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Abstra
t. The 
ontent, 1, is the minimal model theorem for foliations by 
urves. It 
on-

tinues the roll out of the various ingredients in the Green-Gri�ths 
onje
ture for algebrai


surfa
es, [M
Q℄. The minimal model theorem is, however, of an independent purely algebro-

geometri
 interest, and is presented as su
h, i.e. a self 
ontained theorem in 
omplex algebrai


geometry without foliation dynami
s, and independent of the aforesaid motivation. A working

knowledge of algebrai
 
hamps (the mis-translation sta
k will be es
hewed) is required.
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Introdu
tion

In a histori
al quirk, 
f. [Kol96, Intro.℄, the study of the 
anoni
al bundle of higher dimensional

varieties initiated by [Mor82℄, and, as su
h, often 
alled Mori theory, has long 
eased the original

fo
us on rational 
urves in favour of a 
o-homologi
al approa
h whi
h would be better des
ribed

as Kawamata theory. It is, therefore, not without irony that the study of rational 
urves on

varieties foliated by 
urves is, arguably, Mori theory as Mori intended and leads to a 
omplete

minimal model programme.

Everything takes pla
e in 
hara
teristi
 zero, so, say a proje
tive variety X/C, and a foliation

by 
urves, F , is just a (usually saturated) rank 1 sub-sheaf of the tangent sheaf, (I.19). Lo-


ally where both X and F are smooth this 
orresponds, by the 
lassi
al Frobenius theorem,

to a smooth �bration in the analyti
 topology. We therefore adopt the notation (and it's only

notation) X → [X/F ] for foliations in order to re�e
t better the underlying geometry/real

de�nition of a quotient of X by the holonomy groupoid, 
f. II.a.2 & II.a.3. Irrespe
tively,

there is, under mild hypothesis, e.g. X smooth, a well de�ned bundle, KF , of forms along the

leaves, and 
orresponding notions, I.b.1, of foliated Gorenstein, resp. Q Gorenstein singular-

ities. Similarly, there are, fun
torially with respe
t to the ideas, notions of foliated terminal,

log-terminal, 
anoni
al and log-
anoni
al singularities, I.b.3. Unlike their 
lassi
al 
ounter-

parts, however, these de�nitions always admit a simple des
ription in terms of lo
al algebra.

For example, terminal (Gorenstein) is equivalent, I.b.13, to smooth along the foliation, or,

equivalently given everywhere lo
ally by a non-vanishing ve
tor �eld, ∂, while a Gorenstein

log-
anoni
al singularity is a point, p, where although ∂ vanishes, the implied linearisation

(0.1) ∂ :
m(p)

m2(p)
→ m(p)

m2(p)

is non-nilpotent, I.b.5.

Already this lo
al global translation is highly indi
ative of why Mori theory of foliations by


urves is that mu
h more tra
table than that of varieties. Nevertheless, there is no free lun
h,

i.e. it transpires that from ambient dimension 3 on that there are foliations by 
urves whi
h

never have log-
anoni
al singularities on any smooth bi-rational model of the ambient spa
e.

The phenomenon is quite general, [MP13, �.III.iii℄, and, in se, straightforward enough, i.e.

there are 
ertain �nite group a
tions on ve
tor �elds whose �xed points 
annot be separated

from the singularities while preserving smoothness of the ambient spa
e. In pra
ti
e, however,

it means that if one wants a model of a foliation X → [X/F ] with (foliated) log-
anoni
al

singularities, and X smooth, then one is obliged to pass from the 
ategory of varieties to the

2-
ategory of Deligne-Mumford 
hamps. In this 
ontext, the main theorem of [MP13℄ is the

existen
e of log-
anoni
al resolutions in ambient dimension 3, and, the reader should be aware

that for the moment the existen
e of log-
anoni
al resolutions in higher dimension is open.

Irrespe
tively, we are obviously obliged to take as our starting point smooth foliated 
hamp

X → [X /F ] with log-
anoni
al singularities- from the existen
e of the Gorenstein 
overing


hamp, I.b.7 & [BM97℄: if there is a model with log-
anoni
al singularities then there is one in

whi
h the ambient 
hamp is smooth. This begins, however, to show signs of a rather pleasing
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loop sin
e the natural 
ontext of the 
lassi�
ation, [M
Q08℄, of foliated algebrai
 surfa
es

is exa
tly foliated smooth bi-dimensional 
hamps, while the universal algebrai
 foliation in

(hyperboli
) 
urves Mg,1 →Mg is again, naturally, a smooth Deligne-Mumford 
hamp.

To say that this begs the question of whether the minimal model programme for foliations by


urves 
ould be run wholly inside the 2-
ategory in whi
h the ambient 
hamp is smooth may,

to experts in the Mori theory of varieties, seem rather absurd. It transpires, however, to be the


ase in a way highly reminis
ent of the stru
ture of Mg,1 →Mg. The pre
ise theorem is,

1. Main Theorem. (IV.e.6, IV.e.7, IV.e.8) Let X → [X /F ] be a foliated 
hamp whi
h

enjoys the following further properties

(0.2) smooth; proje
tive moduli; log 
anoni
al, resp. 
anoni
al, foliation singularities

then there is a sequen
e of 
ontra
tions and �ips

(0.3)

X = X0 X1 · · · · · · Xn = Xmin




y
−−99K





y
−−99K −−99K





y

[X /F ] = [X0/F0] [X1/F1] [Xn/Fn] = [Xmin/Fmin]

su
h that ea
h Xi → [Xi/Fi] enjoys all the (respe
tive) properties (0.2), and exa
tly one of the

following o

urs

(a) KFmin
is nef.

(b) Xmin → [Xmin/Fmin] is a Mori �bre spa
e, i.e. the lo
us of a single extremal ray is all

of Xmin, and the foliation is a bundle of foliated varieties where the universal 
over of a

�bre is the radial (supposed saturated in dimension 1) foliation on a weighted proje
tive


hamp, I.d.2, whose dimension is 1 i� the foliation singularities are 
anoni
al.

Here a radial foliation is just the 
hamp/weighted proje
tive spa
e variant of a pen
il of lines

through a point of proje
tive spa
e, and in a further irony, the harder part of the theorem is

(b) in whi
h the use of the word �ip is slightly loose sin
e it may, when the singularities are


anoni
al, involve �very ex
eptional �ips�, IV.e.5, i.e. a little invariant blowing up in the �nal

stage, to preserve proje
tivity. The 
ontent of the theorem, however, should be 
lear: i.e. either

we get a minimal model, or a bundle of Fano obje
ts, and the Fano obje
ts are parti
ularly

simple, in fa
t, to all intents and purposes, rational 
urves if the singularities are 
anoni
al.

This said, let us give a brief breakdown both of the paper and the proof.

I. The �rst 
hapter is preliminary in nature. It 
ontains: generalities, I.a, on Deligne-Mumford


hamps; a revision of foliation singularities, I.b; the theory of weighted proje
tive 
hamps, I.
,

and their radial foliations, I.d; a non-embedded variant of 
ompletion, I.e; and some remarks

on the analyti
 topology, I.f. Te
hni
ally, it's worth �agging the last 2 se
tions sin
e the fa
t

that many things fail to be an embedding for (separated) 
hamps whi
h are trivially so in the

world of varieties, e.g. graphs of maps, is an issue, albeit sometimes it's true for trivial reasons,

i.e. that the étale topology is non-
lassi
al, but in the analyti
 topology one 
an still embed.

II. The se
ond 
hapter is the 
riti
al one. It �rst proves the 
one theorem, II.d.1, in maximal

generality. This was already done in [BM16℄ for foliated Gorenstein varieties, and its extension

to foliated Gorenstein 
hamp, II.a-II.d, may, largely, be 
onsidered te
hni
al in nature. In any


ase, it reveals, that the KF -negative extremal rays are invariant paraboli
 (i.e. dominated

by a rational 
urve) 
hamps, L , not fa
toring through the singular lo
us. Their parti
ularly

simple interse
tion with the singular lo
us, whi
h o

urs at a unique point p : pt→ L , of the

foliation is des
ribed in II.e, their normal bundle (should they have only nodes) by II.f, and

their formal neighbourhoods (again for singularities no worse than nodes) in II.g. The key point

here, II.g.3, is not only that the normal bundle determines the formal neighbourhood, but that

everything is determined by the linearisation, (0.1), at the singularity p whose eigenvalues are,
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up to s
aling, the slopes of the Harder-Narismhan �ltration of the normal bundle. The se
tion


on
ludes with an examination of the fun
toriality of the relationship between between (0.1)

and the Harder-Narismhan �ltration, II.h, i.e. the said s
aling is ambiguous in a non-trivial

way up to ±1, and this has a global manifestation; along with the ne
essary preliminaries, II.i,

for studying extremal rays with 
usps.

III. The third 
hapter globalises the in�nitesimal information of the se
ond to des
ribe the

sub-
hamps swept out by extremal rays beginning with the general dis
ussion III.a whi
h leads

to a de�nition in the spe
i�
, III.a.4, of extremal 
hamps. As su
h III.b-III.d is devoted to

des
ribing their stru
ture, whi
h, as one might imagine from 1.(b) is, III.d.7, basi
ally that

of a bundle of radially proje
tive 
hamps. The base of this bundle is essentially a smooth


omponent of the singular lo
us, but the aforesaid issue of ±1 in the s
aling of (0.1) means

that even when it has sense for it to be a Zariski bundle, it may not be.

IV. Finally we 
onstru
t 
ontra
tions and �ips, or, better, �aps, sin
e everything is just a

question of blowing up and down. Indeed, as one might imagine, 
ontra
tions, IV.a-IV.b, are

easy. A 
riti
al fa
t, however, emerges, IV.a.4 that although a 
ontra
tion renders the ambient


hamp less spa
e like, i.e. 
an in
rease the lo
al monodromy, it renders the foliation 
ompletely

smooth about the 
ontra
ted lo
us. As su
h, when one brings the full weight of the in�nitesimal

knowledge of �.II to bear in order to des
ribe the formal neighbourhoods of extremal 
hamp in

a similar manner, IV.
, to that of a single ray in order to �ip, IV.d, by the simple expedient of

weighted blowing up and down, one 
on
ludes that �ipping must terminate be
ause it destroys

a 
omponent of the singular lo
us at ea
h stage. This leaves only loose ends, IV.e, to tie up

related to s
aling by ±1 of (0.1), all of whi
h 
an only o

ur when the generi
 leaf of the

foliation is dominated by a rational 
urve. Consequently we 
on
lude the demonstration of 1

in IV.e, and provide a log-variant in IV.f.

I am indebted to Bogomolov for pointing out that the language of algebrai
 
hamps was the


orre
t setting for the main theorem; to Brunella for explaining to me the role of holonomy; to

M
Kernan for furnishing an example that the issue of (0.1) with integer eigenvalues being only

well de�ned up tp ±1 is genuine; to Marie Claude for the �gures; and Cé
ile for the original

typesetting, with any subsequent �aws being the result of my own 
lumsy modi�
ation.

I. Preliminaries

I.a. Normal-folds. A normal-fold is a parti
ularly simple kind of 
hamp,to wit:

I.a.1. De�nition. A normal fold is a not ne
essarily tame (although this will always be our


ontext) ex
ellent normal separated Noetherian Deligne-Mumford 
hamp every generi
 point

of whi
h is s
heme like.

A parti
ularly important 
lass of examples is given by

I.a.2. Fa
t/De�nition. ([Vis89, 2.8℄) Following standard usage a smooth (over an impli
it

base S) normal-fold will be referred to as an orbifold. In parti
ular: a (separated) algebrai


spa
e, X, of �nite type over a �eld k has stri
t (or even non-stri
t if the a
tion is tame) quotient

singularities i� there is an almost étale map, µ : X → X, from a smooth (over k) orbifold. In
this 
ase X is the moduli, [KM97, 1.3℄, of X , and 
onversely X is unique up to equivalen
e.

As su
h X will be referred to as the Vistoli 
overing 
hamp of X.

The following is a tiny variation on [Vis89, 2.8℄'s treatment of the Vistoli 
overing 
hamp

I.a.3. Lemma. Let µ : X → X be the moduli of a normal-fold, with U → X an étale atlas

then

(I.1) R :=
(

normalisation of U ×X U
)

⇒ U

de�nes a groupoid and X is equivalent to the 
lassi�er [U/R].
4
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Proof. U ×X U ⇒ U is a groupoid, so its normalisation is too. Now, let V →֒ X be the

everywhere s
heme like embedded dense Zariski open guaranteed by the de�nition, I.a.1, and

U ′ := U ×X V , then V is embedded in X, so U ′ ×V U ′
is a Zariski dense open of R. It is,

however, also a Zariski dense open of R1 := U ×X U , and we have a �bre square

(I.2)

U ×X U ←−−−− R1




y





y

X ×X X
∆X /X←−−−− X

where by hypothesis the lower horizontal is �nite. Consequently R1 → R is a �nite bi-rational

map of ex
ellent normal s
hemes so they're equal. �

Irrespe
tive of normality we have the further simpli�
ation

I.a.4. Lemma. Let µ : X → X be the moduli of a separated ex
ellent Deligne-Mumford 
hamp,

X ′ →֒ X the (open, possibly empty) lo
us where µ is an isomorphism, and f : Y → X a map

su
h that f−1(X ′) meets every generi
 point then f lifts to a 
omposition Y → X
µ−→ X i�

it lifts everywhere lo
ally, i.e. for every étale neighbourhood U → X of the image f(y) of a

geometri
 point y there is an étale neighbourhood Vy of y and a lifting Vy → U of f .

Proof. Ne
essity is obvious. By [KM97, 1.3℄ and [Vis89, 2.8℄, there is, independently of any

normal-fold hypothesis, an étale atlas U =
∐

α Uα of X and �nite groups Gα a
ting on Uα

su
h that V :=
∐

α Vα := Uα/Gα is an étale atlas of X with Uα = X ×X Vα. Now for anything

with a well de�ned map to X denote with a

′
the �bre over X ′

, so, we have open embeddings

(I.3) Y ′ →֒ Y , Y ′
α →֒ Yα := Y ×X Vα

Consequently, by hypothesis, and re�ning Uα if ne
essary, there is an étale atlas Yα → Yα and

maps fα : Yα → Uα su
h that

(I.4)

Yα −−−−→
fα

Uα





y





y

Yα −−−−→ Vα


ommutes. In parti
ular, therefore, the Gα torsor Yα ×Vα U ′
α is trivial, and we 
onsider

(I.5)

Y0 :=
∐

Yα ×Gα
y×σ−−−−−−→

7→σ.fα(y)
Uα

left verti
al





y
in (I.4)

Y

whi
h leads (it's here, 
f. I.a.5, we use generi
ally s
heme like) to a 
ommutative square

(I.6)

Y ′
0

horizontal−−−−−−→
in (I.5)

U ′

via verti
al





y
in (I.5)





y

X ′ −−−−→ X

As su
h, if we form the groupoids R := U ×X U ⇒ U , and Y1 := Y0 ×Y Y0 ⇒ Y0 then (I.6)

ensures that Y ′ → X ′ →֒X is equivalent to the 
omposition of fun
tors

(I.7) Y ′
1 → R′ = U ′ ×X U ′ →֒ R

while by hypothesis Y ′
1 is dense in Y1 and X is separated, so the simple of expedient of taking

the 
losure in (I.7) de�nes a fun
tor Y1 → R. �
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This is su�
iently 
lose to optimal as to merit

I.a.5. Remark. One 
annot repla
e X ′
by a Zariski open sub-
hamp X ′ →֒X in I.a.4. Indeed

take X to be the weighted proje
tive 
hamp P(n, n), I.
.1, n > 1. It's moduli is P1
, so the �bre,

X ′
, over a standard A1

is an embedded Zariski open. Moreover it's isomorphi
 to A1 × Bµn ,

so in parti
ular admits a se
tion, and we 
ould try to take Y = P1
. The gerbe P(n, n)→ P1

is,

however, non-trivial so the map Y ′ → X ′

annot be extended to Y → X even though it is

lo
ally trivial, when
e a fortiori without lo
al obstru
tion. The problem is that if one repla
es

the moduli X, resp. X ′
, by X , resp. X ′

, in (I.6) then the diagram needn't 2-
ommute in a

slightly unusual way. Spe
i�
ally, it's 2-
ommutative on geometri
 points, p say, by way of a

natural transformation ηp between either possible 
omposition, whi
h, in the spe
i�
 example,

if say U0, U∞ are points in the standard a�nes around 0 and in�nity is

(I.8) ηp =

{

1p if p ∈ U0,

p−1 p−1/n

−−−−→ p if p ∈ U∞\0,

where the latter arrow is to be understood in the presentation (I.32). Plainly, however, p→ ηp

isn't even 
ontinuous for p in U∞\0, and (I.6) fails to be 2-
ommutative.

This 
an often be 
ombined with

I.a.6. Fa
t. Let X be a (
onne
ted) normal (or slightly more general uni-bran
h) ex
ellent

Deligne-Mumford 
hamp then there is a unique normal-fold X0 (slightly more generally uni-

bran
h-fold with the obvious de�nition of that notion) su
h that X →X0 is a lo
ally 
onstant

gerbe under some �nite group BG.

Proof. Sin
e X is ex
ellent and uni-bran
h one 
an insist, [EGA-IV.2, 7.6.3℄, that the atlas

U =
∐

α Uα en
ountered at the beginning of the proof of I.a.4 
onsists solely of irredu
ible

(a�ne) s
hemes Uα. Now for Gα of op. 
it. de�ne G′
α as the kernel of the representation

Gα → Aut(Uα) with G′′
α the image, then sin
e X is uni-bran
h

∐

α Uα × G′
α is a normal

(groupoid sense [KM97, 7.1℄) U -group s
heme of the stabiliser, so for R := U ×X U ⇒ U , there

is, op. 
it. 7.4, a well de�ned quotient R→ R′′
where the latter is lo
ally of the form [Uα/G′′

α].
As su
h de�ne X0 to be [U/R′′], and observe that all the G′

α are isomorphi
. �

Finally another important appli
ation of normality. Spe
i�
ally let U be the spe
trum of a

Noetherian lo
al ring, A, with 
losed point x, and j : U ′ → U a Zariski open whose 
omplement

is de�ned by a regular sequen
e of length at least 2. As su
h, for n ∈ N the Kummer sequen
e,

(I.9) 0→ µn → Gm
n−→ Gm → 0,

applied to U and U ′

ombine to a�ord a short exa
t sequen
e

(I.10) 0→ H1(U,µn)→ H1(U ′, µn)→ Pic(U ′)[n]→ 0

In parti
ular therefore, if A is stri
tly Henselian and n−1 ∈ A,

(I.11) H1(U ′, µn)
∼→ Pic(U ′)[n]

Now in the parti
ular 
ase that A is normal ex
ellent we 
an take U ′
to be the regular lo
us,

and identify (primitive) generators of the right hand side of (I.11) with Q-Cartier divisors, L,
on U of index n = n(x), i.e. a Weil divisor, L, on U su
h that nL, but no smaller multiple,

mL, 1 ≤ m < n, is a line bundle, while the elements of order n on the left are just µn-torsors

V ′ → U ′
of order exa
tly n, and we assert

I.a.7. Fa
t/De�nition. For a Q-Cartier divisor, L, of index n on a normal stri
tly Henselian

U over whi
h n is invertible, the asso
iated index 1-
over, V → U , is the integral 
losure of U
in the 
orresponding µn-torsor V ′ → U ′

. By 
onstru
tion L | V is the trivial bundle, and, in a

6
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sense, universally so, i.e. if W → U is any �nite map from a normal s
heme W every 
omponent

of whi
h is dominant su
h that L | W is trivial then it fa
tors uniquely as W → V → U . In

parti
ular if ∆→ U is the stri
t Henselisation of some (s
heme) point u of U of index m|n then

the normalisation, N , of V ×U ∆ is the trivial µ n
m
-torsor over the index 1-
over, M , of ∆.

Proof. It remains to address the universal property, wherein, without loss of generality W is


onne
ted. As su
h all of U , V , W are the spe
tra of normal Henselian lo
al rings, so they

are all domains, while the fun
tion �eld of V over that of U is Galois by 
onstru
tion, so the

fa
torisation is unique if it exists. Now let W ′
be the �bre over U ′

then by (I.11) the µn-torsor

W ′ ×U ′ V ′
has a se
tion, whi
h gives the fa
torisation W ′ → V ′ → U ′

, and sin
e everything is

S2 the simple expedient of taking global fun
tions on these opens gives W → V → U . Applying

this to the in parti
ular: there is a map from N to M , while V ′ ×U ′ ∆ is a Zariski dense open

of the former whi
h is the trivial µ n
m

torsor over the pre-image of U ′
in the latter. �

In the 
ategory of spa
es it's rather rare that index 1-
overs 
an be glued whereas:

I.a.8. Fa
t. Let L be a Q-Cartier divisor on an ex
ellent normal Deligne-Mumford 
hamp X
then there is a �nite map, f : Y → X , from a normal Deligne-Mumford su
h that f∗L is

Cartier enjoying the following universal property: if g : Z →X is a �nite map from a normal


hamp su
h that g∗L is Cartier, then there is a 2-
ommutative fa
torisation

(I.12) Z X

Y

h

=={{{{{{{{{{

f

!!C
CC

CC
CC

CC
C

g
//

ξ

KS

su
h that for any other fa
torisation, ξ̄ : g ⇒ fh̄ there is a unique θ : h ⇒ h̄ for whi
h

(g∗θ)ξ = ξ̄.

Proof. For every 
losed point x of X let n(x) be the index of L at x, and Ux →X a su�
iently

small étale neighbourhood su
h that the index 1-
over Vx → Ux of I.a.7 is well de�ned, with

U ′
x, V ′

x as per op. 
it.. Now, for U =
∐

x Ux, we 
an without loss of generality suppose that X
is the 
lassifying 
hamp of the étale groupoid R0 := U ×X U ⇒ U , and that U ′ :=

∐

x U ′
x is

the lo
us where U is not regular. As su
h, the restri
tion, R′
0 ⇒ U ′

is a dense Zariski open of

R0 equivalent to the restri
tions R′ ⇒ V ′ :=
∐

V ′
x, where R′ → R′

0 is both étale and �nite, and

we de�ne R ⇒ V to be the integral 
losure of R0 in R′
. Consequently from the 
ommutative

diagram of �bre squares

(I.13)

R0 ←−−−− R′
0 ←−−−− R′





y





y





y

U × U ←−−−− U ′ × U ′ ←−−−− V ′ × V ′

and V × V → U × U �nite, R ⇒ V de�nes a groupoid whi
h by the in parti
ular in I.a.7 has

étale sour
e and sink.

Now let g : Z → X be given, then, up to equivalen
e, we 
an identify this with a fun
tor of

groupoids, g : W 1 → R0, where W 1 = W ×Z W ⇒ W for some étale 
over W → Z �ner than

the pre-image of U . By I.a.7, W → U fa
tors (uniquely) through V a�ording a (unique) map,

(I.14) h1 : W 1 → R0 ×U×U V × V

and R is the normalisation of the latter, while every lo
al ring of W 1
is �nite over U × U so

this a
tually fa
tors as a fun
tor (be
ause everything is unique) h : W 1 → R. As su
h we get

a unique stri
tly 
ommutative fa
torisation g = hf given W → U . This supposes, however,
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that all of X , Y , Z were the 
lassifying 
hamp of the said groupoids, whereas they may be

no better than equivalent to su
h, and when
e the uniqueness statement (I.12). �

In the same vein one has

I.a.9. Fa
t/De�nition. Let D →֒ X be an e�e
tive Cartier divisor on a normal 
hamp X .

As su
h for a su�
iently �ne atlas U →X we may identify X with the 
lassi�er of a groupoid

(s, t) : R0 ⇒ U and suppose that D |U is de�ned by z = 0 where s∗z = gt∗z for some 
o-
y
le

g : R0 → Gm. Now for n ∈ N invertible in every lo
al ring of X de�ne a groupoid with obje
ts

(I.15) normalisation of (T n = z) →֒ U × A1
.

and arrows the normalisation, R′
, of the base 
hange groupoid R0 ⇒ V , i.e. the �bre

(I.16)

R′
0 −−−−→ V × V





y





y

R0
s×t−−−−→ U × U

so that R′ ⇒ V is a groupoid be
ause R′
0 ⇒ V is, and everything is normal. Equally R′

admits

the expli
it des
ription:

(I.17) normalisation of (T n
1 = s∗z, T n

2 = t∗z) →֒ R0 × A2
.

whi
h is the same thing as taking normalised nth roots of s∗z and the (invertible) transition

fun
tion g. By hypothesis, however, n is everywhere invertible, so R′ ⇒ V has étale sour
e and

sink, and we de�ne X ′ = [V/R′] → X to be the (extra
tion of a) nth root of D . Observe,

moreover, that a se
tion of s : R′ → V is a 
hoi
e of nth root of g, so from the C¥
h boundary

in (I.9), the 
lass of the �bration D ′ = D ×X X ′ → D in Bµn 's is exa
tly

(I.18) c1(D) ∈ H2(D , µn)

I.b. Foliation singularities. This se
tion is largely a summary, for the 
onvenien
e of the

reader of the relevant parts of [MP13℄. The one ex
eption to this rule is the 
on
luding di-

gression, I.b.12-I.b.15, on how to avoid the study of boundaries altogether. Our interest is

ex
lusively in foliations by 
urves, i.e. if X is a Deligne-Mumford 
hamp of �nite type over a

�eld k (so Ω1
X /k is well de�ned) a torsion free quotient

(I.19) Ω1
X /k → Q→ 0

whi
h is rank 1 at every generi
 point. Arguably this is not the right de�nition in positive or

mixed 
hara
teristi
 sin
e in su
h situations (I.19) is not likely to be lo
ally integrable in any

meaningful sense. Fortunately we never have to worry about this, so we pro
eed dire
tly from

(I.19) to

I.b.1. De�nition. If X is normal and the double dual Q∨∨
is a bundle, resp. a Q-Cartier

divisor, then we say that the foliation, F , is Gorenstein, resp. Q-Gorenstein, or possibly

foliated Gorenstein, resp. foliated Q-Gorenstein, if there is any danger (whi
h there won't be)

of 
onfusion. In either 
ase, and indeed even if X were only normal, we write KF instead

of Q∨∨
, so that in the Gorenstein 
ase there is an ideal IZ supported in the 
o-dimension 2

(s
hemati
) singular lo
us Z su
h that

(I.20) Q = KF · IZ →֒ Q∨∨ = KF

As su
h, even in the analyti
 topology, the 
lassifying 
hamp, [X /F ] may have no sense,

albeit analyti
ally (and with probability zero in any algebrai
 topology) [X \Z/F ] has sense.
Nevertheless to better 
onvey the idea we write

(I.21) X → [X /F ]

as a short hand for I.19, and Ω1
X /F for the kernel in op. 
it..
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Unfortunately it's not te
hni
ally 
orre
t to view a quasi-proje
tive variety as a proper 
hamp

with in�nite monodromy on the boundary, so we make

I.b.2. Remark. All of this is equally valid for 
hamps with boundary, i.e. a 
ouple (X ,D), for
D →֒ X a redu
ed Weil divisor. Usually there'll be some further regularity, e.g. X and D
smooth over k, but all that's a priori required is that we 
an give a sense to the sheaf Ω1

X (log D),
so, X normal is su�
ient. In any 
ase, it therefore follows that the 
anoni
al bundle of the

foliation F may have 
ompeting de�nitions a

ording as to whether a boundary is involved,

KF , or not, Knolog
F . These are related by,

(I.22) KF = Knolog
F +

∑

i

ǫ(Di)Di

where Di are the irredu
ible 
omponents of D , and for W a Weil divisor

(I.23) ǫ(W ) =

{

0 if W is F ( the sense of I.b.1) invariant,

1 otherwise.

Similarly there may also be 
ompeting de�nitions of invariant a

ording as to whether this is

understood for a saturated sub-sheaf of TX or TX (− log D) so that should there be any risk

of 
onfusion the former, equiavelently, I.b.1 will, following [MP13, I.i.2℄, be refered to as stri
tly

invariant. Regardless, almost always our boundary will be empty, but when it isn't: KF will,

as suggested by (I.22), be reserved for the 
anoni
al with log-poles sin
e this is more natural

and the resulting formulae are 
leaner.

A 
ase in point is the following 
ut and paste of [MP13, I.ii.1℄

I.b.3. De�nition. Let (U,D,F ) be an irredu
ible lo
al germ of a Q-Gorenstein foliated loga-

rithmi
 geometri
ally normal k-variety, i.e. the germ about the generi
 point of a sub-variety Y
of a geometri
ally normal variety su
h that the log 
anoni
al bundle KF is a Q-divisor, then for

v a divisorial valuation of k(U) 
entred on Y the log dis
repan
y, aF (v) is de�ned as follows:

By hypothesis there is a normal modi�
ation π : Ũ → U of �nite type, together with a divisor E
on Ũ su
h that OŨ ,E is the valuation ring of v. In parti
ular, bearing in mind (I.22), there is an

indu
ed foliation F̃ with log 
anoni
al bundle KF̃ , i.e. whose dual is saturated in TŨ (− log E).
Thus there is a unique integer aF (v) su
h that

(I.24) KF̃ = π∗KF + aF (v)E

and for ǫ as in (I.23) we say that the lo
al germ (U,D,F ) is,

(1) Terminal if aF (v) > ǫ(v).

(2) Canoni
al if aF (v) ≥ ǫ(v).

(3) Log-Terminal if aF (v) > 0.

(4) Log-
anoni
al if aF (v) ≥ 0.

(I.25)

Where the slightly unsettling shift of the de�nitions by ǫ(v) o

urs as a result of the 
onvention
adopted in I.b.2 together with their 
orre
t fun
torial interpretation.

In 
ontrast to this fun
torial framework, there is a "
ompeting" lo
al notion of what ought to

be a good 
lass of foliation singularities, viz:

I.b.4. Set Up. Let ∂ be a singular derivation of a lo
al ring, O, with residue �eld k. Thus, by
de�nition, if m is the maximal ideal of O, ∂ : O → m and

(I.26) ∂̄ :
m

m2
→ m

m2
: x 7→ ∂(x)

is k-linear by Leibniz's rule.
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The relation between the linearisation (I.26) and (I.25) is as good as possible

I.b.5. Revision. [MP13, I.ii.3℄. A Gorenstein foliation over the 
omplex numbers is log-


anoni
al i� every point is either smooth, or, its linearisation, (I.26), is non-nilpotent.

Better still, one 
an always redu
e to the Gorenstein 
ase thanks to the spe
i�
s of one dimen-

sional leaves, i.e.

I.b.6.Revision. Let (V, D̃, F̃ )→ (U,D,F ) be the index 1-
over of the germ in I.b.3 asso
iated

to the log-
anoni
al bundle KF in the sense of I.a.7, or, more generally an almost étale map,

then for any (n) in (I.25), 1 ≤ n ≤ 4, (U,D,F ) is (n) i� (V, D̃, F̃ ) is.

Proof. The easy ones are n = 4, [MP13, I.ii.5℄, and the if dire
tion for 1 ≤ n ≤ 3, [MP13,

III.i.5℄, whi
h also 
overs the subtler 
onverse. �

Manifestly, therefore,

I.b.7. Fa
t/De�nition. Let X \D → [X \D/F ] be a Q-foliated Gorenstein logarithmi



hamps, then the index 1-
over, π : X̃ → X , de�ned by the log-
anoni
al divisor KF , I.a.8,

will be referred to as the Gorenstein 
overing 
hamp. The map π is étale in 
o-dimension 2;

there is an identity KF̃ = π∗KF of log-
anoni
al divisors; X̃ \D̃ → [X̃ \D̃/F̃ ] is Gorenstein;
and the 
over enjoys (n), 1 ≤ n ≤ 4, of (I.25) i� X \D → [X \D/F ] does.

As su
h, we work almost ex
lusively with Gorenstein foliations. Similarly the already small

di�eren
e between log-
anoni
al and 
anoni
al be
omes 
lose to irrelevant for minimal model

theory, i.e.

I.b.8. De�nition. Let (U,D,F ) be a germ of a normal foliated Gorenstein log-variety about

a point p su
h that a generator (in the sense of I.b.1 vanishes along a sub-variety Y then a

singularity is 
alled radial i� after 
ompletion in the maximal ideal we 
an �nd a generator of

the foliation of the form,

(I.27) ∂ = n1x1
∂

∂x1
+ . . . + nrxr

∂

∂xr
+ δ

where xi = 0 de�ning Y are linearly independent modulo m2
U,p, ni ∈ N, and δ ∈ Der(K, IY )

for some quasi-
oe�
ient �eld K. In parti
ular for U smooth: D is stri
tly invariant, I.b.2, i�

codim(Y ) = r ≥ 2.

By way of 
lari�
ation let us make

I.b.9. Remark. This isn't quite a 
ut and paste from [MP13℄, sin
e op. 
it. III.i.2 insists that

Y of I.b.8 has 
o-dimension at least 2, whi
h, although entirely a question of 
onvention, isn't

right for doing minimal model theory. In parti
ular, therefore, when Y has 
o-dimension 1, e.g.
I.b.10.(
), D = Y .

Irrespe
tively, the above de�nition of a radial singularity shouldn't be 
onfused with the 
losely

related notion of a radial foliation I.d.2, and in any 
ase the important point is,

I.b.10. Revision. [MP13, III.i.3℄. For (U,D,F ) a germ of a normal foliated Gorenstein variety

over a �eld k of 
hara
teristi
 0 the following are equivalent,

(a) The singularity is radial.

(b) The singularity is log-
anoni
al but not 
anoni
al.

(
) Y is the 
entre of a divisorial valuation of k(U) of (log)-dis
repan
y zero and divisor,


f. I.b.9, not stri
tly invariant.

From whi
h it follows that the passage from log-
anoni
al to 
anoni
al is exa
tly
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I.b.11. Revision. [MP13, III.ii.2℄. If X \D → [X \D/F ] is a foliated smooth 
hamp over a

�eld of 
hara
teristi
 zero whi
h has log-
anoni
al but not 
anoni
al singularities then every


omponent of sing(F ) where this o

urs is smooth, and there is a smoothed weighted blow

up, [MP13, I.iv.3℄, in ea
h of whi
h su
h that the indu
ed log-foliation on the resulting bi-

rational modi�
ation X̃ → X has everywhere 
anoni
al logarithmi
 foliation singularities,

whi
h amounts to the rather strong: at every point of the ex
eptional divisor, E , the indu
ed
foliation is smooth and every where transverse to E .

