SEMI-STABLE REDUCTION OF FOLIATIONS

MICHAEL MCQUILLAN

ABsTRACT. The content, [ is the minimal model theorem for foliations by curves. It con-
tinues the roll out of the various ingredients in the Green-Griffiths conjecture for algebraic
surfaces, [McQ). The minimal model theorem is, however, of an independent purely algebro-
geometric interest, and is presented as such, i.e. a self contained theorem in complex algebraic
geometry without foliation dynamics, and independent of the aforesaid motivation. A working
knowledge of algebraic champs (the mis-translation stack will be eschewed) is required.
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INTRODUCTION

In a historical quirk, ¢f. [Kol96l, Intro.|, the study of the canonical bundle of higher dimensional
varieties initiated by [Mor82), and, as such, often called Mori theory, has long ceased the original
focus on rational curves in favour of a co-homological approach which would be better described
as Kawamata theory. It is, therefore, not without irony that the study of rational curves on
varieties foliated by curves is, arguably, Mori theory as Mori intended and leads to a complete
minimal model programme.

Everything takes place in characteristic zero, so, say a projective variety X/C, and a foliation
by curves, .#, is just a (usually saturated) rank 1 sub-sheaf of the tangent sheaf, (LI9). Lo-
cally where both X and % are smooth this corresponds, by the classical Frobenius theorem,
to a smooth fibration in the analytic topology. We therefore adopt the notation (and it’s only
notation) X — [X/.Z] for foliations in order to reflect better the underlying geometry/real
definition of a quotient of X by the holonomy groupoid, cf. & [Mad Trrespectively,
there is, under mild hypothesis, e.g. X smooth, a well defined bundle, K4, of forms along the
leaves, and corresponding notions, [l of foliated Gorenstein, resp. Q Gorenstein singular-
ities. Similarly, there are, functorially with respect to the ideas, notions of foliated terminal,
log-terminal, canonical and log-canonical singularities, Unlike their classical counter-
parts, however, these definitions always admit a simple description in terms of local algebra.
For example, terminal (Gorenstein) is equivalent, [Lb.T3l to smooth along the foliation, or,
equivalently given everywhere locally by a non-vanishing vector field, 9, while a Gorenstein
log-canonical singularity is a point, p, where although 0 vanishes, the implied linearisation

5. mp) | mbp)
“mZ(p)  m(p)

(0.1)

is non-nilpotent, [LhH

Already this local global translation is highly indicative of why Mori theory of foliations by
curves is that much more tractable than that of varieties. Nevertheless, there is no free lunch,
i.e. it transpires that from ambient dimension 3 on that there are foliations by curves which
never have log-canonical singularities on any smooth bi-rational model of the ambient space.
The phenomenon is quite general, [MPI3, §.IILiii|, and, in se, straightforward enough, i.e.
there are certain finite group actions on vector fields whose fixed points cannot be separated
from the singularities while preserving smoothness of the ambient space. In practice, however,
it means that if one wants a model of a foliation X — [X/.Z] with (foliated) log-canonical
singularities, and X smooth, then one is obliged to pass from the category of varieties to the
2-category of Deligne-Mumford champs. In this context, the main theorem of [MPI3] is the
existence of log-canonical resolutions in ambient dimension 3, and, the reader should be aware
that for the moment the existence of log-canonical resolutions in higher dimension is open.

Irrespectively, we are obviously obliged to take as our starting point smooth foliated champ

2 — [Z ] F] with log-canonical singularities- from the existence of the Gorenstein covering

champ, LD & [BMYI7]: if there is a model with log-canonical singularities then there is one in

which the ambient champ is smooth. This begins, however, to show signs of a rather pleasing
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loop since the natural context of the classification, [McQO§], of foliated algebraic surfaces
is exactly foliated smooth bi-dimensional champs, while the universal algebraic foliation in
(hyperbolic) curves .#,1 — .y is again, naturally, a smooth Deligne-Mumford champ.

To say that this begs the question of whether the minimal model programme for foliations by
curves could be run wholly inside the 2-category in which the ambient champ is smooth may,
to experts in the Mori theory of varieties, seem rather absurd. It transpires, however, to be the
case in a way highly reminiscent of the structure of .#, 1 — .#,. The precise theorem is,

1. Main Theorem. ([Zed Ve [Ved) Let 27 — [2/F] be a foliated champ which

enjoys the following further properties
(0.2) smooth; projective moduli; log canonical, resp. canonical, foliation singularities

then there is a sequence of contractions and flips

%:% % """ %n:%min

(0.3) l S l I ____{

such that each Z; — [ 2;/.F;] enjoys all the (respective) properties [LQ), and exactly one of the
following occurs

(a) Kz, ts nef.

(b) Zmin — [Zmin/ Fmin] is a Mori fibre space, i.e. the locus of a single extremal ray is all
of Zmin, and the foliation is a bundle of foliated varieties where the universal cover of a
fibre is the radial (supposed saturated in dimension 1) foliation on a weighted projective
champ, [LLA, whose dimension is 1 iff the foliation singularities are canonical.

Here a radial foliation is just the champ/weighted projective space variant of a pencil of lines
through a point of projective space, and in a further irony, the harder part of the theorem is
(b) in which the use of the word flip is slightly loose since it may, when the singularities are
canonical, involve “very exceptional flips”, Ve i.e. a little invariant blowing up in the final
stage, to preserve projectivity. The content of the theorem, however, should be clear: i.e. either
we get a minimal model, or a bundle of Fano objects, and the Fano objects are particularly
simple, in fact, to all intents and purposes, rational curves if the singularities are canonical.

This said, let us give a brief breakdown both of the paper and the proof.

[. The first chapter is preliminary in nature. It contains: generalities, [[al on Deligne-Mumford
champs; a revision of foliation singularities, [} the theory of weighted projective champs, [[d,
and their radial foliations, [Ldl a non-embedded variant of completion, [[d and some remarks
on the analytic topology, [ Technically, it’s worth flagging the last 2 sections since the fact
that many things fail to be an embedding for (separated) champs which are trivially so in the
world of varieties, e.g. graphs of maps, is an issue, albeit sometimes it’s true for trivial reasons,
i.e. that the étale topology is non-classical, but in the analytic topology one can still embed.

II. The second chapter is the critical one. It first proves the cone theorem, [LdJl in maximal
generality. This was already done in [BMI6] for foliated Gorenstein varieties, and its extension
to foliated Gorenstein champ, [Lal[T.dl may, largely, be considered technical in nature. In any
case, it reveals, that the K z-negative extremal rays are invariant parabolic (i.e. dominated
by a rational curve) champs, ., not factoring through the singular locus. Their particularly
simple intersection with the singular locus, which occurs at a unique point p : pt — &, of the
foliation is described in [[Ld, their normal bundle (should they have only nodes) by [T, and
their formal neighbourhoods (again for singularities no worse than nodes) in[[I.g] The key point
here, [[T.g-3} is not only that the normal bundle determines the formal neighbourhood, but that
everything is determined by the linearisation, ([LTl), at the singularity p whose eigenvalues are,
3
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up to scaling, the slopes of the Harder-Narismhan filtration of the normal bundle. The section
concludes with an examination of the functoriality of the relationship between between ([LTI)
and the Harder-Narismhan filtration, [l i.e. the said scaling is ambiguous in a non-trivial
way up to +1, and this has a global manifestation; along with the necessary preliminaries, [L1
for studying extremal rays with cusps.

