Corso di Fondamenti di Analisi Matematica a.a. 2012-13

G. Morsella

Esercizi del 5/3/13

1. Su $X:=\{x=(x_1,x_2)\in\mathbb{R}^2\,:\,x_1^2+x_2^2\leq 1\},$ la palla unitaria in $\mathbb{R}^2,$ si definisca

$$d(x,y) := \begin{cases} |x-y| & \text{se } x \text{ e } y \text{ sono allineati con l'origine,} \\ |x|+|y| & \text{altrimenti} \end{cases} x,y \in X$$

 $(|\cdot| \text{ norma euclidea in } \mathbb{R}^2)$. Dimostrare che (X,d) è uno spazio metrico.

2. Siano (X,d) uno spazio metrico, $x \in X$ e $\delta > 0$. Dimostrare che le palle

$$B_{\delta}(x) := \{ y \in X : d(x,y) < \delta \}, \qquad \bar{B}_{\delta}(x) := \{ y \in X : d(x,y) \le \delta \}$$

sono, rispettivamente, aperta e chiusa (nella topologia indotta da d).

- 3. Sia X un insieme di cardinalità n. Mostrare che $\mathscr{P}(X)$, l'insieme delle parti di X, ha cardinalità 2^n .
- 4. Siano X un insieme e B_{α} , $\alpha \in I$, una collezione di suoi sottoinsiemi (I insieme arbitrario di indici). Dimostrare la dualità di De Morgan:

$$\left(\bigcap_{\alpha\in I}B_{\alpha}\right)^{c}=\bigcup_{\alpha\in I}B_{\alpha}^{c}.$$

- 5. Sia X uno spazio topologico. Dimostrare che
 - (a) \emptyset , X sono chiusi;
 - (b) se C_{α} , $\alpha \in I$, sono chiusi, allora $\bigcap_{\alpha \in I} C_{\alpha}$ è chiuso;
 - (c) se C_1, \ldots, C_n sono chiusi, allora $C_1 \cup \cdots \cup C_n$ è chiuso.
- 6. Siano (X,d) uno spazio metrico, e $x\in X.$ Verificare che le famiglie di insiemi

$$\mathscr{B}_{x}^{1} := \{B_{\delta}(x) : \delta > 0\}, \quad \mathscr{B}_{x}^{2} := \{\bar{B}_{\delta}(x) : \delta > 0\}, \quad \mathscr{B}_{x}^{3} := \{B_{\delta_{n}}(x) : n \in \mathbb{N}\} \ (\delta_{n} \to 0),$$

sono basi di intorni di x.

7. Verificare che la famiglia di sotto
insiemi di $\mathbb R$

$$\tau_{\iota} := \{(a, +\infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$$

definisce una topologia su \mathbb{R} che non è di Hausdorff.

8. Siano (X, d) uno spazio metrico, $x \in X$ e $B \subset X$. Mostrare che x è un punto di accumulazione per B se e solo se esiste una successione $(x_j) \subset B \setminus \{x\}$ tale che $x_j \to x$.