Su
h attention to the details of the logarithmi
 
ase notwithstanding our ultimate intention is

to work almost ex
lusively with an empty boundary. In order to do this we introdu
e

I.b.12. De�nition. A foliated spa
e with orbifold boundary is a triple (U,∆,F ), where U →
[U/F ] is a foliation in the sense of I.b.1 and ∆, is a formal linear 
ombination

∑

i ai∆i of

e�e
tive Weil divisors, where ai = 1 − n−1
i for some positive integers ni < ∞; and we say

(slightly 
ontrary to standard usage) that (U,∆,F ) is Q-Gorenstein if U → [U/F ] is and ea
h

∆i is Q-Cartier. Moreover if D is the Weil divisor

∑

i ∆i, then the dis
repan
y, a∆
F (v), of

(U,∆,F ) along a divisorial valuation v is de�ned to be

(I.28) a∆
F (v) := aF (v) −

∑

i

ǫ(∆i)mi(1− ai)

where aF (v) are the logarithmi
 dis
repan
ies, (I.24), of the foliated log-variety (U,D,F ); ǫ is
as (I.23); and mi are the multipli
ities of the ∆i along the ex
eptional divisor E en
ountered

in I.b.3. As su
h, we then say that (U,∆,F ) satis�es the 
orresponding properties (I.25) if the
respe
tive inequalities hold for a∆

F (v) rather than αF (v).

The introdu
tion of su
h orbifold boundaries is very mu
h temporary sin
e

I.b.13. Revision. [MP13, III.i.1℄. Let (U,D,F ) be a foliated germ of a smooth log-variety

supported at Z then the following are equivalent,

(1) (U,D,F ) is terminal.

(2) (U,D,F ) is log-terminal.

(3) D is stri
tly (i.e. in the sense of I.b.1) invariant and F is smooth transverse to the

generi
 point of Z.

whi
h in turn a�ords

I.b.14. Corollary. Let (U,∆,F ) be a germ of a log-
anoni
al foliation singularity with F -

Gorenstein and non-empty orbifold boundary every 
omponent, ∆i, of whi
h is Cartier, then

in fa
t it's 
anoni
al, and exa
tly one of the following holds

(1) Not only (U,F ) but also (U,∆,F ) is terminal while the non-invariant part of ∆ has

multipli
ity 1 and is everywhere transverse to F .

(2) (U,F ), but not (U,∆,F ), is terminal, the weight of every non-invariant 
omponent of ∆
(of whi
h there are at most 2) is 1/2, and the non-invariant part of D is de�ned by a single

equation f of multipli
ity 2 su
h that for a lo
al generator, ∂, of the foliation ∂2(f) is a unit.

(3) As per item (2) ex
ept that f has multipli
ity 1 and enjoys a simple tangen
y with F , i.e.

∂2(f) is again a unit.

Proof. From (I.24) and (I.28), the singularity (U,F ) without boundary is log-terminal, while

it is Gorenstein by hypothesis. Thus by I.b.13 it is de�ned by a no-where vanishing ve
tor �eld

∂, and, [MP13, III.i.1℄ every valuation, v, 
entred on the singularity has ǫ(v) = 0. In parti
ular,

therefore, (U,∆,F ) is always 
anoni
al, and it's terminal i� it's log-terminal.

Now, supposing, without loss of generality, that no 
omponent, ∆i, is invariant 
onsider the

e�e
t of blowing up in the maximal ideal of the germ. The dis
repan
y of (U,F ) is 1, so the
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only way for the multipli
ity of D to be more than 1 is if it's 2 and all the weights ai = 1/2.
In this latter 
ase the initial modi�
ation of (U,∆,F ) is, therefore, 
repant, so the proper

transform must itself be log-
anoni
al, and when
e the proper transform of D must only 
ut

the ex
eptional divisor in smooth points of the indu
ed foliation, i.e. ∂2(f) is a unit for f of

multipli
ity 2 de�ning D. To see that su
h a singularity is indeed 
anoni
al observe (proof of

[MP13, III.i.1℄) that in the lo
al ring, R, of a divisorial valuation v, we 
an write

(I.29) ∂ = π−m∂̃, f = πnf̃ , ∂̃(π) = 0, v(π) = 1, m, n ∈ N

for ∂̃ a derivation of R. As su
h,

(I.30) ǫ(v) = 0 = v(∂2f) = (n− 2m) + v(∂̃2(f̃)) ≥ n− 2m

whi
h is exa
tly the 
anoni
al 
ondition.

Alternatively, therefore, the multipli
ity of D is exa
tly 1, and if it's not everywhere transverse

to the indu
ed foliation then the proper transform of D must 
ut the ex
eptional divisor in

the singular lo
us of the transformed foliation, and a blow up in this (singular) lo
us a�ords a

valuation of negative dis
repan
y unless the weight is 1/2. As su
h, we're in 
ase (1) of I.b.14

or most of 
ase (3), i.e. it remains to prove that the tangen
y is simple. Observe, however, that

D 
uts the ex
eptional divisor in a smooth invariant sub-spa
e, and blowing up in this not only

yields a se
ond ex
eptional divisor along whi
h the dis
repan
y is zero, but separates the proper

transform of D from the proper transform of the initial ex
eptional divisor. Consequently, if

the tangen
y weren't simple, the doubly transformed D would 
ontain an invariant subspa
e

of the indu
ed foliation in the se
ond ex
eptional divisor, and a blow up in this would a�ord a

valuation of negative dis
repan
y. Conversely a simple tangen
y with weight 1/2 is 
anoni
al

for the same reason as (I.29)-(I.30), while an everywhere transverse divisor of any weight is

log-terminal be
ause the "weight 1 
ase", i.e. r = 1 in (I.27) is, I.b.10, log-
anoni
al. �

This 
an be applied to redu
e to an empty boundary in the obvious way, to wit:

I.b.15. Constru
tion. Suppose (U,∆,F ) is a Q-Gorenstein log-
anoni
al foliated germ with

orbifold boundary, with no boundary 
omponent invariant. Then 
omposing the index 1-
overs

asso
iated to F and the boundary 
omponents ∆i, we �nd a foliated germ with orbifold

boundary (U ′,∆′,F ′) satisfying the hypothesis of I.b.14 su
h that U ′ → U is almost étale. By

op. 
it. and [MP13, III.i.1℄, the proof of [MP13, III.i.5℄ goes through verbatim, and the obvious

variant of I.b.6 holds, i.e. for any (n) in (I.25), 1 ≤ n ≤ 4, (U,∆,F ) is (n) i� (U ′,∆′,F ′) is.
Ignoring, for the sake of argument, the 
ases (2) and (3) of I.b.14, the latter boundary is, in the

presen
e of log-
anoni
al singularities an everywhere transverse Cartier divisor of multipli
ity

1 together with a weight 1 − n−1
. As su
h if f = 0 is a lo
al equation for ∆′

then we 
ould

extra
t a nth root π : V → U ′
to obtain a Gorenstein foliation V → [V/F̃ ] su
h that,

(I.31) KF̃ = π∗(KF + ∆)

and again the obvious variant of I.b.6 holds- for any (n) in (I.25), 1 ≤ n ≤ 4, (V, F̃ ) is (n)
i� (U ′,∆′,F ′) is- for exa
tly the same reason as above. Plainly all su
h lo
al 
onstru
tions

will glue as 
hamps by mu
h the same argument as I.b.7, so all this is just the obvious fa
t

that minimal model theory for foliations with orbifold boundary 
an be dedu
ed from the

minimal model theory of 
hamps without boundary. The slightly subtler point, however, is

that if one were to begin with a foliated 
hamp X \D → [X \D/F ] with (integral) boundary,

then extra
ting a n(> 2)th root, Xn → X of D yields a foliation Xn → [Xn/Fn] whi
h has

log-
anoni
al singularities i� X \D → [X \D/F ] does, so that not only the minimal model

theory for foliations with orbifold boundary, but also with integral boundary, �.IV.f, 
an be

dedu
ed from the 
hamps theorem without boundary.
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I.
. Weighted proje
tive 
hamps. All of this se
tion works in arbitrary generality, so over

a base, say Spec(k), where k is a ring, with the obje
t of interest being

I.
.1. De�nition. For a = (a0, . . . , an) ∈ Zn+1
>0 , n > 0, let Ak := An+1

k \0 then by the

weighted proje
tive 
hamp P(a0, . . . , an), or just P(a), is to be understood the 
lassifying 
hamp

[Ak/Gm,k] of the a
tion,

(I.32) Rk := Gm,k ×Ak ⇒ Ak : (x0, . . . , xn)← [ λ× (x0, . . . , xn) 7→ xλ := (λa0x0, . . . , λ
anxn)

Just like any quotient spa
e under a group there is a tautologi
al torsor, i.e. Ak × Gm with

Gm a
tion

(I.33) Gm ×
(

Ak ×Gm

)

: λ× (x× z) 7→ xλ × (λz)

whi
h one extends to a line bundle in the usual way, to wit:

I.
.2. Fa
t/De�nition. Choose an embedding Gm →֒ Ga : z 7→ z, then by the tautologi
al line

bundle, O(1), on P(a) is to be understood the line bundle Ga×Ak with Gm a
tion given by (I.33)

and our aforesaid 
hoi
e of embeddings. In parti
ular, therefore, we've de�ned V(O(1)) |Ak
-

EGA notation- when
e as an equivariant OAk
-module O(1) has generator T where

(I.34) T λ = λ−1T

so that the bundle ωAk/k of volume forms on Ak des
ends to the bundle ω := O(−a0− . . .−an)
on P(a).

Unsurprisingly Serre's expli
it 
al
ulation generalises to:

I.
.3. Fa
t. The bundle O(1) freely generates the Pi
ard group of P(a); there are, for p ≥ 0,

anoni
al (dual) isomorphisms of free k-modules

H0(P(a),O(p)) = Sp :=
∐

p0a0+···pnan=p

k · xp0a0

0 · · · xpnan
n

Hn(P(a), ω(−p)) = S′
p :=

∏

p0a0+···pnan=p

k · dx0 · · · dxn

x0 · · · xn
· x−p0a0

0 · · · x−pnan
n

(I.35)

and any other 
o-homology of any other line bundle in any degree vanishes.

Proof. The Pi
ard group of Ak is trivial, so a line bundle on P(a) is the same thing as a map

φ : Rk → Gm from the groupoid (I.32) satisfying the 
o-
y
le 
ondition φ(gf) = φ(g)φ(f).
There are, however, no (algebrai
) maps from Ak to Gm, so all su
h 
o-
y
les are integer

multiples of the tautologi
al one. As to the se
ond part: if π : Ak → P(a) is the proje
tion

then for any sheaf F on Ak the Leray spe
tral sequen
e reads

(I.36) Hi(P(a), Rjπ∗F )⇒ Hi+j(Ak,F )

Now the 
o-homology of the right hand side of (I.36) is known, i.e. there are 
anoni
al dual,

[SGA-II, Exposé IV.5.5℄, isomorphisms

(I.37) H0(Ak,OAk
) =

∐

p

Sp, Hn(Ak, ωAk/k) =
∐

p

S′
p

while on the left hand side there are 
anoni
al isomorphisms

(I.38) π∗OAk

∼−→
∐

q∈Z

O(q), π∗ωAk/k
∼−→

∏

q∈Z

ω(q)

and all higher dire
t images in (I.36) vanish, when
e (I.35) by identifying the weight of the

a
tion of Gm in the equivariant isomorphism between (I.37) and (I.38) a�orded by (I.36). �

In addition the bundle ω is the bundle of volume forms on P(a) when this has sense, i.e.
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I.
.4. Claim. The moduli of any P(a) is proje
tive, in fa
t better there is a �nite �at map

(I.39) Pn
k → P(a) : [x0, . . . , xn] 7→ [xa0

0 , . . . , xan
n ]

and P(a) is Deligne-Mumford i� all the ai are invertible in k. In addition the 
oordinate

fun
tions, ∂i = ∂
∂xi

, a�ord a Gm equivariant isomorphism

(I.40)

∐

i O(ai)
∼−−−−−−→

∂0+···+∂n

TAk/k

leading to the Euler sequen
e of Gm-modules on Ak, equivalently bundles on P(a)

(I.41) 0→ TGm

∼→ O
aixi∂i−−−−→

∐

i

O(ai)→ π∗TP(a)/k → 0

whenever P(a) is Deligne-Mumford, so in parti
ular

(I.42) ΛnΩP(a)/k
∼−→ ω

Proof. The fun
tor λ × xi 7→ λ × xai
i of the 
orresponding groupoids in (I.32) yields (I.39),

while the stabiliser of the point with all but the ith 
oordinate 0 is µai so the Deligne-Mumford


riteria is plainly ne
essary, and, similarly it is su�
ient sin
e sli
ing (I.32) along xi = 1 
overs

P(a) by a�nes with µai-a
tion. The rest just amounts to λ a
ting on ∂i by λ−ai
. �

The triviality of (I.39) notwithstanding we have

I.
.5. Corollary. If k is simply 
onne
ted, then every Pk(a) is simply 
onne
ted, i.e. irrespe
-

tively of any Deligne-Mumford 
riteria, there are no non-trivial Γ-torsors over P(a) for every

�nite group Γ.

Proof. By hypothesis Pn
k is simply 
onne
ted, so it's su�
ient by (I.39) to prove vanishing of a

suitable C¥
h group, i.e. that the groupoid

(I.43) R := Pn
k ×P(a) Pn

k ⇒ Pn
k

doesn't admit any non-trivial fun
tors to Γ. The spa
e R may, by I.32, be expressed as the


lassi�er of the Gm a
tion (xi, yi) 7→ (λxi, λyi) on the produ
t of a�ne 
urves

(I.44) (xi)
ai = (yi)

ai ⊂ A2
k


omplemented in 0× 0. Now the 
urves in (I.44) are geometri
ally 
onne
ted, so their produ
t

is 
onne
ted. It's also l.
.i. of dimension at least 2, so it's homotopy depth is at least 2,

when
e the 
omplement in 0 of the produ
t is 
onne
ted, and we're done a fortiori- the fa
t

that proje
tions in (I.44) are the sour
e and sink in (I.43) isn't even needed. �

Of whi
h we will require the following variant

I.
.6. Corollary. If k is simply 
onne
ted, and π : P → Pk(a) is a �bration in lo
ally 
onstant

gerbes BG for some �nite group G su
h that P is simply 
onne
ted, then G is a 
y
li
 group

of order a (invertible in k) and P
∼→ Pk(aa) in su
h a way that π is just λ 7→ λa

in I.
.1.

Proof. The right way to prove this is the long exa
t sequen
e of homotopy groups of a �bration,

whi
h may be done wholly algebrai
ally [M
Q15, III.g℄. However, for 
onvenien
e here is an ad

ho
 argument.

From I.
.5, Pk(a) is simply 
onne
ted, so by [Gir71, IV.3.4℄ the lo
ally 
onstant gerbes up to

isomorphism in BG's over Pk(a) are 
anoni
ally isomorphi
 to

(I.45) H2(Pk(a), Z)
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where Z is the 
entre of G. In parti
ular if P → P ′
is P modulo the 
entre, 
f. I.a.6, then

P ′ ∼→ Pk(a)× BG/Z , whi
h isn't simply 
onne
ted. As su
h, without loss of generality G = Z

is abelian, and the Leray spe
tral for π a�ords an isomorphism

(I.46)

E0,1
2 = End(Z)

∼−−−−→
d0,1
2

H2(Pk(a), Z) = E2,0
2

If, however, p is the 
hara
teristi
 of k then from indu
tive appli
ation of the Artin-S
hrier

sequen
e

(I.47) 0→ Fp → Ga → Ga → 0

the latter group in (I.46) is the prime to p part of Z, so our initial G is 
y
li
 of some order a
prime to p. We have however a �bration,

(I.48) Pk(aa)→ Pk(a)

in Bµa 's by the simple expedient of sending λ to λa
in I.
.1, whi
h is the generator of (I.45). �

Another very important fa
t whi
h generalises is

I.
.7. Fa
t. Let n = 1 and E a ve
tor bundle on P(α) then there are unique integers bj su
h

that (non-
anoni
ally)

(I.49) E
∼→

∐

j

O(bj)

Proof. We've done the rank 1 
ase in I.
.3, and we go by indu
tion on the rank, r > 1. The

push-forward of E to the moduli of P(a) is 
oherent, so there are plenty of meromorphi
 se
tions.

As su
h, 
hoose one of maximal degree to get a short exa
t sequen
e of bundles

(I.50) 0→ O(br)→ E → E′′ → 0

Now by the indu
tion hypothesis and I.
.3 this is split unless there is some bj > br, j < r, su
h
that

(I.51) H0(P(a),O(bj − br − a0 − a1)) 6= 0

Consequently if we twist (I.50) by O(−br − a0) then the kernel has no 
o-homology by I.
.3,

while the 
o-kernel has a dire
t summand O(bj − br − a0) whi
h has a non-trivial se
tion given

by tensoring anything in (I.51) with Xa1

1 , and we 
ontradi
t the maximality of br. �

We've passed over the uni
ity sin
e

I.
.8. Remark. The uniqueness of the integers bj in (I.49) is just an easy version of the uniqueness

of the Harder-Narismhan �ltration whi
h, for βj a 
omplete repetition free list of the bj ordered

by β1 < β2 < · · · < βm takes the form

(I.52) E = E0 ⊃ E1 =
∐

bj>β1

O(bj) ⊃ · · · ⊃ Em−1 =
∐

bj>βm−1

O(bj) ⊃ Em = 0

I.d. Radial foliations. In this se
tion we work over C, and, unfortunately we'll need

I.d.1. Notation. The ve
tor a ∈ Zn+1
>0 will be written (at least for this se
tion) as the n-tuple

of positive integers (a0, aa1, . . . , aan), n ≥ 1, where a1, . . . , an are relatively prime, and a ∈ N.

The la
k of symmetry in the notation is in the nature of

I.d.2. De�nition. The radial foliation, R, on P(a) is equivalently

(a) The foliation de�ned by the 0th 
oordinate O(a0)→ TP(a) in the Euler sequen
e (I.41).

(b) The foliation de�ned by the (rational) proje
tion P(a) 99K P(aa1, . . . , aan).
15



In the parti
ular 
ase that n = 1 there is a 
ertain ambiguity in the de�nition a

ording as to

whether one saturates (a) at the 
entre of the proje
tion in (b), albeit, fortunately this tends

to be 
lear a

ording to 
ontext.

To whi
h one 
an add a bun
h of properties whi
h will aid in radial foliation re
ognition

I.d.3. Fa
ts. Given a radial foliation P(a)→ [P(a)/R],

(a) It's 
anoni
al bundle, KR (understood logarithmi
ally if n = 1) is O(a0).
(b) On the étale neighbourhood of the (unique) singular point given by x0 = 1, xi = 0,

i ≥ 1 in (I.32), R is generated by the ve
tor �eld a1x1
∂

∂x1
+ · · · anxn

∂
∂xn

(
) The ith 
oordinate axis in (b) is a smooth embedded R-invariant P(a0, aai) with KR

degree −1/aai, while the degree of the generi
 invariant 
hamp is −1/a.
(d) The smoothed weighted blow up, [MP13, I.iv.3℄, P → P(a) in the singularity with

weights a1, . . . , an resolves I.d.2.(b). Indeed, 
f. I.b.11, the indu
ed foliation P →
[P/R̃] is a bundle of P(a0, a)'s over a P(aa1, . . . , aan), and KR̃(+E ) = KR for E the

ex
eptional divisor.

Proof. Of these only (d) is meritorious of 
omment. Spe
i�
ally smoothed weighted blow ups

in [MP13, I.iv.3℄ are understood to have weights without a 
ommon divisor, so in the �rst pla
e

by the formulae of [MP13, pg. 89℄ and I.a.4, we have a resolution

(I.53)

P0 −−−−→
ρ0

P(a1, . . . , an)

π0





y
weighted blow up with weights ai

P(a0, aa1, . . . , aan)

in whi
h the ex
eptional divisor E0 is isomorphi
 to Bµa0
× P(a1, . . . , an), and the various

bundles are related by

(I.54) ρ∗0OP(a1,...,an)(1) = π∗
0O(a) − E0

All of whi
h be
omes mu
h 
leaner if, the 
ommon divisor not withstanding, one permits the

weights aa1, . . . , aan. This is equivalent to taking an ath root of E0, so we get a diagram in

whi
h the square is �bred

(I.55)

P(a0, aa1, . . . , aan)
weighted blow up←−−−−−−−−−−−
with weights aai

P
extra
t ath root−−−−−−−−−−→

of E0

P0

ρ





y





y

ρ0

P(aa1, . . . , aan)
non-trivial gerbe−−−−−−−−−−→

of order a
P(a1, . . . , an)

by (I.54), i.e. the gerbe of the bottom horizontal is the 
lass of O(1) in H2(P(a1, . . . , an), µa).
In parti
ular, therefore, if E is the new ex
eptional divisor then (I.54) be
omes

(I.56) ρ∗OP(aa1,...,aan)(1) = π∗O(1) − E

while the �bres of ρ are identi
ally those of ρ0. The latter, however, are simply 
onne
ted sin
e

ρ0 has a se
tion, so, [BN06, 1.1℄, a lo
al 
al
ulation of their non-s
heme like points implies that

they're all P(a0, a)'s. �

By way of disambiguation let us present the next proposition in the form

I.d.4. Fa
t/De�nition. Every deformation of a radial foliation is lo
ally trivial, i.e. if for a

(geometri
ally) pointed s
heme pt
s−→ S we have a map X → [X /F ] → S (equivalently of

16

file:www.maths.qmul.ac.uk/~noohi/papers/Uniformization.pdf 


foliations indexed by the points of S) for whi
h the spe
ial �bre Xs → [Xs/Fs] is a radial

foliation, then there is an étale neighbourhood U → S su
h that

(I.57)

X ×S U
∼−−−−→ Xs × U





y





y

[X ×S U/F ]
∼−−−−→ [Xs/Fs]× U


ommutes, with the horizontal arrows isomorphisms.

Proof. By [Art69℄ it will su�
e to repla
e S, resp. X , by its 
ompletion in s, resp. the �bre, and

to prove (I.57) in the formal 
ategory- so, keeping the same notation, U
∼→ S. Consequently,

if m is the ideal of s and Sn = Spec(OS/mn), it will even su�
e to prove (I.57) with U = Sn,

where, by way of notation, Xn := X ×S Sn. Pro
eeding by indu
tion on n ≥ 1, the 
ase

n = 1 is given, while [SGA-I, Exposé III.5℄ applies as written to show that the obstru
tion to

extending an isomorphism from Xn to X0 × Sn to the n + 1th thi
kening lies in

(I.58) H1(X0, TX0
⊗mn/mn+1)

By the Euler sequen
e, (I.41), and Serre's expli
it 
al
ulation, (I.
.3), this is zero. As su
h,

we 
an 
ertainly �nd an isomorphism f : Xn
∼→ X0 × Sn, but it may not be foliated, i.e. the


omposition

(I.59) f∗ΩX0×Sn+1/F → ΩXn+1
→ KF ⊗ OXn+1

may be non-trivial. We have, however, a foliated isomorphism at the nth level, and X0 is S2

so (I.59) is, equivalently, a non-trivial map

(I.60) TF |X0

∼→ O(a0)→ TX0/F

where the normal sheaf to the radial foliation is by (I.41) des
ribed by the 
ommutative diagram

with exa
t rows and 
olumns

(I.61)

0 0




y





y

O O




y





y

0 −−−−→ O(a0) −−−−→
∐

j O(aaj) −−−−→
∐

j>0 O(aaj) −−−−→ 0
∥

∥

∥





y





y

0 −−−−→ O(a0) −−−−→ TX0
−−−−→ TX0/F −−−−→ 0





y





y

0 0

Twisting by O(−a0) an arrow (I.60) is, therefore, a quotient of the spa
e of global se
tions in

the middle of the rightmost 
olumn of (I.61), i.e. the C-ve
tor spa
e of ve
tor �elds with, in
the notation of (I.32), basis

(I.62) xi0
0 xi1

1 · · · xin
n ·

∂

∂xj
, a0i0 + aa1 + · · · aan = aj − a0 j > 0, ik ≥ 0

On the other hand- [SGA-I, Exposé III.5℄ again- the possibilities for 
hanging the isomorphism

f are a prin
ipal homogeneous spa
e under

(I.63) H0(X0, TX0
⊗mn/mn+1)
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whose e�e
t on (I.60) is given by the Lie bra
ket

(I.64) TX0
→ Hom(TF , TX0/F ) : D 7→ [−,D]

whi
h at the level of global se
tions has, by expli
it 
al
ulation, image exa
tly (I.62), so a

suitable twist of f under (I.63) is a foliated isomorphism. �

We will equally need a slight generalisation, to wit:

I.d.5. Remark. The same statement is equally true under the hypothesis that the universal


over of Xs is a radial foliation. Indeed sin
e for π1 a �nite group, all modules in whi
h the


ardinality of π1 is invertible are a
y
li
, and we're in 
hara
teristi
 zero, so the obstru
tion

(I.58) still vanishes and (I.64) is still surje
tive on global se
tions.

I.e. Net 
ompletion. The entire 
ontents of this se
tion should be standard, but it's not in

the EGA's, so we give the details. We begin with the easiest 
ase, viz: a lo
al embedding

f : Y → X of (not ne
essarily separated) s
hemes. Thus by de�nition, [EGA-I, 4.2.1 & 4.5.1℄,

for every y ∈ Y there are (Zariski) open neighbourhoods Y ⊇ U ∋ y, resp. X ⊇ V ∋ f(y),
su
h that

(I.65) f : U →֒ V

is a 
losed embedding. In parti
ular, therefore, we have a short exa
t sequen
e

(I.66) 0→ I → f−1OX → OY → 0

of sheaves, for some ideal I , and we observe

I.e.1. Fa
t/De�nition. For every n ∈ Z>0, de�ne Ofn := f−1OX/I n
, then the ringed spa
e

Yn := (Y,Ofn) is a s
heme.

Proof. The question is lo
al on Y , so, modulo notation we 
an, (I.65), suppose f : Y →֒ X is

a 
losed embedding of a�nes. In parti
ular, therefore, it's de�ned by a quasi-
oherent sheaf of

ideals J . As su
h Ofn is the sheaf (on Y ) asso
iated to the pre-sheaf,

(I.67) U 7→ lim←−
V ∩Y =U

Γ(V,OX)/Γ(V,J )n

This is, however, already not only a sheaf, but the stru
ture sheaf, OX/J n
, of the nth thi
k-

ening of Y in X, so Yn is a s
heme. �

For the avoidan
e of possibly 
ompeting de�nitions when (without relevan
e to our 
urrent


onsiderations) things fail to be Noetherian or ex
ellent or whatever let us make

I.e.2. Fa
t/De�nition. A morphism f : Y → X of Deligne-Mumford 
hamps is net if it

is étale lo
ally a 
losed embedding, i.e. for every geometri
 point y of Y there are étale

neighbourhoods U → Y of y, resp. V → X of x = f(y), together with a 
losed embedding

U →֒ V su
h that

(I.68)

U −−−−→ V




y





y

Y
f−−−−→ X


ommutes. Consequently if everything is Noetherian, then f is net i� the stri
t Henselisation

Oh
Y ,y is a quotient of Oh

X ,x in every point, 
f. [SGA-I, Exposé I,3.7℄.

Now suppose f : Y → X is a net map of algebrai
 spa
es. Repla
ing X by a suitable (embedded)

Zariski open, we may by I.68 �nd étale 
overs U → Y , resp. V → X, a�ording (a not

ne
essarily �bred) square of the form (I.68) in whi
h U →֒ V is a 
losed embedding. As su
h

R0 := V ×Y V ⇒ V , resp. R := U × U ⇒ U are (not ne
essarily 
losed unless Y , resp. X
18
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is separated) embedded in V × V , resp. U × U so that the indu
ed fun
tor R0 → R is a not

ne
essarily 
losed embedding, and we make

I.e.3. Fa
t/De�nition. For every n ∈ N, Rn →֒ R, resp. Un →֒ V is the nth thi
kening of

R0 →֒ R, resp. U →֒ V , in the sense of I.e.1. In parti
ular Rn ⇒ Un is an étale equiva-

len
e relation, and we de�ne the nth thi
kening, Yn, of Y along f to be the quotient Un/Rn.

Consequently if Y is a s
heme, then Yn is too.

Proof. Consider the diagram

(I.69)

R0 −−−−→ RU −−−−→ R

s





y





y





y

s

U U −−−−→ V

where the rightmost square is �bred. Thus all the verti
als are étale, the rightmost horizontals

are 
losed embeddings, while the 
omposition of the top row is an embedding, so R0 →֒ R is an

open embedding, and when
e the sour
e and sink of Rn ⇒ Un are étale. Finally for any s
heme

T , the sets R(T ) ⇒ V (T ) form an equivalen
e relation, and we 
an identify the T -points of
Rn with those of R su
h that the nth power of the ideal of the �bre over R0 is 0, whi
h sin
e

everything is étale implies that Rn(T ) ⇒ Un(T ) is an equivalen
e relation. �

This brings us to a net map, f : Y → X , of 
hamps, then pro
eeding exa
tly as above,

(U → X , V → Y étale 
overs et
.) we �nd that f is equivalent to a fun
tor R0
F−→ R between

groupoids, whi
h as a map is itself net, and when
e

I.e.4. Fa
t/De�nition. The nth thi
kening of Yn along f is the 
lassifying 
hamp [Un/Rn] of
the étale groupoid Rn ⇒ Un where Rn is the nth thi
kening of R0 along the fun
tor F , so,

inter alia there is a natural map fn : Yn →X extending f .

Proof. The fa
t that Rn ⇒ Un is an étale groupoid is mutatis mutandis the proof of I.e.3, and

the des
ription of the T -points therein also su�
es to 
on
lude that fn exists. Finally, re�ning

the 
overs U , V as ne
essary, the de�nition of Yn is, up to equivalen
e, independent of the

given presentation. �

It therefore only remains to make

I.e.5. Fa
t/De�nition. The 
ompletion, Y, along a net map f : Y → X of s
hemes is the

dire
t limit, lim−→n
Yn, in the 
ategory of formal s
hemes of the nth thi
kenings fn : Yn → X of

I.e.3. Similarly the 
ompletion, Ŷ , along a net map f : Y → X of 
hamp is the 
lassi�er of

the étale groupoid whi
h is the 
ompletion, R ⇒ U, along the net fun
tor F : R0 → R of I.e.4.

Consequently, by 
onstru
tion, f fa
tors as

(I.70) Y →֒ Ŷ
f̂−→ X

where the former map is an embedding, and the latter is net.

I.f. Trivial remarks on the analyti
 topology. As we've observed in the proof of I.a.4 every

separated Deligne-Mumford 
hamp is étale lo
ally the 
lassi�er, [U/G], of a (not ne
essarily

faithful) �nite group a
tion G×U ⇒ U . An étale neighbourhood is, however, rarely embedded,

so this isn't quite as 
onvenient as the 
orresponding analyti
 statement, i.e.

I.f.1. Fa
t. If X /C is a separated Deligne-Mumford 
hamp of �nite type, then for every geo-

metri
 point, x, there is an étale neighbourhood x ∈ ∆ → X in the analyti
 topology together

with a �nite group a
tion Gx × ∆ ⇒ ∆ of the stabiliser su
h that [∆/Gx] →֒ X is an open

embedding.
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Proof. From the algebrai
 statement: the 
oarse moduli U/Gx is an étale neighbourhood of the

moduli µ : X → X su
h that we have a �bre square

(I.71)

X ←−−−− [U/Gx]

µ





y





y

X ←−−−− U/Gx

There is however an open embedding ∆′ →֒ U/Gx whose 
omposition with the lower horizontal

in (I.71) is an embedding, so µ−1(∆′) is embedded in both X and [U/Gx], while it's pre-image,

∆, in U is both embedded and Gx equivariant. �

We will only ever have to 
onsider smooth 
hamps in the analyti
 topology, but as it happens,

everything works in maximal generality. We require:

I.f.2. Lemma. If X is a redu
ed 
omplex spa
e then the sheaf, RX , of real analyti
 fun
tions

on X is 
oherent.

Proof. The dis
ussion is lo
al, so we 
an suppose that X is a 
losed analyti
 subset of U ⊂ Cn

with �nitely many irredu
ible 
omponents X1, · · · ,Xr. Ea
h Xi has a 
onjugate X̄i and by

[Nar66, V, Prop. 8℄ for any x ∈ Xi the 
omplexi�
ation of Xi at x in the real manifold Rn ×
R(1)n is Xi×X̄i. Consequently, op. 
it. V, Prop. 1, ∪iXi×X̄i 
ontains the 
omplexi�
ation of

X at any x ∈ X; and ea
h Xi is everywhere lo
ally Zariski dense in Xi×X̄i, so X is everywhere

lo
ally Zariski dense in ∪iXi × X̄i . Consequently by op. 
it., ∪iXi × X̄i is everywhere the


omplexi�
ation of X, so by op. 
it. V, Prop. 5, RX is 
oherent. �

This 
ombines with Malgrange's preparation theorem to a�ord:

I.f.3. Fa
t/De�nition. If C• is the sheaf of 
ontinuous fun
tions on a topologi
al spa
e, and

X/C is a redu
ed 
omplex spa
e then, fun
torially in X, there is a well de�ned subsheaf,

AX →֒ CX of smooth fun
tions. In the parti
ular 
ase that µ : X → X is the moduli of a

separated Deligne-Mumford 
hamp,

(I.72) µ∗AX ⊆ AX ⊆ µ∗CX = CX

Proof. First pass to the real analyti
 fun
tions RX , and for a lo
al embedding i : X →֒ M in

a smooth about x ∈ X, with ideal IX in RM we have by I.f.2 and [Mal02, VI.3.10℄ an exa
t

sequen
e

(I.73) 0← RX ⊗RM
AM ← AM ← AM ⊗RM

IX ← 0

wherein AM⊗RM
IX is equally the ideal of smooth fun
tions, AM , vanishing on X. In parti
ular,

therefore, we have an embedding

(I.74) A M
X := RX ⊗RM

AM →֒ CX

Now observe (by way of the obvious diagram 
hase implied by (I.73)) that if M has the em-

bedding dimension of X at x then for any other smooth embedding X →֒ N at x, there is a

unique isomorphism whi
h �lls the right hand side of

(I.75)

RX −−−−→ A N
X

∥

∥

∥

RX −−−−→ A M
X

in su
h a way that the diagram 
ommutes. As su
h X 7→ AX is a well de�ned, and fun
torial,

while (I.72) is immediate from I.f.1 and (I.74). �

In order to apply this we need another
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I.f.4. Lemma. Let µ : X → X be the moduli of a Deligne-Mumford 
hamp and

∐

α∈A Wα → X
an open 
over (in the 
lassi
al sense) then up to passing to a lo
ally �nite re�nement there are

fun
tions

(I.76) ρα ∈ Γ(X,µ∗AX ) with support in Wα su
h that

∑

α

ρα = 1

In parti
ular for M any sheaf of AX -modules,

(I.77) Hq(X ,M ) = 0, ∀q > 0

Proof. Re�ning as ne
essary we 
an suppose that we have 
overs

∐

α∈A Uα,
∐

α∈A Vα with Ūα ⊂
Vα; V̄α ⊂Wα and ea
h of Uα, Vα, Wα satis�es I.f.1, i.e. there are étale 
overs

∐

α∈A U ′
α →X ,

et
.; �nite group a
tions Gα ⇒ U ′
α et
.; Gα equivariant in
lusions Ū ′

α ⊂ V ′
α et
.; and 
ompatible

identi�
ations of Uα with U ′
α/Gα et
.. As su
h if fα : W ′

α → [0, 1] is a smooth (in the sense

of I.f.3) fun
tion whi
h is identi
ally 1 on U ′
α, resp. identi
ally 0 o� V ′

α then its tra
e, gα, is a

global se
tion of µ∗AX supported in Wα whi
h is identi
ally 1 on Uα, resp. identi
ally 0 o�

Vα, and

(I.78) ρα(x) :=
gα(x)

∑

β gβ(x)

does the job. Consequently any sheaf of µ∗AX modules is �asque, while µ∗ is a
y
li
 on

Q-ve
tor spa
es, and when
e (I.77). �

We 
ome therefore to the point of the dis
ussion, by way of

I.f.5. Fa
t. If Y →֒ X is an embedding of smooth 
omplex Deligne-Mumford 
hamp with Y
proper, then there are a family of open embeddings Y →֒ Ut →֒ X with ∩tUt = Y and ea
h

Y
it−→ Ut

rt−→ Y a deformation retra
t with itrt homotopi
 to the identity.