III. The third chapter globalises the infinitesimal information of the second to describe the
sub-champs swept out by extremal rays beginning with the general discussion [ILal which leads
to a definition in the specific, [ILadl, of extremal champs. As such [ILDHITdl is devoted to
describing their structure, which, as one might imagine from [I.(b) is, [IL.d7 basically that
of a bundle of radially projective champs. The base of this bundle is essentially a smooth
component of the singular locus, but the aforesaid issue of 1 in the scaling of (L) means
that even when it has sense for it to be a Zariski bundle, it may not be.

IV. Finally we construct contractions and flips, or, better, flaps, since everything is just a
question of blowing up and down. Indeed, as one might imagine, contractions, [N al[V.H are
easy. A critical fact, however, emerges, Va4 that although a contraction renders the ambient
champ less space like, i.e. can increase the local monodromy, it renders the foliation completely
smooth about the contracted locus. As such, when one brings the full weight of the infinitesimal
knowledge of § to bear in order to describe the formal neighbourhoods of extremal champ in
a similar manner, [V.d to that of a single ray in order to flip, [N.d], by the simple expedient of
weighted blowing up and down, one concludes that flipping must terminate because it destroys
a component of the singular locus at each stage. This leaves only loose ends, [N.d to tie up
related to scaling by +1 of (], all of which can only occur when the generic leaf of the
foliation is dominated by a rational curve. Consequently we conclude the demonstration of [1
in [d, and provide a log-variant in [V

[ am indebted to Bogomolov for pointing out that the language of algebraic champs was the
correct setting for the main theorem; to Brunella for explaining to me the role of holonomy; to
McKernan for furnishing an example that the issue of ([LT]) with integer eigenvalues being only
well defined up tp %1 is genuine; to Marie Claude for the figures; and Cécile for the original
typesetting, with any subsequent flaws being the result of my own clumsy modification.

I. PRELIMINARIES

[.a. Normal-folds. A normal-fold is a particularly simple kind of champ,to wit:

La.l. Definition. A normal fold is a not necessarily tame (although this will always be our
context) excellent normal separated Noetherian Deligne-Mumford champ every generic point
of which is scheme like.

A particularly important class of examples is given by

[.a.2. Fact/Definition. ([Vis89, 2.8]) Following standard usage a smooth (over an implicit
base S) normal-fold will be referred to as an orbifold. In particular: a (separated) algebraic
space, X, of finite type over a field k has strict (or even non-strict if the action is tame) quotient
singularities iff there is an almost étale map, u: 2" — X, from a smooth (over k) orbifold. In
this case X is the moduli, [KNM97, 1.3], of 2", and conversely 2" is unique up to equivalence.
As such 2" will be referred to as the Vistoli covering champ of X.

The following is a tiny variation on [Vis89, 2.8|’s treatment of the Vistoli covering champ

L.a.3. Lemma. Let yp: Z — X be the moduli of a normal-fold, with U — %2 an étale atlas
then

(L.1) R := ( normalisation of U xx U) = U

defines a groupoid and 2 is equivalent to the classifier [U/R].
4
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Proof. U xx U = U is a groupoid, so its normalisation is too. Now, let V' «— 2" be the
everywhere scheme like embedded dense Zariski open guaranteed by the definition, [adl and
U :=U x4 V, then V is embedded in X, so U' xy U’ is a Zariski dense open of R. It is,
however, also a Zariski dense open of Ry := U X 9 U, and we have a fibre square

UxxU «— R

(1.2) | |

Agr/x
%ch%‘<—/

where by hypothesis the lower horizontal is finite. Consequently Ry — R is a finite bi-rational
map of excellent normal schemes so they're equal. O

Irrespective of normality we have the further simplification

lL.a.4. Lemma. Let pu: 2 — X be the moduli of a separated excellent Deligne-Mumford champ,
X" — X the (open, possibly empty) locus where p s an isomorphism, and f : % — X a map
such that f~1(X') meets every generic point then f lifts to a composition % — X B X iff
it lifts everywhere locally, i.e. for every étale neighbourhood U — 2~ of the image f(y) of a
geometric point y there is an étale neighbourhood V, of y and a lifting V,, — U of f.

Proof. Necessity is obvious. By [KM97, 1.3] and [Vis89, 2.8|, there is, independently of any
normal-fold hypothesis, an étale atlas U = [[, U, of 2" and finite groups G, acting on U,
such that V := ][, Vi := Us/Gq is an étale atlas of X with Uy, = 2" xx V,,. Now for anything
with a well defined map to X denote with a’ the fibre over X', so, we have open embeddings
(1.3) W' W U W= xxV,

Consequently, by hypothesis, and refining U,, if necessary, there is an étale atlas Y, — %, and
maps fo : Yo — U, such that

Yo —— U,

(1.4) l l

Yo —— Vau

commutes. In particular, therefore, the G, torsor Y, xy,, U is trivial, and we consider

Yo=Yy x Go —27 5 U,
0 H —0.fa(y)

(15) left vertica‘llin (1)

24

which leads (it’s here, ¢f. [Ladl, we use generically scheme like) to a commutative square

Yb/ horizontal U’

in (C3)

via verticallin CH l

X — X
As such, if we form the groupoids R :=U X2 U = U, and Y7 := Yy xg Yy = Y| then (L6)
ensures that ' — X’ — 2  is equivalent to the composition of functors

(L6)

(L.7) Y/ - R =UxxU <R
while by hypothesis Y] is dense in Y7 and 2 is separated, so the simple of expedient of taking
the closure in () defines a functor Y7 — R. O
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This is sufficiently close to optimal as to merit

I.a.5. Remark. One cannot replace X’ by a Zariski open sub-champ 2”7 — 2" in Ladl Indeed
take 2~ to be the weighted projective champ P(n,n),[Ccdl n > 1. It’s moduli is P!, so the fibre,
2, over a standard A' is an embedded Zariski open. Moreover it’s isomorphic to Al x Bu.,
so in particular admits a section, and we could try to take & = P!. The gerbe P(n,n) — P! is,
however, non-trivial so the map %’ — 2" cannot be extended to % — 2 even though it is
locally trivial, whence a fortiori without local obstruction. The problem is that if one replaces
the moduli X, resp. X', by 27, resp. 27, in (L) then the diagram needn’t 2-commute in a
slightly unusual way. Specifically, it’s 2-commutative on geometric points, p say, by way of a
natural transformation 7, between either possible composition, which, in the specific example,
if say Up, Uy are points in the standard affines around 0 and infinity is

1p if p € Uy,
Mp =

1 p—l/n

(1.8)
p ——p if pe Ux\0,

where the latter arrow is to be understood in the presentation (L32). Plainly, however, p — 7,
isn’t even continuous for p in Ux\0, and ([LQ) fails to be 2-commutative.

This can often be combined with

La.6. Fact. Let 2 be a (connected) normal (or slightly more general uni-branch) excellent
Deligne-Mumford champ then there is a unique normal-fold Zy (slightly more generally uni-
branch-fold with the obvious definition of that notion) such that 2 — 2y is a locally constant
gerbe under some finite group Bg.

