathbb{N}$, l'applicazione $j : X \to \bar{X}$ così definita è isometrica (cioè $\bar{d}(j(x), j(y)) = d(x, y)$) e j(X) è denso in \bar{X} (cioè $\bar{j}(X) = \bar{X}$);
- (d) (\bar{X}, \bar{d}) è uno spazio metrico completo, detto il *completamento* di (X, d) (sugg.: sia $(\bar{x}_n) \subset \bar{X}$ di Cauchy, e sia $(x_n) \subset X$ tale che $\bar{d}(j(x_n), \bar{x}_n) < 1/n...$);
- (e) se (\tilde{X},\tilde{d}) è uno spazio metrico completo e $k:X\to \tilde{X}$ è un'isometria con k(X) denso in \tilde{X} , esiste un'isometria suriettiva $\phi:\bar{X}\to \tilde{X}$ tale che $\phi(j(x))=k(x)$ per ogni $x\in X$ (unicità del completamento) (sugg.: si definisca prima $\phi:j(X)\to k(X)$ ponendo $\phi(j(x)):=k(x)$, allora ϕ è isometrica, poi j(X) è denso in \bar{X} e quindi...);
- (f) sia $(X, \|\cdot\|)$ normato, e sul suo completamento (\bar{X}, \bar{d}) (considerando X come spazio metrico con la metrica indotta dalla norma), si ponga

$$\bar{x} + \bar{y} := \lim_{n \to +\infty} j(x_n + y_n),$$

$$\alpha \bar{x} := \lim_{n \to +\infty} j(\alpha x_n), \qquad \alpha \in \mathbb{C}, \bar{x}, \bar{y} \in \bar{X};$$

$$\|\bar{x}\|^- := \lim_{n \to +\infty} \|x_n\|,$$

dove $(x_n), (y_n) \subset X$ sono tali che $j(x_n) \to \bar{x}, j(y_n) \to \bar{y};$ allora le operazioni di spazio vettoriale e la norma su \bar{X} sono ben definite, $j: X \to \bar{X}$ è lineare, e $(\bar{X}, \|\cdot\|^-)$ è uno spazio di Banach la cui norma $\|\cdot\|^-$ è indotta da \bar{d} .

(Nota: i punti (a)-(d) forniscono una dimostrazione alternativa, rispetto a quella data a lezione, dell'esistenza del completamento, mentri i punti (e), (f) danno la dimostrazione dell'unicità del completamento e la sua versione per spazi normati, solo accennate a lezione.)

5. Siano X uno spazio normato e $V\subset X$ un sottospazio finito dimensionale. Verficare che V è chiuso.