Proof. The expedient of taking the tra
e under Gx in I.f.1 a�ords lo
ally equivariant metri
s

whi
h by (I.76) 
an be pat
hed to a smooth metri
, ω, on X . As su
h at every geometri
 point

x there is a Gx equivariant neighbourhood Vx →֒ TX ,x of 0 su
h that the exponential a�orded

by ω yields an embedding

(I.79) exp : [Vx/Gx]→X

On the other hand by (I.77) the exa
t sequen
e

(I.80) 0→ TY → TX → NY /X → 0

has a smooth splitting, n : NY /X → TX so exp(n) restri
ted to appropriate neighbourhoods

of the zero se
tion in NY /X gives what we want. �

This is, of 
ourse, just the usual proof of the 
orresponding fa
t for smooth manifolds so it's

worth making

I.f.6. Remark. Slightly, but not mu
h, more subtly if X is Kähler then so is X .

Finally we require a baby GAGA,

I.f.7. Fa
t. Let X /C be a normal 
omplex analyti
 
hamp, i.e. the 
lassi�er of an étale groupoid

R ⇒ U in the analyti
 topology, whose moduli µ : X → X is a �nite map to an algebrai
 spa
e

with algebrai
 rami�
ation in 
o-dimension 1 then X is an algebrai
 Deligne-Mumford 
hamp.

Similarly, if Y ′
t → Ut is a smooth 
hamp �nite over the neighbourhoods of I.f.5, then there is

an algebrai
 
hamp Y ′ → Y su
h that (in the notation of op. 
it.) Y ′
t is equivalent to r∗t Y

′
.
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Proof. Without loss of generality X is 
onne
ted, so exa
tly as in I.a.6, there is a map X →X0

expressing X as a lo
ally 
onstant gerbe in BΓ's for some �nite group Γ wherein the stabiliser

of the generi
 point of X0 is trivial, and by [Art66, 5.1℄ X0 is algebrai
. As to X → X0, we

must �rst 
onsider the link in the sense of Giraud, [Gir71, IV.1.1.7.3℄, i.e. the representation of

π1(X0) in the outer automorphisms of Γ, but these are the same in the algebrai
 and analyti



ategories, so the next port of 
all is the obstru
tion to the existen
e of a 
hamp with a given

link. This is, [Gir71, VI.2.3℄, a 
lass in H3(X0, Z), where Z is the 
entre of the link, i.e. the

lo
ally 
onstant sheaf in the 
entre of Γ with indu
ed π1(X0) a
tion. By [SGA-IV, Exposé

XVI.4.1℄, étale and analyti
 
ohomology 
oin
ide, while the obstru
tion vanishes analyti
ally,

so there is at least one algebrai
 
hamp, X ′ → X0 whi
h is a lo
ally 
onstant gerbe in BΓ's for

the same link. Equally X ′
is an analyti
 
hamp, so, in either 
ase the equivalen
e 
lass of all

possible 
hamps with this link is, [Gir71, IV.3.4℄, the orbit of X ′
under H2(X0, Z), and when
e

X → X0 is algebrai
 by another appli
ation of [SGA-IV, Exposé XVI.4.1℄. The argument for

the se
ond part about the Ut's pro
eeds mutatis mutandis given I.f.5. �

II. KF negative 
urves

II.a. Foliations as birational groupoids. As we've already remarked prior to I.b.1 the point

of view of a foliation as an integrable quotient of the 
otangent sheaf is misleading. Rather a

foliation should be 
onsidered as an in�nitesimal equivalen
e relation outside of its singularities,

and the equivalen
e of this de�nition to that involving linear 1

st
order data as a non-trivial

theorem (not withstanding the triviality of the proof) spe
i�
 to 
hara
teristi
 zero. In any


ase let us begin by reviewing the equivalen
e, when
e let X be a normal a�ne variety over

C and F a smooth foliation on X. Noti
e that X may be singular, so F smooth means that

(everywhere lo
ally) for some (and indeed any) embedding of X in a smooth variety M the


omposition,

(II.1) TF → TX → TM ⊗ OX

is an inje
tion of bundles. Now 
onsider the diagonal ∆ in X × X, with pi the proje
tions,

and p∗2TF the foliation obtained by pull-ba
k from the 2

nd
dire
tion. Dualising 
ommutes

with �at pull-ba
k so this is notationally unambiguous, when
e shrinking X as ne
essary we


an �nd a lo
al generator ∂ of TF and f ∈ I∆ su
h that p∗2∂(f) is non-zero on X. We put

δ = (p∗2∂(f))−1∂, and for any fun
tion g on X ×X de�ne,

(II.2) g̃ :=

∞
∑

n=0

(−1)n
fnδn(g)

n!
∈ Ô∆ := lim←−

n

OX×X/I n
∆

then δg̃ = 0, and better still if ∆̂ is the 
ompletion of X ×X in ∆ then the in
lusion of rings,

(II.3) OF := {h ∈ Ô∆ : ∂h = 0} ⊂ Ô∆


orresponds to a relatively smooth �bration of formal s
hemes,

Spf 

∆̂ =

=

F
∆

∆

Figure 1. Constru
tion of the in�nitesimal groupoid
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su
h that the pull-ba
k of the image of ∆ in Spf OF is the 
orresponding in�nitesimal equiva-

len
e relation, i.e. the formal sub-s
heme of ∆̂ de�ned by the ideal generated by OF ∩I∆ or

equivalently the maximal sub-ideal of I∆ invariant by F . Rather more pi
turesquely, �g. 1,

what we have done is add a small germ in the p∗2TF dire
tion for ea
h point in the diagonal.

To extend this to 
hamps, even separated ones, is a little deli
ate sin
e unless the 
hamp is in

fa
t an algebrai
 spa
e the diagonal will fail to be an embedding. To remedy this it su�
es to

observe that we've a
tually been working in,

(II.4) PX := Spf PX , PX = lim←−
n

P
(n)
X

where P
(n)
X is Grothendie
k's sheaf of n-jets viewed as a nilpotent OX-algebra by way of the

1

st
-proje
tion. If, however, X , is Deligne-Mumford 
hamp, then by de�nition it is equivalent

to a groupoid with étale sour
e and sink so there are well de�ned sheaves of nilpotent OX -

algebras, P
(n)
X of n-jets, and of 
ourse idem, modulo repla
ing nilpotent by topologi
ally so,

for the inverse limit PX . Equally the formation of the formal spe
trum is a lo
al 
onstru
tion,

while both the proje
tors and the diagonal embedding pat
h, so we obtain an obje
t whi
h we

summarise by way of,

II.a.1. De�nition. The jet groupoid of a 
hamp de Deligne-Mumford X is the formal 
hamp,

(II.5) PX = Spf PX ⇒ X

with sour
e map p1, sink p2, and identity the diagonal.

Noti
e in parti
ular that the diagonal is a
tually embedded in the jet groupoid, so its worth

emphasising what's happening. Spe
i�
ally for a geometri
 diagonal point x×x in X ×X , its

automorphism group is simply Aut(x) × Aut(x). Inside this group we have a 
opy of Aut(x)
sitting diagonally. Now any attempt to de�ne diagonal type subgroups of automorphisms for

o� diagonal points, and when
e de�ne an a
tual étale �neighbourhood� in whi
h X embeds

in some sort of diagonal way, is doomed to failure. At the in�nitesimal level this 
an, and is,

a
hieved by II.a.1.

Turning then to 
hamps foliated by 
urves, or indeed even foliated full stop, the 
orresponding

foliations on étale neighbourhoods of the 
hamp are again by supposition invariant by the


orresponding étale groupoid so that we may on
e again apply the expedient of summary by

way of de�nition, i.e.

II.a.2. Summary/De�nition. Let X → [X /F ] be a foliated 
hamp, Z its singular lo
us,

and U = X \Z the smooth lo
us then the in�nitesimal equivalen
e relation F ⇒ U de�ned

a

ording to the 
orresponden
e whi
h asso
iates to F a formal subs
heme of the jet groupoid,

�g. 1 et. seq., will be denoted the smooth in�nitesimal groupoid of F .

This 
onstru
tion may, however, fail 
atastrophi
ally over Z , i.e. 
onsider:

Figure 2. A groupoid with essential singularity.
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then over Z we may have an essential singularity, so that the smallest 
losed formal sub-
hamp

of PX 
ontaining F is PX itself.

To remedy this latest di�
ulty we allow the possibility of birational groupoids, i.e. su
h that

the identity map is simply birational. With this extra �exibility we 
an 
omplete a
ross the

singularities. Spe
i�
ally let,

(II.6) π : P̃X → PX

be the blow up of in the diagonal embedding ∆(Z ) of Z understood with any implied nilpotent

stru
ture on the singular lo
us. Now let U → X be an étale neighbourhood of a geometri


point z ∈ Z with U →֒ M an embedding into a smooth. Consider 
oordinates x1, . . . , xn on

M restri
ting to fun
tions on U , then for F |U Gorenstein, and shrinking U as ne
essary we

may suppose that the foliation is de�ned by a ve
tor �eld ∂ on U , whi
h we write using the

summation 
onvention as,

(II.7) ∂ = ai
∂

∂xi

so that IZ |U = (ai). Now introdu
e xi, yi as 
oordinates on U × U obtained from our initial


oordinates by way of 1st
and 2nd

pull-ba
k respe
tively, and put zi = xi − yi, then in zi, xi


oordinates,

(II.8) p∗2∂ = p∗2ai
∂

∂yi
= −p∗2ai

∂

∂zi
.

Consequently on the blow up, II.6, around U on the p∗1ai 6= 0 pat
h, we have:

(II.9) ∂

(

zi

p∗1ai

)

=
−p∗2ai

p∗1ai
= 1 +

(p∗1ai − p∗2ai)

p∗1ai
.

On the other hand the diagonal embedding of Z ×X U has ideal (p∗1ai, zi) so on the proper

transform ∆̃ of ∆ in P̃X not only 
an we lo
ate ea
h point in some p∗1ai 6= 0 pat
h for an

appropriate i, but indeed the fun
tion zi/p
∗
1ai in I∆̃ enjoys a non-zero derivation with respe
t

to π∗∂. Better still we have blown up in a 
entre invariant by p∗2 F so the indu
ed foliation

p̃∗2 F on P̃X is both smooth in a neighbourhood of ∆̃ and everywhere transverse to it. When
e

we 
an just repeat our minor variant of the 
lassi
al Frobenius theorem to obtain,

II.a.3. Fa
t/De�nition. Let X → [X /F ] be a foliated Gorenstein 
hamp, then there is a

formal sub-
hamp F̃ of P̃X , (II.6), together with proje
tion maps, pi ◦ π, i = 1 or 2 de�ning a

birational groupoid, i.e.

(II.10) F̃ ⇒ X

where the identity and 
omposition are rational maps. In addition the proje
tion p1 ◦π fa
tors

as,

(II.11) F̃
p−→ ∆̃→X

with the former map in (II.11) relatively smooth of dimension 1. We 
all this stru
ture the

in�nitesimal birational groupoid of the foliation.

Noti
e in parti
ular,

II.a.4. Fa
t. There is an isomorphism, N∆̃/F̃

∼−→ O∆̃(p∗2 TF ).
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II.b. Chow's Lemma. We'll 
on�ne ourselves to that whi
h is stri
tly ne
essary for appli-


ations. Our interest 
entres on smooth formal 
hamps F whose tra
e C is a smooth 
hamp

of dimension 1. From our utilitarian point of view we'll 
on�ne ourselves to the 
ase where

dim F = 2. Irrespe
tively there is a well de�ned normal bundle NC /F, and we make,

II.b.1. De�nition. F is a 
on
ave formal neighbourhood of C if deg(NC /F) > 0.

Unsurprisingly the 
lassi
al Chow lemma 
ontinues to hold, i.e.

II.b.2. Lemma. (Chow, Grauert et al.) Let L be a line bundle on F then there is a quadrati


polynomial PL, depending on L, su
h that for all n ∈ N,

(II.12) h0(F, L⊗n) ≤ PL(n) .

Proof. Let Fm be the mth
-thi
kening of C then we have an exa
t sequen
e,

(II.13) 0→ SymmN∨
C /F→ OFm+1

→ OFm → 0 .

On the other hand if h0(C , Ln ⊗ SymmN∨
C /F

) 6= 0, then,

(II.14) m deg(NC /F) ≤ n degC (L) .

Consequently for any n ∈ N,

(II.15) H0(OFm+1
⊗ Ln) →֒ H0(OFm ⊗ Ln)

is inje
tive, provided m > M :=
n degC (L)

deg(NC /F)
and when
e

(II.16) h0(F, L⊗n) = lim←−
m

h0(Fm, L⊗n) ≤
M
∑

k=0

h0(C , Ln ⊗N−k
C /F

) .

Moreover by [BN06, 1.1℄ we 
an �nd a map, ρ : C → C from an honest 
urve, while for any

bundle E, h0(C , E) ≤ h0(C, ρ∗E), so we 
on
lude by Riemann-Ro
h. �

II.
. Bend & Break. We are now in a position to extend the results of [BM16℄, so to this

end let X → [X /F ] be a foliated Gorenstein normal 
hamp with proje
tive moduli spa
e

π : X → X, and H an ample bundle on the latter. As ever the basi
 obje
t of study is KF

negative 
urves on X , i.e., pro�ting on
e more from [BN06, 1.1℄, maps f : C → X from

a smooth 
urve su
h that KF ·f C < 0. We impose further the 
ondition that f does not

fa
tor through the singular lo
us Z = sing(F ). Consequently if we 
onsider the in�nitesimal

birational groupoid as �bred over X̃ = BlZ (X ) via p in (II.11), then f admits a lifting

f̃ : C → X̃ and we may form the �bre square,

(II.17)

F̃ ←−−−− F̃C

p





y





y

p

X̃ ←−−−−
f̃

C

In addition the identity map of the groupoid gives a se
tion s of p of the left, so a fortiori of

the right, verti
al arrow, whi
h is everywhere well de�ned sin
e we're working with X̃ rather

than X . Consequently, by II.a.4, F̃C is a 
on
ave, II.b.1, neighbourhood of s(C), and for P̃X

as per (II.6), we have natural maps,

(II.18) F̃C → C × P̃X → C × Bl∆(Z )(X ×X )

where the moduli, W , of Bl∆(Z )(X ×X ) is proje
tive be
ause X is, and we assert,
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II.
.1. Claim. The Zariski 
losure of the image of F̃C in C ×W is irredu
ible of dimension 2.

Proof. Indeed let Y be the Zariski 
losure, whi
h is irredu
ible sin
e F̃C is. Moreover if L is an

ample line bundle on C ×W then by de�nition,

(II.19) H0(Y,L)→ H0(F̃C , L)

is inje
tive by the de�nition of Y , so we're done by the Chow lemma, II.b.2. �

Now let Y be Y ×(C×W ) (C × Bl∆(Z )(X ×X )) then we further assert

II.
.2. Better Claim. For Y /C viewed as a C-
hamp via the proje
tion C ×W → C there is

a net C-map F̃C → Y . In parti
ular, therefore, this a�ords a se
tion s : C → Y su
h that:

(a) Y is smooth in a neighbourhood of s(c).
(b) KY /C·s C = KF ·f C.

(
) The 2nd proje
tion yields a map of foliated 
hamps (Y /C)→ (X → [X /F ]).

Proof. By base 
hange in the �bre square:

(II.20)

F̃× C ←−−−− F̃C

p×f̃





y





y

X̃ × X̃
diagonal←−−−−− X̃

the above horizontal is net, while, 
f. II.a.1, PX →X ×X is net, so P̃X → Bl∆(Z )(X ×X )

is too, and F̃ is embedded in PX by de�nition II.a.3. As su
h F̃C → C ×Bl∆(Z )(X ×X )) is
a 
omposition of net maps, whi
h, by 
onstru
tion, has an image embedded in Y . �

The following, therefore, a�ords invariant rational 
urves through a generi
 point of the image

of C.

II.
.3. Fa
t. Suppose in addition to II.
.2.(a)-(b) a family p : Y → C of uni-dimensional


hamp with a se
tion s satis�es KY /C·s C < 0 then there is a �nite extension C(C)→ K su
h

that YK is dominated by P1
K .

Proof. We may, without loss of generality, suppose that Y , and indeed any base 
hange thereof,

is normal. In parti
ular, therefore, I.a.6, there is a �bration Y → Y0 expressing the former as

a lo
ally 
onstant gerbe over a normal-fold, so that by [BN06, 1.1℄ we may further suppose that

Y = Y0. As su
h if the generi
 �bre of p is not dominated by a rational 
urve then, op. 
it.,

there is a �nite extension C(C)→ K su
h that Y ×C K is an orbifold of the form [SK/G] for
some non-rational K-
urve SK and �nite group G a
ting generi
ally freely. Denoting by Y the

moduli of Y , and identifying K with the fun
tion �eld of a smooth 
urve B, we 
an suppose

that SK is the generi
 �bre over B of the integral 
losure S of Y in the fun
tion �eld of SK .

The normalisation S of the �bre Y ×Y S is, therefore, a gerbe over S with generi
 �bre SK .

Consequently, by purity, q : S → Y is rami�ed only in 
omponents of �bres of Y → C. In

addition q is étale lo
ally Galois sin
e S → Y is and Y → C is smooth in a neighbourhood

of the se
tion s(C), so by [SGA-I, Exp. XIII, Cor. 5.3℄, q is étale lo
ally around s(C) the

extra
tion of roots of �bres. As su
h, by the simple expedient of taking C(C)→ K su�
iently

large, we 
an suppose- around s(C) and it's pre-image- that q is s
heme like and S is smooth.

Better still sin
e q is only rami�ed in �bres,

(II.21) KS/B = q∗KY /C , and thus, KS/B ·s̃ B < 0,

for any lifting s̃ of s. Consequently, we may from from either [BM16℄ or the 
lassi
al theorem

of Arakelov, [Szp81℄, 
on
lude to the absurdity that the generi
 �bre of S → B is a rational


urve. �
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The �bres of p in II.
.3 may not themselves be rational 
urves, and it is 
onvenient to give

them a name, to wit

II.
.4. Fa
t/De�nition. A smooth 1-dimensional Deligne-Mumford 
hamp, L , over a �eld k is

said to be paraboli
 if it's geometri
 �bre is dominated by a rational 
urve. Rather 
onveniently

this o

urs, [BN06, 1.1℄, i� the topologi
al Euler-
hara
teristi
 χ(L ) > 0.

From whi
h we 
an pro
eed to our 
on
lusion

II.
.5. Proposition. Let X → [X /F ] be a foliated normal gerbe over a proje
tive variety X,

whi
h is foliated Gorenstein along some KF negative 
urve C0 ⊂ X around the generi
 point

of whi
h F is a non-singular foliation of X , then for a generi
 c ∈ C0 there is an invariant

paraboli
 
hamp, gc : Lc →X su
h that for M any nef. R-divisor on X , and || the moduli,

(II.22) M·|gc|
|Lc| ≤ 2

M·f C

−KF · C

Proof. We apply II.
.2 with C a 
urve mapping to the normalisation of the gerbe over C0 in

X . By II.
.3 the generi
 �bre of Y → C is an invariant paraboli
 
hamp, so it only remains

to produ
e the degree bound. To this end identify the image of the se
tion s with a 
urve C
su
h that C2 = −KF · C in the normal surfa
e whi
h is the moduli. When
e if L is a generi


�bre of the same, M is notationally 
onfused with the restri
tion of the given nef. R-divisor,
and x ∈ R>0 then by the Hodge index theorem,

(II.23) 2x · (L ·M)C2 ≤ (L + xM)2 C2 ≤ {C · (L + xM)}2

so taking x = (M · C)−1
we 
on
lude. �

The same proof works, under the weaker hypothesis that only a neighbourhood of C0 in the

moduli is proje
tive. More interestingly, the presen
e of even the most mild non-s
heme like

stru
ture on X 
an ne
essitate the pre
ision of II.
.5 that the existen
e of a paraboli
 invariant


hamp L ∋ c is only guaranteed for generi
 c. Indeed:

II.
.6. Remark. Take a se
tion C with positive square of a Hizerbru
h surfa
e P → C. In the

�bre through some c ∈ C, 
hoose some set Q of points o� C, and for q ∈ Q let nq ∈ N>1

be given. Choose a germ of a smooth 
urve, γ transverse to the �bre Pc at q. Blowing up

in q, we get the proper transform γ1 of γ, we then blow up in the point where this 
rosses

the ex
eptional divisor, and repeat this pro
ess nq times before blowing down the �rst nq − 1

urves. The resulting surfa
e S then has isolated 
y
li
 quotient singularities with monodromy

Z/nq at ea
h q in the proper transform of Pc, whi
h itself meets at ea
h q a rational 
urve in

the �bre, but the said proper transform is the only 
omponent of the �bre meeting the se
tion.

Passing to the Vistoli 
overing 
hamp, we see the ne
essitate for taking c ∈ C generi
 in II.
.5,

sin
e the gerbe over the proper transform fails to be paraboli
 as soon as,

∑

q(1− 1/nq) > 2.

II.d. The Cone of Curves. We may now apply the basi
 estimate II.
.5 to the 
one of 
urves

of a foliated Gorenstein normal 
hamp X → [X /F ] over C. Indeed more pre
isely we have,

II.d.1. Fa
t. Let X → [X /F ] be a foliated Gorenstein normal 
hamp with log-
anoni
al

singularities in dimension 1 and proje
tive moduli, then there are 
ountably many F -invariant

paraboli
, 
hamp Li, with, 0 < −KF · Li ≤ 2 su
h that,

(II.24) NE (X )R = NE(X )KF≥0 +
∑

i

R+ Li

where NE (X )KF≥0 is the sub-
one of the 
losed 
one of 
urves on whi
h KF is non-negative.

Better still the R+ Li are lo
ally dis
rete, and if R ⊂ NE (X )R is an extremal ray in the half

spa
e NEKF<0 then it is of the form R+ Li.
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This is a wholly formal 
onsequen
e, as per [Kol96, III.1.2℄, of the following variant of II.
.5

II.d.2. Variant. Let X → [X /F ] be as above, and C0 ⊂ X a KF -negative 
urve in the

moduli, then for generi
 c ∈ C0 there is a F -invariant paraboli
 
hamp Lc ∋ f(c) with 0 <
−KF ·Lc ≤ 2 su
h that for all nef. R-divisors M on X, and || the moduli,

(II.25) M· |Lc| ≤ 2
(M· C0)

−KF · C0
.

The variant requires a 
ouple of fa
ts of independent interest to wit

II.d.3. Fa
t. If Z is the singular lo
us of a foliated Gorenstein-
hamp X → [X /F ] with
log-
anoni
al singularities in dimension 1, then OZ (KF ) is semi-ample.

Proof. Consider the linearisation map, i.e. the 
omposition of,

(II.26) D : IZ /I 2
Z −→

d
ΩX ⊗Ox OZ −→ KF ⊗IZ /I 2

Z

By the Leibniz rule, this map is OZ linear, and sin
e the singularities are log-
anoni
al in

dimension 1, for z ∈ Z outside a �nite set, some symmetri
 fun
tion of D de�nes a se
tion

over Z , non-vanishing at z, of some power K⊗n
F , [MP13, I.ii.4℄, and we 
on
lude by the Zariski-

Fujita theorem. �

II.d.4. Fa
t/De�nition. Let X → [X /F ] be a foliated Gorenstein 
hamp; f : L → X the

normalisation of an invariant uni-dimensional 
hamp not fa
toring through the singular lo
us

Z ; χ(L ) its topologi
al Euler-
hara
teristi
; and sZ (f) the Segre 
lass of f along Z , i.e. the

multipli
ity (
ounted with stabilisers) of the pre-image f−1IZ of the ideal of singularities, then

KF ·f L = −χ(L )− Ramf + sZ(f)

≥ −χ(L ) +
∑

l∈f−1(Z )

1

|AutC (c)|
(II.27)

Proof. The image of f∗Ω1
X is Ω1

L is always Ω1
L (−Ramf ), while in the parti
ular, I.20, it's

equally f∗KF .f−1IZ , whi
h proves the 1st line in (II.27). To get the se
ond, observe that in


hara
teristi
 0 f 
an only ramify where it meets Z . On the other hand if f : ∆→ U is a lo
al

bran
h of f meeting a singularity in f(0), and

(II.28) ∂ = a1
∂

∂x1
+ · · ·+ an

∂

∂xn

is a lo
al generator of F with xi 
oordinates on a smooth embedding of U then the lo
al


ontribution to −Ramf + sZ(f) is

−min
i
{ord(ẋi(t))}+ min

i
{ord(f∗(ai))}, f : t 7→ xi(t)

= 1 + ( min
i
{ord(f∗(ai))} −min

i
{ord(f∗(xi))}) ≥ 1

(II.29)

when
e the 2nd line on 
orre
ting for the order of the stabiliser. �

At whi
h point we 
an return to

proof of II.d.2. By II.d.3 we need only prove the variant under the additional 
ondition present

in II.
.5 that the foliated 
hamp is non-singular over a generi
 point of C0. As su
h re-taking

the notation of the proof of op. 
it., we have a bi-dimensional 
hamp p : Y → C whose �bres

map invariantly by g to X , whi
h is the normalisation of its image. The said image, A , say,

admits a possibly non-saturated, inje
tion TF → TA . Every 
omponent of the singular lo
us is

invariant by every ve
tor �eld, so by [BM97℄, normalisation (in 
hara
teristi
 0) 
an be realised

in 
o-dimension 1 by a sequen
e of blow ups in F -invariant 
entres. Thus g∗TF maps to TY /C
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in 
o-dimension 1, when
e, everywhere sin
e Y , and therefore TY /C , is S_2. Consequently for

generi
 c ∈ C,

(II.30) −KF ·gc C ≤ TY /C · C
while by the adjun
tion formula, II.d.4, and smoothness of Y in 
o-dimension 2, we have,

(II.31) TY /C · Yc = −χ(Yc) ≤ 2

so, indeed −KF ·gc C ≤ 2 for generi
 c as required. �

In parti
ular, under the hypothesis of log-
anoni
al singularities in dimension 1, KF -negative


urves are never 
ontained in the singular lo
us of the foliation, and we pro
eed to examine

the possibilities for KF negative invariant paraboli
 
hamps outside the same. When
e let

f : L → X be the normalisation of su
h, whi
h we express as a lo
ally 
onstant gerbe,

π : L → L0, over a 
hamp without generi
 stabiliser, then by (II.27)

(II.32) 0 > KF ·f L ≥ (L : L0) ·







−2 + ♯ f−1(Z ) +
∑

q /∈πf−1(Z )

(1− 1

dq
)







where in the sum, dq is the order of the lo
al monodromy, and ♯ means integer valued 
ardinality

of a set. As su
h,

II.d.5. Fa
t/De�nition. For a Gorenstein foliation X → [X /F ] in the presen
e of log-


anoni
al singularities in dimension 1, an irredu
ible KF -negative invariant 
hamp (or just an

irredu
ible KF -negative invariant 
hamp whose generi
 point meets the smooth lo
us of the

foliation if there are no hypothesis on the singularities of X → [X /F ]) has a normalisation,

f : L →X , with L paraboli
, and furthermore:

(a) The pre-image under f of the singular lo
us Z is supported in at most 1 point.

(b) If this pre-image is 6= ∅, then L0 has at most one non-s
heme like point outside it.

(
) If there is no su
h singular point X → [X /F ] is generi
ally a �bration in paraboli



hamps.

Proof. Items (a) and (b) are 
lear from (II.32) whi
h leaves (
). In this 
ase f is an embedding

whose normal bundle is �at via the representation a�orded by the linear holonomy, while π1(L )

is �nite, so, for f̃ : L̃ → X the 
omposition with the universal 
over, the deformations of f̃ are

(lo
ally) a smooth spa
e of dimension dim(X )−1, and every deformation of f̃ is invariant. �

II.e. Singular stru
ture of KF -negative 
urves. Throughout this se
tion f : L → X is

a map from a smooth invariant KF -negative 
urve with the further spe
i�
ations of II.d.5. In

parti
ular f is an embedding everywhere ex
ept possibly at a point p ∈ f−1(Z ). At p, however
not only may the monodromy ex
eed that of the generi
 point of L , but f may fail to be an

embedding be
ause it has a 
usp and/or be
ause the image is not uni-bran
hed. Nevertheless

there is a 
ertain limit to the 
ompli
ation, whose des
ription is the goal of this se
tion, i.e.

II.e.1. Fa
t/De�nition. Let everything be as in II.d.5 albeit we insist that X → [X /F ]
has log-
anoni
al singularities, and suppose moreover that f−1(Z ) 6= ∅ with p : pt → L the

resulting geometri
 point, then the étale lo
al 
ontribution, (II.29), to −Ramf + sZ (f) at p is

exa
tly 1. As su
h by (II.27) and (II.32)

(II.33) KF · L = −1/d

where d is the maximum value of a stabiliser of L outside p, whi
h is either attained at a

unique point or is the same everywhere in the 
omplement of p, and we refer to su
h 
urves as

−1
d F 
urves.

We pro
eed by a series of lemmas beginning with
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II.e.2. Claim. The foliation F , by way of restri
tion over the generi
 point, a�ords a singular

derivation of L .

Proof. We re-take the notation of (II.28)-(II.29) in the proof of II.d.4. It therefore follows

exa
tly as in the proof of II.d.2 that ∂ de�nes a derivation of O∆, and it remains to prove

that it's a
tually singular at p. To see this observe that if b : X̃ → X were the blow up in p
then the indu
ed foliation (understood without saturation if the singularities are not 
anoni
al,

i.e. lo
ally de�ned by b∗∂) 
annot (by the Frobenius theorem) be smooth where the proper

transform of f 
rosses the ex
eptional divisor. On the other hand, a sequen
e of blow ups in

singular points resolves any singularity of any bran
h of f , so for b : X̃ → X now a 
hain

of su
h, we 
an suppose that the proper transform f̃ : L → X̃ is an embedding 
rossing

the ex
eptional divisor in a singular point, f̃(p), of the regular derivation b∗∂, i.e. ∂ a�ords a

singular derivation of O∆. �

Applying II.e.2, we 
an, in the said notation, write the restri
tion to L of a generator étale

lo
ally as

(II.34) ∂ = yr+1u(y)
∂

∂y
, u(y) ∈ O×

∆ , r ∈ Z≥0,

and the 
ontent of II.e.1 is that r = 0. All of whi
h is a useful, if non-essential, point of referen
e

in establishing our next

II.e.3. Claim. Understanding X → [X /F ] in the log-sense, I.b.2, if ne
essary, 
f. I.b.10,

Without loss of generality X in II.e.1, is a smooth 
hamp.

Proof. By [BM97℄ there is a F -equivariant resolution of singularities

(II.35) b : X̃ →X

So that understanding X̃ → [X̃ /F̃ ] in the log-sense if ne
essary the 
anoni
al bundle is

un
hanged. As su
h if b is an isomorphism at the generi
 point of f , there is a unique lifting

f̃ : L → X̃ satisfying the hypothesis of II.e.1, and there is nothing to do. It may, however,

happen that b is a modi�
ation around the image of f . Nevertheless every 
omponent of the

�bre over the said image is invariant, amongst whi
h we 
hoose one over the generi
 point of f
and normalise it to get a not ne
essarily �bred square

(II.36)

X̃ ←−−−−
F

Y

b





y





y
B

X
f̃←−−−− L

wherein any ve
tor �eld along F on the bottom left hand 
orner lifts naturally everywhere

else. In parti
ular, therefore, there is a possibly very far (even logarithmi
ally) from saturated

(
f. II.e.2) bundle of derivations

(II.37) F ∗b∗TF → TY

whose singular lo
us is 
ontained in B−1(p), so that the restri
tion

(II.38) F ∗b∗TF |sing(F ∗b∗TF )

is trivial. On the other hand b, and when
e B, is relatively proje
tive, so Y has proje
tive

moduli and sin
e (II.38) provides an appropriate variant of II.d.3 we may, sin
e it makes no

other use of saturation, apply II.d.1 to 
on
lude that there are F ∗b∗KF = B∗f∗KF -negative

invariant 
urves

(II.39) f̃ : L̃ → Y → X̃
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lifting f . Of 
ourse, plausibly, L̃ → L is rami�ed over p, but this would only 
ause a non-zero

value of r in (II.34) to go up. �

Now, as we've said, II.d.5.(a) notwithstanding the image of f in X 
an even fail to be uni-

bran
h. However

II.e.4. Claim. Hypothesis as in II.e.3, then without loss of generality f is an embedding.

Proof. In an easier variant of the proof of II.e.3: given f : L → X with X smooth, we 
an

�nd a 
omposition, b : X̃ → X , of blow ups in singular points of the foliation su
h that the

unique lifting f̃ : L → X̃ is an embedding. �

At whi
h jun
ture we have a well de�ned normal bundle NL /X and a spe
ialised foliation to

the same. Indeed somewhat more generally

II.e.5. Fa
t/De�nition. Let f : Y → X be net, I.e.2 albeit that mu
h more, I.e.5, is true,

des
ent yields a well de�ned normal 
one CY /X . Spe
i�
ally if V →X is étale, then there is a

su�
iently small étale neighbourhood U of any geometri
 point of Y ×X V su
h that U →֒ V ,

and the pull-ba
k to U of the asso
iated 
one is,

(II.40) SpecS :=
∞

⊕

n=0

In
U,V

In+1
U,V

.