Proof. Since 2" is excellent and uni-branch one can insist, [EGA-IV.2, 7.6.3], that the atlas
U = ][, Ua encountered at the beginning of the proof of [[adl consists solely of irreducible
(affine) schemes U,. Now for G, of op. cit. define G), as the kernel of the representation
Go — Aut(U,) with G7 the image, then since 2 is uni-branch [], U, x G, is a normal
(groupoid sense [KM97, 7.1]) U-group scheme of the stabiliser, so for R := U x oo U = U, there
is, op. cit. 7.4, a well defined quotient R — R” where the latter is locally of the form [U,/GZ].
As such define 2j to be [U/R"], and observe that all the G/, are isomorphic. O

Finally another important application of normality. Specifically let U be the spectrum of a
Noetherian local ring, A, with closed point x, and j : U’ — U a Zariski open whose complement
is defined by a regular sequence of length at least 2. As such, for n € N the Kummer sequence,

(1.9) 0— ptn — G = Gy — 0,

applied to U and U’ combine to afford a short exact sequence

(1.10) 0 — HYU, pn) — HY(U’, pt) — Pic(U")[n] — 0
In particular therefore, if A is strictly Henselian and n=! € A,

(I.11) HY(U', 1) = Pic(U")[n]

Now in the particular case that A is normal excellent we can take U’ to be the regular locus,
and identify (primitive) generators of the right hand side of (LIIl) with Q-Cartier divisors, L,
on U of index n = n(z), i.e. a Weil divisor, L, on U such that nL, but no smaller multiple,
mL, 1 <m < n, is a line bundle, while the elements of order n on the left are just u,-torsors
V! — U’ of order exactly n, and we assert

[.a.7. Fact/Definition. For a Q-Cartier divisor, L, of index n on a normal strictly Henselian

U over which n is invertible, the associated index I-cover, V. — U, is the integral closure of U

in the corresponding p,-torsor V! — U’. By construction L | V' is the trivial bundle, and, in a
6
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sense, universally so, i.e. if W — U is any finite map from a normal scheme W every component
of which is dominant such that L | W is trivial then it factors uniquely as W — V — U. In
particular if A — U is the strict Henselisation of some (scheme) point u of U of index m|n then
the normalisation, IV, of V' x A is the trivial p» -torsor over the index 1-cover, M, of A.

Proof. 1t remains to address the universal property, wherein, without loss of generality W is
connected. As such all of U, V, W are the spectra of normal Henselian local rings, so they
are all domains, while the function field of V' over that of U is Galois by construction, so the
factorisation is unique if it exists. Now let W’ be the fibre over U’ then by ([LIIl) the p,-torsor
W' xy V' has a section, which gives the factorisation W/ — V' — U’, and since everything is
So the simple expedient of taking global functions on these opens gives W — V — U. Applying
this to the in particular: there is a map from N to M, while V/ X A is a Zariski dense open
of the former which is the trivial pin torsor over the pre-image of U’ in the latter. O

In the category of spaces it’s rather rare that index 1-covers can be glued whereas:

[.a.8. Fact. Let L be a Q-Cartier divisor on an excellent normal Deligne-Mumford champ %
then there is a finite map, f : % — 2, from a normal Deligne-Mumford such that f*L is
Cartier enjoying the following universal property: if g : & — 2 is a finite map from a normal
champ such that g* L is Cartier, then there is a 2-commutative factorisation

AR

(1.12) ¥ - 2

such that for any other factorisation, € : g = fh there is a unique 0 : h = h for which

(9:0)€ =¢.

Proof. For every closed point = of 2" let n(x) be the index of L at z, and U, — 2 a sufficiently
small étale neighbourhood such that the index 1-cover V, — U, of [Lad is well defined, with
U, V) as per op. cit.. Now, for U =[], Uy, we can without loss of generality suppose that 2~
is the classifying champ of the étale groupoid Ry := U x4 U = U, and that U’ := [[, U, is
the locus where U is not regular. As such, the restriction, R, = U’ is a dense Zariski open of
Ry equivalent to the restrictions R’ = V' :=[[V, where R’ — Ry, is both étale and finite, and
we define R = V to be the integral closure of Ry in R’. Consequently from the commutative
diagram of fibre squares

Ry «—— R, —— R

(1.13) l l l

UxU +— U xU «—— V' xV/
and V x V — U x U finite, R = V defines a groupoid which by the in particular in [[a has
étale source and sink.

Now let g : & — Z be given, then, up to equivalence, we can identify this with a functor of
groupoids, g : W' — Ry, where W! = W x » W = W for some étale cover W — Z finer than
the pre-image of U. By [Lall W — U factors (uniquely) through V affording a (unique) map,

(1.14) hl : Wl — RO XUxU VxV

and R is the normalisation of the latter, while every local ring of W' is finite over U x U so

this actually factors as a functor (because everything is unique) h : W! — R. As such we get

a unique strictly commutative factorisation g = hf given W — U. This supposes, however,
7



that all of 27, %', 2 were the classifying champ of the said groupoids, whereas they may be
no better than equivalent to such, and whence the uniqueness statement (C12). ]

In the same vein one has

[.a.9. Fact/Definition. Let 2 — 2" be an effective Cartier divisor on a normal champ 2 .
As such for a sufficiently fine atlas U — 2~ we may identify 2 with the classifier of a groupoid
(s,t) : Ry = U and suppose that 2|y is defined by z = 0 where s*z = gt*z for some co-cycle
g : Ry — G,,. Now for n € N invertible in every local ring of 2" define a groupoid with objects

(I.15) normalisation of (T™ = z) — U x A'.
and arrows the normalisation, R, of the base change groupoid Ry = V, i.e. the fibre
Ry —— V xV

(L.16) l l

Ry -2 UxU

so that R' = V is a groupoid because R{, = V is, and everything is normal. Equally R’ admits
the explicit description:

(I.17) normalisation of (T]' = s*z, Tq' = t*2) < Ry x AZ.

which is the same thing as taking normalised nth roots of s*z and the (invertible) transition
function g. By hypothesis, however, n is everywhere invertible, so " = V has étale source and
sink, and we define 2”7 = [V/R'| — 2 to be the (extraction of a) nth root of 2. Observe,
moreover, that a section of s : R — V is a choice of nth root of g, so from the Céch boundary
in ([C3), the class of the fibration ' = 2 x 9 2" — 2 in B, ’s is exactly

(1.18) c1(2) € HA(2, pn)

L.b. Foliation singularities. This section is largely a summary, for the convenience of the
reader of the relevant parts of [MPI3]. The one exception to this rule is the concluding di-
gression, [ T2HLLTA on how to avoid the study of boundaries altogether. Our interest is
exclusively in foliations by curves, i.e. if 2 is a Deligne-Mumford champ of finite type over a
field & (so ), sy, 1s well defined) a torsion free quotient

(1.19) ng - Q=0
which is rank 1 at every generic point. Arguably this is not the right definition in positive or

mixed characteristic since in such situations ([LI9) is not likely to be locally integrable in any
meaningful sense. Fortunately we never have to worry about this, so we proceed directly from

LI to

[.b.1. Definition. If 2" is normal and the double dual QVV is a bundle, resp. a Q-Cartier
divisor, then we say that the foliation, .%#, is Gorenstein, resp. Q-Gorenstein, or possibly
foliated Gorenstein, resp. foliated Q-Gorenstein, if there is any danger (which there won’t be)
of confusion. In either case, and indeed even if 2" were only normal, we write K & instead
of QVV, so that in the Gorenstein case there is an ideal Iz supported in the co-dimension 2
(schematic) singular locus Z such that

(1.20) Q:Ky-IZ%Q\/v:Ky
As such, even in the analytic topology, the classifying champ, [2 /%] may have no sense,

albeit analytically (and with probability zero in any algebraic topology) [2™\Z/.%#] has sense.
Nevertheless to better convey the idea we write

(L.21) 2 — 2] 7]

as a short hand for [T and Qiﬁ{/gg for the kernel in op. cit..
8



Unfortunately it’s not technically correct to view a quasi-projective variety as a proper champ
with infinite monodromy on the boundary, so we make

[.b.2. Remark. All of this is equally valid for champs with boundary, i.e. a couple (£, Z), for
2 — Z a reduced Weil divisor. Usually there’ll be some further regularity, e.g. 2 and 2
smooth over k, but all that’s a priori required is that we can give a sense to the sheaf ng(log 2),
so, 2" normal is sufficient. In any case, it therefore follows that the canonical bundle of the
foliation .# may have competing definitions according as to whether a boundary is involved,
K 7, or not, K;;?log. These are related by,

(1.22) Kz =K¥%+> (%)%

where Z; are the irreducible components of &, and for W a Weil divisor

(1.23) (W) = 0 ifw is.ﬁ ( the sense of L)) invariant,
1 otherwise.