In parti
ular if the image of f is invariant, then the foliation leaves IU,V invariant, so a lo
al

generator ∂ of TF passes to a graded derivation of S by way of applying it to any lifting

of an element in the nth
-graded pie
e, and then redu
ing modulo In+1

U,V . This pro
ess may

not immediately lead to a foliation, but only a pre-foliation, i.e. the spe
ialisation may not be

saturated. Nevertheless, for ease of notation, 
f. II.e.3, we 
ontinue to ignore su
h a distin
tion,

whi
h, in any 
ase, we'll 
lear up in II.f.1. Irrespe
tively, if Y is a smooth invariant 
urve not

fa
toring through the singular lo
us, Z , for y a 
oordinate along U around a point of f−1(Z ),
and xi normal 
oordinates the spe
ialisation of ∂ takes, by (II.34), the form,

(II.41) ∂ : y 7→ b(y) = yr+1u(y)∂y (mod IU,V ) , xi 7→ aij(y)xj = ∂xi (mod IU,V )

where the summation 
onvention is employed, so, equivalently the spe
ialisation may be viewed

as a 
onne
tion on NY /X with singularities.

By way of II.e.3 and II.e.4 this may be applied to the 
ase in point via

II.e.6. Fa
t. Let X → [X /F ] be a foliated smooth 
hamp, and f : L → X an invariant

net map from a (smooth) paraboli
 
hamp not fa
toring through the singularities su
h that

KF ·f L < 0 then either r = 0 or the linearisation, (I.26), ∂̄ of a generator at the singular

point is nilpotent.

Proof. Without loss of generality, L is simply 
onne
ted so L
∼−→ P(d, e) for some d, e ∈ N,

[BN06, 1.1℄. We have, therefore, a rather expli
it des
ription of L , to wit:

(II.42)

Gm
t7→t−e

−−−−→
β

U ′ ∼−−−−→ A1 → [A1/µd] →֒ L

t7→td





y

α

L ←֓ [A1/µe]← A1 ∼−−−−→ U

Furthermore, by II.d.5, we may suppose that the pre-image of the singular lo
us is a point p
whi
h we identify with 0 (the origin in U) while ∞ will denote the origin in U ′

. Consequently
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by I.
.7 there is a longitudinal 
oordinate y, resp. η, and normal 
oordinates xi, resp. ξi in

neighbourhoods of 0, resp. ∞ su
h that

(II.43) β∗η = t−e, α∗y = td, β∗ξi = t−aiα∗xi

where the integers ai are a�orded by the Harder-Narismhan �ltration

(II.44) NL /X
∼−→

∐

i

OL (ai)

so, the basis xi, resp ξi may even be supposed µe, resp µd invariant, i.e.

(II.45) (ǫ, xi) 7→ ǫ−aixi , (δ, ξi) 7→ δ−aiξi , ǫ ∈ µe, δ ∈ µd

Irrespe
tively, TF
∼−→ OL (e − dr), where by hypothesis e > dr, and we normalise generators

around 0 and ∞ a

ording to

(II.46) ∂0(y) = dyr+1, ∂∞(η) = −e

so that for a spe
ialised foliation des
ribed, 
f. (II.41), by matri
es A, resp. B, over U , resp.

U ′
,

(II.47) A(td) − tdr∆ =
1

te−dr
DB(t−e)D−1

where ∆, resp. D, is the diagonal matrix with entries ai, resp tai
. Consequently if we order

the ai to be de
reasing in i, then every i ≤ jth entry of DBD−1
on the right of (II.47) is

a polynomial in t−1
, so from e > dr, A(td) is an upper semi-triangular matrix with diagonal

ait
dr
, and when
e the said linearisation is nilpotent if r > 0. �

Manifestly this 
ompletes the proof of II.e.1 by I.b.5, and merits

II.e.7. Remark. The di�
ulty in II.e.1 
omes from the fa
t that if X were the 
ompletion in the

singularity p,

(II.48) H0(X, TF )

may not 
ontain a generator, ∂. Indeed supposing f an embedding (just to �x ideas sin
e it's

of no importan
e) so that the monodromy, G, at p a
ts on the 
oordinate y of (II.34) by a


hara
ter, γ, then

(II.49) ∂σ = ∂ ⇒ γ(σ)r = 1 σ ∈ G

On the other hand from the adjun
tion formula, II.d.4, in the notation of (II.32)

(II.50) KF ·L = (L : L0)
( r

ord(γ)
− 1

dq

)

whi
h from (II.49) is non-negative as soon as r > 0. There is, however, not only no way to

guarantee that (II.48) 
ontains a generator, but this may well be impossible on every birational

model with log-
anoni
al singularities sin
e this is the root 
ause, [MP13, III.iii.3.bis℄, of why

log-
anoni
al resolutions need not exist in the 
ategory of varieties.

II.f. Linear Holonomy of, at worst, nodal −1
d F Curves. Throughout X → [X /F ] is

a (saturated) foliation of a smooth 
omplex Deligne-Mumford 
hamp; f : L → X is a −1
d F


urve, with f net, and L smooth. As su
h we have a spe
ialised foliation, II.e.5, to the normal

bundle, NL /X , and we assert

II.f.1. Claim. The spe
ialised foliation is in fa
t saturated.
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Proof. Suppose L is simply 
onne
ted (whi
h one 
an always redu
e to by [SGA-I, Exposé

I, 8.3℄, or [M
Q15, IV.a.2℄ in a slightly more appropriate generality, and I.e.5) then by the

de�nition of a −1
d F 
urve we have r = 0 in (II.47), while la
k of saturation is equivalent to

the matrix A of op. 
it. being divisible by t whi
h 
an only happen if the matrix ∆ therein

is 0, i.e. the normal bundle is trivial. Thus, exa
tly as in the proof of II.d.5, f moves in a


overing family, ft, of disjoint invariant paraboli
 
hamp ea
h of whi
h must meet sing(F ) for
numeri
al reasons- i.e. KF ·f L = KF ·ft L , (II.d.4), and generi
 ft a generi
 embedding- so

the singular lo
us of F must be a divisor. �

As su
h we 
an 
ease to worry about whether the foliation is a saturated or not, and

II.f.2. Set Up. We further suppose that L is simply 
onne
ted, i.e. it is a weighted proje
tive


hamp P1(d, e), I.
.1.

In parti
ular therefore we 
an des
ribe the total spa
e, N := NL /X → L , of the normal

bundle as the 
lassifying 
hamp [E/Gm] of the a
tion

(II.51) E :=
(

(A2\0)× An)
)

×Gm : (y0, y1)× (x1, · · · , xn)× λ 7→ (λdy0, λ
ey1)× (λaixi)

where as in II.e.6 the weights

(II.52) a1 ≥ a2 · · · ≥ an

are those of the Harder-Narismhan �ltration, I.
.7 of the normal bundle. Consequently if

π : E → N is the proje
tion then the tangent spa
e to the normal bundle is des
ribed by an

Euler sequen
e of Gm-equivariant, 
f. I.
.2, bundles

(II.53) 0→ O
17→ρ−−−→ TE = O(d) ∐O(e) ∐i O(ai)→ π∗TN → 0

where ρ is the radial, 
f. I.d.2, ve
tor �eld

(II.54) ρ := dy0
∂

∂y0
+ ey1

∂

∂y1
+ a1x1

∂

∂x1
+ · · ·+ anxn

∂

∂xn

Now by II.e.1 the 
anoni
al bundle of the spe
ialised foliation is O(−e), while for any Gm-

equivariant 
oherent sheaf E we have, in the notation of I.
.1, a Hös
hild-Serre spe
tral sequen
e

(II.55) Hp(BGm ,Hq(Ak,E ))⇒ Hp+q(P1(d, e),E )

and when
e by I.
.3

(II.56) H1(BGm , π∗KF ) = 0

Combining this with (II.53) implies that the spe
ialised foliation on the normal bundle is de�ned

by a ve
tor �eld ∂ on the total spa
e E su
h that

(II.57) ∂λ = λ−e∂, λ ∈ Gm

At the same time, by 
onstru
tion, (II.41), there are fun
tions Fp, Aij in C[A2] su
h that

(II.58) ∂ = F0
∂

∂y0
+ F1

∂

∂y1
+ Aijxj

∂

∂xi
, 1 ≤ i, j ≤ n

where as per op. 
it. we employ the summation 
onvention. As su
h from (II.52), (II.57), and

our normalisation, (II.42), that the singularity is at (0, 1),

(II.59) F0 = 0, F1 ∈ C×, Aij, is ai − aj − e weighted homogeneous.

In parti
ular therefore, by (II.52), Aij is an upper semi-triangular matrix with 0 diagonal. We


an, however, do better, to wit:
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II.f.3. Fa
t. For a possibly di�erent splitting of the Harder-Narismhan �ltration, I.
.8, of NL /X

and after a trivial renormalisation by a 
onstant

(II.60) ∂ = −e
∂

∂y1

Proof. Consistent with the notation of (II.52) the Harder-Narismhan �ltration may be written

as

(II.61) [0] = N0 $ N1 $ N2 $ · · · $ Nk = NL /X

where the normal bundle of Ni in Ni+1 restri
ted to the zero se
tion is a trivial bundle twisted

by some OL (αi) for αi a 
omplete repetition free list of the ai's; thus stri
tly de
reasing as

one pro
eeds up the 
hain. By (II.59) this is equally a �ltration by F -invariant sub-bundles,

so, understanding the indu
ed foliation on a sub-bundle logarithmi
ally, I.b.2, if ne
essary (i.e.

a1 = 0) we prove (II.60) by indu
tion on the length of the 
hain (II.61). The 
ase k = 1 is

immediate by (II.59), so by indu
tion the matrix Aij is an idempotent of the form

(II.62)

[

0 A
0 0

]

, A ∈ HomGm(Nk/Nk−1, Nk−1)(−e)

Plainly, we aim for (II.59) via a 
hange of 
oordinates of the form

(II.63)

[

x̃ai<αk

x̃ai=αk

]

=
[

1 B
0 1

][

xai<αk

x̃ai=αk

]

, B ∈ HomGm(Nk/Nk−1, Nk−1)

so that what we have to solve (in matri
es of fun
tion in C[A2]) is:

(II.64) e
∂B

∂y1
= A,

in a way that respe
ts the Gm-equivarian
e of (II.62)-(II.63), whi
h, (II.59), is 
lear. �

To re-interpret this in terms of the standard a�ne pat
hes U , U ′
of (II.42)-(II.43) one simply

splits (II.53) along the in
lusion of the respe
tive (quasi) transversals yp = 1, i.e.

II.f.4. Summary. Suppose the (embedded) −1
d F 
urve has at worst nodes, equivalently that

its normalisation is net over X , and that the universal 
over, L , of the same is a P1(d, e), then
L → X is net with a well de�ned normal bundle NL /X su
h that after pulling ba
k, II.f.2,

to the universal 
over we have in the étale des
ription, (II.42)-(II.43), of the normal bundle

(1) On U
∼−→ A1

an étale neighbourhood of the singularity a µe invariant generator of the

spe
ialised foliation, and ζ ∈ µe-a
tion given by,

(II.65) ∂ = dy
∂

∂y
+ aixi

∂

∂xi
, y 7→ ζdy xi 7→ ζaixi, ai ∈ N

(2) On U ′ ∼−→ A1
a 
omplementary neighbourhood of the singularity, a basis ξi of fun
tions

invariant by the spe
ialised foliation, on whi
h ζ ∈ µd a
ts via ξi 7→ ζaiξi.
(3) A pat
hing taiβ∗ξi = α∗xi in the notation of (II.42), and when
e, an isomorphism

(II.66) NL /X
∼−→

∐

i

OL (ai)

In parti
ular the 
anoni
al or Harder-Narismhan �ltration of NL /X , (II.61), is a �ltration by

F -invariant sub-bundles whose slopes and rank may be read dire
tly from the generator (II.65)

at the singularity.
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II.g. Formal Holonomy. We wish to extend the previous dis
ussion of linear holonomy of

smooth −1
d F 
hamps to the rather more deli
ate 
ase of formal holonomy. Plainly when the


urve, L , is smooth and simply 
onne
ted, the 
al
ulations are easier, and we denote by

X → [X/F ] a foliated smooth formal 
hamp whose tra
e L is a −1
d F 
hamps isomorphi
 to

P1(d, e). In pra
ti
e X will, by [SGA-I, Exposé I, 8.3℄ or [M
Q15, IV.a.2℄, be the universal 
over

of the the 
ompletion of a smooth foliated algebrai
 
hamp X → [X /F ] along the net map,

I.e.5, a�orded by the normalisation of an at worst nodal −1
d F 
urve. For the moment, however,

this is logi
ally irrelevant. Supposing no risk of 
onfusion with the notation of (II.40)-(II.41),

we repla
e U ′
by V in (II.42), and take U→ X, resp. V→ X, to be formal étale neighbourhoods

in the analyti
 topology with tra
e the A1
's U , resp. V of (II.42). In parti
ular, therefore, U,

resp. V, has a µe, resp. µd, a
tion and there are open analyti
 embeddings [U/µe] →֒ X, resp.

[V/µd] →֒ X, extending [U/µe] →֒ L , resp. [V/µd] →֒ L . When
e V is simply 
onne
ted,

and, in the analyti
 topology, there is a 
ertain strengthening of II.f.4, viz: the foliation may be

supposed trivial over V, i.e. we have analyti
 
oordinate fun
tions ξi, η normal and parallel to

our A1
respe
tively su
h that in V the foliation is just the formal �bration ξ1×· · ·×ξn : V→ ∆̂n

,

where the latter spa
e is a n-polydis
 
ompleted in the origin. The algebra C [[ξ1, . . . , ξn]] 
omes

equipped with a µd a
tion- the formal holonomy representation- whi
h, modulo the maximal

ideal, is nothing other than that of the linear holonomy, (II.45). The said algebra is, however,

an inverse limit of �nite dimensional ve
tor spa
es over a �eld in whi
h d is invertible, so the

a
tion may be written ξi → ζ−aiξi without prejudi
e to II.f.4.(1)-(3).

Now, we 
an 
hoose ∂ on U to be µe invariant, and, indu
tively we further suppose: for m ∈ N
given, and a possibly di�erent µe-invariant generator, ∂, on U that there is a 
oordinate fun
tion

y restri
ting to that of II.f.4.(1), su
h that,

(II.67) ∂y ≡ dy(I m
L ), (ζ, y) 7→ ζdy (I m

L ), (ζ, ∂) 7→ ∂ ∈ Der(OU ), ζ ∈ µe

The spa
e U, unlike its tra
e U , has non-trivial units, so, a priori this isn't equivalent to the

weaker

(II.68) ∂y ≡ duy(I m
L ), (ζ, y) 7→ ζdy (I m

L ), (ζ, ∂) 7→ ∂ ∈ Der(OU ), ζ ∈ µe

for u invertible modulo I m
L . Nevertheless, we're in 
hara
teristi
 zero, so, in fa
t

II.g.1. Claim. The 
onditions (II.67) and (II.68) are equivalent.

Proof. Supposing (II.68), we have

(II.69) ∂(y)− duy = f, yζ − ζdy = g f, g ∈ Γ(U,I m
L )

from whi
h the invarian
e of ∂ a�ords,

(II.70) dζdy(uζ − u) = ζdf − f ζ + ∂(g) − duζg ∈ Γ(U,I m
L )

and we 
on
lude that uζ − u ∈ H1(µe,I
m
L ). Sin
e everything is tame, however, su
h a 
o-

homology group vanishes, so we 
an �nd a µe-invariant unit v equal to u modulo I m
L , and

repla
ing ∂ by v−1∂ we dedu
e (II.67) from (II.69). �

Denoting by Xm, Um, Vm, et
. the redu
tion of whatever modulo I m
L , observe, by II.f.4.(3),

that for y as in (II.67) there is a fun
tion t0 on Um ×X Vm su
h that yt−d
0 is 
ongruent to

1 modulo nilpotents. We are, however, in 
hara
teristi
 0, so, from the power series of the

logarithm, yt−d
0 has a dth root. Thus

(II.71) ∃ t ∈ Γ(Um ×X Vm) ∋ y |Um×XVm= td,

and we further assert,
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II.g.2. Claim. Suppose that (II.67) holds, then for a possibly di�erent µd linear basis ξi of

the algebra C [[ξ1, . . . , ξn]] 
ompatible with any previous 
hoi
e of the same modulo I m′

L for

m′ < m,

(1) There are 
oordinates xi normal to L on U su
h that in IL /I m+1
L ,

(II.72) ∂(xi) = aixi xi 7→ ζaixi, ζ ∈ µe, ai ∈ N, 1 ≤ i ≤ n

(2) The xi glue to the ξi via α∗xi = taiβ∗ξi as global se
tions of the OXm module

(II.73) IL /I m+1
L (ai)

where OXm (1) is the bundle with transition fun
tion t on Um ×X Vm.

Proof. We pro
eed indu
tively on m, the 
ase m = 1 being II.f.4, so, by the �rst item of the

indu
tion hypothesis for m−1, m ≥ 2, we 
an �nd 
oordinate fun
tions xi normal to L whose

redu
tion modulo I 2
L are a basis of the normal bundle over U su
h that,

(II.74) ∂(xi)− aixi = aiJ(y)xJ ∈ Γ(Um,I m
L /I m+1

L ),

where xJ
is the monomial xj1

1 . . . xjn
n , j1 + · · ·+ jn = m, the summation 
onvention is employed,

and aiJ(y) is an entire fun
tion. Similarly by the se
ond part of the indu
tive hypothesis:

(II.75) taiξi − xi |Um×xVm= biJ(t)xJ ∈ Γ(Um ×X Vm, I m
L /I m+1

L )

with the same 
onventions, but where, now, biJ(t) are only holomorphi
 for t ∈ Gm. Combining

(II.74) & (II.75), we obtain,

(II.76) t ḃiJ + biJ(aJ − ai) = −aiJ(td) ∈ OGm

where aJ =
∑

i
ji ai, and no summation is implied. Again we 
an integrate this, by way of

(II.77)

d

dt
(t(aJ−ai) biJ) = − aiJ(td) taJ−ai−1 .

A priori, however, the biJ are holomorphi
 for t ∈ Gm, so the biJ are, in fa
t, meromorphi
,

and no aiJ taJ−ai−1
has a residue, when
e:

(II.78) biJ = hiJ (td) +
λiJ

taJ−ai

where hiJ is entire, and λiJ is a 
onstant. In parti
ular,

(II.79) x̃i := xi + hiJ(td)xJ
satis�es ∂(x̃i) = aix̃i (mod Im+1

L )

and de�nes n normal 
oordinate fun
tions on U, su
h that,

(II.80) x̃i = tai ξ̃i, where, ξ̃i := ξi − λiJξJ .

The far left hand side of (II.79) is entire in td, so ξ̃i is still a µd-linear basis of IL /I n+1
L |Vm

(
ompatible with our previous 
hoi
es), and aJ ≡ ai(d) if λiJ 6= 0 by the 
oin
iden
e of the

formal holonomy with the linear holonomy (II.45). It therefore only remains to guarantee the

µe linearity, (II.45). To this end, supposing the 
hange of basis in (II.79) & (II.80) already

made so as to momentarily drop the˜ from the notation, we have for ζ ∈ µe a generator:

(II.81) xζ
i − ζaixi = giJ (y)xJ ∈ Γ(Um,I m

L /I m+1
L )

Applying the invarian
e of ∂ in (II.67), the right hand side of (II.81) must belong to the

eigenspa
e of ai for ∂ viewed as a C-linear map. As su
h,

(II.82) giJ(y) =
∑

nd+aJ=ai

giJnyn
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and we 
an suppose that the xi have been rendered µe-linear by a 
oordinate 
hange,

(II.83) x̃i = xi +
∑

nd+aJ =ai

fiJnynxJ

whi
h yields new fun
tions over ∞,

(II.84) ξ̃i := t−ai x̃i = ξi +
∑

nd+aJ=ai

fiJnξJ

and sin
e J now has 
ardinality at least 2, this is also a µd linear 
oordinate 
hange. �

Let us now observe how to boot strap in the presen
e of II.g.2, by �nding some y satisfying

(II.67) modulo I m+1
L , m ≥ 1. Over U we have, in the notation/spirit of the proof of II.g.2,

(II.85) ∂y = dy + cJ xJ(I m+1
L ) , ∂xi = ai xi + ciK xK(I m+2

L )

where the summation 
onvention is ba
k in for
e, with respe
t to multi-indi
es J and K of

degrees m, m + 1 respe
tively, all the c∗'s are regular fun
tions of y, and by tameness of the

monodromy (ζ, y) 7→ ζdy, ζ ∈ µe in all of OU . We know that the holonomy of the system

(II.85) is a quotient of µd, so, we again take t as in (II.71), and at a presumably negligible risk

of notational 
onfusion let,

(II.86) ξi = t−ai xi + biK(t)xK (mod I m+2
L )

be a basis of invariant fun
tions on an analyti
 étale neighbourhood of Gm, with summation

over the multi-index K of degree m + 1 being implied. Combining these, yields for any i,

(II.87) ciK t(aK−ai−1) +
d

dt
(taK biK) =

{

ai
d · cJ taJ−(d+1)

if xK = xJxi for some J ,

0 otherwise

By II.f.1, we known there is some i with ai 6= 0, while biK must be holomorphi
 in Gm, so

(II.88) if aJ = d then cJ(0) = 0,

sin
e in su
h an eventuality the exponent of the leftmost term, aJ−1, is non-negative. Similarly,

if mu
h more straightforwardly, the µe invarian
e of ∂, and our insisten
e that y 7→ ζdy implies,

(II.89) cζ
J = ζd−bJ cJ , bJ =

∑

i

biji, for, J = (j1, . . . , jn)

with bi as per II.g.2.(1), and when
e,

(II.90) if cJ (0) 6= 0, then bJ ≡ d(e).

On the other hand 
onsider the obstru
tion to �nding a 
oordinate ỹ over U restri
ting to the

same on L su
h that,

(II.91) ∂ỹ = d(1 + λ) ỹ (I m+1
L ) , λ = λJ xJ ∈ I m

L , λJ ∈ OU∩L .

If we look for su
h a ỹ in the form, y + ΛJ xJ
, with ΛJ 
onstants, then we require to solve,

(II.92) (aJ − d)ΛJ − dλJ y = −cJ

for all J . However if aJ 6= d, then ΛJ = −cJ(0)(aJ − d)−1
, and λJ whatever, will do, while

if aJ = d, then by (II.88) we 
an take ΛJ = 0, and λJ = cJ y−1
. Whether trivially in the

latter 
ase, or by (II.89)-(II.90) in the former 
ase, ỹζ ≡ ζdỹ (I m+1
L ), so we obtain (II.68), and

when
e (II.67) by II.g.1.

As per II.g.2, the 
oordinate ỹ also restri
ts to the previous 
hoi
e modulo I m
L , so we obtain

in the limit an extension of the 
anoni
al/Harder-Narismhan �ltration to the whole neighbour-

hood, i.e.
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II.g.3. Proposition/Summary. Let X → [X/F ] be a foliated smooth formal 
hamp whose

tra
e is a smooth simply 
onne
ted −1
d F 
urve, L

∼−→ P1(d, e), then,

(1) There is a bundle OX(1) lifting OL (1) and a smooth formal invariant divisor D, with

OX(D) = OX(d) transverse to L whi
h restri
ts to the unique point z of L ∩ sing (F ).

(2) There is a �ltration of formal invariant sub-
hamps,

(II.93) L = X0 $ X1 $ · · · $ Xk = X

su
h that if α1 > · · · > αk are the distin
t eigenvalues of ∂ 
onsidered linearised in End (NL /X⊗
C(z)), and normalised by II.f.4.(1) with n1, . . . , nk the dimensions of the 
orresponding eigen-

spa
es then Xi is de�ned by F -invariant global se
tions γj of OX(αj), j > i, and nj-se
tions

for ea
h j. In parti
ular,

(II.94) NL /Xi

∼−→
∐

j≤i

OL (αj)
nj

(3) All of this is en
oded in a parti
ular µe linear 
oordinate system, y, xi, y 7→ ζdy, xi 7→ ζaixi

of an étale neighbourhood U → X with tra
e A1

ontaining the singular point over whi
h we

have a µe invariant generator,

(II.95) ∂ = dy
∂

∂y
+ ai xi

∂

∂xi

summation 
onvention in for
e, so that the αj , are a 
omplete repetition free list of the ai.

II.h. Jordan De
omposition. We brie�y interrupt our dis
ussion of KF -negative invariant


hamps to re
all some salient fa
ts on Jordan de
omposition whi
h will be relevant both to our

study of 
usps, and the lo
al uniqueness of the Harder-Narismhan �ltration. The situation is

entirely lo
al and, initially, s
heme-like, i.e. O is the ring of formal power series C [[x1, . . . , xn]],
m its maximal ideal, and ∂ a C-derivation of O with a singularity at the origin. Re
all that

sin
e O is an inverse limit of �nite dimensional ve
tor spa
es ∂ admits a Jordan de
omposition,

i.e. ∂ = ∂S + ∂N , where the semi-simple part ∂S a
ts as a semi-simple matrix on ea
h O/mn
,

n ∈ N, ∂N is nilpotent, and of 
ourse [∂S , ∂N ] = 0. In parti
ular if ∂S = λi xi
∂

∂xi
, summation


onvention, then a 
onventional 
hoi
e of basis for the nilpotent �elds 
ommuting with ∂S is,

II.h.1. Revision. (
f. [Mar81℄) Notations as above then ∂N =
n
∑

i=1

∑

Qi

aQix
Qixi

∂
∂xi

, aQi ∈ C,

where either,

(i) Qi = (q1, . . . , qn), qj ∈ N ∪ {0}, xQi = xq1

1 . . . xqn
n , Λ ·Qi = 0, or

(ii) Qi = (q1, . . . , qn), qi = −1, qj ∈ N ∪ {0}, j 6= i, xQi = xq1

1 . . . xqn
n , Λ ·Qi = 0.

Now the Jordan de
omposition of a ve
tor �eld is 
ertainly unique, and when
e the property of

semi-simpli
ity of a ve
tor �eld is wholly unambiguous. For a foliation however the situation is

rather more deli
ate sin
e there is a question of res
aling by units. When
e suppose our �eld

∂ is semi-simple, and 
onsider a �eld ∂̃ = u∂, where u ≡ 1(m) to avoid stupidity. Furthermore

let's say, without loss of generality, that ∂ = ∂S = λi xi
∂

∂xi
then we assert,

II.h.2. Claim. Notations as above, there is a 
hange of 
oordinates of the form, ξi = ui xi,

ui ≡ 1(m), and ε ≡ 0(m) with ∂ε = 0 su
h that the Jordan de
omposition of ∂̃ is,

(II.96) ∂̃ = λi ξi
∂

∂ξi
+ ε λi ξi

∂

∂ξi

i.e. ∂̃ may not be semi-simple, but the extent to whi
h it is not is very parti
ular.
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Proof. Consider the following indu
tive proposition for k ∈ N,

there are 
oordinates xik = uik xi, uik ≡ 1(m), ∂̃ = uk ∂k, ∂k = λi xik
∂

∂xik
, uk ≡ 1(m) su
h

that u−1
k = 1 + εk + δk, where εk, δk are de�ned by way of the Jordan de
omposition of m as

Ker ∂k ⊕ Im ∂k, and δk ∈ mk
.

The 
ase k = 1 is simply our given data. Otherwise 
onsider trying to improve the situation

by putting, xik+1 = vik xik, vik ≡ 1(m) to be 
hosen. If su
h a 
hange were to a
tually render

∂̃ semi-simple then we would have to solve,

(II.97) ∂k log vik = λi

(

1

uk
− 1

)

= λi(εk + δk)

whi
h plainly may not be possible if λi 6= 0, and εk 6= 0. However we 
an solve ∂k log vik = λi δk,

so that in parti
ular, vik ≡ 1(mk), while in the new 
oordinates,

(II.98) ∂̃ =
1 + δk

1 + εk + δk
λi xik+1

∂

∂xik+1

whi
h is indeed what we're looking for, sin
e putting uk+1 = (1 + δk)uk then,

(II.99) u−1
k+1 = 1 + εk(1 + δk)

−1 = 1 + εk +

∞
∑

n=1

(−1)n εk δn
k

so that δk+1 ∈ mk+1
.

Certainly therefore the δk → 0, but the proof also shows that for ea
h i the in�nite produ
t,

∏

k

vik 
onverges to some ui, so putting ξi = ui xi we're 
ertainly done on observing that ∂ε = 0

obliges,

(II.100)

[

λi ξi
∂

∂ξi
, ε λi ξi

∂

∂ξi

]

= 0 .

�

The 
onsequen
e of the fa
t that not only 
an Jordan de
omposition of a res
aling of semi-

simple only fail in a very 
ontrolled way, but also that Jordan de
ompositions of res
alings are

related in su
h a straight forward way suggests that we introdu
e,

II.h.3. De�nition. A germ of a foliation (∆̂n, F ) on a formal dis
, i.e. Spf(C[[t1, · · · , tn]]),
with a not ne
essarily isolated singularity at the origin is said to be semi-simple, if TF = O∆̂n∂
for some semi-simple ve
tor �eld ∂.

As an important example/appli
ation 
onsider the situation of blowing up in the origin, i.e.

ρ : (X, F̃ )→ (∆̂n, F ) is the said modi�
ation with indu
ed foliation and X is the 
ompletion

in the ex
eptional divisor of the blow up of SpecO. Denoting by, ∂ = ∂S + ∂N a Jordan

de
omposition of any generator TF we have,

II.h.4. Fa
t. Suppose ∂S 6= 0 and (X, F̃ ) is not everywhere smooth (whi
h in any 
ase 
ould

only happen if in suitable 
oordinates ∂ = xi
∂

∂xi
) then the following are equivalent,

(1) (∆̂n, F ) is semi-simple.

(2) (X, F̃ ) is semi-simple at all of its singular points.

(3) (X, F̃ ) is semi-simple at one of its singular points, and (∆̂n, F ) is semi-simple modulo

m2
.

(4) (X, F̃ ) is semi-simple at one of its singular points.

Before pro
eeding, we will require a lemma, to wit:
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II.h.5. Lemma. Notations as above, then at every point of its singular lo
us, ρ∗∂N is nilpotent.

Proof. Without loss of generality we 
an suppose the proje
tive 
oordinates of some singular

point, p, in the ex
eptional divisor to be [1, 0, . . . , 0]. Thus if ∂N = aijxj
∂

∂xi
, summation


onvention in for
e, then ai1(0) = 0 for every i ≥ 2. This is equivalent, however, to the 
olumn

ve
tor de�ned by p being an eigenve
tor, so a11(0) = 0 too. Now, observe that a square matrix,

[cij ]i,j≥1 with a zero �rst 
olumn is nilpotent i� the matrix [cij ]i,j≥2 is nilpotent, while the

linearisation of ρ∗∂N in p is,

(II.101)









a11(0) 0 . . . 0
∂a21

∂x1
(0) . . . . . . . . . . . . . . .

. . . . . . aij(0) . . .
∂an1

∂x1
(0) . . . . . . . . . . . . . . .









whi
h has a zero �rst row, so it's also nilpotent. �

proof of II.h.4. Sin
e (X, F̃ ) is not everywhere smooth the indu
ed foliation is given every-

where by ρ∗ ∂ (
f. I.b.10) so trivially (1) implies everything else, while both (2) & (3) trivially

imply (4). Consider therefore (4) ⇒ (1). As in the above proof of II.h.5, a singular point

of the singular lo
us of ρ∗∂ is an eigenve
tor of its linearisation, when
e an eigenve
tor of the

linearisations of ρ∗∂S & ρ∗∂N , and thus a singularity of both ρ∗∂S & ρ∗∂N . We know, however,

that every singularity of the former is semi-simple, so by II.h.5, ρ∗∂ = ρ∗∂S + ρ∗∂N remains

a Jordan de
omposition at every point of the singular lo
us of F̃ . By hypothesis, at su
h a

point p, there is some semi-simple generator ∂̃, so an appli
ation of II.h.2 yields ε ∈ ÔX,p su
h

that ρ∗ ∂(ε) = 0, and,

(II.102) ε ρ∗ ∂S = ρ∗ ∂N .

As su
h, if, x1 is an eigenve
tor of ∂S , with eigenvalue λ1 6= 0, then for f = ∂N (x1), ε =
ρ∗(f/λ1x1), while:

(II.103) 0 = x1∂(f/x1) = ∂f − f

x1
· (λ1 x1 + f)

so x1 | f , and ε is a
tually a fun
tion on ∆̂n
, from whi
h we 
on
lude. �

A further question whi
h we may reasonably address here is the uniqueness, or la
k thereof, of

the Jordan de
omposition. Even without res
aling the parti
ular 
hoi
e of 
oordinates in whi
h

we may write a semi-simple �eld as λi xi ∂/∂xi may be 
atastrophi
ally non-unique. Plainly

the worst possible 
ase is when all the λi are rational, or equivalently up to a harmless res
aling

integers. Even this is of 
ourse not unique but it's not too bad sin
e of 
ourse any rational

point in some PN (Q) is up to multipli
ation by ±1 uniquely represented by a tuple of relatively

prime integers, 
onsequently let's establish some notation,

II.h.6. Notation. Let ∂ be a semi-simple derivation of O with integer eigenvalues a1, . . . , ar,

−b1, . . . , −bt, ai, bj ∈ Z>0, s zeroes, r ≥ 1, although possibly t = 0, i.e. no negatives, and

(a1, . . . , ar, b1, . . . , bt) = 1, then we will suppose these ordered by de
reasing size, i.e.

(II.104) a1 ≥ a2 ≥ · · · ≥ ar > 0 > −bt ≥ · · · ≥ −b1

and by α1, . . . , αk, k ≤ r, β1, . . . , βl, l ≤ t a 
omplete repetition free list of the same, so that,

a1 = α1 > α2 > · · · > αk > 0

0 > −βl > · · · − β2 > · · · > −β1 = −b1 .
(II.105)

Now for a given 
hoi
e of basis of a semi-simple derivation ∂ with the said eigenvalues i.e. a

parti
ular way of writing it as ai yi
∂

∂yi
−bj xj

∂
∂xj

, with say zk the null ve
tors, we 
an introdu
e,
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II.h.7.De�nition. The Harder-Narismhan pair of (∆̂n, F ) with respe
t to the data (∂, yi, xj)
is the invariant formal sub-s
hemes, X+, X− whose ideals are generated by the non-positive,

respe
tively non-negative, eigenve
tors of ∂. If instead we take stri
tly negative, respe
tively

stri
tly positive, eigenve
tors then the resulting subs
hemes, denoted X≥0
+ , X≤0

− , will be 
alled

the non-stri
t Harder-Narismhan pair.