Similarly there may also be competing definitions of invariant according as to whether this is
understood for a saturated sub-sheaf of Ty or T4 (—log Z) so that should there be any risk
of confusion the former, equiavelently, LhIl will, following [MPI3, 1.i.2], be refered to as strictly
wvariant. Regardless, almost always our boundary will be empty, but when it isn’t: K4 will,
as suggested by ([22), be reserved for the canonical with log-poles since this is more natural
and the resulting formulae are cleaner.

A case in point is the following cut and paste of [MPT3, L.ii.1]

[.b.3. Definition. Let (U, D,.%) be an irreducible local germ of a Q-Gorenstein foliated loga-
rithmic geometrically normal k-variety, ¢.e. the germ about the generic point of a sub-variety Y
of a geometrically normal variety such that the log canonical bundle K ¢ is a Q-divisor, then for
v a divisorial valuation of k(U) centred on Y the log discrepancy, az(v) is defined as follows:

By hypothesis there is a normal modification 7 : U — U of finite type, together with a divisor F
on U such that 0y j is the valuation ring of v. In particular, bearing in mind ([[22), there is an

induced foliation .# with log canonical bundle K 3, i.e. whose dual is saturated in T (—log E).
Thus there is a unique integer a4 (v) such that

(1.24) Kz;=m"Kg +az(v)E

and for € as in ([23)) we say that the local germ (U, D,.%) is,
(1) Terminal if az(v) > €(v).
)
(3) Log-Terminal if ag(v) > 0.
(4)

Where the slightly unsettling shift of the definitions by €(v) occurs as a result of the convention
adopted in together with their correct functorial interpretation.

Canonical if a#(v) > e(v).
. #(0) 2 e(v)

Log-canonical if az(v) > 0.

In contrast to this functorial framework, there is a "competing" local notion of what ought to
be a good class of foliation singularities, viz:

I.b.4. Set Up. Let 9 be a singular derivation of a local ring, ¢, with residue field k. Thus, by
definition, if m is the maximal ideal of &, 0 : & — m and
= m m
(1.26) 8:F—>F::pl—>8(aj)
is k-linear by Leibniz’s rule.



The relation between the linearisation ([[28) and ([L23) is as good as possible

Lb.5. Revision. [MPI3, Lii.3]. A Gorenstein foliation over the complex numbers is log-
canonical iff every point is either smooth, or, its linearisation, ([L28]), is non-nilpotent.

Better still, one can always reduce to the Gorenstein case thanks to the specifics of one dimen-
sional leaves, i.e.

I.b.6. Revision. Let (V, D,.%) — (U, D,.Z) be the index 1-cover of the germ in [[53 associated
to the log-canonical bundle K # in the sense of [[a, or, more generally an almost étale map,
then for any (n) in (L23), 1 <n <4, (U,D,.Z) is (n) iff (V,D,.7) is.

Proof. The easy ones are n = 4, [MPI3l 1.ii.5], and the if direction for 1 < n < 3, [MP13],
II1.i.5], which also covers the subtler converse. U

Manifestly, therefore,

I.b.7. Fact/Definition. Let 2\ — [2Z\Z2/%] be a Q-foliated Gorenstein logarithmic
champs, then the index l-cover, 7 : 2 — 2, defined by the log-canonical divisor K &, [a8
will be referred to as the Gorenstein covering champ. The map 7 is étale in co-dimension 2;
there is an identity K ; = 7Kz of log-canonical divisors; X\D — [Z\2/.7] is Gorenstein;
and the cover enjoys (n), 1 <n <4, of ((23) iff 2\2 — [2'\Z/.7] does.

As such, we work almost exclusively with Gorenstein foliations. Similarly the already small
difference between log-canonical and canonical becomes close to irrelevant for minimal model
theory, 7.e.

[.b.8. Definition. Let (U, D,.#) be a germ of a normal foliated Gorenstein log-variety about
a point p such that a generator (in the sense of [LDl vanishes along a sub-variety Y then a
singularity is called radial iff after completion in the maximal ideal we can find a generator of
the foliation of the form,

0 0
1.2 = —+... rTr— + 0
(L.27) 0 nlmlaxl +... .+ oz, +
where z; = 0 defining Y are linearly independent modulo m%J,p’ n; € N, and § € Der(K, Iy)
for some quasi-coefficient field K. In particular for U smooth: D is strictly invariant, [[D2 iff
codim(Y) =r > 2.

By way of clarification let us make

[.b.9. Remark. This isn’t quite a cut and paste from [MPI3], since op. cit. I11.i.2 insists that
Y of has co-dimension at least 2, which, although entirely a question of convention, isn’t
right for doing minimal model theory. In particular, therefore, when Y has co-dimension 1, e.g.
[LI0(c), D=Y.

Irrespectively, the above definition of a radial singularity shouldn’t be confused with the closely
related notion of a radial foliation [Ld.2 and in any case the important point is,

[.b.10. Revision. [MPT3] IIL.i.3]. For (U, D,.%) a germ of a normal foliated Gorenstein variety
over a field k of characteristic 0 the following are equivalent,

(a) The singularity is radial.

(b) The singularity is log-canonical but not canonical.

(c) Y is the centre of a divisorial valuation of k(U) of (log)-discrepancy zero and divisor,
¢f. LB, not strictly invariant.

From which it follows that the passage from log-canonical to canonical is exactly
10



Lb.11. Revision. [MPI3| IILii.2|. If 2\2 — [2\Z/.Z] is a foliated smooth champ over a
field of characteristic zero which has log-canonical but not canonical singularities then every
component of sing(.#) where this occurs is smooth, and there is a smoothed weighted blow
up, [MPT13], Liv.3], in each of which such that the induced log-foliation on the resulting bi-
rational modification 2 — 2 has everywhere canonical logarithmic foliation singularities,
which amounts to the rather strong: at every point of the exceptional divisor, &, the induced
foliation is smooth and every where transverse to &.