Manifestly, apart from abbreviating Harder-Narismhan to H-N, what's important is that the

H-N pairs are well de�ned up to ±1, i.e.

II.h.8. Fa
t. Fix a 
hoi
e of semi-simple ∂ with integer eigenvalues normalised as per II.h.6,

then the following are equivalent,

(1) {X+, X−}, respe
tively {X≥0
+ , X≤0

− }, is the H-N, resp. non-stri
t H-N, pair with respe
t
to ∂ in the basis {xi, yj}.

(2) {X+, X−}, resp. {X≥0
+ , X≤0

− }, is the H-N, resp. non-stri
t H-N, pair with respe
t to ∂
in any semi-simple basis.

(3) {X+, X−}, resp. {X≥0
+ , X≤0

− }, is the H-N, resp. non-stri
t H-N, pair of any semi-

simple ∂̃ = u∂ in any semi-simple basis for the same, where u ≡ 1(m).

Proof. (3) ⇒ (2) ⇒ (1) are all trivial, so 
onsider (1) ⇒ (3). By II.h.2, we know that we 
an

�nd units ui, vj ≡ 1(m) su
h that if ηi = ui yi, ξj = vj xj then ∂̃ = ai ηi
∂

∂ηi
− bj ξj

∂
∂ξj

. As su
h

{X+, X−}, resp. {X≥0
+ , X≤0

− }, is the H-N, resp. stri
t, pair of ∂̃ in the basis {ξi, ηj}. Now

suppose ∂̃ = ai fi
∂

∂fi
− bj gj

∂
∂gj

in some other basis fi, gj . At the mod m2
level this is just a

question of the uniqueness of diagonalisation/the 
ommutator of a diagonal matrix, so without

loss of generality let's say fi ≡ ξi, and gj ≡ ηj(m
2). For higher order terms, 
onsider the Taylor

expansion,

(II.106) fi = ξi +
∑

#J+#K≥2

ciJKL ξJ ηK ζL ,

where, as ever, ξJ
et
. is the monomial ξj1

1 . . . ξjr
r et
., and ζ1, . . . , ζs are the null ve
tors. Now

∂̃ fi = ai fi so,

(II.107) ciJKL 6= 0⇒
∑

α

aα jα −
∑

b

bβ kβ = ai .

Consequently if fi /∈ (ξ1, . . . , ξr), then we have a manifest absurdity, and so 
on
lude by sym-

metry. �

The dependen
e on ±1 is, however, unavoidable. Indeed let, ∆̂n → [∆̂n/F ] be a germ of a

singular foliation invariant by a �nite group G, or, equivalently for ∂ a generator,

(II.108) ∂σ = σ∂σ−1 = u(σ)∂, u : G→ O×

∆̂n

where u is a group 
o-
y
le, so, better, by the a
yli
ity of BG on torsion free abelian groups, a


hara
ter χ on repla
ing ∂ by v∂ for a suitable unit. At whi
h point, however, if ∂ = ∂S + ∂N

is a Jordan de
omposition of ∂, then ∂σ = ∂σ
S + ∂σ

N is a Jordan de
omposition of ∂σ
, so by

uni
ity of the same,

(II.109) ∂σ
S = χ(σ)∂S , and, ∂σ

N = χ(σ)∂N

As su
h, if in addition ∆̂n → [∆̂n/F ] is semi-simple, then, by II.h.2, ∂ and ∂S generate the

same foliation, so,

II.h.9. Fa
t. If ∆̂n → [∆̂n/F ] is a germ of a singular semi-simple foliation invariant by a

�nite group G, then there is a 
hara
ter χ : G→ Q(1)/Z(1) of G and a semi-simple generator
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∂ of the foliation su
h that, ∂σ = χ(σ)∂, for all σ ∈ G. In parti
ular, if the eigenvalues of a

linearisation in m/m2
are in Pn−1(Q) then χ takes values in {±1}, and,

(a) If χ is trivial, all of X+, X−, X≥0
+ , X≤0

− are G invariant, and there is a H-N pair, respe
-

tively non-stri
t H-N pair, of embedded F -invariant formal sub-
hamps, {[X+/G], [X−/G]},
respe
tively {[X≥0

+ /G], [X≤0
− /G]}, in [∆̂n/G].

(b) Otherwise, in the notation of II.h.6, ai = bi, r = t, et
., and [X+/Kerχ], respe
tively

[X≥0
+ /Kerχ], is isomorphi
 to [X−/Kerχ], respe
tively [X≥0

− /Kerχ], but is only net in [X+ ∪
X−/G], respe
tively [X≥0

+ ∪X≥0
− /G], whi
h in turn are embedded in [∆̂n/G], being de�ned by

the G-invariant ideal (xiyi, zk), respe
tively (xiyi).

Proof. If x is an eigenve
tor of ∂ with eigenvalue λ, then for any σ ∈ G, xσ
is an eigenve
tor of

∂ with eigenvalue λχ(σ)−1
, so when the eigenvalues are rational, χ must take values in rational

roots of unity. �

Consequently, even in a purely s
heme like situation, we have two 
anoni
al pairs rather than

two pairs of 
anoni
al sub-s
hemes, and we make:

II.h.10. Remark/De�nition. Let ∆̂n → [∆̂n/F ] be a germ of a singular semi-simple foliation

su
h that the eigenvalues of a linearisation in m/m2
are in Pn−1(Q) then there are two 
anoni
al

pairs of invariant formal subs
hemes, the H-N pair, {X+, X−}, and the non-stri
t H-N pair

{X≥0
+ , X≤0

− }, where the former interse
t in the origin, the latter in the whole singular lo
us. If

no-
onfusion is likely, the su�
es may be dropped.

In the parti
ular 
ase of II.g.3, the tra
e of the formal neighbourhood X a�ords a distinguished

eigenve
tor, so the 
hara
ter appearing in II.h.9 around the singularity, p, is trivial. As su
h, by
op. 
it., the H-N pair, respe
tively non-stri
t H-N pair, extends from a formal neighbourhood

of p to a pair of embedded invariant formal sub-
hamps {X+, X−}, respe
tively, {X≥0
+ , X

≤0
− }

of X. An important further task will be to extend this to 
usps.

II.i. Cusps. We 
onsider the 
onsequen
es of the previous dis
ussion for 
uspidal −1
d F 
urves,

f : L →X , where, as ever, X → [X /F ] is a foliated smooth 
hamp. In the �rst instan
e the

dis
ussion is purely lo
al, so, say, f : ∆̂1 → X̂, the map between 
ompletions in the singularity

0 ∈ f−1(Z ), for Z = sing(F ). By, for example [BM97℄, the 
usp may, 
f. II.e.4, be resolved

by the étale lo
al operation of blowing up in the sequen
e of 
losed points,

(II.110) X̃ = XN → . . .→X1 →X0 = X

of whi
h the �rst is z := f(0), and subsequently where the proper transform of f meets the

ex
eptional divisor until su
h time that f be
omes an embedding, f̃ , say, meeting the proper

transform in z̃. Ne
essarily ea
h blow up in (II.110) is in a point where the foliation is singular,

so KF̃ ≤ KF |X̃ , and f̃ 
an only fail to be a −1
d F 
urve if F̃ is smooth everywhere around f̃ .

Now although su
h an o

urren
e is highly simplifying, e.g. F is algebrai
 in 
oni
s, II.d.5.(
),

the foliation has a �rst integral in a (�nite) étale neighbourhood of L et
., it's preferable to

avoid a separation of 
ases by viewing su
h a �nal situation as a −1
d F 
urve for KF̃ + E,

equivalently working logarithmi
ally, I.b.2, around the �nal ex
eptional divisor, E, in (II.110).

In this way, II.g.3.(3) and II.h.4 are always valid, from whi
h:

II.i.1. Lemma. Let f : L →X be a −1
d F 
urve meeting the singular lo
us in z, then around

z the foliation is semi-simple.

Consequently, let's say, ∂ = λixi
∂

∂xi
a semi-simple generator of the foliation in the 
omplete

lo
al ring OX̂,z, with f : t 7→ xi(t) = tviui(t) an expression for the 
usp in terms of some lo
al
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parameter t, with vi ∈ Z>0, and ui units whenever f∗xi is not identi
ally zero. As su
h, for

any pair of indi
es i, j for whi
h f∗(xixj) is not identi
ally zero,

(II.111)

ẋi(t)

λixi
=

ẋj(t)

λjxj

When
e, if we re-label the 
oordinate system as yi for those non-zero on the 
urve, xj for those

identi
ally zero, and y1(t) = tv1
, then:

(II.112)

ẏi(t)

yi
=

vi

t
+ holomorphi
 =

λiv1

λ1t

so, yi(t) = ηit
vi
, for some 
onstant ηi, thus, without loss of generality ηi = 1 and λi = vi.

Pro
eeding thus, there may be some mild redundan
y. Indeed, the 
usp has an embedding

dimension k, and re-labelling so that v1 is minimal, then if v1|vi one 
an repla
e any xi by

something in the same eigenspa
e (of ∂ qua operator on O) whi
h vanishes identi
ally, viz:

yi − y
vi/v1

1 , and in general, one 
an a
hieve,

(II.113) v1 < v2 < · · · < vk , and vi+1 /∈ Z≥0 v1 + · · ·+ Z≥0 vi .

for ea
h 1 ≤ i ≤ k, so we get exa
tly k yi's, the vi have g
d 1 sin
e f is bi-rational, and every

other 
oordinate is a xj vanishing identi
ally.

Now, by hypothesis the lo
al monodromy group, G, preserves the foliation on the formal 
om-

pletion, X̂, of X at the singular point. Appealing to (II.109), we may suppose that it a
ts

on the above ∂ by a 
hara
ter χ, and we denote by H the stabiliser of the image C of (the

irredu
ible bran
h) f : L→ X̂ obtained by 
ompleting the lo
al ring of L at p. Consequently
there is a fa
torisation,

(II.114) f : [L/H]
ν−→ [C/H]

φ−→ [X̂/G]

and sin
e everything is 
onvergent in the étale topology, this 
an be glued to a global fa
tori-

sation,

(II.115) f : L
ν−−−−→ C

φ−−−−→ X

where the �rst map is the normalisation of C , φ is net, and C is uni-bran
h. As su
h, outwith

the unique singular point p, ν is an isomorphism, and φ a 
losed embedding. Equally, the

wholly general I.e.5 applies, so there is a formal 
hamp X with tra
e C su
h that X→ X̂ onto

the 
ompletion of X in the image of f is étale representable, and,

II.i.2. Fa
t. Let f : L → C →֒ X → X be the above fa
torisation of the normalisation,

f : L → X of a −1/d F 
usp, with vi as (II.113), and yi, xj, as above, suitable formal


oordinates (on X̂) about the singular point, then there are aj ∈ Z su
h that the foliation is

generated by,

(II.116) ∂ = dvi yi
∂

∂yi
+ aj xj

∂

∂xj

Proof. If there is a divisorial valuation of negative dis
repan
y passing through the 
losed

singular point, then the proposition follows from I.b.10, (II.113), and the fa
t that the vi have

g.
.d. 1, so we may suppose that the singularity is 
anoni
al rather than just log-
anoni
al.

Now we require a 
ertain re-appraisal of (II.111)-(II.113) in the presen
e of the a
tion of H in

(II.114). To this end let I be the ideal of the image, C, of the 
usp in the 
ompletion X̂ in

the singular point p whose maximal ideal we denote by m, then we have a H-equivariant exa
t

sequen
e

(II.117) 0→ I/I ∩m2 → ΩX̂ ⊗ C(p)→ ΩC ⊗ C(p)→ 0
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whi
h is equally equivariant under a semi-simple generator ∂ of the foliation. In parti
ular,

therefore, the indu
ed endomorphism

(II.118) ∂ : ΩC ⊗ C(p)→ ΩC ⊗ C(p)

may be supposed to have eigenvalues the (distin
t) vi of (II.113) with multipli
ity (both geo-

metri
 and algebrai
) equal to 1. As su
h, although H a
ts on ∂ a priori by a 
hara
ter, (II.109),

su
h an a
tion must, 
f. II.h.9, be trivial. Consequently the C-linear de
omposition of m into

eigenspa
es of ∂ is also H-equivariant. On the other hand all exa
t sequen
es of C[H]-modules

are split exa
t, so from

(II.119) 0→ (I(λ) ∩m2)/(I(λ) ∩mk)→ I(λ)/(I(λ) ∩mk)→ (I(λ) ∩m2)→ 0, k ≥ 2, et
.

for any eigenvalue λ of ∂, we 
an write the H-a
tion as blo
ks of C-linear a
tions

(II.120) H ∋ σ : xi,λ 7→ Aij(σ)xj,λ, yi 7→ χi(σ)yi

for a 
oordinates system {xi,λ, yi} in whi
h xi,λ ∈ I(λ), the yi's a�ord eigenve
tors of (II.118)

with eigenvalues vi, and the χi are 
hara
ters. In parti
ular there is a �ltration whi
h is both

H and F equivariant

(II.121) F p =
(

∏

i

ybi
i

∏

j,λ

x
cj,λ

j,λ :
∑

i

(bivi) +
∑

j,λ

cj,λ ≥ p
)

of the 
omplete lo
al ring. Plainly, however, the �ltration (II.121) is a
tually the 
ompletion

of a bi-equivariant �ltration of the Henselian lo
al ring of X (in fa
t even that of X , albeit

here, (II.114), the invarian
e under the possibly larger lo
al monodromy may fail) so it a�ords,

[MP13, I.iv.3℄, a smoothed F -invariant weighted blow up

(II.122) ρ : X̃→ X

whi
h is an isomorphism o� p. In parti
ular, therefore, the unique lift f̃ : L → X̃ of f of (II.115)

is a−1
d F 
urve with smoothly embedded image, and II.g.3 holds. By dire
t 
al
ulation, (II.124),


f. [MP13, pg. 180℄, however, the eigenvalues (in an étale pat
h) of ∂ and ρ∗∂ along the proper

transforms of the xi,λ's di�er by 1, so (II.116) follows from (II.95) applied to ρ∗∂. �

Of 
ourse, we also proved that not just the linear holonomy, but a
tually all of the holonomy

is 
y
li
 of order dividing d, so although II.i.2 is su�
ient for appli
ations, we 
an a
tually do

better thanks to,

II.i.3. Fa
t. Let X → [X/F ] be a foliated smooth formal 
hamp whose tra
e has an étale

neighbourhood the invariant a�ne 
usp, C, i.e. image of t 7→ (tv1 , . . . , tvk), for vi as per

(II.113), t ∈ A1
, with the origin the unique point where C meets the foliation singularities, then

the formal holonomy is 
y
li
 of order at most d i� we 
an �nd formal holomorphi
 fun
tions,

y1, . . . , yk, x1 , . . . , xℓ, restri
ting to a 
oordinate system on an analyti
 neighbourhood in X of

the singular point with the yi's embedding 
oordinates respe
ting (II.113), xj vanishing on the


usp and a generator ∂ for the foliation all of whi
h are holomorphi
 on an étale neighbourhood

(in the analyti
 topology) of X with tra
e C su
h that for some aj ∈ Z,

(II.123) ∂ = dvi yi
∂

∂yi
+ aj xj

∂

∂xj

holds on an any analyti
 étale neighbourhood of the singularity where the yi, xj form a system

of 
oordinates.

Proof. The if dire
tion is trivial, and for smooth 
urves this is II.g.3, or, more a

urately a

slight re-phrasing thereof. In any 
ase, the a�ne 
usp has no (holomorphi
) Pi
ard group, so a

global holomorphi
 generator, ∂, of the foliation on X exists, and we pro
eed to 
ombine II.g.3

with II.i.2 to a
hieve the required form. In parti
ular, by the latter, and II.h.2, we 
an �nd


oordinates yi, xj and an invariant fun
tion ε, all in the 
ompletion in the singularity, 0, whi
h
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render ∂̃ := (1 + ε)−1∂ in the given form. A lo
al 
oordinate system for the weighted blow up

(II.122) is given by:

(II.124) y1 = ỹv1

1 , yi = ỹiỹ
vi
1 , xj = x̃j ỹ1

in whi
h ỹi = 1, i > 1 where our 
usp 
rosses the ex
eptional divisor, p, say, so the v1th roots

of unity a
t without �xed points in a neighbourhood of p, and ỹ1, z̃i := ỹi − 1, x̃j furnish


oordinates in whi
h ρ∗∂̃ is semi-simple at p.

Now we appeal to II.g.3, to �nd a possibly di�erent generator, D = vρ∗∂ for v a (holomorphi
)

unit on an étale neighbourhood of X̃ with tra
e the resolution C̃ of C, su
h that,

(II.125) D = dη
∂

∂η
+ (aj − d)ξj

∂

∂ξj

along with some other 
oordinate ζi, su
h that, η, ζi, ξj agree with ỹ1, z̃i, x̃j modulo m(p)2, but

the former are de�ned on all of X̃. Both 
oordinate systems are semi-simple, so II.h.2 applies

to yield units u, ui, i > 1, wj in the 
ompletion at p su
h that η̃ = uỹ, ζ̃i = uiz̃i, ξ̃j = wj x̃j are

a semi-simple 
oordinate system for D in the 
omplete lo
al ring at p. E�e
ting an appropriate

linear 
hange, this latter 
oordinate system is related to that in the η, ζi, ξj by,

(II.126) η̃ = η +
∑

m≥2

∑

|I|+|J |=m

cIJ(η)ζIξJ

and similarly, employing the notation of (II.74) et seq., for the ζ̃i, and the ξ̃j. Both the left and

right hand sides in (II.126) have the same eigenvalue, viz: d, so for all I, J we must have,

(II.127) dηc′IJ (η) + (aJ − d|J |)cIJ (η) = 0

and aJ takes only �nitely many values for |I| + |J | bounded. Consequently, for every m su
h

that, |I|+ |J | = m, cIJ is a polynomial in η, from whi
h η̃ 
onverges not just in the 
ompletion

at p, but in the full étale neighbourhood with tra
e C̃.

Arguing similarly for the ζ̃i, ξ̃j's, and ε, we may, without loss of generality, suppose, η̃ = η,

ζi = ζ̃i, ξi = ξ̃j , and that ε is de�ned in a neighbourhood with tra
e C. Thus we may suppose

that ε = 0, and when
e

(II.128)

Du

u
= d(1− v),

Dui

ui
= 0,

Dwj

wj
= (aj − d)(1− v)

where, without loss of generality, all of u, ui, wj are 
ongruent to 1 modulo IC̃ . Thus, for

example, we 
an write,

(II.129) u = exp(
∑

m≥2

∑

|I|+|J |=m

uIJ(η)ζIξJ)

so if ṽIJ(η) are the 
oe�
ients of a similar Taylor expansion for v(1 + ǫ), then from (II.128)-

(II.129),

(II.130) dηu′
IJ(η) + aJuIJ(η) = −dṽIJ(η)

where the right hand side is holomorphi
 in η, while, a priori, the left hand side is formal,

when
e, a postiori, holomorphi
. Consequently u is well de�ned on our étale neighbourhood

with tra
e C̃, so, idem for ỹ1, and by an identi
al argument, all of the z̃i, x̃j are equally so

de�ned on the said neighbourhood. The relation of these to the original 
oordinates yi, xj

de�ned on 
ompleting X in the singular point is given by (II.124), so, not just the normalising

fa
tor (1 + ε), but also the yi, xj, are de�ned on an étale neighbourhood of X with tra
e C.

By 
onstru
tion, however, yi, xj are already a formal 
oordinate system at the singularity, so

they are in fa
t 
oordinates on at worst an analyti
 neighbourhood of the same, while on any

su
h (II.123) holds by 
onstru
tion. �
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The role of the analyti
 topology in II.i.3 and its proof merits 
lari�
ation by way of

II.i.4. Remark. Pro�ting from the Eu
lidean algorithm to solve c1 v1 + · · · + ck vk = 1, for
some integers ci, one would might like to make a more stri
t analogue of II.g.3. Indeed in the

above notation, φ = yc1
1 . . . yck

k is a meromorphi
 fun
tion on the a�ne 
usp whi
h, 
lose to

the singularity, restri
ts to a 
oordinate fun
tion on the normalisation, and one might hope

to form an expli
it pat
h with an étale a�ne neighbourhood of the non-s
heme like point at

in�nity a

ording to the relation φe = s−d
, for s a 
oordinate on the A1 ∋ ∞, 
f. (II.42) &

(II.124). In prin
iple, however, φ so 
onstru
ted has an essential singularity at in�nity. Plainly

the problem is the intervention of v in (II.128), whi
h unlike the smooth 
ase 
annot be avoid.

Spe
i�
ally, as in the smooth 
ase, for t the unique (up to s
aling by a 
onstant) 
oordinate on

the normalisation of the a�ne 
usp, one would like to normalise, 
f. (II.46), a generator ∂ of

the foliation restri
ted to the 
usp a

ording to

(II.131) ∂(t) = t

so that a postiori φ = t and everything is meromorphi
 over ∞. It 
an, however, happen under

the hypothesis of II.i.3 that (II.131) doesn't admit a solution. If one follows the proof of II.i.3

and takes ∂ to be holomorphi
 then this is equivalent to asking that the unit v whi
h appears

restri
ts to a unit de�ned on the a�ne 
usp rather than just its normalisation. Similarly, if

one works algebrai
ally this is equivalent to KF restri
ting to an algebrai
ally (rather than

just holomorphi
ally) trivial bundle on the a�ne 
usp. Consequently a 
ounter example where

(II.131) 
annot be solved is

(II.132) ∂ = 2(x + y)
∂

∂x
+ 3(y + x2)

∂

∂y
, y2 = x3 ⊂ A2.

Sin
e for t =
√

x, ∂(t) = t(1 + t), and TF de�ned by gluing this to the unique (up to s
aling

by a 
onstant) nowhere vanishing �eld, ∂∞, on V
∼→ A1 ∋ ∞ along the open set V \{−1,∞}

by way of

(II.133) ∂ =
(1 + t)

t
· ∂∞

de�nes a bundle whose restri
tion to the a�ne 
usp is algebrai
ally non-trivial. As su
h:

II.i.5. Warning. Formal neighbourhoods of 
usps, even though the problem is wholly at the

level of the bundle of derivations de�ned by restri
ting the foliation to the redu
ed 
uspidal


urve, do not admit a des
ription 
omparable to II.g.3. Ultimately, therefore, our treatment of


usps, �III.
, requires global hypothesis, III.
.1, rather than the lo
al hypothesis of II.i.3

On the bright side, however:

II.i.6. Remark. In the 
ourse of the proof, we've 
omplemented II.g.3 even in the smooth 
ase,

sin
e, in prin
iple, even if a generator ∂ on the étale neighbourhood U of II.g.3.(3) were semi-

simple at the singular point, there might have been an obstru
tion to expressing ∂ in terms of

semi-simple 
oordinates on an analyti
 neighbourhood of 0 ∈ U , as found in op. 
it., due to a

possible re-s
aling by a unit impli
it in (II.91). We see, however, from the proof of II.i.3, that

there is no su
h obstru
tion.

III. Extremal Subvarieties

III.a. Generalities. Unless spe
i�ed otherwise, throughout this 
hapter X → [X /F ] will
be a foliated non-singular 
hamp, with log-
anoni
al foliation singularities. We swit
h our

attention from KF negative 
urves, to KF negative extremal rays R. The moduli X is of


ourse supposed proje
tive so if HR is a nef. Cartier divisor supporting the ray, i.e. HR· α = 0,
and α in the 
losed 
one of 
urves i� α ∈ R, then for su�
iently large m ∈ N, AR := m HR−KF
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is ample. In any 
ase following Kollàr, Mori, et al., 
f. [Kol96℄ III.1, we introdu
e our main

obje
t of study, by way of,

III.a.1. De�nition. The lo
us of R, Loc (R) is the set of 
losed points x ∈ X(C) su
h that

there is a 
urve x ∈ C ⊂ X with [C] ∈ R ⊂ NS1(X).

Observe that a priori Loc (R) is not a subvariety of X. Indeed for m ∈ N, we 
an �lter Loc (R)
by sub-s
hemes Locm (R) on demanding that x ∈ Locm (R) if we 
an take the 
urve C of the

de�nition to have AR· C ≤ m. That Locm (R) is a sub-s
heme is immediate from the existen
e

of the Hilbert s
heme. To remedy this let us 
onsider,

III.a.2. De�nition. A R-pre-extremal subvariety is an irredu
ible subvariety Y ⊂ Loc (R)
maximal amongst the set of irredu
ible varieties 
ontained in the lo
us.

Trivially, the dimension in 
hains of proper in
lusions of irredu
ible varieties must in
rease so

R-pre-extremal subvarieties exist; any x ∈ Loc (R) is 
ontained in one; and Loc (R) is the a

priori 
ountable union of all of them. Now if Y is R-pre-extremal, and y ∈ Y then there is a

Cy with [Cy] ⊂ R 
ontaining y. However applying II.d.2, we know, for y generi
, there is an

invariant paraboli
 
hamp fy : Ly →X through y with moduli Ly su
h that,

(III.1) HR· Ly ≤ 2
HR· Cy

−KF · Cy
= 0 .

So in fa
t Ly ∈ R, and AR· Ly ≤ 2. Additionally Ly 
annot be 
ontained in sing (F ) sin
e it has
KF -negative degree, so we 
an make a F -invariant subvariety W by adding to generi
 points

of Y an appropriate Ly. On the other hand Y is by hypothesis R-pre-extremal, so W = Y ,

i.e. Y is F invariant, with the indu
ed foliated variety Y → [Y/F ] being a pen
il of rational


urves of AR degree at most 2. Hilbert s
hemes, however, exist, and being invariant is a 
losed


ondition so in fa
t there are at most �nitely many R-pre-extremal subvarieties for a given

R. Better still the Hilbert s
heme yields for any R-pre-extremal subvariety Y a �at family,

L → T , for some irredu
ible sub-s
heme T of the Hilbert s
heme su
h that the proje
tion of

L to X fa
tors as a generi
ally �nite map over Y . An awkward 
ase o

urs when X is itself a

R-pre-extremal subvariety, i.e. X → [X /F ] is a pen
il in paraboli
 
hamps. As a result we

introdu
e,

III.a.3. De�nition/More Terminology. A R-extremal subvariety Y is a subvariety of a R-

pre-extremal subvariety Y ′
whi
h is maximal amongst the subvarieties of Y ′

whi
h are 
overed

by invariant 
urves passing through at least one point of the image in X of the singular lo
us

of X → [X /F ].

So indeed unless X → [X /F ] is a pen
il in paraboli
 
hamps then extremal and pre-extremal


oin
ide, while in the awkward 
ase an extremal variety will be spe
i�ed by taking the invariant


urves passing through an appropriate 
omponent of the singular lo
us. Now pulling everything

ba
k by the moduli map, π : X → X, de�ne a R-extremal 
hamp as the �bre over an extremal

sub-variety, idem whether for pre-extremal or the lo
us, denoted L oc (R), and observe,

III.a.4. Fa
t. The lo
us L oc (R) of an extremal ray, is a �nite union of R-pre-extremal 
hamps.

Denote by L oc′ (R) the subvariety whi
h is the union of R-extremal 
hamps, then any Y ⊂
L oc′ (R) making up this union is 
overed by −1/d F 
urves, where d may vary from 
urve to


urve. There is however a family L → T of 
hamps, possibly non-�at at the non-s
heme like

points, su
h that, (L → T )→ (Y → [Y/F ]) is a generi
ally �nite map of foliated 
hamps.

In the same, albeit more re�ned, vein we will also employ:

III.a.5. Fa
t. Suppose X is a smooth separated 
hamp (over a �eld for ease of exposition) and

f : Y → X a map from a proper algebrai
 spa
e then there is a separated (Deligne-Mumford)
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hamp T and a deformation F : Y × T → X of f su
h that if G : Y ×M → X is any

deformation of f parametrised by an algebrai
 spa
e M , then there is a map g : M → T and

a natural transformation γ : G ⇒ F (idY × g) su
h that if h : M → T is any other map for

whi
h there is a natural transformation θ : G ⇒ F (idY × h) then there is a unique natural

transformation α : g ⇒ h for whi
h θ = F∗(id × α)γ. In addition the dimension of T at the

point a�orded by the trivial deformation and the above universal property is at least,

(III.2) h0(f∗ TX )− h1(f∗ TX )

Proof. The existen
e of T is a spe
ial (if key) 
ase of the main theorem of [Ols06℄. As su
h

the dimension 
omputation is in�nitesimal and wholly spa
e like in nature, 
f. II.a.1, i.e.

deformations of the tra
e of the formal spa
e

(III.3) P := Spf(f∗PX )

so we 
an repla
e X in III.2 by P and appeal to [Kol96, I.2.16℄- we only need the 
ase Y
proje
tive. �

III.b. FindingWeighted Proje
tive Spa
es. As ever let X → [X /F ] be a foliated smooth


hamp with log 
anoni
al foliation singularities, albeit with proje
tive moduli, and f : L →X
the normalisation of a −1

d F 
urve with at worst nodes, and, in the notation of II.g.3, eigenvalues

a1 ≥ a2 ≥ · · · ≥ an of a generator ∂, in the normal dire
tions, at the unique point p where

f meets the singular lo
us. If a1 ≤ 0, then we simply have nothing to say for the moment.

Otherwise, 
onsider the net 
ompletion, q : X→ X̂ , I.e.5, of X along the 
omposite of f with

the the universal 
over, q : L̃ → L . By II.g.3, 
f. II.h.10, there is a unique invariant 
losed

formal sub-
hamp, X+ →֒ X su
h that,

(III.4) NL̃ /X+

∼−→
∐

ai>0

OL̃ (ai)

By the Chow lemma, II.b.2, there is an irredu
ible sub-variety X+ of the moduli X of X of

the same dimension as X+ obtained by taking the Zariski 
losure of the image of this in X. We

therefore have maps,

(III.5)

X+ −−−−→ X+




y





y

X −−−−→ X

so the leftmost verti
al fa
tors through the gerbe X+ := X ×X X+ → X+, and even through

the normalisation, X̃+ → X+, sin
e X+ is smooth. The said verti
al arrow is, however, net

so X+ → X̃+ is étale. Indeed the assertion is lo
al, and everything is ex
ellent, so it su�
es

to work with the 
orresponding 
omplete lo
al rings in geometri
 points, but then X+ 
an be

identi�ed with an irredu
ible 
omponent of X+, from whi
h its isomorphi
 to its image in the

normalisation, and we assert:

III.b.1. Claim. There is a smoothed weighted, [MP13, I.iv.3℄, blow up β : Xb → X̃+ supported

in the point p su
h that the indu
ed (after saturation) foliation Xb → [Xb/Fb] is smooth and

everywhere transverse to the ex
eptional divisor.

Proof. Sin
e p is isolated and, as above, X+ and X̃+ have isomorphi
 
omplete lo
al rings it

will su�
e to prove that there is a smoothed weighted blow up of the 
omplete lo
al ring, Ô, of

X+ 
ompleted in p whi
h is independent of any automorphism, σ, of Ô preserving the foliation.
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Now by II.g.3.(3) there are 
oordinates y0, y1, · · · , yr in Ô; positive integers ai > 0, 0 ≤ i ≤ r;
and a generator ∂ of the foliation su
h that

(III.6) ∂ = a0y0
∂

∂y0
+ ai yi

∂

∂yi

wherein yi = 0, i > 0 de�ne L , so that for i > 0, ai are as in (III.4), while a0 = d in the

notation of (II.95). As su
h if σ is an automorphism of Ô preserving the foliation, then there

is a unit uσ su
h that

(III.7) ∂σ = σ∂σ−1 = uσ∂

and yσ
i is an eigenve
tor of the linearisation of ∂ with eigenvalue uσ(0)−1ai, for all 0 ≤ i ≤ r,

so uσ(0) = 1. Consequently, by II.h.2 and ai > 0, ∂σ
is not only semi-simple but

(III.8) ∂ = a0η0
∂

∂η0
+ ai ηi

∂

∂ηi

for a 
oordinate system of the form ηi = uiyi, ui a unit, 0 ≤ i ≤ r. If, therefore, we de�ne a

�ltration of Ô by the ideals

(III.9) In = (yt0
0 · · · ytr

r | a0t0 + · · ·+ artr ≥ n)

then this is independent of the 
hoi
e of yi in (III.6) sin
e a basis of the eigenve
tors of ∂ with

eigenvalue ai are monomials yt0
0 · · · ytr

r with a0t0 + · · ·+artr = ai, and it is independent whether

of σ, resp. the 
hoi
e of ∂, by (III.8), resp. mutatis mutandis. The �ltration, (III.9), de�nes a

weighted blow up exa
tly as in (III.18) with smoothing as per (III.19). �

Now let us apply this to a qualitative des
ription of X+, i.e.

III.b.2. Corollary. If L 
orresponds to an extremal ray R in Néron-Severi, with supporting

fun
tion HR, and ample bundle AR = mHR −KF , then for all x ∈X+, there is a −1/d(x) F-
so, by de�nition, II.d.5-an invariant paraboli
 
hamp Lx ∋ x in X whi
h, in addition, meets

the singular lo
us in the same singular point p as L ; and every invariant 
urve is not only of

this form, but is parallel to R in Néron-Severi. In parti
ular the singular lo
us of the indu
ed

foliation in X+ is the isolated point p.

Proof. The in parti
ular follows from the ante
edents. Otherwise, without loss of generality,

we 
an repla
e X+ by X̃+; form the weighted blow up β : Xb → X̃+ of III.b.1; lift f to

f̃ : L̃ → Xb, for a possibly di�erent but still paraboli
 L̃ by II.d.5.(b), and argue as in op.


it. (
) to �nd a deformation M /T , T proper, of f̃ 
omposed with the universal 
over of L̃
whi
h 
overs X̃b, so, equivalently the push-forward of whi
h 
overs X̃+.

If, however,

∑

ai Ci is some e�e
tive invariant 1-
y
le numeri
ally equivalent to a rational

multiple of π∗[L ] then every Ci generates R, so the gerbe Ci over any su
h Ci is a KF

negative invariant 
urve. Consequently, we require, in the �rst instan
e, to show that every

KF negative invariant 
urve, with f : C → X̃+ it's normalisation, is a −1/d F 
urve for some

d, so, equivalently, avoiding the possibilities,

(a) f(C ) ⊆ sing(F ) ∩X+ ⊆ sing(F ), whi
h is impossible by the de�nition of log 
anoni
al

singularities as en
ountered in the proof of II.d.2.

(b) f(C ) ∩ sing(F ) 6= ∅. Should this o

ur then f is an embedding, and for C̃ → C the

universal 
over, another appli
ation of II.d.5.(
) a�ords a �nite étale neighbourhood Ṽ → V of

the 
ompletion in C with tra
e C̃ , su
h that the indu
ed foliation in Ṽ is a smooth �bration.

From whi
h, the generi
 invariant 
urve misses p, whi
h is absurd.

Now, a fortiori, the singularities of the indu
ed foliation in X+ are 
ontained in sing(F )∩X+,

and by 
onstru
tion this has at least the isolated point p. The leaves of F in X+ a�ord,

however, a family of 
onne
ted 
urves C → T in X over an irredu
ible base T , the gerbes over
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ea
h 
omponent of ea
h �bre of whi
h have been seen to be −1/d F 
urve for some d. As su
h,
suppose there is another singular point q, then there is a −1/d F 
urve through it, and this

must be the gerbe over some 
omponent Ci of some �bre Ct. By de�nition, however, a −1/d F

urve 
annot meet sing(F ) in any other point, while meeting p is a 
losed 
ondition, so there is

a di�erent 
urve Cj in the �bre Ct through p. The �bre is, however, 
onne
ted, so there must

be a third 
urve Ck meeting the singular lo
us twi
e, whi
h is nonsense. �

From whi
h we dedu
e a series of 
orollaries,

III.b.3. Corollary. The 
hamp X̃+, but, 
f. the pre-amble to �II.e, maybe not X+, is smooth.

Proof. The singular lo
us, B, of X+ is invariant by every ve
tor �eld, so, a fortiori by F , while

every leaf meets p, so B must meet it, yet, by 
onstru
tion the 
omplete lo
al rings at p of X̃+

and X+ 
oin
ide, while the latter is smooth. �

III.b.4. Corollary. The moduli Y+ of any representable étale 
over Y+ → X̃+ has exa
tly one

point over p, so, in parti
ular if C →֒ X̃+ is any embedded −1/d F, then the natural map,

π1(C ) ։ π1(X+), be it of analyti
 or algebrai
 fundamental groups, is surje
tive.

Proof. Any étale 
over Y+ → X̃+ still has étale neighbourhoods around a 
over of L satisfying

II.g.3 with X̃+ instead of X in op. 
it. As su
h the proof of III.b.2 
ertainly applies to

dedu
e that Y+, or, more 
orre
tly Y+ has foliation singularities supported in an isolated point

whenever Y+ is algebrai
. It applies, however, even if Y+ were a priori analyti
 sin
e the

deformations of smooth paraboli
 invariant 
hamps in the weighted blow up guaranteed by

III.b.1 are 
ertainly open, but they're also 
losed by the simple expedient of taking the limit

algebrai
ally and lifting to the universal 
over. As to the in parti
ular, otherwise, C ×X̃+
Y+ is

dis
onne
ted, and C → X̃+ is supposed an embedding, so there would be at least two singular

points in Y+. �

III.b.5. Corollary. For ea
h eigendire
tion

∂
∂xi

of the linearisation of a foliation generator in

End (NL /X̃+
⊗C(p)) there is an at worst nodal −1/di F invariant 
hamp fi : L →X through

p with a bran
h parallel to

∂
∂xi

and a rational multiple of R in Néron-Severi.

Proof. There is a formal invariant 
urve in the said dire
tion in the formal étale neighbourhood

X+, but every leaf is a −1/d F 
urve for some d, and all bran
hes of the embedded image are

isomorphi
. �

Additionally points in Pt(Q), t ∈ N, are, up to ±1, uniquely represented by t + 1 tuples of

integers with gcd = 1, so if we 
hange to a more homogeneous notation, viz:

III.b.6. New Notation. Linearise a lo
al generator ∂ of TF in the 
ompletion of ÔX ,p of

OX ,p in mX (p) by way of, ∂ = a1 y1
∂

∂y1
+ · · · + ar yr

∂
∂yr
− bi xi

∂
∂xi

, ai ∈ N, bi ∈ N ∪ {0},
(a1, . . . , ar, b1, . . . , bt) = 1, with xi = 0 lo
al equations for X̃+, the summation 
onvention in

the obvious way, and t the 
odimension of X+. As su
h in the above situation, III.b.5, ai | di.

By III.b.4 we 
an (sin
e otherwise I.
.5 will do) 
on
lude that X̃+ has �nite analyti
, and

when
e �nite algebrai
, fundamental group on establishing,

III.b.7. Claim. Let C → P1
be a gerbe with at most 2 points whose monodromy ex
eeds that

of the generi
 point, and whi
h has a unique singular point, p, every bran
h of whi
h is smooth,

then the topologi
al fundamental group π1(C ) is �nite.
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Proof. The lo
al model, C, of C is b-smooth bran
hes through p on whi
h a �nite group a
ts

G transitively on the bran
hes bran
hes while �xing p. In parti
ular, the monodromy of the

generi
 point is isomorphi
 to the stabiliser of any point other than p, whi
h, in turn, is a

proper sub-group of G sin
e its image in the permutation representation on bran
hes �xes at

least one su
h. Consequently, p is a point of C with non-generi
 monodromy, and we denote

by q the other su
h, should it exist, or some point distin
t from p otherwise. In either 
ase, let

U ∋ p be the 
omplement of q in P1
.

Now, observe, that if L → C is the normalisation, and B →֒ C a bran
h whose stabiliser in

the permutation representation is H, then [B/H] is a lo
al model for L , and LU := L ×P1 U
has fundamental group H, and universal 
over isomorphi
 to U , with H a
ting linearly. In

parti
ular, if we identify a bran
h with a dis
, ∆, in U , embed C in V where the latter is b

opies of U through the point p, and for good measure observe that all of this is ne
essarily


ompatible with a linearisation of G in appropriate 
oordinates, we �nd a 
ommutative diagram

of �bre squares with verti
al embeddings,

(III.10)

C −−−−→ [C/G] −−−−→ ∆




y





y





y

V −−−−→ C ×P1 U −−−−→ U

The upper left horizontal arrow is, however, the universal 
over, and all the verti
als are

homotopy equivalen
es sin
e the rightmost is, so the lower left is a universal 
overing. As in

(II.42), the mapping U → LU may not extend over q as a map from P1
to L , but this holds

over some 
y
li
 Galois 
over Ũ → U rami�ed exa
tly in p whi
h respe
ts the 
ommutativity

of,

(III.11)

Ũ −−−−→ P1





y





y

U −−−−→ L

Better still, taking b 
opies Ṽ of Ũ , the resulting 
omposition Ṽ → C ×P1 U with the lower left

map in III.10, now admits an extension, V̄ → C , over b 
opies of P1
meeting in a single point

sin
e the upper horizontal in (III.11) is an embedding. By 
onstru
tion, V̄ → C is open in the

origin, and everywhere else it's �at, so it's open everywhere. As su
h if M → L is any (not

ne
essarily �nite) representable 
onne
ted étale 
overing with group Γ, then M×L V̄
∼−→ V̄ ×Γ,

and the image of any V̄ × γ →M , γ ∈ Γ is open and 
losed, so it's all of M . �

Now let Y → X̃+ be the �nite universal 
over assured by III.b.4 and III.b.7, then we further

assert,

III.b.8. Claim. Pic(Y )
∼−→ Z.

Proof. By 
onstru
tion π : Y → Y is a gerbe over a proje
tive variety, and the proof of [DI87℄

that the Hodge-De Rham spe
tral sequen
e degenerates at E1 is valid mutatis mutandis sin
e

it only requires lo
al smoothness and the 
o-homologi
al 
riteria for ampleness both of whi
h

hold on Y . As su
h, sin
e Y is simply 
onne
ted and π is a
y
li
,

(III.12) H1(Y ,OY ) = H1(Y, π∗OY ) = H1(Y,OY ) = 0

Now quite generally we have that Pic (Y )Q = Pic (Y )Q, and by (III.12), these are equally their

respe
tive Néron-Severi groups with Q-
oe�
ients. The Néron-Severi group, NS1(Y )Q, of Y is,

however, known, e.g. [Kol96℄ II.4.21, to be of rank 1, so: Pic (Y )Q
∼−→ Q, whi
h is equally
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the image of the Pi
ard group under (c1)Q in H2(Y , Q(1)) as dedu
ed from the exponential

sequen
e,

(III.13) H1(Y ,OY ) = H1(Y,OY )→ Pic(Y )
c1−→ H2(Y , Z(1))

while the remaining possibility of torsion is ex
luded by Y simply 
onne
ted, and the exa
t

sequen
e,

H1(Y , Q(1)/Z(1)) → H2(Y , Z(1))→ H2(Y , Q(1)) �

We will need some auxiliary 
onstru
tions, so, initially, Y0, i.e. Y modulo its generi
 stabiliser,

I.a.6, and their moduli, Y . At the singular point p identi�ed with the origin in the notation of

III.b.6, we have, therefore, its stabiliser G in Y , of whi
h the stabiliser G0 in Y0 is a quotient

a
ting faithfully on the lo
al ring. Furthermore in a minor variation of III.b.6 we have, étale

lo
ally at p, a foliation generator ∂ with 
o-prime positive integer eigenvalues ai whi
h is

invariant by the a
tion G. Under this a
tion, however, eigenve
tors must go to eigenve
tors, so

the linear representation, ρ of G, whi
h is equally its lo
al a
tion, splits as a dire
t sum of ρα's,

where α ∈ A is a 
omplete repetition free list of the ai's, and ρα permutes the eigenve
tors of ∂
with eigenvalue α. In parti
ular, therefore, in the notation of III.b.6, the a
tion of G 
ommutes

with the a
tion of Gm de�ned by,

(III.14) λ× (y1, . . . , yr) 7→ yλ = (λa1y1, . . . λ
aryr)

while the leaves may be identi�ed with the images of,

(III.15) φc : t 7→ (c1t
a1 , . . . , crt

ar ), where, c ∈ Ar\0

with two su
h fun
tions φc, φc′ de�ning the same leaf in Y i�,

(III.16) c′ = (ρ(g)c)λ, g ∈ G, λ ∈ Gm

with Gm a
tion as per (III.14), whi
h, as we've said, 
ommutes with G, so if H is the image of

the representation

(III.17) G→ Aut(P (a1, . . . , ar))

in automorphisms of the moduli of the weighted proje
tive 
hamp P(a1, . . . , ar), then the leaf

spa
e is P (a1, . . . , ar)/H.

Similarly, if we 
onsider the weighted blow up,

(III.18) Y1 := Proj(
∐

n

In)→ Y0, In = (yt1
1 . . . ytr

r : a1t1 + . . . artr ≥ n)

then the moduli, E, of the ex
eptional divisor is equally the said leaf spa
e, so we have a map

Y1 → E. In addition Y1 has only quotient singularities, so we 
an form the smoothed weighted

blow up Y2 → Y1, [MP13, I.iv.3℄, or if one prefers not to 
ross referen
e, repla
e Y1 by what

is lo
ally its Vistoli 
overing 
hamp, I.a.2. In parti
ular Y2 is smooth, with smooth 
onne
ted

ex
eptional divisor E2. Certainly the moduli of E2 is E, but it's usually false that Y2 maps

to E2 be
ause the latter is highly non-s
heme like. Indeed sin
e ρ|G0
is faithful, the stabiliser

of a generi
 point is the kernel, K of G0 → H, whi
h by (III.16) and (III.14) is isomorphi


under the restri
tion of ρ to some �nite group of roots of unity µa0
a
ting a

ording to (III.14),

albeit for λ ∈ µa0
. Alternatively: in the stabiliser of every geometri
 point of E2, K may be

identi�ed with the normal sub-group of pseudo-re�e
tions in E2, and killing su
h re�e
tions

a�ords a map Y2 → Ỹ , where Ỹ is smooth, still a gerbe over the moduli of Y1, and Y2 → Ỹ
is the extra
tion of a a0th root of a smooth divisor E

∼−→ [P(a1, . . . , ar)/H]- this latter notation
being absolutely unambiguous sin
e H a
ts on P(a1, . . . , ar) be
ause of the 
ommutativity of
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G with (III.14). Consequently we have a diagram,

(III.19)

(Y1,E1)
Vistoli 
overing←−−−−−−−−− (Y2,E2 = 1

a0
· Ẽ )

Weighted blowup





y





y
a0th root

Y0 ∋ p
not de�ned at p←−−−−−−−−−−

if a0 > 1.
(Ỹ , Ẽ

∼−→ [P(a1, . . . , ar)/H])

where, to be pre
ise, the �nal arrow is an isomorphism o� Ẽ and is de�ned over p i� a0 = 1.
This �nal auxiliary pair is the good one for extending the map Y1 → E, to wit:

III.b.9. Claim. The moduli of the Y1 → E lifts to a map π : Ỹ → Ẽ , and better still, not only

is this the quotient Ỹ → [Ỹ /F̃ ] but there is an a ∈ N su
h that this expresses that foliation

as a �bration in P(1, a)'s in the étale site of Ẽ , while the identity,

(III.20) KF |Y2
= KF2

+ E2 = KF̃ + Ẽ |Y2

with implied pull-ba
ks those in (III.19) not only gives sense to KF on Ỹ , but is a well de�ned

tautologi
al bundle, i.e. of degree 1/a on geometri
 �bres.

Proof. We will prove the statement in the analyti
 topology, sin
e by [Gir71, IV.3.4℄ and

[SGA-IV, XVI.4.1℄, 
f. [M
Q15, IV.a.3℄, it is equivalent, and trying to avoid this just leads to

repeating variations on the steps in op. 
it.

The smoothed weighted blow up operation- left verti
al followed by top horizontal in III.19-

smooth the foliation, and dropping to Ỹ it remains smooth sin
e E is everywhere transverse.

Now let q be a geometri
 point of Ẽ , with Sq its stabiliser in Ỹ , then we 
an �nd a polydis
 ∆r


entred on q with 
oordinates yi, y1 = 0 an equation for Ẽ , ∂̃ = ∂
∂y1

generating the foliation,

and Sq a
ting linearly via,

(III.21) y1 × σ 7→ χ(σ)y1, yi × σ 7→ θij(σ)yj

From whi
h, we 
an naturally identify θ : Sq → GL(r − 1, C) with the full (not just linear)

holonomy of the pie
e- [∆/Sq]- of the leaf Lq ∋ q through q in Ỹ , and θ is faithful be
ause

there are no pseudo-re�e
tions in Ẽ .

The foliation is smooth with proper leaves, so their universal 
over is 
onstant, and sin
e

the leaves are −1
d F-
urves in Y0 without generi
 monodromy, and the generi
 point of Ẽ has

no-monodromy, this is P(1, a) for some a ∈ N, and the monodromy representation extends to,

(III.22) Sq = π1([∆/Sq])→ π1(Lq)→ GL(r − 1)

so the �rst arrow in (III.22) is an inje
tion. By either the long exa
t sequen
e of a �bration

or, more algebrai
ally [M
Q15, III.
.3℄, π1(Lq) is an extension of the fundamental group of the

orbifold over whi
h it is a lo
ally 
onstant gerbe by a quotient of the generi
 monodromy by a


entral element, so Sq is also surje
tive by II.d.5(b). As su
h, the holonomy 
overing of Lq is

its universal 
overing, so that for Sq a
ting diagonally, we have an embedding,

(III.23) [P(1, a) ×∆r−1/Sq] →֒ Ỹ

for some possibly smaller transversal polydis
, and the natural proje
tion,

(III.24) [P(1, a) ×∆r−1/Sq]→ [∆r−1/Sq] →֒ Ẽ

is the unique analyti
 
ontinuation of our initial proje
tion [∆r/Sq] → Ẽ . This latter exists

everywhere in a neighbourhood of Ẽ - in fa
t everywhere in a formal neighbourhood would be

enough whi
h follows from the normal form III.b.6- so the proje
tions (III.24) glue by I.a.4

to a proje
tion on all of Ỹ . The �nal assertion, (III.20), is an easy lo
al 
al
ulation at the

singularity. �
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The �bration in III.b.9 has 
onne
ted and simply 
onne
ted �bres, so,

(III.25) π1(Ỹ )
∼−→ π1(Ẽ )

∼−→ π1([P(a1, . . . , ar)/H])

and by I.
.5, a weighted proje
tive spa
e is simply 
onne
ted, so this latter group is H,

whi
h in turn a�ords a 
onne
ted H-
overing of Ỹ \Ẽ sin
e this is embedded as a repre-

sentable Zariski open of Ỹ . Further the diagram, (III.19) 
an be formed lo
ally with Y0 either

[∆r/G0], or [∆r/K], yielding a pair of diagrams with the obvious 
ommutativity between

them. Consequently the above H-
overing of Ỹ \Ẽ implied by (III.25) glues to the H-
overing

[∆r/K] → [∆r/G0], and sin
e Y is simply 
onne
ted, we must have H = 1, and we further

assert,

III.b.10. Claim. The foliation Y0 → [Y0/F ] is isomorphi
 to the radial foliation, R, on the

weighted proje
tive 
hamp P(a0, aa1, . . . , aan). In parti
ular, sin
e Y0 is generi
ally s
heme

like, a, and a0 are relatively prime.

Proof. The start of the Leray spe
tral sequen
e applied to the �bration π of III.b.9 yields an

exa
t sequen
e,

(III.26) 0→ H1(Ẽ , Gm)
π∗

−→ Pic(Ỹ )→ H0(Ẽ , R1π∗Gm)
d0,1
2−−→ . . .

and by (III.20) this latter group is generated by the image of KF , so d0,1
2 = 0, and for a as per

III.b.9 we 
an write,

(III.27) OỸ (Ẽ ) = T a
F ⊗ OẼ (−m)

for some m ∈ N, with the latter bundle the tautologi
al bundle, I.
.2, on our weighted proje
tive

spa
e. Forming, the exa
t sequen
e,

(III.28) 0→ OỸ (aTF − E )→ OỸ (aTF )→ OẼ → 0

and pushing forward by π, a�ords,

(III.29) 0→ OẼ (m)→ π∗OỸ (aTF )→ OẼ → 0

whi
h by I.
.3 is a split rank 2 ve
tor bundle, V , with the splitting even being 
anoni
al if

a > 1. Indeed, we already know by III.b.9 that if there were extra monodromy at ∞ then it

forms a smooth divisor on Ỹ admitting a group of re�e
tions of order a, so, equivalently if we

killed these pseudo re�e
tions, then all of the above is equally valid for some Y0,a, Ỹa, et
., and

Ỹ → Ỹa is an extra
tion of an ath root of a se
tion, ∞, of the P1
bundle, P(V ) = Ỹa.

Now, by (III.25) et. seq. G0 = K, and the important thing to observe is that be
ause of

the 
ommutativity of the a
tion of G0 with the Gm-a
tion (III.14), the lo
ally 
onstant gerbe

E2 → Ẽ of (III.19) in BK 's is in fa
t trivial, so a0|m by (I.18). If, however, a0 and a were to

have a non-trivial g
d, α > 1, then the leafwise universal 
over,

(III.30) P(
a0

α
,
a1

α
)→ P(a0, a)

of the �bres of Y2 → Ẽ is globally well de�ned, i.e. by (III.29): raising to the power α

on the Gm torsor OẼ (m
α ) and extending over 0 and ∞. The resulting 
overing Ỹ2 → Y2 is

étale representable, and lo
ally about the singularity, pat
hes to the µα 
overing [∆r/µ a0
α

] →
[∆r/µa0

], and when
e the absurdity that Y isn't simply 
onne
ted.

Having thus established the in parti
ular, everything else follows qui
kly. The fa
t that a0

and a are relatively prime imply that in an embedded neighbourhood (formal will do) of the

singularity p, Y → [Y /F ] is isomorphi
 to the radial foliation, R, I.d.2, on the said weighted

proje
tive 
hamp, P. All of the above, and spe
i�
ally (III.19), apply, 
f. I.d.3, if our starting

points is P → [P/R]. The fa
t that we have an isomorphism at p, and the same monodromy

at in�nity, obliges us to have the same P(1, a) bundle, so Ỹ → [Ỹ /F̃ ] and P̃ → [P̃/R̃]
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are isomorphi
 in a way 
ompatible with the initial isomorphism at p, and when
e, I.d.3.(d),

Y0 → [Y0/F ] is isomorphi
 to P → [P/R]. �

Our initial Y is simply 
onne
ted, and a lo
ally 
onstant gerbe over Y0, so by I.
.6, it is again

a weighted proje
tive 
hamp, and only the notation 
hanges,

III.b.11. Fa
t. The foliation Y → [Y /F ] is isomorphi
 to the radial foliation on the weighted

proje
tive spa
e P(a0, aa1, . . . , aan), where a0 is the order of the stabiliser of the singularity p,
and the generi
 leaf is a − 1

a-
urve. In parti
ular the generi
 stabiliser is 
y
li
 of order the g
d

of a0 and a.

III.
. Ignoring Cusps. So far we haven't dis
ussed what may happen if our extremal ray R is

represented by an invariant 
hamp f : L →X whi
h has a 
usp at the unique singular point

z where f meets sing (F ). This is, however, easily redu
ed to the previous 
ase by way of

III.
.1. Claim. Let z be a geometri
 point of the singular lo
us of a foliated smooth 
hamp,

X → [X /F ], with log-
anoni
al foliation singularities, and proje
tive moduli, then if there is

a KF -negative extremal ray, R, represented by a −1/d F 
urve through z there exists a −1/d′ F

urve through z with at worst nodes.

Proof. Let π : X̃ → X be the blow up in z then the ex
eptional divisor, E is invariant and

π∗KF is again the foliated 
anoni
al bundle unless perhaps all the eigenvalues in say, III.b.6,

are equal, but then there are no −1/d F 
usps through z by II.i.2, and we're done. As su
h, by

the 
one theorem, II.d.1, there is a −1/d′ F 
urve whose 
lass, R̃, in NE1(X̃ ) is extremal and

π∗R ≫ R̃. Consequently, without loss of generality, we may suppose that there is a −1/d F

urve f : L →X whi
h has a 
usp at z, and whose 
lass, resp. that of its proper transform f̃ ,
is extremal in NE1(X ), resp. NE1(X̃ ). The lo
al stru
ture of a bran
h of a 
usp is des
ribed

by (II.113) and II.i.2, and, in the notation of op. 
it. f̃ meets the ex
eptional divisor with

a (lo
al) multipli
ity v1 in a s
heme like 
hart. Now 
onsider, π′ : X ′ → X where X ′
is

the extra
tion of a v1th root of E , then the indu
ed map f ′ : L → X ′
has at worst nodes.

On the other hand E is invariant so the 
anoni
al 
lass is the same and f ′
is still extremal,

and, somewhat super�uously, the singularities X ′ → [X ′/F ′] are still log-
anoni
al sin
e E is

smooth. In any 
ase, at the point z′ where f ′

rosses the ex
eptional divisor we 
an apply III.b.5

to �nd −1/di F 
urves with smooth bran
hes parallel to every axis a�orded by the embedding

dimensions of the original 
usp, any of whi
h represent the extremal ray. In parti
ular if one

takes the −1/d′ F 
urve in an eigendire
tion normal to the ex
eptional divisor in the lo
al


oordinates at z′ implied by those of II.i.2 at z, then the proje
tion of this 
urve to X has at

worse nodes. �

III.d. Stru
ture of Extremal Champs. We begin with exa
tly the same preliminaries as

III.b prior to (III.4) ex
ept that in the notation of op. 
it. our interest is the unique formal


hamp X≥0 →֒ X with normal bundle

(III.31) NL̃ /X≥0

∼−→
∐

ai≥0

OL̃ (ai)

Now X→X is net so the tangent spa
e to the deformation spa
e (wherein we insist that the

deformation meets sing(F )) whether of f̃ : L̃ → X or any 
omposition with P1 → L̃ is the

tangent spa
e to the deformation spa
e whether of L̃ →֒ X≥0, or su
h a 
omposition. The

latter are however un-obstru
ted, (III.2), so by way of X≥0 →֒ X → X the former are too.

Consequently there is a Zariski 
losed sub-variety, X≥0, of the moduli- the variety swept out

by the deformations of f̃ or 
ompositions thereof with P1 → L̃ - of the same dimension as X≥0
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and 
ontaining its image. Exa
tly as in (III.5) we therfore get maps

(III.32)

X≥0 −−−−→ X̃≥0 −−−−→ X≥0 −−−−→ X≥0




y





y

X −−−−→ X

wherein the square is �bred, X̃≥0 → X≥0 is normalisation, and the top leftmost arrow is an

étale 
over over its image. As ever we normalise a lo
al generator ∂ of the foliation in the


omplete lo
al ring ÔX ,p, for p = f−1(sing F ), a

ording to III.b.6 with d1 = a1d, d ∈ N albeit

with the re�nement

III.d.1. New Notation. Linearise a lo
al generator ∂ of TF in the 
ompletion of ÔX ,p of

OX ,p in mX (p) by way of, ∂ = a1 y1
∂

∂y1
+ · · · + ar yr

∂
∂yr
− bi xi

∂
∂xi

, ai ∈ N, bi ∈ N,

(a1, . . . , ar, b1, . . . , bt) = 1, with xi = 0 lo
al equations for X̃≥0, and z1, . . . , zs the additional

(formally invariant) fun
tions whi
h 
ut out X̃+, (III.5), so that t is now the 
odimension of

X≥0, and s + t the 
o-dimension of X+.

Now let us suppose that the −1/d F 
urve f : L → X a�ording (III.31) is an extremal ray,

R, then we have 
onstru
ted an integral invariant sub-
hamp X≥0 of X through every point

of whi
h there is a −1/e F 
hamp, for varying e, parallel to R in Néron-Severi, and we assert

III.d.2. Claim. Let Z be the interse
tion of X≥0 with the singular lo
us of F , then Z is

smooth and 
onne
ted.

Proof. Firstly, suppose Z is a disjoint union of 
omponents Z ′
, Z ′′

, then we may 
onsider the

sub-
hamps Y ′
, Y ′′

whose moduli is 
overed by KF -negative extremal 1-dimensional 
hamps

parallel to R through Z ′
and Z ′′

respe
tively. Consequently if y ∈ Y ′ ∩ Y ′′
it is a singular

point of some extremal 1-dimensional invariants 
hamps L ′
, L ′′

, so in Z ′ ∩Z ′′
by II.d.5.(a),

whi
h is nonsense, and Z is 
onne
ted. Better still at the singularity, p, of the initial 
urve

f , we know, II.i.2, that Z is irredu
ible and smooth of dim = s, so there is some irredu
ible


omponent Z0 of sing(F ) of dimension s 
ontained wholly in Z . However for any ζ ∈ Z ,

there is a −1/e(ζ) F 
hamp Lζ ∋ ζ 
ontained in X≥0, so sing(F ) is smooth at ζ by another

appli
ation of II.i.2. Consequently ζ 7→ dimζ sing(F ) is not just upper semi-
ontinuous but


ontinuous, i.e. 
onstant = s in the notation of III.d.1, , and sin
e Z is 
onne
ted: Z0 = Z is

smooth irredu
ible of dimension s. �

Now 
onsider the ideal IZ of Z in X , then the 
omposition

(III.33) IZ −→
d

ΩX −→ KF ·IZ .

a�ords an OZ -linear map

(III.34)

IZ /I2
Z −−−−→

DZ

IZ /I2
Z ⊗KF

of whi
h the tra
e gives a global se
tion of OZ (KF ). Plausibly this is zero, but by II.i.2 it

may, on normalising in the dire
tion of some smooth bran
h guaranteed by III.
.1 and (III.31),

be identi�ed lo
ally with a Q-valued fun
tion, so, by III.d.2, it's non-zero i� the tra
e of the

normalisation III.d.1 is non-zero at some p ∈ Z . Similarly the 2nd symmetri
 fun
tion is a

global se
tion of OZ (2KF ) whi
h may lo
ally be identi�ed with a Q-valued fun
tion, whose

expression in the notation of op. 
it. is

(III.35)

1

2





∑

i

ai −
∑

j

bj





2

− 1

2





∑

i

a2
i +

∑

j

b2
j




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so if the tra
e doesn't de�ne a nowhere vanishing se
tion of OZ (KF ) there is at worst an étale

double 
over Z +− → Z su
h that KF |Z +− is trivial. As a result the eigenvalues of DZ are

well de�ned 
onstant fun
tions up to a 
hoi
e of generator of OZ (KF ) when this is possible,

and otherwise they're well de�ned on Z +−
. Thus if ne
essary we 
hoose a lifting p+

of the

singularity p of the 
urve of (III.31) to the double 
over, and subsequently 
hoose our lo
al gen-

erator in su
h a way to have 
ompatibility with our formal linearisation at p (identi�ed lo
ally

with p+
if ne
essary), i.e. the eigenvalues of DZ are everywhere a1, . . . , ar, −b1, . . . , −bt, with

ai, bj ∈ N, and gcd(a1, . . . , ar, b1, . . . , bt) = 1. In any 
ase, for every ζ ∈ Z , there is a well

de�ned pair of eigenspa
es, {T+(ζ), T−(ζ)} of TX ⊗C(ζ), and every KF -negative 1-dimensional

invariant 
hamp has tangent spa
e at ζ 
ontained in pre
isely one of these. To fully pro�t from

this we will have to extend from the normal bundle to a formal neighbourhood of Z , whi
h

probably shows that being lazy about 
onvergen
e wasn't perhaps an optimal use of time. The

dis
ussion is lo
al over a�ne neighbourhoods U of Z over whi
h the normal bundle and KF

trivialise, and whi
h we 
onsider 
entred on a point ζ of Z . To momentarily simplify the

notations let λi denote the ne
essarily non-zero eigenvalues of the normal bundle, and 
onsider

the following indu
tive proposition,

III.d.3. Claim. Let ÔU be the 
ompletion of OU in mX (ζ), then for k ∈ N, we have 
oordinates
xi normal to Z (evidently giving a basis for N∨

Z/x) and a generator ∂ of F over U su
h that,

(1) ∂xi = λi xi (modIk
Z)

(2) There is a semi-simple generator ∂̂ of TF ⊗ ÔU,ζ of the form λi ξi
∂

∂ξi
, for ξi ∈ ÔU,ζ and

ξi = xi (modIk
Z).

Proof. The 
ase k = 2 trivially follows from the previous dis
ussion, so 
onsider going from k
to k + 1, whi
h evidently we wish to be 
ompatible with restri
tion so that things 
onverge.

In any 
ase, in terms of our usual notations about monomials and summation 
onventions we

have, mod Ik+1
Z ,

(III.36) ∂xi = λi xi + aiJ xJ , aiJ ∈ OU , ξi = xi + biJ xJ , biJ ∈ ÔU,ζ .

Furthermore, ∂̂ = u∂, u ∈ ÔU,ζ , and, u = 1 + uiK xK
, uiK ∈ ÔU,ζ , with # J = k, # K = k− 1.

Now if we just put these equations together then we obtain,

(III.37) aiJ =

{

(λi − λJ) biJ − uiK λi if xK xi = xJ
,

(λi − λJ) biJ otherwise

without any summations. The se
ond 
ase is rather good sin
e if λi 6= λJ := jp λp we 
on
lude

that the biJ are algebrai
, so if without loss of generality we repla
e xi, by,

(III.38) xi 7→ xi +
∑

λi 6=λJ
xi∤xJ

biJ xJ

then in fa
t we 
on
lude that aiJ = 0 if xi ∤ xJ
. As for the 1st

-
ase we do what we 
an.

Spe
i�
ally, again without loss of generality we 
an repla
e xi by,

(III.39) xi 7→ xi +
∑

λi 6=λJ

aiJ

λi − λJ
xJ

so that aiJ = 0 if λi 6= λJ , while if λi = λJ we 
on
lude that uiK is algebrai
. Thus if we

repla
e ∂ by,

(III.40) ∂ 7→



1 +
∑

λK=0

uiK xK



 ∂
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then uiK = 0 if λK = 0, so in fa
t we 
an suppose aiJ = 0 for all J . Consequently, ∂̂ has the

form,

(III.41)



1 +
∑

λK 6=0

uiK xK



 ∂ .

However if we repla
e ∂̂ by,

(III.42) ∂̃ =



1 +
∑

λK 6=0

ũiK ξK





−1

∂̂

for ũiK appropriate fun
tions of 
oordinates z in ÔZ,ζ whi
h restri
t from 
oordinates in ÔU,ζ

annihilated by ∂, and of 
ourse ũiK = uiK (mod IZ), then by II.h.2 ∂̃ is still semi-simple,

with respe
t to a possibly di�erent basis ξ̃i of the form vi ξi, vi ≡ 1 (Ik−1
Z ). To 
omplete the

indu
tion, therefore, it su�
es to observe, on supposing without loss of generality that ξi = ξ̃i,

that,

(III.43) ξi 7→ ξi −
∑

λK=0

xJ=xi xK

b̃iJ(z) ξJ

for b̃iJ satisfying mu
h the same pres
riptions as the ũiK is still a trivialising basis for ∂̂. �

Consequently over an appropriately small a�ne U 
ontaining ζ, and bearing in mind that for

any ζ ′ ∈ Z we know we 
an �nd appropriate 
oordinates in ÔX ,ζ′ annihilated by ∂, we obtain

formal subs
hemes U+, U− of the 
ompletion Û of U in Z, whose subsequent 
ompletion at

any ζ ′ ∈ Z ∩ U is the non-stri
t Harder-Narismhan pair of II.h.10. The monodromy of the

pair {U+, U−} is pre
isely the monodromy of the pair {TX+
, TX−}, so either these pat
h to

formal sub
hamps, X
≥0
+ , X

≤0
− of the 
ompletion of X in Z , whi
h 
ompleted at any point is

the non-stri
t H-N pair, and of 
ourse we normalise so that ∀ ζ ∈ Z, T+(ζ) = TX+
⊗ C(ζ),

T−(ζ) = TX− ⊗ C(ζ), or we get the same 
on
lusion on a double 
overing of the 
ompletion.

With this out of the way we 
an qui
kly pro
eed to a 
on
lusion. To begin with 
omplete X≥0

in Z , 
all it Y. By III.
.1 there is, for every ζ ∈ Z , a −1/d F 
urve through ζ with at worst

nodes and parallel to the given extremal ray. By the uni
ity of III.d.1 up to ± su
h a 
urve must

fa
tor through X
≥0
+ ∪ X

≤0
− , whi
h is always well de�ned even if X

≥0
+ , X

≤0
− are only well de�ned

on a 
over. In addition, exa
tly as post (III.31), the deformation spa
e of the universal 
over of

the normalisation of su
h a 
urve is un-obstru
ted, so lo
ally, it 
overs whi
hever of X
≥0
+ , X

≤0
−

it fa
tors through, and we've normalised so that our initial 
urve fa
tors through X
≥0
+ , so Y is

either X
≥0
+ or, X

≥0
+ ∪ X

≤0
− . In parti
ular, there is a smooth Zariski open U →֒ X≥0\Z , whi
h


lose to Z is just the 
omplement of the same, so, all leaves in X≥0 meet U . On the other

hand the singular lo
us of X≥0 is invariant by the indu
ed foliation, so it's at worst 
ontained

in Z , and indeed it's either empty or all of Z a

ording to whether its 
ompletion Y is smooth

or not, i.e. i� the H-N pair is without monodromy or not. In the latter 
ase, Y = X
≥0
+ ∪ X

≤0
−

so the normalisation X̃≥0 is smooth, and indeed X̃≥0 → X≥0 is everywhere an isomorphism

ex
ept over Z where it's the double 
over Z +− → Z , and for the unity of notation we put

Z̃ →֒ X̃≥0 to be Z +−
or Z as appropriate.