Such attention to the details of the logarithmic case notwithstanding our ultimate intention is
to work almost exclusively with an empty boundary. In order to do this we introduce

[.b.12. Definition. A foliated space with orbifold boundary is a triple (U, A,.%#), where U —
[U/Z] is a foliation in the sense of [LhJl and A, is a formal linear combination Y, a;A; of
effective Weil divisors, where a; = 1 — ni_l for some positive integers n; < oo; and we say
(slightly contrary to standard usage) that (U, A,.#) is Q-Gorenstein if U — [U/.#] is and each
A; is Q-Cartier. Moreover if D is the Weil divisor ), A;, then the discrepancy, a%(v), of
(U,A,.7) along a divisorial valuation v is defined to be

(1.28) aZ () =az) = > e(A)mi(l - a;)

i
where a2 (v) are the logarithmic discrepancies, ([L24)), of the foliated log-variety (U, D,.%); € is
as ([[23); and m; are the multiplicities of the A; along the exceptional divisor E encountered
in As such, we then say that (U, A,.%) satisfies the corresponding properties ([L23) if the
respective inequalities hold for a5 (v) rather than az(v).

The introduction of such orbifold boundaries is very much temporary since

[.b.13. Revision. [MPI3, IILi.1]. Let (U,D,.%) be a foliated germ of a smooth log-variety
supported at Z then the following are equivalent,

(1) (U,D,.7) is terminal.

(2) (U,D,.7) is log-terminal.

(3) D is strictly (i.e. in the sense of [LDJl) invariant and % is smooth transverse to the
generic point of Z.

which in turn affords

[.b.14. Corollary. Let (U, A,.%) be a germ of a log-canonical foliation singularity with .Z-
Gorenstein and non-empty orbifold boundary every component, A;, of which is Cartier, then
in fact it’s canonical, and exactly one of the following holds

(1) Not only (U,.#) but also (U,A,.#) is terminal while the non-invariant part of A has
multiplicity 1 and is everywhere transverse to 7.

(2) (U, %), but not (U, A, F), is terminal, the weight of every non-invariant component of A
(of which there are at most 2) is 1/2, and the non-invariant part of D is defined by a single
equation f of multiplicity 2 such that for a local generator, 9, of the foliation 9?(f) is a unit.
(3) As per item (2) except that f has multiplicity 1 and enjoys a simple tangency with %, i.e.
0%(f) is again a unit.

Proof. From ([24)) and ([[2]), the singularity (U, .#) without boundary is log-terminal, while
it is Gorenstein by hypothesis. Thus by it is defined by a no-where vanishing vector field
0, and, [MPT13], I11.i.1] every valuation, v, centred on the singularity has e(v) = 0. In particular,
therefore, (U, A,.%) is always canonical, and it’s terminal iff it’s log-terminal.

Now, supposing, without loss of generality, that no component, A;, is invariant consider the
effect of blowing up in the maximal ideal of the germ. The discrepancy of (U,.%) is 1, so the
11



only way for the multiplicity of D to be more than 1 is if it’s 2 and all the weights a; = 1/2.
In this latter case the initial modification of (U, A,.%) is, therefore, crepant, so the proper
transform must itself be log-canonical, and whence the proper transform of D must only cut
the exceptional divisor in smooth points of the induced foliation, i.e. 9?(f) is a unit for f of
multiplicity 2 defining D. To see that such a singularity is indeed canonical observe (proof of
[MPT3], I11.i.1]) that in the local ring, R, of a divisorial valuation v, we can write

(1.29) d=n""9, f=n"f, d(r)=0,v(r) =1, mneN
for O a derivation of R. As such,
(1.30) e(w) =0=v(df) = (n—2m) +v(*(f)) >n—2m

which is exactly the canonical condition.

Alternatively, therefore, the multiplicity of D is exactly 1, and if it’s not everywhere transverse
to the induced foliation then the proper transform of D must cut the exceptional divisor in
the singular locus of the transformed foliation, and a blow up in this (singular) locus affords a
valuation of negative discrepancy unless the weight is 1/2. As such, we’re in case (1) of [[hI4]
or most of case (3), i.e. it remains to prove that the tangency is simple. Observe, however, that
D cuts the exceptional divisor in a smooth invariant sub-space, and blowing up in this not only
yields a second exceptional divisor along which the discrepancy is zero, but separates the proper
transform of D from the proper transform of the initial exceptional divisor. Consequently, if
the tangency weren’t simple, the doubly transformed D would contain an invariant subspace
of the induced foliation in the second exceptional divisor, and a blow up in this would afford a
valuation of negative discrepancy. Conversely a simple tangency with weight 1/2 is canonical
for the same reason as ([29)-([C30), while an everywhere transverse divisor of any weight is
log-terminal because the "weight 1 case", i.e. r =1 in ([[21) is, [EI0 log-canonical. O

This can be applied to reduce to an empty boundary in the obvious way, to wit:

L.b.15. Construction. Suppose (U, A,.#) is a Q-Gorenstein log-canonical foliated germ with
orbifold boundary, with no boundary component invariant. Then composing the index 1-covers
associated to .# and the boundary components A;, we find a foliated germ with orbifold
boundary (U’, A’, #') satisfying the hypothesis of [hI4l such that U’ — U is almost étale. By
op. cit. and [MPI3], IIL.i.1], the proof of [MPI3, IIL.i.5] goes through verbatim, and the obvious
variant of LD holds, i.e. for any (n) in ([23), 1 <n <4, (U,A,%)is (n) iff (U, A", F) is.
Ignoring, for the sake of argument, the cases (2) and (3) of [L.I4 the latter boundary is, in the
presence of log-canonical singularities an everywhere transverse Cartier divisor of multiplicity
1 together with a weight 1 — n~!. As such if f = 0 is a local equation for A’ then we could
extract a nth root 7 : V — U’ to obtain a Gorenstein foliation V' — [V/.%] such that,

(1.31) Kz=n"(Kz+A)

and again the obvious variant of [[h8 holds- for any (n) in ([CZX), 1 < n < 4, (V,.%) is (n)
iff (U',A',.7") is- for exactly the same reason as above. Plainly all such local constructions
will glue as champs by much the same argument as LB so all this is just the obvious fact
that minimal model theory for foliations with orbifold boundary can be deduced from the
minimal model theory of champs without boundary. The slightly subtler point, however, is
that if one were to begin with a foliated champ 2\% — [2\Z/.#] with (integral) boundary,
then extracting a n(> 2)th root, 2, — 2 of Z yields a foliation Z,, — [Z,/-%,] which has
log-canonical singularities iff 2\2 — [2\Z/.%] does, so that not only the minimal model
theory for foliations with orbifold boundary, but also with integral boundary, §IVl, can be
deduced from the champs theorem without boundary.
12



[.c. Weighted projective champs. All of this section works in arbitrary generality, so over
a base, say Spec(k), where k is a ring, with the object of interest being

Lc.l. Definition. For a = (ag,...,a,) € Z%', n > 0, let A := APT\0 then by the

weighted projective champ P(aq, . .., ay), or just P(a), is to be understood the classifying champ
[Ak /Gy, ] of the action,

(L132) Rp:=Gpp x Ay = At (z0,...,Tpn) A X (T0,...,2Tp) — = (A%xg, ..., A"z,
Just like any quotient space under a group there is a tautological torsor, i.e. Ap x G, with
G,,, action

(1.33) G X (A X Gp) : A X (T % 2) 2 % (\2)

which one extends to a line bundle in the usual way, to wit:

L.c.2. Fact /Definition. Choose an embedding G,, — G, : z — z, then by the tautological line
bundle, (1), on P(a) is to be understood the line bundle G, x Ay, with G, action given by ([L33)
and our aforesaid choice of embeddings. In particular, therefore, we've defined V(&(1)) |a,-
EGA notation- whence as an equivariant ¢4, -module ¢/(1) has generator T' where

(1.34) ™ =)\7IT
so that the bundle w4, /4, of volume forms on A descends to the bundle w := &(—ag—...—an)
on P(a).

Unsurprisingly Serre’s explicit calculation generalises to:

L.c.3. Fact. The bundle O(1) freely generates the Picard group of P(a); there are, for p > 0,
canonical (dual) isomorphisms of free k-modules

HO(P(a),0(p) =S = [[ ka0 oatpor
Poag—+---pnan=p

W' Pla) w(-p) = Spi= [ ke g™
P0ao+ " Pnan=p 0 "

and any other co-homology of any other line bundle in any degree vanishes.

Proof. The Picard group of Ay, is trivial, so a line bundle on P(a) is the same thing as a map
¢ : Ry — Gy, from the groupoid ([32) satisfying the co-cycle condition ¢(gf) = &(g)d(f).
There are, however, no (algebraic) maps from Ay to G,,, so all such co-cycles are integer
multiples of the tautological one. As to the second part: if 7 : Ay — P(a) is the projection
then for any sheaf .# on Ay the Leray spectral sequence reads

(1.36) H'(P(a), RPm.F) = H (A, F)

Now the co-homology of the right hand side of ([38)) is known, i.e. there are canonical dual,
ISGAZTI Exposé IV.5.5], isomorphisms

P
while on the left hand side there are canonlcal isomorphisms
(1.38) m0x, = [[ 0@, mwae = [[w(@
q€Z qEZ

and all higher direct images in ([30) vanish, whence ([33) by identifying the weight of the
action of Gy, in the equivariant isomorphism between ([30) and ([3]) afforded by ([[3ZE). O

In addition the bundle w is the bundle of volume forms on P(a) when this has sense, i.e.
13
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L.c.4. Claim. The moduli of any P(a) is projective, in fact better there is a finite flat map

(1.39) P — P(a) : [zo,. .., zn] — [20°, ..., 20"

and P(a) is Deligne-Mumford iff all the a; are invertible in k. In addition the coordinate
functions, 0; = 8%1_, afford a G, equivariant isomorphism

(1.40) IL; 0(a:) oo, LAk/k

leading to the Euler sequence of G,,-modules on Ay, equivalently bundles on P(a)

a;x;0;

(L41) 0— Tg, = 0 === [ O(ai) = 7 Tp(ay — 0

whenever P(a) is Deligne-Mumford, so in particular

~

(142) AHQP(Q)/]C — W

Proof. The functor A x z; — X x z3* of the corresponding groupoids in ([32) yields (L39),
while the stabiliser of the point with all but the ith coordinate 0 is p4; so the Deligne-Mumford
criteria is plainly necessary, and, similarly it is sufficient since slicing ([[32)) along z; = 1 covers
P(a) by affines with f,,-action. The rest just amounts to A acting on 9; by A\™%. U

The triviality of ([39) notwithstanding we have

Lc.5. Corollary. If k is simply connected, then every Py(a) is simply connected, i.e. irrespec-
tively of any Deligne-Mumford criteria, there are no non-trivial T'-torsors over P(a) for every
finite group I

Proof. By hypothesis P} is simply connected, so it’s sufficient by (L33) to prove vanishing of a
suitable Céch group, i.e. that the groupoid

(143) R := ]P)Z Xp(g) ]P)Z = ]P)Z

doesn’t admit any non-trivial functors to I'. The space R may, by [[32 be expressed as the
classifier of the G, action (z;,y;) — (Az;, A\y;) on the product of affine curves

(L.44) ()™ = (y:)" C A}

complemented in 0 x 0. Now the curves in (C44)) are geometrically connected, so their product
is connected. It’s also l.c.i. of dimension at least 2, so it’s homotopy depth is at least 2,
whence the complement in 0 of the product is connected, and we’re done a fortiori- the fact
that projections in ([LZ]) are the source and sink in ([CZ3) isn’t even needed. O

Of which we will require the following variant

L.c.6. Corollary. If k is simply connected, and 7 : & — Py(a) is a fibration in locally constant
gerbes Bg for some finite group G such that &2 is simply connected, then G is a cyclic group
of order a (invertible in k) and & = Pi(aa) in such a way that 7 is just A — A% in [Tl

Proof. The right way to prove this is the long exact sequence of homotopy groups of a fibration,
which may be done wholly algebraically [McQ1I5| III.g|. However, for convenience here is an ad
hoc argument.

From [CcH Pk (a) is simply connected, so by [GIr7ll, IV.3.4] the locally constant gerbes up to
isomorphism in Bg’s over Pi(a) are canonically isomorphic to

(L.45) H?(Py(a), Z)
14
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where Z is the centre of G. In particular if 22 — 2’ is & modulo the centre, ¢f. [afl then
2" 5 Pr(a) x Bg /7, which isn’t simply connected. As such, without loss of generality G = Z

is abelian, and the Leray spectral for 7w affords an isomorphism
0,1 ~ 2,0
(1.46) E;” = End(Z) o H?(Px(a), Z) = E,
2

If, however, p is the characteristic of k then from inductive application of the Artin-Schrier
sequence

(1.47) 0—-F,—=G,—G,—0

the latter group in ([46) is the prime to p part of Z, so our initial G is cyclic of some order a
prime to p. We have however a fibration,

(L48) Pr(aa) — Pr(a)
in By, ’s by the simple expedient of sending A to A% in [Lcl, which is the generator of (C44). O

Another very important fact which generalises is

Lc.7. Fact. Let n =1 and E a vector bundle on P(«) then there are unique integers b; such
that (non-canonically)

(1.49) ES T o®)
J

Proof. We've done the rank 1 case in [Lc3 and we go by induction on the rank, » > 1. The
push-forward of E to the moduli of P(a) is coherent, so there are plenty of meromorphic sections.
As such, choose one of maximal degree to get a short exact sequence of bundles

(1.50) 0—0b,)—E—E"—0

Now by the induction hypothesis and this is split unless there is some b; > b,, j < r, such
that

(1.51) H°(P(a), O(bj — b, — ag — a1)) # 0

Consequently if we twist ([L20) by &(—b, — ag) then the kernel has no co-homology by [Lc3)
while the co-kernel has a direct summand &'(b; — b, — ag) which has a non-trivial section given
by tensoring anything in (L)) with X{", and we contradict the maximality of b,. O

We’ve passed over the unicity since

I.c.8. Remark. The uniqueness of the integers b; in ([LZJ) is just an easy version of the uniqueness
of the Harder-Narismhan filtration which, for 8; a complete repetition free list of the b; ordered
by 01 < B2 < -+ < B, takes the form

(1.52) E=E'>E' = ][] oj)>---2E™'= J[ 0@)>E"=0
bj>ﬁ1 bj>ﬁm—1
[.d. Radial foliations. In this section we work over C, and, unfortunately we’ll need

I.d.1. Notation. The vector a € Z"}* will be written (at least for this section) as the n-tuple
of positive integers (ag, aa,...,aa,), n > 1, where ay, ..., a, are relatively prime, and a € N.

The lack of symmetry in the notation is in the nature of
[.d.2. Definition. The radial foliation, %, on P(a) is equivalently

(a) The foliation defined by the Oth coordinate &'(ag) — Tp(q) in the Euler sequence ([LATJ).
(b) The foliation defined by the (rational) projection P(a) --» P(aay,. .., aay).
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In the particular case that n = 1 there is a certain ambiguity in the definition according as to
whether one saturates (a) at the centre of the projection in (b), albeit, fortunately this tends
to be clear according to context.