We next wish to 
onsider the operation of �proje
ting to Z �, by sending an invariant 1-

dimensional 
hamp to its unique singular point. To this end, we introdu
e the moduli, X≥0,

and the orbifold X̃ 0
≥0 asso
iated, I.a.6, to the normalisation X̃≥0. Again the issue is that we
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have to be 
areful about the gerbe stru
ture on Z , so, say

Z ′
0 →֒ X̃ 0

≥0 the embedded sub-
hamp over the pre-image of the moduli Z of Z ,

and Z0 the asso
iated orbifold, so that Z ′
0 → Z0 is a lo
ally 
onstant gerbe.

(III.44)

We now pro
eed as in III.b.9. In the �rst instan
e (III.18) again a�ords a (well de�ned by

III.d.3) weighted blow up X̃ 1
≥0 →X 0

≥0, whose ex
eptional divisor, E , is the proje
tivisation of

the graded OZ ′
0
-algebra

(III.45) A :=
∐

An := In ⊗OZ ′
0
, In = (yt1

1 . . . ytr
r : a1t1 + . . . artr ≥ n)

In parti
ular therefore the automorphism group of any geometri
 point of Z ′
0 has a proje
tive

representation in the automorphisms of Proj(A), and better still

III.d.4. Claim. The kernel, S ′
, of the representation of the stabiliser, S → Z ′

0 , in automor-

phisms of Proj(A) is lo
ally 
onstant, and the operation of quotienting by the stabiliser, 
f.

I.a.6, a�ords a fa
torisation Z ′
0 → Z ′ → Z0 of lo
ally 
onstant gerbes.

Proof. Let U → X̃ 0
≥0 be a small étale neighbourhood of ζ ∈ Z ′

0 , with G the lo
al monodromy,

then by de�nition any σ ∈ G whi
h a
ts trivially on Proj(A) a
ts trivially on the pre-image

Z →֒ U of Z ′
0 , i.e. σ is a well de�ned element of every stabiliser Gz →֒ G of every z ∈ Z, whi
h

stabilises Proj(A) around z by the uniform de�nition of the yi's in (III.45), i.e. III.d.3. �

Now, modulo notation, the diagram (III.19) and the proof (whi
h doesn't employ the simple


onne
tedness of Y of op. 
it.) of III.b.9 are valid as stated, so �proje
tion along a leaf�


ertainly yields, in the notation of op. 
it.

(III.46) Ỹ → Ẽ

On the other hand Ẽ maps, 
f. (III.14) et seq., to Proj(A) understood as a 
one over Z ′
, and

when
e (III.46) a�ords a 
omposition

(III.47) X̃ 0
≥0\Z ′

0 → Z ′ → Z0

whi
h may, plainly, be extended everywhere lo
ally around Z ′
0 while Z0 itself is an orbifold so

by I.a.4 we �nally get a proje
tion

(III.48) π0 : X̃ 0
≥0 → Z0 and a 
omposition π : X̃≥0 → X̃ 0

≥0
π0−→ Z0.

Before pro
eeding, let us emphasise the need for 
aution by way of

III.d.5. Warning. In general (III.48) needn't extend to a map to Z ′
0 or even Z ′

. As su
h the

extent to whi
h one 
an pro�t from III.b.11 is limited a

ording to whether we 
an glue together

the universal 
overs of the �bres of π in (III.48), or some variant thereof for a di�erent 
hamp

stru
ture over the base, whi
h de fa
to requires that π, or the said variant has a se
tion.

Consequently we 
on�ne our des
ription of π to

III.d.6.Claim. Let X̃≥0 → [X̃≥0/F̃ ] be the indu
ed foliation then π is a smooth F̃ -equivariant

(foliated) �bre bundle (in the étale topology) with �bre a foliated 
hamp whose (�nite) universal


over is des
ribed by III.b.11, i.e. a weighted proje
tive 
hamp in its radial foliation.

Proof. By 
onstru
tion, (III.47), fun
tions on Z0 are invariant, i.e. π is 
ertainly a F̃ -

equivariant morphism of smooth 
hamps. As su
h the map

(III.49) dπ : Ω1
Z0
→ Ω1

X̃≥0

is given, lo
ally, by a s× (r + s) matrix, P , say su
h that for ∂ a lo
al generator of the foliation

there is a (r + s) × (r + s) matrix B for whi
h ∂P = PB, so the lo
us where dπ fails to have

full rank is F̃ -invariant. By de�nition, however, every leaf of F̃ meets Z̃ , and, III.d.3, π is
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smooth in a formal neighbourhood of Z̃ , when
e the 
o-kernel of (III.49) is a ve
tor bundle

of rank s everywhere, and a surje
tive map of smooth varieties is �at as soon as the �bres

are equidimensional, so π is smooth. As su
h the 
ondition, (I.58), for π to be a bundle of


hamps is is true by III.b.11, I.
.3 and (be
ause we're in 
hara
teristi
 zero) the Hös
hild-

Serre spe
tral sequen
e. Consequently, by III.b.11, for V → Z0 a su�
iently small étale

neighbourhood, π−1(V ) is of the form [V ×C PC(a)/G] for G a �nite group of automorphisms

of a weighted proje
tive 
hamp PC(a). Again, however, by he Hös
hild-Serre spe
tral sequen
e,

the representation of G 
annot be deformed, so the only obstru
tion to having a bundle of

foliated 
hamps is that radial foliations on weighted proje
tive 
hamps might deform. This is,

however, ex
luded by I.d.4. �

We have, therefore, established

III.d.7. Large Fa
t. Given a −1/d F 
urve f : L → X parallel to an extremal ray R in

Néron-Severi meeting sing(F ) with p the unique geometri
 point of their interse
tion, then

after multipli
ation by a suitable 
onstant, a linearisation in End(ΩX ⊗ C(p)) of a generator

∂ of the foliation is a diagonal matrix diag{a1, . . . , ar, 0, −b1, . . . , −bt}, ai, bj ∈ N without


ommon divisor and s zeroes. Better still, normalising so that the tangent spa
e to f(L ) lies

in the positive eigenspa
e, there is an R-extremal 
hamp X≥0 →֒X 
ontaining f su
h that,

(a) X≥0 
ontains a unique, smooth s-dimensional 
omponent Z of the singular lo
us of F .

(b) The normalisation X̃≥0 retra
ts onto Z0 where the pre-image Z̃ →֒ X̃≥0 of the singular

lo
us is a lo
ally 
onstant gerbe over Z0, (III.44), via π of (III.48), and we have exa
tly

one of,

(i) KF |Z is trivial, and X̃≥0
∼−→X≥0.

(ii) K⊗2
F |Z is trivial, but KF | Z is not, then Z̃ → Z is an étale µ2 
overing whi
h

is exa
tly where X̃≥0 → X≥0 fails to be an isomorphism.

(
) The �bration π is a
tually an étale bundle of foliated varieties where the transition

fun
tions are automorphisms of a foliated variety Y → [Y /F ] whose (�nite) universal

over is the radial foliation on some P(a0, aa1, . . . , aan) for a0, a as per III.b.11.

(d) Every extremal 
hamp meeting sing(F ) is of this form.

There are a few loose ends here whi
h we'll tidy up via

III.d.8. Remark. All of the above in
ludes the 
ase that singF has dimension zero at z but

non-trivial monodromy, 
f. II.h.9. By II.d.5.(
), the only way that an extremal ray 
an fail to

meet sing(F ) is if the foliation is generi
ally a �bration in in paraboli
 
hamps. This is also the

only way not just that (b).(ii) (so inter alia an isolated singularity with monodromy swit
hing

the H-N pair) 
an o

ur, but that (possibly di�erent) extremal rays 
an fa
tor through both

the positive and negative parts of the H-N pair. This is, however, more subtle, so its proof

is postponed. It is, therefore, not unreasonable to paraphrase III.d.7 as �every� extremal sub-


hamp is a smoothly embedded bundle of radially foliated weighted proje
tive spa
es.

Irrespe
tively, however, of 
larifying when b.(ii) does o

ur, we have

III.d.9. Corollary. The number of extremal rays in the half spa
e, NEKF<0 is �nite.

Proof. An extremal ray whi
h meets a singularity is des
ribed by III.d.7, and by II.h.9 it must

fa
tor through either X+ or X− of the H-N pair, so every 
onne
ted 
omponent of sing(F )
meets at most two su
h sub-
hamps whi
h themselves are maximal amongst those 
overed by

extremal rays meeting sing(F ). By II.d.5.(
) we're therefore done unless X → [X /F ] is
generi
ally a �bration in rational 
urves, but in this 
ase, 
f. op. 
it., the 
omponent of the

deformation spa
e of an invariant 
urve whi
h doesn't meet sing(F ) 
over X with leaves, so

all su
h rays are equivalent. �
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IV. Flip, flap, flop

IV.a. Contra
tions. We will pro�t from a number of simpli�
ations a�orded by the analyti


topology. As su
h we spell out our

IV.a.1. Set Up. Let X → [X /F ] be a foliated 
hamp with proje
tive moduli, and Y →֒X
be an embedded invariant sub-
hamp equal to X̃≥0 of III.d.7 in 
ase b.(i) for some extremal

ray. Fix a (not ne
essarily s
heme like) point z →֒ Z0, i.e. the pre-image of a point in the

moduli, for Z0 as in op. 
it., and let X ′ →֒X be an embedded analyti
 open neighbourhood

of Yz whose interse
tion Y ′ →֒ Y with Y is (as a foliated variety) of the form π−1(Z ′),
III.d.7.(
), for z ∈ Z ′ →֒ Z0 a small embedded analyti
 neighbourhood. Su
h data admits,

therefore, arbitrarily small shrinkings around Yz whi
h, in order to employ I.f.5, we 'll make

without warning. This is equally the good set up for 
onstru
ting �ips, so in our immediate


ontext we add the pre
ision that uniquely for this se
tion, IV.a, Y is a divisor.

Pro�ting from III.b.11, and shrinking as ne
essary, we have, from III.d.7.(
) and I.f.5, that for

some polydis
 V there is a �bred square

(IV.1)

D := P(a0, aa1, . . . , aar)× V −−−−→ X 1





y





y

π−1(Z ′) −−−−→ X ′

where the horizontal arrows are embeddings; the verti
al arrows étale Galois 
overings under

π1(Yz); ai as in III.d.1; and a, a0 as in III.b.11. In parti
ular, therefore, for O(1) the tautologi
al
bundle on the weighted proje
tive spa
e in the left hand 
orner of (IV.1), II.g.3 implies

(IV.2) ND/X 1
∼−→ O(−ab)

for b = b1 of III.d.1. Now 
onsider the operation, I.a.9, of extra
ting a dth root of the Cartier

divisor D ,

(IV.3)

D ′′ −−−−→ X ′′





y





y

D −−−−→ X 1

then, for any d the left hand verti
al is a lo
ally 
onstant gerbe under Bµd
and if, moreover

d = ab this gerbe is trivial, so by I.f.5 again, after appropriate shrinking there is a �bre square,

(IV.4)

D −−−−→ X̃




y





y

D ′′ −−−−→ X ′′

where, on
e more, the horizontals are embeddings, and the verti
als étale 
overings, but now

under µab. This 
onstru
tion has a number of 
onvenient properties, to wit:

IV.a.2. Claim. The 
omplement X∗ := X̃ \D is everywhere spa
e like, and an étale Galois


overing of X ′\Y ′
with group an extension of the form

(IV.5) 1→ µab → Ez → π1(Yz)→ 1, i.e. X ′\Y ′ ∼−→ [X∗/Ez]

Proof. That we have a 
overing with the said group is immediate from (IV.1), (IV.3), and (IV.4),

while by (IV.2) ND/X̃ is isomorphi
 to O(1). As su
h the lo
al monodromy a
ts faithfully on

the 
omplement of the zero se
tion D →֒ ND/X̃ , so, a fortiori X∗
is spa
e like. �

Before pro�ting from this let us make,
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IV.a.3. Remark. One 
ould 
ertainly take an abth root, even globally of Y →֒ X , say

(IV.6) Xab →X

with X ′
ab →֒X the resulting neighbourhood of Y ′

. This does not imply, however, that (IV.5)

is split sin
e there may be torsion e�e
ts in Pic(Y )- 
f. (I.18). Similarly, if one is prepared to

assume that Pic(X 1)
∼−→ Pic(D) then one 
an do the steps (IV.3)-(IV.4) in a single move, viz:

extra
t the abth root of the se
tion of O(−ab) de�ned by D . This is easy if one 
ompletes in

D , i.e. the exponential sequen
e for the nth thi
kening

(IV.7) 0→ In/In+1 x 7→1+x−−−−−→ O×
n+1 → O×

n → 0

and I.
.3, but otherwise would requires a little analysis that 
an reasonably be avoided, via

I.f.5, by 
on�ning ourselves to purely topologi
al statements.

Having arrived to this jun
ture, however, we 
an 
omplete X̃ in D to a formal 
hamp, X̂ ,

with tra
e D , and argue as in (IV.7) to dedu
e

(IV.8) Pic(X̂ )
∼−→ Pic(D) = ZO(1)

As su
h the Gm-torsor X→ X̂ de�ned by O(1) has tra
e a produ
t with V of the Gm-torsor,

(I.33), in the de�nition of a weighted proje
tive spa
e. The latter is, however, spa
e like, so X

is a formal spa
e, whi
h 
an be des
ribed wholly expli
itly, i.e.

(IV.9) X
∼−→ (Ar+1\{0}) × ∆̂× V, ∆̂ := SpfC[[x]]

on whi
h λ ∈ Gm a
ts a

ording to

(IV.10) (Ar+1\{0})×∆̂×V ∋ (y0, y1, . . . , yr)×x×z 7→ (λa0y0, λ
aa1y1, . . . , λ

aanyr)×λ−1x×z

Now observe that the ring, A, of Gm invariant fun
tions a�ords maps

(IV.11) X→ X̂
moduli−−−−→ X̂ → V × SpfA (

∼−→ C[[xa0y0, x
aa1y1, . . . , x

aanyr]] )

where, by de�nition, A is equally the ring of formal fun
tions on X̂ . Consequently the �nal

map in (IV.11) is a formal 
ontra
tion in the sense of [Art70℄, and when
e by op. 
it. is the


ompletion in V of the 
ontra
tion of analyti
 spa
es

(IV.12)

D −−−−→ X̃
moduli−−−−→ X̃

proje
tion π of (III.48)





y

ρ





y

ρ0





y

ontra
tion

V −−−−→ Xz Xz

In parti
ular therefore by (IV.11) Xz is smooth, and we're well advan
ed in proving

IV.a.4. Proposition/Summary. There is a Galois 
overing X̃ → X ′
under Ez, (IV.5),

rami�ed uniquely over D → Y ′
, and there (in the notation of III.d.1 and III.b.11) to order

exa
tly ab su
h that

(a) The 
ontra
tion, Xz, of (IV.12) is smooth.

(b) It's Ez equivariant, and although X ′ → [Xz/Ez ] may not be de�ned at Y , X ′
ab, (IV.6),

to [Xz/Ez] is everywhere de�ned.

(
) The 
ontra
tion is birational, i.e. X ′\Y ∼−→ [Xz\V/Ez ] = [X∗/Ez ].

Better still, all of this globalises, i.e. there is a foliated smooth 
hamp X0 → [X0/F0] �tting
into a diagram (the 
ontra
tion of Y ) -des
ribed lo
ally by (a)-(
)- and an isomorphism o� Y ,

(IV.13)

Xab −−−−→
ρ

X0

KF unrami�ed





y
(IV.6)

X
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Proof. We've done (a) & (
), and as per IV.a.3 we have from the 
onstru
tion, (I.15), of

extra
ting roots a map X ′′ →Xab. If, however, Y ′
ab →֒X ′

ab is the redu
ed �bre over Y then

(IV.14)

D ′′ −−−−→ D




y





y

Y ′
ab −−−−→ Y ′

is not just 
ommutative but the top horizontal is the pull ba
k of the lo
ally 
onstant gerbe

de�ned by the bottom horizontal. As su
h, the square is �bred so the left verti
al is a repre-

sentable étale 
over, and when
e D is the universal 
over of Y ′
ab, so that shrinking as ne
essary,

X̃ →X ′
ab is equally the universal 
over. In parti
ular, therefore, we have a diagram

(IV.15)

X̃ −−−−→ Xz




y





y

X ′
ab [Xz/Ez]

wherein the left hand verti
al is an Ez-torsor. Better still the pull-ba
k of OX ′
ab

(Y ′
ab) to D →֒ X̃

is O(−1), so there is an Ez a
tion on the torsor X 
ommuting with the Gm-a
tion (IV.10).

Consequently, the top horizontal is Ez equivariant, so, by the de�nition of the bottom right

hand 
orner, the square 
an be 
ompleted along the bottom horizontal, i.e. (b) holds.

Turning to globalisation, the uni
ity of 
ontra
tions ensures that the 
ontra
tion of the subspa
e

of the moduli, X, of X de�ned by the moduli of Y to that of Z0 is an algebrai
 spa
e X0. Now

denote by ∗ the 
omplement of Y , or the 
ontra
ted lo
us as appropriate, then for ζ another

point of Z0 the normalisation of X∗
z ×X0

X∗
ζ is equally that of X∗

z ×X X∗
ζ so by I.a.3, either

proje
tion of

(IV.16) R :=
(

normalisation of U ×X0
U

)

⇒ U, U =
∐

z

Xz

is unrami�ed in 
o-dimension 1. Consequently, by purity, they're unrami�ed everywhere, and

sin
e R∗ ⇒ U∗
is both a groupoid and dense in R, (IV.16) de�nes an étale groupoid, or,

equivalently, an orbifold M0 → X0 with atlas U . At the same time, we 
an express Xab as a

lo
ally 
onstant gerbe in BΓ's over an orbifold M for some �nite group Γ. Thus M and M0

agree on an open dense set, so by I.a.4 and (IV.12), there is a map ρ : M →M0. Next observe

that the 
ontra
ted lo
us is an embedded smooth sub-
hamp of real 
o-dimension at least 4,

when
e the homotopy depth about the same, [SGA-II, Exposé XIII.6℄, is also at least 4, so the

lo
ally 
onstant gerbe X ∗ →M ∗
extends uniquely to a lo
ally 
onstant gerbe X0 →M0. On

the other hand lo
ally the universal 
over is generi
ally s
heme like, IV.a.2, so from the long

exa
t sequen
e of a �bration we must have

(IV.17) 1→ Γ→ Ez = π1(X
′

ab)→ π1(M
′)→ 1

for M ′
a small neighbourhood of Y ′

ab. On the other hand in the diagram

(IV.18)

Xz ←−−−− X̃




y





y

M0 ←−−−− M ′

the left hand is the universal 
over of it's image under the group Ez/Γ, so by (IV.17), the dia-

gram (IV.18) is a pull-ba
k of a 
overing along the bottom horizontal. In parti
ular, therefore,

(IV.18) is �bred so for a lo
ally 
onstant sheaf, Λ, R1ρ∗Λ = 0, and the Leray spe
tral sequen
e

yields an exa
t sequen
e

(IV.19) 0→ H2(M0,Λ)→ H2(M ,Λ)→ H0(M0, R
2ρ∗Λ)
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In addition π1(M )
∼−→ π1(M0), so X and ρ∗X0 are lo
ally 
onstant gerbes for the same link

in the sense of Giraud, [Gir71, IV.1.1.7.3℄, and their di�eren
e, op. 
it. IV.3.4, de�nes a 
lass

in H2(M ,Λ) for Λ the 
entre of the link- so lo
ally the 
entre of the aforesaid group Γ. Sin
e
X0 → M0 is lo
ally trivial by de�nition, the image of this 
lass in the rightmost group of

(IV.19) is zero by (IV.18) and (IV.12), while the resulting 
lass in the leftmost group is trivial

be
ause this is the same as H2(M ∗,Λ). �

It follows that we've a
tually proved a little more, to wit:

IV.a.5. Remark/De�nition. From (IV.15), the �bre of the horizontal arrow in (IV.13) has

�bre X̃ over Xz, whi
h, in turn is the smooth weighted blow up (
omposition of left verti
al and

top horizontal in (III.19)) with weights a0, aa1, . . . , aan in the obvious 
oordinates suggested by

(IV.11) while by purity the left verti
al in (IV.13) is exa
tly the same as the rightmost verti
al

in (III.19), i.e. killing a group (here µab) of pseudo re�e
tions. Moreover, sin
e ρ : X → X0

needn't be everywhere de�ned it's more te
hni
ally 
orre
t to 
all the birational map ρ a �ip,

whi
h, in turn has the very spe
i�
 stru
ture of (IV.13), whi
h might reasonably be des
ribed

as a �ap.

The resulting foliation on X0 is des
ribed by

IV.a.6. Corollary. The 
anoni
al bundles of the various foliations are related by

(IV.20) KFab
= KF |Xab

= ρ∗KF0
+ a0Yab

so, in parti
ular, F0 is smooth and everywhere transverse to the 
ontra
ted lo
us.

Proof. The �rst identity in (IV.20) is just that the left verti
al in (IV.13) is unrami�ed along the

foliation be
ause Y is invariant, while the 2nd identity follows, for purely numeri
al reasons,

from (IV.2) and III.b.11. Now say D is a lo
al generator of F0 on Xz, and s0 is the 
oordinate

fun
tion of weight a0 in (IV.11), then, by (IV.20), ρ∗(s0D) is an everywhere regular derivation

whi
h 
oin
ides with a lo
al generator of Fab at every point where ρ∗(s0) only vanishes along

the ex
eptional divisor. In parti
ular, therefore, it 
oin
ides by III.b.11 with a lo
al generator


lose to sing(Fab), where by op. 
it. a lo
al equation x = 0 for the ex
eptional divisor may

be supposed of the form xa0 = ρ∗s0. Now the ex
eptional divisor is invariant, and by (II.g.3)

de�nes a non-zero eigenspa
e at the singularity so ρ∗(D(s0)) is non-zero everywhere, when
e,

idem D(s0), �

IV.b. Proje
tivity of the 
ontra
tion. By way of a rather general proje
tivity 
riteria

IV.b.1. Lemma. Let X be a proper algebrai
 spa
e over a �eld k, then X is proje
tive i� both

of the following 
onditions hold

(a) for every irredu
ible subspa
e Y →֒ X
(

N̄E1(Y ) ∋ α 7→ 0 ∈ N̄E1(X)
)

⇒ α = 0

(b) The 
one NE1(X) ⊆ NS1(X)R doesn't 
ontain a line.

Proof. The 
onditions are 
learly ne
essary. The se
ond 
ondition is equivalent to the existen
e

of a Cartier divisor H non-negative on NE1(X) su
h that

(IV.21)

(

N̄E1(X) ∋ α 7→ H.α = 0
)

⇒ α = 0

Thus if (a) & (b) hold for X they hold for every sub-variety, so, by indu
tion we 
an suppose

Hdim(Y ).Y > 0 for every non-trivial sub-variety of dimension smaller than that of X. Conse-

quently, by the Nakai-Moishezon 
riteria, [Kol90, 3.11℄, we require to prove for every irredu
ible


omponent of X of maximal dimension the top power of H is positive. As su
h, say, without

loss of generality, X irredu
ible of dimension d + 1 and p : X ′ → X a proje
tive modi�
ation,
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then p∗H is nef. Better still some Zariski open of X is a s
heme, when
e it 
ontains sub-varieties

of all possible dimensions, thus Hd = p∗(p
∗Hd) is a non-zero 
lass in N̄E1(X), and so by (b)

Hd+1 > 0. �

A less general, but more relevant variation of the same is

IV.b.2. Corollary. Let p : X ′ → X be proper; an isomorphism o� Z →֒ X; with X ′
proje
tive

and X a Q-fa
torial algebrai
 spa
e over a �eld k, then X is proje
tive i� both of the following


onditions hold

(a) for every irredu
ible subspa
e Y →֒ Z

(

N̄E1(Y ) ∋ α 7→ 0 ∈ N̄E1(X)
)

⇒ α = 0

(b) The 
one NE1(X) ⊆ NS1(X)R doesn't 
ontain a line.

Proof. Again ne
essity is obvious and (b) a�ords a Cartier divisor H non-negative on NE1(X)
satisfying (IV.21) whi
h we prove satis�es op. 
it. (and when
e IV.b.1.(a) ) for all sub-varieties

Y →֒ X by indu
tion on their dimension. In dimension 1, there are two 
ases a 
urve, Y ,

fa
tors through Z so H ·Y > 0 by IV.b.2.(a), or it doesn't. In the latter 
ase, however, Y \Z is

a non-empty 
urve in the quasi-proje
tive variety X\Z, so it 
ertainly interse
ts non-trivially

some divisor D →֒ X\Z without being 
ontained in it. By hypothesis, however, the 
losure

D̄ →֒ X of D is Q-Cartier so D̄ · Y 6= 0 and IV.b.1.(a) holds. Similarly for Y of dimension

d+1 ≤ dim(X) we again distinguish 2-
ases. If Y fa
tors through Z we're done by hypothesis,

otherwise we prove H |Y is ample. In the latter 
ase, by Nakai-Moishezon and our indu
tion

hypothesis it's su�
ient to prove Hd+1 ·Y > 0. As before, however, there is a Cartier divisor, D̄
on X interse
ting Y non-trivially, so Hd ·D̄ ·Y > 0, while: for all ǫ > 0 su�
iently small, H−ǫD̄
satis�es (IV.21), so p∗(H − ǫD̄) is nef., and (H − ǫD̄)d+1 · Y ≥ 0, when
e Hd+1 · Y > 0. �

Of whi
h a 
orollary to the 
orollary is

IV.b.3. Corollary. Let everything be as in IV.b.2 then we 
an repla
e 
ondition (a) by

(IV.22) Z is proje
tive and

(

N̄E1(Z) ∋ α 7→ 0 ∈ N̄E1(X)
)

⇒ α = 0

Whi
h may be applied to the 
ase in point, i.e.

IV.b.4. Fa
t. The moduli of the 
ontra
tion IV.a.4 is proje
tive.

Proof. Observe that under the hypothesis of IV.a.1 the lo
us of the extremal ray R must be

the 
onne
ted smooth divisor Y be
ause Y · R < 0. Now, let ρ : X → X0 be the moduli of

the 
ontra
tion (IV.13), with Z the moduli of the singular lo
us in X meeting the extremal

ray, then sin
e X0 is Q-fa
torial, ρ∗ : NS1(X0)→ NS1(X) is inje
tive with image 
lasses in the

latter annihilated by R. Consequently, by duality there is an exa
t sequen
e

(IV.23) 0→ R→ NS1(X)
ρ∗−→ NS1(X0)→ 0

while N̄E1(X) ։ N̄E1(X0), so IV.b.2.(b) holds be
ause R is extremal. Now although there

may be ambiguity, III.d.5, about the 
hamp stru
ture on the singular lo
us and the base of the


ontra
tion, there is no su
h ambiguity at the level of the moduli, i.e. Z is a se
tion of the

lo
us where ρ fails to be an isomorphism, so by (IV.22) and (IV.23) we need only 
he
k that a

non-zero 
lass in N̄E1(Z) 
annot belong to R, whi
h is 
lear, e.g. KF |Z is nef. �
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IV.
. The H-N Filtration again. We will require knowledge of the normal bundle of the

extremal smooth sub-
hamp Y →֒ X of IV.a.1, akin to II.g.3 so, without loss of generality

dim(Y ) > 1. Our primary interest is the lo
al variation of NY /X over a small embedded

analyti
 open, Z ′
, of the base/singular lo
us, so to begin with, and essentially without loss

of generality, we'll restri
t attention to the 
ase s = 0, III.d.7. As ever we �rst 
arry out our

analysis at the level of the universal 
over of Y , i.e. a radially foliated weighted proje
tive


hamp, III.b.11, and so abuse notation slightly, i.e. repla
e Y by its universal 
over, X by

a small neighbourhood of the former et
.. Naturally there are two tautologi
al bundles of

relevan
e, namely, O(1), on the weighted proje
tive 
hamp Y , whi
h, op. 
it. is related to the

radial foliation, R, by

(IV.24) KR
∼−→ O(−a0)

and the relative tautologi
al bundle of ρ : P := P(N∨
Y /X ) = P (NY /X ) → Y whi
h we'll

denote H, while P, Y et
. will be the 
orresponding moduli. Now say F is the spe
ialisation,


f. II.e.5 & II.f.1, of our original foliation to the proje
tive normal 
one, then KF = ρ∗KR

so a KF -negative extremal ray, R, of P, has to be, II.d.1, an invariant 
urve of F lying over

an invariant 
urve of R. By III.
.1 we may suppose that the former has at worst nodes, and

when
e also the latter from our expli
it knowledge, II.i.2, of the singularity. The moduli of su
h

a 
hamp is the moduli of its normalisation, so, without loss of generality, R is an extremal ray

of P (f∗NY /X ) for f : L → Y some 
oordinate axis of the radial foliation R- all of whi
h are

smooth and embedded on a weighted proje
tive spa
e. By II.g.3 we know exa
tly what these

are, and in terms of II.i.2 & III.d.1 we may des
ribe them as follows: the lo
al monodromy at

the singularity, p, of the radial foliation is µa0
, and by hypothesis, III.d.7.(b).(i), there exists a

lo
al generator, ∂, of the ambient foliation on X whi
h is µa0
-invariant so that the eigenve
tors

of Jordan de
omposition of ∂ at p a�ord a µa0
equivariant de
omposition,

(IV.25) NY /X ⊗ C(p) =
∐

1≤i≤l

Vi

for Vi the subspa
e generated by the eigenve
tors of weight −βi for βi a 
omplete repetition free

list of the bi, amongst whi
h, II.h.6, −βl is largest. The de
omposition (IV.25) then des
ribes

the singular lo
us of the spe
ialised foliation exa
tly, i.e. it is a disjoint union

(IV.26) sing(F ) =
∐

1≤i≤l

P (Vi)× Bµa0

and the extremal ray in question is any invariant se
tion over L whi
h 
uts P (Vl), or, to be

more pre
ise, 
uts P (Vl)×Bµa0
→֒P whi
h is the embedded 
omponent of the singular lo
us.

We 
an, therefore, apply III.d.7 to 
on
lude that the extremal rays de�ne a sub-
hamp Yl →֒P
together with a proje
tion

(IV.27) Yl → P (Vl)

whose �bres have universal 
over a weighted proje
tive 
hamp P(c0, c1, . . . , cr) for some weights

ci to be determined, radially foliated by R′
, say. Now, by (IV.26), (IV.27) has a se
tion so

P(c)×P (V1) is the universal 
over of Yl. We have, however, by II.g.3, F -invariant embeddings

Li → Yl lifting any 
oordinate axis fi : Li →֒ Y , and ea
h Li is simply 
onne
ted, so there

are R′
-invariant embeddings f ′

i : Li →֒ P(c) of every Li
∼−→ P(a0, aai), and when
e P(c)

∼−→ Y .

Better still,

(IV.28) KR′ = KF |P(c)×P (V1)= KR |P(c)×P (V1) and KR′ ·f ′
i
Li = KR ·fi

Li by II.d.5

so P(c) → [P(c)/R′] is, unsurprisingly, the radial foliation Y → [Y /R] that we started with.

Consequently the map

(IV.29) Yl → Y × P (Vl)
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a�orded by the stru
tural proje
tion ρ and (IV.27) is an étale 
over. As su
h (IV.29) exhibits

the former as a lo
ally 
onstant gerbe over the latter. By expli
it lo
al 
al
ulation, however,


f. (IV.26), (IV.29) is an isomorphism in a neighbourhood of the �bre over the singularity p,
so it's an isomorphism everywhere. We have, therefore, proved most of

IV.
.1. Fa
t. Suppose, as above, that Y ′
of IV.a.1 is simply 
onne
ted (when
e isomorphi


to the produ
t of a polydis
 with a radially foliated weighted proje
tive spa
e) then there is a

�ltration of NY /X |Y ′
by invariant sub-bundles for the indu
ed foliation,

O = Nl $ Nl−1 $ Nl−2 $ · · · $ N0 = NY /X

su
h that if β1 > · · · > βl is a 
omplete repetition free list of the b1, . . . , bt of III.d.1, and qj,

1 ≤ j ≤ k the 
orresponding multipli
ities, then for a as per III.b.11, lo
ally over Z :

Nj−1/Nj
∼−→ OY (−aβj)

⊕qj .

Proof. Yl of (IV.27) is, III.d.7, the image of a deformation spa
e of extremal rays, whi
h is


onstant on taking produ
ts with a small polydis
, when
e this addition 
hanges nothing, and

for notational 
onvenien
e we'll 
ontinue to ignore it. In any 
ase, the embedding Yl →֒ P
a�ords a sub-bundle

(IV.30)

(

ρ∗H |Yl

)∨ →֒ NY /X

whi
h is the Nl−1th term in the above �ltration. Moreover there is a 
anoni
al isomorphism

(IV.31) NYl/P
∼−→ ρ∗

(

NY /X /Nl−1

)

⊗H

and so we 
on
lude by indu
tion. �

Unsurprisingly we 
ontinue to refer to this as the H-N �ltration, and observe

IV.
.2. Corollary. Let Y ′ →֒X ′
be simply 
onne
ted, then there is a non-
anoni
al splitting

(IV.32) NY /X |Y ′
∼−→

∐

j

OY (−aβj)
⊕qj

and, better still, any se
tion over Y ′
of IY ,X /I2

Y /X ⊗ OY ′(−aβj) 
an be lifted to a (formal)

se
tion of IY ,X ⊗̂OX̂ ′(−aβj) over the 
ompletion X̂ ′
of X ′

in Y ′
.