To which one can add a bunch of properties which will aid in radial foliation recognition
I.d.3. Facts. Given a radial foliation P(a) — [P(a)/Z],

(a) It’s canonical bundle, K5 (understood logarithmically if n = 1) is &(ag).

(b) On the étale neighbourhood of the (unique) singular point given by xg = 1, x; = 0,
i>1in ([32), Z is generated by the vector field alarla%l + .. anxn%

(c¢) The ith coordinate axis in (b) is a smooth embedded Z-invariant P(ag, aa;) with Ky
degree —1/aa;, while the degree of the generic invariant champ is —1/a.

(d) The smoothed weighted blow up, [MPI3|, Liv.3], & — P(a) in the singularity with
weights ay,...,a, resolves LI (b). Indeed, ¢f. [LIXIIl the induced foliation &2 —
(2 /%) is a bundle of P(ag,a)’s over a P(aay, ..., aa,), and K;(+&) = Ky for & the
exceptional divisor.

Proof. Of these only (d) is meritorious of comment. Specifically smoothed weighted blow ups
in [MPT3] Liv.3] are understood to have weights without a common divisor, so in the first place
by the formulae of [MPI3l, pg. 89] and [Ladl we have a resolution

Py T P(ai,...,ap)
(1.53) ﬂolweighted blow up with weights a;
P(ag, aay, ..., aa,)
in which the exceptional divisor &y is isomorphic to B, x P(ai,...,a,), and the various
bundles are related by
(1.54) P00 (ay....an) (1) = T 0 (a) — &o

All of which becomes much cleaner if, the common divisor not withstanding, one permits the
weights aaq,...,aa,. This is equivalent to taking an ath root of &, so we get a diagram in
which the square is fibred

weighted blow up extract ath root
P(ag,aai, ..., aa,) ——— P _— Kz
with weights aa; of &y
(L55) ’Jl lpo

non-trivial gerbe
et il c AN

P(aay,...,aay) P(ay,...,an)

of order a

by (L&), i.e. the gerbe of the bottom horizontal is the class of @(1) in H2(P(aq, ..., an), fa)-
In particular, therefore, if & is the new exceptional divisor then ([34)) becomes

(1.56) P Ob(aay,....aa,)(1) = T°O(1) = &

while the fibres of p are identically those of pg. The latter, however, are simply connected since
po has a section, so, [BNOf, 1.1], a local calculation of their non-scheme like points implies that
they’re all P(ag,a)’s. O

By way of disambiguation let us present the next proposition in the form

[.d.4. Fact/Definition. Every deformation of a radial foliation is locally trivial, i.e. if for a

(geometrically) pointed scheme pt = S we have a map 2 — [27/.#] — S (equivalently of
16


file:www.maths.qmul.ac.uk/~noohi/papers/Uniformization.pdf 

foliations indexed by the points of S) for which the special fibre 2 — [Z5/%s| is a radial
foliation, then there is an étale neighbourhood U — S such that

2 xgU ———  2.xU

(L57) l l

(2 xs U/ F| —"— [Xs)Fs| x U

commutes, with the horizontal arrows isomorphisms.

Proof. By [Art69)] it will suffice to replace S, resp. 2", by its completion in s, resp. the fibre, and
to prove ([37) in the formal category- so, keeping the same notation, U = S. Consequently,

if m is the ideal of s and S,, = Spec(@s/m™), it will even suffice to prove (1) with U = S,,,
where, by way of notation, %, := 2 xg S,. Proceeding by induction on n > 1, the case
n =1 is given, while [SGA-Il Exposé IIL.5] applies as written to show that the obstruction to
extending an isomorphism from 2, to 2y x S, to the n + 1th thickening lies in

(L58) H! (20, Top, @ m" /m)

By the Euler sequence, (L), and Serre’s explicit calculation, (Cc3l), this is zero. As such,
we can certainly find an isomorphism f : 2, — 2o X Sy, but it may not be foliated, i.e. the

composition

(1.59) [ QayxSpin)z = Q2 = Kz @09,

may be non-trivial. We have, however, a foliated isomorphism at the nth level, and 27 is S
so (L9 is, equivalently, a non-trivial map

(1.60) Tz |2~ Olao) = Tay)5

where the normal sheaf to the radial foliation is by (L)) described by the commutative diagram
with exact rows and columns

0 0

7 —_— 7
(I.61) 0 —— Oag) —— Il; O(aa;) —— Ilj500(aa;) —— 0
0 — ﬁ(‘c‘zo) — Ty, —  T9yz — 0

0 0

Twisting by 0(—ag) an arrow ([LG0) is, therefore, a quotient of the space of global sections in
the middle of the rightmost column of (L&), 7.e. the C-vector space of vector fields with, in
the notation of ([L32), basis

(1.62) :Eéoa:ill . :E’n" grre apip +aay +---aa, = aj —ag j > 0,4 >0

J
On the other hand- [SGA:-Il Exposé II1.5] again- the possibilities for changing the isomorphism
f are a principal homogeneous space under

(1.63) H(20, To, ® m"/m™*1)
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whose effect on (LE0) is given by the Lie bracket

(1.64) Ty — Hom(Tz, Ty ) : D v [—, D]
which at the level of global sections has, by explicit calculation, image exactly (L62), so a
suitable twist of f under (L&3) is a foliated isomorphism. t

We will equally need a slight generalisation, to wit:

[.d.5. Remark. The same statement is equally true under the hypothesis that the universal
cover of % is a radial foliation. Indeed since for 71 a finite group, all modules in which the
cardinality of m; is invertible are acyclic, and we’re in characteristic zero, so the obstruction
([C5]) still vanishes and ([LB4) is still surjective on global sections.

[.e. Net completion. The entire contents of this section should be standard, but it’s not in
the EGA’s, so we give the details. We begin with the easiest case, viz: a local embedding
f:Y — X of (not necessarily separated) schemes. Thus by definition, [EGAZT 4.2.1 & 4.5.1],
for every y € Y there are (Zariski) open neighbourhoods Y D U > y, resp. X DV 5 f(y),
such that

(1.65) U=V
is a closed embedding. In particular, therefore, we have a short exact sequence
(1.66) 0= .7 = flox — Oy —0

of sheaves, for some ideal .7, and we observe

Le.l. Fact/Definition. For every n € Z-o, define 0y, := f~10x /™, then the ringed space
Y, := (Y, 0y,) is a scheme.

Proof. The question is local on Y, so, modulo notation we can, ([E3), suppose f : Y — X is
a closed embedding of affines. In particular, therefore, it’s defined by a quasi-coherent sheaf of
ideals _#. As such 0y, is the sheaf (on Y') associated to the pre-sheaf,

(1.67) U lim T(V,0%)/T(V, 7)"

vnY=U
This is, however, already not only a sheaf, but the structure sheaf, Ox/_#", of the nth thick-
ening of Y in X, so Y, is a scheme. U

For the avoidance of possibly competing definitions when (without relevance to our current
considerations) things fail to be Noetherian or excellent or whatever let us make

Le.2. Fact/Definition. A morphism f : # — 2 of Deligne-Mumford champs is net if it
is étale locally a closed embedding, i.e. for every geometric point y of Y there are étale
neighbourhoods U — Y of y, resp. V. — X of x = f(y), together with a closed embedding
U — V such that

U——V

(1.68) l l

y L . x

commutes. Consequently if everything is Noetherian, then f is net iff the strict Henselisation
ﬁ&y is a quotient of ﬁ%@ in every point, ¢f. [SGA-I, Exposé 1,3.7].