Proof. The non-trivial 
ase, given IV.
.1, is when the �bres of Y → Z ′
have dimension 1. This

is, however, II.g.3, and otherwise it's immediate by IV.
.1 and I.
.3. �

The apparently arbitrary 
hoi
e of su
h se
tions notwithstanding, 
hoose some, say

(IV.33) ξ := ξj : OX̂ ′(aβj)→ Î := IY ,X ⊗̂OX̂ ′ , 1 ≤ j ≤ t

and de�ne, 
f. (III.18), a �ltration on Î by way of:

(IV.34) F p
ξ Î :=

(

ξj1
1 · · · ξjt

t | b1j1 + · · · + btjt ≥ p
)

bj := aβj

i.e. the ideal generated by the images of the OX̂ ′(j1b1 + · · · jtbt) under (IV.33), and observe

IV.
.3.Claim. The �ltration (IV.34) is algebrai
, i.e. shrinking as ne
essary, there is a �ltration

F pIY ,X |X ′
whose 
ompletion is (IV.34). Better still this is independent of the 
hoi
e (IV.33),

and F invariant.
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Proof. Plainly F p

ontains some power, say q, of Î , so the �rst part just amounts to the


oheren
e of F p/Îq
on the qth thi
kening of Y ′

. As to the �rst part of the better still: say ηj

is another 
hoi
e, then either this is the same as ξj, or there is a smallest p > 0 su
h that

(IV.35) 0 6= ξj − ηj ∈
(

F p
ξ /F p+1

ξ

)

⊗ OY ′(−bj)
∼−→

∐

b1j1+···+btjt=p

OY ′(p− bj)

so p ≥ bj, when
e ηj : OX̂ ′(bj) → F
bj

ξ , and we're done by symmetry. Similarly, suppose the


omposition

(IV.36) OX̂ ′(bj)
ξj−→ F bj Î → OX̂ ′ → KF

doesn't fa
tor through KF ⊗ F bj Î, then there is a smallest bj > p ≥ 0 through whi
h it does

fa
tor, so (IV.36) a�ords a non-zero OY ′
-linear map

(IV.37) OŶ ′(bj)→ KF ⊗
∐

b1j1+···+btjt=p

OY ′(p)
∼→

∐

b1j1+···+btjt=p

OY ′(p− a0)

whi
h is nonsense. �

Putting this all together we have therefore

IV.
.4. Fa
t/De�nition. Let Y →֒X be as in IV.a.1 then there is a F -invariant �ltration

(IV.38) · · · ⊂ F p · · · ⊂ F>0 = IY ,X ⊂ OX

su
h that

(a) The restri
tion of (IV.38) to a small embedded analyti
 neighbourhood X ′
as de�ned

in IV.a.1 pulls ba
k to (IV.34) on the universal 
over of X ′
.

(b) For f : L̃ →֒ X → X the normalisation of an extremal ray with at worst nodes

embedded in its net 
ompletion, the pull ba
k of IV.38 is the �ltration de�ned by the

invariant divisors II.g.3.(2) 
ombined in the (obvious) way suggested by (IV.34).

Proof. The �ltration has already been de�ned on the universal 
over, say X ′′ → X ′
with

Galois group π1. As su
h, it des
ends to X ′
provided (IV.34) admits a π1 a
tion, whi
h is


lear from the proof of IV.
.3 be
ause the H-N �ltration, IV.
.1, is π1-equivariant. Similarly:

to 
ompare the �ltrations on 2-small analyti
 open embeddings X ′
α →֒ X , X ′

β →֒ X we only

need to 
ompare them on any (faithfully �at) étale 
overing of X ′
α ∩X ′

β, so again this is just

IV.
.3 and the de�nition (IV.34) as is (b). �

IV.d. Existen
e of �ips. Let Y →֒ X be as in IV.a.1 then by (IV.38) there is a KF -invariant

smoothed weighted blow up, [MP13, I.iv.3℄, de�ned as in (III.19), to wit:

(IV.39)

X1 := Proj
(
∐

p F p
)

Vistoli 
overing←−−−−−−−−− X2, KF2
= KF |X2

weighted blowup





y
Everything F invariant

X
Before progressing let us make a 
larifying

IV.d.1. Remark. The implied weights in (IV.39) are not the aβj of IV.34 but b′i := bi/b where

bi are as per III.d.1 and b is their g
d. Following (IV.13), however, we'll be taking the 
overing

(IV.40) X2
abth root of E2←−−−−−−−−−Xab, Yab :=

1

ab
· E2

and the totality, i.e. the horizontal in (IV.39) 
omposed with (IV.40), is, fun
torially with

respe
t to the ideas the smoothed weighted blow up with weights abi where a is given by III.b.11
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and the bi by III.d.1. Consequently there's a 
ertain 
onvenien
e in doing both steps at on
e,

or, at least, referring, as we will, to their totality in terms of the unifying idea.

This said the ex
eptional divisor E2 on X2 is des
ribed by

IV.d.2.Claim. The weighted proje
tive bundle E2 → Y enjoys the following triviality property:

for Y ′ →֒ Y as per IV.a.1 (Z ′ →֒ Z0 understood su�
iently small) and Y ′′ → Y ′
its �nite

universal 
over

(IV.41) E2 | Y ′′ ∼−→ Y ′′ × P(b′1, . . . , b
′
t)

Moreover the indu
ed foliation (understood either logarithmi
ally, I.b.2, or, equivalently, with-

out saturation if the �bres Y → Z0 have dimension 1) has 
anoni
al bundle the restri
tion of

KF and singular lo
us the �bre over the unique 
onne
ted 
omponent Z of sing(F ) 
ontained
in Y .

Proof. The pth fa
tor of the graded algebra asso
iated to (IV.34) is OY ′′(p) tensored with the

pth fa
tor of the trivial graded algebra freely generated by generators of weights bi, 1 ≤ i ≤ t,

f. (IV.35) & (IV.37), whi
h has the same Proj as that whi
h is freely generated after 
an
elling

the 
ommon fa
tors, IV.d.1, when
e (IV.41). As to the moreover: the ex
eptional divisor of

a (weighted) blow up in an invariant 
entre is always smooth in the foliation dire
tion, so we

only have to 
ompute what happens over the singular lo
us whi
h we 
an do expli
itly using

IV.
.4 by way of its relation, II.g.3.(3), with the Jordan de
omposition, and appropriate lo
al


oordinates, 
f. (II.124). �

Now, irrespe
tively of whether E2 is extremal in X2, the 
one theorem applies to E2 in it's

indu
ed foliation, while extremal rays in Y with at worst nodes lift (
f. the preamble to the

proof of IV.
.1 ) to the same in E2 by II.g.3. As su
h III.d.7 applies to E2 in se (i.e. as the

lo
us of its own extremal ray) to imply

IV.d.3. Fa
t/De�nition. The 
hamp E2 is a bundle of foliated varieties (whose �bres have

universal 
overs radial foliations on a P(a0, aa1, . . . , aan)) over an orbifold Z0 whi
h (for good

measure) is itself a bundle, IV.d.2, of P(b′1, . . . , b
′
t)'s over the orbifold stru
ture on the singular

lo
us of Y . Consequently for Xab as in (IV.40) there is a 
ontra
tion ρ : Xab → X0 of Yab

to a lo
ally 
onstant gerbe over Z0 su
h that the indu
ed foliation X0 → [X0/F0] is smooth

and everywhere transverse to the lo
us where ρ is not an isomorphism. The bi-rational map

ρ : X → X0 will, irrespe
tively of whether the moduli of X0 is proje
tive, be referred to as a

�ip, and the more pre
ise data

(IV.42)

Xab
Blow down, ρ+, with weights aai−−−−−−−−−−−−−−−−−−−−→

(IV.13)

X0

Blow up, ρ−, with weights





y

abj , (IV.39) &(IV.40)

X− := X

of a weighted blow up followed by a weighted blow down as a �ap.

Proof. As observed the stru
ture of E2 is implied by III.d.7 given the stru
ture, IV.d.2, of the

singular lo
us. This is, however, the sum total of what we need to dedu
e the existen
e of

the 
ontra
tion ρ from IV.a.4, i.e. the 
ondition that Yab is 
overed by extremal rays of the

ambient spa
e is ne
essary for the proje
tivity of the moduli of the 
ontra
tion, but not for its

existen
e as an algebrai
 spa
e. �

To examine the proje
tivity of this 
onstru
tion let us suppose in addition to IV.a.1,
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IV.d.4. Set Up. Fix an extremal ray R and suppose that every −1/d F 
urve equivalent to R
belongs to a 
onne
ted smooth embedded sub-
hamp, Yp →֒ X , of the form IV.a.1, and all

su
h sub-
hamps are disjoint, equivalently none of the following o

ur

(a) For some smooth 
onne
ted 
omponent Z → sing(F ) there are 2 su
h sub-
hamps (for

the same R) meeting in Z , II.h.9.

(b) For some smooth 
onne
ted 
omponent Z → sing(F ), and, again, the same R,

III.d.7.(b).(ii) o

urs.

(
) There is a representative of R avoiding the singular lo
us.

Observe that the 
riteria for the proje
tivity of the �ip is parti
ularly simple, i.e.

IV.d.5. Claim. In the 
ontext of (IV.42), the following are equivalent

(a) The moduli of the �ipped 
hamp X+ is proje
tive.

(b) The 
one N̄E1(X+) does not 
ontain a line.

(
) The −1/d F 
urve 
ontra
ted by ρ+ is extremal.

Proof. Plainly (a) implies (b), and (IV.22) always holds- same argument as end of the proof

of IV.b.4- when
e, 
onversely, IV.b.3, (b) implies (a), while (b) i� (
) is the general duality


onsiderations of (IV.23). �

The same applies, a little more generally, if one �ips several sub-
hamps in X at the same

time, provided, as is our 
ontext, IV.d.4, the 
hamps being �ipped are all disjoint, whi
h we'll

employ without further 
omment in

IV.d.6. Claim. The �ip, (IV.42), of any of the Yp has proje
tive moduli.

Proof. Sin
e the horizontal arrows in (IV.42) are (étale lo
ally) weighted blow downs it will

su�
e to do everything at on
e, whi
h is all we need anyway. As su
h, 
onsider the totality, at

the level of the moduli, of the �aps (IV.42) performed in all of the Yp, i.e.

(IV.43)

X(R) −−−−→
ρ+

X+

ρ−





y

X−

with Ep
the ex
eptional divisors; Cp

− 
urves in the same 
ontra
ted by ρ−; and Cp
+ →֒ Ep

a

KF -negative invariant 
urve 
ontra
ted by ρ+. Fix p, then by the 
one theorem, II.d.1, there

are �nitely many extremal rays represented by (multiples of) KF -negative invariant 
urves, Ri,

and a (pseudo) e�e
tive 
lass Zp on whi
h KF is non-negative su
h that on X(R)

(IV.44) Cp
+ =

∑

i

Ri + Zp

Now, by 
onstru
tion, (IV.12), (ρ−)∗(C
p
+) is parallel to R, so (ρ−)∗(Zp) is too. However, ρ−

is unrami�ed in the foliation dire
tion, so (ρ−)∗(Zp) = 0. Consequently, by the proje
tivity of

X−, Zp is a sum

(IV.45)

∑

q

cq
−Cq

−, cq
− ≥ 0

On the other hand all the Ri lie over R, so by our hypothesis IV.d.4 and (IV.12) every Ri is

parallel to some Cq
+ for some q. Thus we equally have

(IV.46)

∑

Ri =
∑

q

cq
+Cq

+, cq
+ ≥ 0
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Combining all of (IV.44)-(IV.46) we have therefore

(IV.47) Cp
+ =

∑

q

(

cq
+Cq

+ + cq
−Cq

−

)

, every Cq
+ extremal by (IV.46),

while all the divisors Eq are disjoint and stri
tly negative on both Cq
+, Cq

−, so the only index

that 
an o

ur on the right of (IV.47) is p. Consequently, Cp
+ is extremal and we're done by

IV.d.5. �

IV.e. Ex
eptional �ips and termination. The �rst 
ase to be 
onsidered is

IV.e.1. Set Up. Y →֒ X is an extremal sub-
hamp satisfying III.d.7.(b).(ii), with Z →֒ Y
the unique (smooth) 
onne
ted 
omponent of sing(F ) 
ontained in it.

Now observe that by the uni
ity and lo
al uniformity, III.d.3, of Jordan de
omposition there is

a well de�ned (smoothed) weighted blow up supported in Z whose weights in the notation of

III.d.1 are

(IV.48) yi, resp. xi, has weight ai, resp. bi, where ai = bi and r = t.

and whose e�e
t is des
ribed by

IV.e.2. Claim. Let X1 → X be the smoothed weighted blow up de�ned by (IV.48) with E1

its ex
eptional divisor and Y1 the proper transform of Y then

(a) The singular lo
us of F1 over Z is the interse
tion of E1 and Y1. It is smooth 
onne
ted,

and, for good measure, a P(a1, . . . , ar)-bundle over the µ2 
overing of Z de�ned in

III.d.7.(b).(ii).

(b) The embedded sub-
hamp Y1 →֒ X1 is the lo
us of (not just a 
onne
ted 
omponent

of) an extremal ray R1 satisfying III.d.7.(b).(i).

(
) The ex
eptional divisor E1 is 
overed by KF -nil invariant paraboli
 
hamps.

Proof. To 
al
ulate the singular lo
us we use the Jordan 
oordinates of III.d.1, so, [MP13,

I.iv.3℄, on, say the y1 6= 0 
hart we have lo
al 
oordinates ηi, ξj de�ned by

(IV.49) y1 = ηa1

1 , y2 = η2η
a2

1 , · · · , yr = ηrη
ar
1 , x1 = ξ1η

b1
1 , · · · , xr = ξrη

br
1

whi
h gives that étale lo
ally there are 2 smooth 
omponent of the singular lo
us in the �bre of

E1 over Z , whi
h in turn are the interse
tion of Y1 and E1. Plainly (paragraph prior to (III.45))

the lo
al system de�ned by these 
omponents is the same as the µ2 
over Z +− → Z , so the

singular lo
us is 
onne
ted, and the good measure part is 
lear. As to (b) this is just an easy

variation on (IV.44)-(IV.45). Spe
i�
ally suppose the proper transform, L1, of an invariant


urve isn't extremal then op. 
it. and E1 · L1 > 0 imply the absurd. Finally (
) follows from

the expli
it 
oordinates (IV.49) and the fa
t that the 
anoni
al, KF1
is just KF |X1

. �

We 
an, therefore, 
ombine this with (IV.42) to make

IV.e.3. Fa
t/De�nition. By an ex
eptional �ip (or, better, �ap) is to be understood, for

Y →֒ X as in IV.e.1, the diagram

(IV.50)

Xab
ρ+−−−−→

(IV.42)

X+

�ip of Y1 in IV.e.2





y
ρ−of(IV.42)

X− = X1 ←֓ E1

Weighted blow up





yIV.e.2

X
Better still
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(a) The moduli of X+ is proje
tive.

(b) The image E+ of E1 is 
overed by invariant paraboli
 
hamps (in fa
t it's a bundle of

su
h over a P(ai)× P(bj)-bundle over Z +−
) none of whi
h meet the singular lo
us, so

the generi
 �bre of X+ → [X+/F+] is a smooth paraboli
 
hamp.

Proof. Part (a) follows from IV.d.5 and IV.e.2.(b), while E+ is 
ontained in the smooth lo
us

of F+ by IV.d.3 when
e (b) by IV.e.2.(
) and II.d.5.(
). �

Similarly if IV.d.4.(a) o

urs or slightly more generally

IV.e.4. Claim. If there are 2 extremal (not ne
essarily for the same ray) 
hamp meeting in

the same 
omponent of sing(F ) then the generi
 �bre of X → [X /F ] is a paraboli
 
hamp.

Moreover if both varieties arise from the same extremal ray, i.e. IV.d.4.(a), then the �ip (IV.42)

does not have proje
tive moduli, and there are invariant paraboli
 
hamp in (the original X )

whi
h do not meet sing(F ) and are parallel to the given extremal rays, i.e. IV.d.4.(
) also

holds.

Proof. Choose one, say Y ′
, of the extremal varieties, �ip it, and irrespe
tively of whether the

moduli is proje
tive IV.d.3 and II.d.5.(
) still apply. Furthermore, if both rays are extremal

then as in the proof of IV.e.2 the proper transform, R1, of an invariant 
urve in the other, say,

Y ′′
, is an extremal ray. Plainly, however, the invariant 
urves, L, in the �bre over Y ′

have the

form R1 +C− where C− is 
ontra
ted by ρ−, while the ex
eptional divisor, E1, of ρ− is negative

on L, and positive on R1, when
e it's negative on C−, so C− is e�e
tive; L isn't extremal, and

the moduli of X+ isn't proje
tive. On the other hand (ρ−)∗R1 is an invariant paraboli
 
hamp

missing sing(F+), so it 
an be moved o� the �ipped lo
us to some R+. As su
h the proper

transform R̃+ (in Xab of (IV.42)) is a linear 
ombination of L and R, so (ρ−)∗(R̃+) is parallel
to the original extremal ray. �

Given the well de�ned way in whi
h it o

urs, the loss of proje
tivity in IV.e.4 is very far from

deadly. Nevertheless there are several obvious reasons for avoiding it so we make

IV.e.5. Fa
t/De�nition. By a very ex
eptional �ip (or, better, �ap) is to be understood, for

Y ′ →֒ X and Y ′′ →֒ X a pair of extremal varieties meeting in the same 
omponent of the

singular lo
us, IV.d.4, of F and parallel to the same extremal ray, IV.e.4, the diagram (IV.50)

with the further proviso

(IV.51) The arrow ρ−, resp. ρ+, is the weighted blow up, resp. down, in both Y ′
and Y ′′

.

The moduli of the resulting 
hamp X+ is proje
tive, while the resulting foliation F+ is smooth

and everywhere transverse to the lo
us where ρ+ is not an isomorphism for exa
tly the same

reasons that the 
orresponding statements hold for the ex
eptional �ips of IV.e.3.

Now �ipping, be it ex
eptional or otherwise, manifestly terminates for the simple reason that

the number of 
onne
ted 
omponents of the singular lo
us de
reases by at least 1 with the �ip

of any extremal ray, and so in in
reasing order of di�
ulty we have,

IV.e.6. Proposition/Summary. Let X → [X /F ] be a foliated 
hamp whi
h is not a foliation

in paraboli
 
hamps and whi
h enjoys the following further properties

(IV.52) smooth; proje
tive moduli; log 
anoni
al, resp. 
anoni
al, foliation singularities

then there is a sequen
e of 
ontra
tions and �ips in the sense of IV.a.4 and IV.d.3 (or alterna-

tively just �aps (IV.13) & (IV.42) ),

(IV.53)

X = X0 X1 · · · · · · Xn = Xmin




y
−−99K





y
−−99K −−99K





y

[X /F ] = [X0/F0] [X1/F1] [Xn/Fn] = [Xmin/Fmin]
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su
h that ea
h Xi → [Xi/Fi] enjoys all the (respe
tive) properties (IV.52), and KFmin
is nef.

Proof. The hypothesis that the foliation isn't in paraboli
 
hamps implies, IV.e.3.(b) & IV.e.4,

that we must, at every stage, be in the situation of (IV.d.4), i.e. III.d.7.(b).(i). Consequently

we eventually run out of 
omponents of the singular lo
us through whi
h a −1/d F-
urve 
an

pass, and we terminate with KF nef. by the 
one theorem, II.d.1. �

The alternative to whi
h is

IV.e.7. Proposition/Summary. Let everything be as in IV.e.6 with the ex
eption of the hy-

pothesis �not a foliation in paraboli
 
hamps� whi
h we repla
e by �no model has nef. (foliated)


anoni
al bundle� then after a sequen
e of 
ontra
tions and �ips in the sense of IV.a.4, resp.

IV.d.3, as des
ribed in (IV.53) all of (IV.52) 
ontinues to hold (i.e. we're still ex
luding the

ex
eptional 
ases IV.e.3 and IV.e.5) and exa
tly one of the following happens

(a) Xn → [Xn/Fn] is a Mori �bre spa
e, i.e. the lo
us of a single extremal ray is all of Xn

and the foliation is a bundle of foliated varieties where the universal 
over of a �bre is

the radial (supposed saturated in dimension 1) foliation on a weighted proje
tive spa
e

whose dimension is 1 i� the foliation singularities are 
anoni
al.

(b) At least one of IV.d.4.(a) or (b) o

urs at every 
onne
ted 
omponent of the singular

lo
us. In parti
ular, therefore, all of the foliation singularities are 
anoni
al.

Proof. If we ex
lude (b), then the only other thing that 
an happen is that the lo
us of an

extremal ray is everything with the 
hamp itself des
ribed by III.d.7.(b).(i), i.e. (a), while the

various fa
ts about 
anoni
al vs. log-
anoni
al singularities are just the de�nitions. �

This leaves us to elaborate the �nal 
ase

IV.e.8. Proposition/Summary. Should 
ase (b) of IV.d.3 o

ur then, without loss of gener-

ality, there are no o

urren
es of either 
ontra
tions, IV.a.4, or the �ips of IV.d.3, and should

there be any ex
eptional �ips we 
ontinue by

(IV.54)

(

Xn → [Xn/Fn]
)

99K

(

Xn+1 → [Xn+1/Fn+1]
)

wherein all possible ex
eptional �ips IV.e.3 are performed at on
e with all of (IV.52) being

preserved. If we're still not done, i.e. Fn+1 isn't smooth, then IV.d.4.(a) o

urs, and we have

the following 
hoi
es for

(

Xn+1 → [Xn+1/Fn+1]
)

99K
(

Xn+2 → [Xn+1/Fn+2]
)

,

(a) For ea
h 
omponent of the singular lo
us of Fn+1 
hoose an extremal sub-
hamps and

�ip it a

ording to IV.d.3. This will ne
essarily result in the loss of proje
tivity, IV.e.4,

but otherwise the list (IV.52) is 
onserved.

(b) Perform at the same time all possible very ex
eptional �ips, IV.e.5, and thus preserve

the list (IV.52) in its entirety.

In either 
ase Xn+2 → [Xn+2/Fn+2] is a bundle of 1-dimensional paraboli
 
hamps whi
h is

identi
ally its own Mori �bre spa
e.

Proof. All ex
eptional or very ex
eptional �ips 
an only o

ur at smooth 
onne
ted 
omponents

of the singular lo
us so the extremal sub-
hamps that they determine 
annot interse
t (ex
ept,

of 
ourse, in a very ex
eptional �ip wherein Y ′ ∪Y ′′
of IV.e.5 should be thought of as a single

entity) so, without loss of generality, all these operations 
an be 
ombined into one. Better still

both the extremal 
hamp, Y , of an ex
eptional �ip, IV.e.3, or Y ′ ∪ Y ′′
in the 
ase of a very

ex
eptional �ip IV.e.5 are the only invariant sub-
hamps meeting their respe
tive 
omponents

of the singular lo
us, when
e the two ex
eptional 
ases 
ommute with 
ontra
tions, IV.a.4,

and (non-ex
eptional) �ips IV.d.3, so there's no loss of generality in supposing that all su
h

operations have already been exhausted. �
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IV.f. Logarithmi
 remarks. In order to referen
e it we spell out our

IV.f.1. Set Up. By hypothesis D →֒X will be a divisor, no generi
 point of whi
h is invariant,

in a 
onne
ted smooth proper 
hamp, and X \D → [X \D/F ] a foliation with log-
anoni
al

singularities.

As su
h, by I.b.10, D is smooth and everywhere transverse to F . In parti
ular, therefore, for

every e ∈ Z>1, the extra
tion ǫ : X e →X of a eth root, I.a.9, of D is smooth, and the indu
ed

foliation X e → [X e/F e] has, I.b.15, log-
anoni
al singularities whi
h, I.b.13, are terminal

around the pre-image of D . Furthermore we assert,

IV.f.2. Claim. Let everything be as above with f : C →X a map from a (smooth irredu
ible)


urve su
h that (KF + D) ·f C < 0 then f does not fa
tor through D . In parti
ular, therefore,

there is a lifting f e : C e →X e
and KFe ·fe C e < 0.

Proof. The tangen
y between D and F always yields a se
tion of OD(KF + D), whi
h by

hypothesis is trivial, i.e. in a highly degenerate 
ase of II.d.3 the tra
e is a 
onstant se
tion

overD , so f 
ertainly 
annot fa
tor through it. As su
h there is 
ertainly a lifting f e : C e →X e
,

while

(IV.55) KFe ·fe C e ≤ (KFe + De) ·fe C e = (KF + D) ·f C < 0

where ǫ∗D = eDe
, and De

is smooth. �

It 
ertainly therefore follows that if KFe
is nef. then KF + D is nef., but, plausibly in running

the minimal model programme for X e → [X e/F e] we 
ould loose the hypothesis of IV.f.1.

Observe, however, that the operations of �ipping and extra
ting roots 
ommute, i.e.

IV.f.3. Fa
t. For any any 
ontra
tion, resp. �ip,

(IV.56)

(

X e → [X e/F e]
)

99K

(

X e
+ → [X e

+/F e
+]

)

in the sense of IV.a.4, resp. IV.d.3, there is a 
ontra
tion, resp. �ip,

(IV.57)

(

X → [X /F ]
)

99K

(

X+ → [X+/F+]
)

su
h that the proper transform, D+ →֒X+ satis�es IV.f.1, and X e
+ →X+ is the extra
tion of

an eth root of D+.

Proof. That a 
ontra
tion, resp. �ip, of X e → [X e/F e] determines the same of X → [X /F ]
is immediate from IV.f.2 and the de�nitions if X has proje
tive moduli. However, even without

this, it still follows sin
e proje
tivity is only used, 
f. III.d.2, to ensure that the 
ontra
ted,

resp. �ipped, sub-
hamp Y meets a unique 
omponent of sing(F ) through whi
h ea
h of the

−1/d F 
urves whi
h 
over Y must pass. Irrespe
tively, what we need to do in the �rst instan
e

is to prove that there is a map,

(IV.58) X e
+ →X+

To this end observe, exa
tly as in the �nal steps of the proof, (IV.19) et seq., of IV.a.4, the ex-

pression of other side of (IV.58) as a lo
ally 
onstant gerbe over an orbifold, I.a.6, is determined

in 
o-dimension 2, so, without loss of generality, there is no generi
 stabiliser. Furthermore, �ips

are a
tually �aps, so by the uni
ity of 
ontra
tion both sides of (IV.58) have the same moduli

X+, and when
e they equally fa
tor through the same Vistoli 
overing 
hamp X v
+ , I.a.2. Now,

to go from any smooth 
hamp to the Vistoli 
overing 
hamp of its moduli one kills, [Vis89, 2.8℄,

pseudo re�e
tions. A pseudo re�e
tion, however, of a foliated 
hamp stabilises exa
tly one of

an invariant divisor or a generi
ally transverse divisor, so we have further fa
torisations su
h

as

(IV.59)

X e
+

kill transverse−−−−−−−−→
re�e
tions

X i
+

kill invariant−−−−−−−−→
re�e
tions

X v
+
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and similarly for X+ →X v
+ . Now let x be a geometri
 point of the proper transform De

+ →֒ X e
+

of D ; Gx its stabiliser; and U → X e
+ an étale neighbourhood then there is a non-trivial

normal sub-group, Sx, generated by pseudo-re�e
tions �xing smooth bran
hes of De
+, while

X e
+ → [X e

+/F e
+] is smooth at x by our hypothesis IV.f.1 and IV.a.4. As su
h by I.b.13 and

(the non-subtle) part of I.b.6, the indu
ed foliation, G , on V := U/Sx is also smooth. Equally

U → V is rami�ed uniquely in the image, ∆, of D , to order e so, there is a fa
torisation

(IV.60) U → V e → V

through an eth root of ∆ in whi
h the �rst map is almost étale, so by op. 
it. V e
in the indu
ed

foliation G e
is log-terminal. Consequently, V → [V/F ] with the orbifold boundary (1− 1/e)∆

is also log-terminal, when
e by I.b.14 ∆ is smooth and everywhere transverse to G , and so De
+

is too. This is, however, equivalent to: Sx is a 
y
li
 normal sub-group of Gx and the restri
tion

of the 
hara
ter, χx : Gx → Gm a�orded by De
+ to Sx is an isomorphism, so every sub-group

of Sx is normal. The monodromy of every generi
 point of De
+ is, moreover, of the form

(IV.61) 0→ µe → µee′ → µe′ → 0

where e′ is the order of the 
orresponding stabiliser in the original X . Consequently, the µe in

(IV.60) a�ord a well de�ned normal sub-group s
heme of the stabiliser S → De
+ whi
h just as

in (IV.59) 
an be killed to yield a fa
torisation

(IV.62)

X e
+

kill re�e
tions−−−−−−−−→
in µe

X j
+

kill all further−−−−−−−−→
re�e
tions

X v
+

in whi
h the image in X j
+ of De

+ is smooth everywhere transverse to the foliation, and the

�rst map in (IV.62) is just the extra
tion of an eth root. By de�nition, however, X j
+ and X+


oin
ide in 
o-dimension 1, and sin
e they're both smooth they're equal by purity and I.a.4. �

Next observe that we equally have a log 
one theorem, i.e.

IV.f.4. Fa
t. Let X \D → [X D/F ] be a logarithmi
 foliated normal 
hamp with both KF

and D Cartier; log-
anoni
al singularities in dimension 1 and proje
tive moduli, then there are


ountably many F -invariant paraboli
, 
hamp Li, with, 0 < −(KF · + D) ·Li ≤ 2 su
h that,

(IV.63) NE (X )R = NE(X )KF+D≥0 +
∑

i

R+ Li

where NE (X )KF+D≥0 is the sub-
one of the 
losed 
one of 
urves on whi
h KF + D is non-

negative. Better still the R+ Li are lo
ally dis
rete, and if R ⊂ NE (X )R is an extremal ray in

the half spa
e NEKF+D<0 then it is of the form R+ Li.

Proof. By I.b.14, IV.f.2 is independent of any smoothness hypothesis, so, II.d.1, we have a 
one

theorem for KFe
. On the other hand, if R ⊂ NE (X )R is an extremal ray in the half spa
e

NEKF+D<0 then it's an extremal ray in the half spa
e NEKFe<0 for all e ≫ 0, when
e by

II.d.1 there is an invariant paraboli
 
hamp f : L → X with KFe ·f L ≥ −2 parallel to it.

In parti
ular, therefore, the extremal rays in this half spa
e are lo
ally dis
rete. Similarly if

ρ is the dimension of Néron-Severi, with α ∈ NE1(X ), then there are a sequen
e of 
lasses

αe ∈ NE (X )KFe≥0, and generators Rei of extremal rays, 0 ≤ i ≤ ne ≤ ρ, in the half spa
e

NEKFe<0 su
h that

(IV.64) α = αe +

ne
∑

i=1

Rei

Subsequen
ing in e as ne
essary, we may suppose n = ne is independent of n, and all of αe,

Rei 
onverge. Plainly, however, the αe 
onverge to a 
lass in the half spa
e KFe ≥ 0, whi
h,
equally is either true of a given Rei, or it belongs to a half spa
e KF +D + ǫH < 0- H is ample,

ǫ > 0- in whi
h, as noted, extremal rays are dis
rete, so R+Rei is independent of e. �
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Whi
h 
an be 
ombined with IV.f.3 to yield

IV.f.5. Proposition/Summary. Let X \D → [X \D/F ] be as in IV.f.1 with proje
tive mod-

uli, and non-empty boundary D ; X 2 → [X 2/F 2] the square root of D ; X 2
final → [X 2

final/F
2
final]

the result of a maximal sequen
e of 
ontra
tions and �ips in the sense of IV.a.4, resp. IV.d.3,

as des
ribed in (IV.53) (i.e. we ex
lude the ex
eptional 
ases IV.e.3 and IV.e.5) then there

is is a foliated logarithmi
 
hamp Xfinal\Dfinal → [Xfinal\Dfinal/Ffinal] satisfying IV.f.1 with

proje
tive moduli, and non-empty boundary of whi
h X 2
final →Xfinal is the square root of Dfinal,

and exa
tly one of the following happens

(a) KF2
final

, so, IV.f.2, a fortiori KFfinal
+ Dfinal, is nef.

(b) The foliation X 2
final → [X 2

final/F
2
final] is a bundle of foliated varieties where the universal


over of a �bre is the radial foliation on a weighted proje
tive spa
e of dimension at least

2. As su
h the same is true of Xfinal\Dfinal → [Xfinal\Dfinal/Ffinal]; D is the hyperplane

at in�nity, i.e. up to 
hange of weighted proje
tive 
oordinates x0 = 0 on the universal


over in the notation of I.d.2; and KFfinal
+ Dfinal is torsion.

(
) Idem as item (b) ex
ept that the �bres of the bundle are weighted proje
tive spa
e of

dimension one, and the implied Mori �bre spa
e is exa
tly the foliation Xfinal\Dfinal →
[Xfinal\Dfinal/Ffinal], i.e. on ea
h paraboli
 �bre KFfinal

+ Dfinal is negative.

Proof. By II.d.5 the stru
ture of a KF + D negative invariant 
hamp f : L → X is rather

parti
ular, i.e. either it misses D 
ompletely, or it misses the singular lo
us 
ompletely, and 
uts

D in one point. If, however, IV.e.7.(b) were to o

ur for X 2 → [X 2/F 2], then the foliation is

in paraboli
 
hamp; the generi
 
hamp must meet D ; but none of the smooth invariant 
hamp

in the ex
eptional �ipped lo
us- E+ in IV.e.3.(b)- 
an meet D be
ause an extremal subvariety

satisfying IV.e.1 must meet the singularities. Consequently by IV.f.2, IV.f.3 and IV.e.6 it

remains to show that IV.e.7.(a) implies IV.f.5 (b) or (
), but this is 
lear sin
e by I.d.2.(a) and

I.
.3 the only divisors everywhere transverse to the radial foliation are, in the notation of op.


it., de�ned by a weighted homogeneous fun
tion, F , of weight a0 su
h that

∂F
∂x0
6= 0. �

Finally, let us 
on
lude with

IV.f.6. Remark. While it's true, I.22, that the only part of a divisor whi
h is relevant to minimal

model theory are the 
omponents whose generi
 points are transverse to the foliation, it may

well be 
ase that one starts with a divisor D = D ′ + D ′′
where, say, D ′

satis�es IV.f.1, D ′′

is invariant, and whether D , or just D ′′
is simple normal 
rossing, and, for whatever reason,

one wants to have a similar situation on Xfinal after running the minimal model programme

IV.f.5. Now, 
ertainly, hypothesis su
h as D ′′
simple normal 
rossing are nothing to do with

the de�nitions of log-
anoni
al singularities, so there's no reason for them to be 
onserved by

IV.f.5. On the other hand, simple normal 
rossings whether of D or D ′′

an, by [BM97℄ and the

de�nition of log-
anoni
al singularities, be restored by invariant blowing up without prejudi
e

to the KF + D nefness 
on
lusion of IV.f.5.(a) or the smooth �bration in paraboli
 
hamp

statement IV.f.5.(b).
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