Now suppose f : Y — X is a net map of algebraic spaces. Replacing X by a suitable (embedded)

Zariski open, we may by find étale covers U — Y, resp. V — X, affording (a not

necessarily fibred) square of the form ([&8) in which U < V is a closed embedding. As such

Ry =V xy V=2V, resp. R:=U xU = U are (not necessarily closed unless Y, resp. X
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is separated) embedded in V' x V', resp. U x U so that the induced functor Ry — R is a not
necessarily closed embedding, and we make

Le.3. Fact/Definition. For every n € N, R,, — R, resp. U, — V is the nth thickening of
Ry — R, resp. U — V, in the sense of [Ledl In particular R, = U, is an étale equiva-
lence relation, and we define the nth thickening, Y,,, of Y along f to be the quotient U, /R,.
Consequently if Y is a scheme, then Y, is too.

Proof. Consider the diagram
Ry —— Ry —— R

(1.69) sl l ls

U — U — V
where the rightmost square is fibred. Thus all the verticals are étale, the rightmost horizontals
are closed embeddings, while the composition of the top row is an embedding, so Ry — R is an
open embedding, and whence the source and sink of R,, = U,, are étale. Finally for any scheme
T, the sets R(T) = V(T) form an equivalence relation, and we can identify the T-points of
R, with those of R such that the nth power of the ideal of the fibre over Ry is 0, which since
everything is étale implies that R,,(T)) = U,(T) is an equivalence relation. O

This brings us to a net map, f : # — 27, of champs, then proceeding exactly as above,

(U — 2,V — % étale covers etc.) we find that f is equivalent to a functor Ry L, R between
groupoids, which as a map is itself net, and whence

L.e.4. Fact/Definition. The nth thickening of %}, along f is the classifying champ [U,/R,] of
the étale groupoid R, = U, where R, is the nth thickening of Ry along the functor F', so,
inter alia there is a natural map f, : %, — 2 extending f.

Proof. The fact that R, = U, is an étale groupoid is mutatis mutandis the proof of [[e3 and
the description of the T-points therein also suffices to conclude that f,, exists. Finally, refining
the covers U, V as necessary, the definition of %}, is, up to equivalence, independent of the
given presentation. U

It therefore only remains to make

L.e.5. Fact/Definition. The completion, 9), along a net map f : Y — X of schemes is the
direct limit, lim Yy, in the category of formal schemes of the nth thickenings f, : Y, — X of

Similarly the completion, 78 along a net map f: % — 2 of champ is the classifier of

the étale groupoid which is the completion, R = 4, along the net functor F': Ry — R of Ledl
Consequently, by construction, f factors as

(1.70) AN NS

where the former map is an embedding, and the latter is net.

Lf. Trivial remarks on the analytic topology. As we’ve observed in the proof of [[adl every
separated Deligne-Mumford champ is étale locally the classifier, [U/G], of a (not necessarily
faithful) finite group action G x U = U. An étale neighbourhood is, however, rarely embedded,
so this isn’t quite as convenient as the corresponding analytic statement, i.e.

Lf.1. Fact. If 27 /C is a separated Deligne-Mumford champ of finite type, then for every geo-
metric point, x, there is an étale neighbourhood x € A — 2 in the analytic topology together
with a finite group action Gy X A = A of the stabiliser such that [A/G,] — Z is an open
embedding.
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Proof. From the algebraic statement: the coarse moduli U/G,, is an étale neighbourhood of the
moduli g : 2" — X such that we have a fibre square

2 —— [U/G,]

(L.71) “l l

X — U/G,
There is however an open embedding A’ < U/G, whose composition with the lower horizontal
in (LTI is an embedding, so 1~ (A’) is embedded in both 2~ and [U/G,], while it’s pre-image,
A, in U is both embedded and G, equivariant. O

We will only ever have to consider smooth champs in the analytic topology, but as it happens,
everything works in maximal generality. We require:

[.£2. Lemma. If X is a reduced complex space then the sheaf, Zx, of real analytic functions
on X s coherent.

Proof. The discussion is local, so we can suppose that X is a closed analytic subset of U C C"
with finitely many irreducible components Xi,---,X,. Each X; has a conjugate X; and by
[Nar66l, V, Prop. 8] for any x € X; the complexification of X; at x in the real manifold R™ x
R(1)" is X; x X;. Consequently, op. cit. V, Prop. 1, U; X; x X; contains the complexification of
X at any = € X; and each X; is everywhere locally Zariski dense in X; x X;, so X is everywhere
locally Zariski dense in U;X; x X; . Consequently by op. cit., U;X; x X; is everywhere the
complexification of X, so by op. cit. V, Prop. 5, Zx is coherent. U

This combines with Malgrange’s preparation theorem to afford:

L.£.3. Fact/Definition. If &, is the sheaf of continuous functions on a topological space, and
X/C is a reduced complex space then, functorially in X, there is a well defined subsheaf,
@y — €Ex of smooth functions. In the particular case that p : 2~ — X is the moduli of a
separated Deligne-Mumford champ,

(L.72) Wy C ofx C uby = Cx
Proof. First pass to the real analytic functions Zy, and for a local embedding i : X <— M in

a smooth about z € X, with ideal Ix in %y we have by and [Mal02), VI.3.10] an exact
sequence

(1.73) 0— Zx @z, G — D — Gy Doy, Ix — 0

wherein @/ ®2,,Ix is equally the ideal of smooth functions, .27y, vanishing on X. In particular,
therefore, we have an embedding

(1.74) M)?J =X Qs Iy — Cx

Now observe (by way of the obvious diagram chase implied by ([Z3)) that if M has the em-
bedding dimension of X at x then for any other smooth embedding X — N at x, there is a
unique isomorphism which fills the right hand side of

Rx —— ;27)](\7
(1.75) H
Hx —— %)J}/[

in such a way that the diagram commutes. As such X +— &x is a well defined, and functorial,

while ([L72) is immediate from [[X1] and (C74). O

In order to apply this we need another
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[f4. Lemma. Let pn: 2" — X be the moduli of a Deligne-Mumford champ and [{,c g Wo — X
an open cover (in the classical sense) then up to passing to a locally finite refinement there are
functions

(1.76) Pa € T(X, nsy) with support in Wy, such that Zpa =1

(e}

In particular for A any sheaf of o9 -modules,
(1.77) HYZ , #)=0, ¥Yq¢>0

Proof. Refining as necessary we can suppose that we have covers [ [, 4 Ua, [{4c 4 Va with U, C
Vy; Vo € Wy and each of Uy, V,, W, satisfies [Tl i.e. there are étale covers Hoca U, — 2,
etc.; finite group actions G, = U/, etc.; G, equivariant inclusions U!, C V! etc.; and compatible
identifications of U, with U/, /G, etc.. As such if f, : W/ — [0,1] is a smooth (in the sense
of L3l function which is identically 1 on U, resp. identically 0 off V then its trace, gq, is a
global section of ..oy supported in W, which is identically 1 on Uy, resp. identically 0 off
V., and

z) = go ()
(L.78) pa(2) : S, 05(@)

does the job. Consequently any sheaf of p,o’x modules is flasque, while p, is acyclic on
Q-vector spaces, and whence (C77). O

We come therefore to the point of the discussion, by way of

L.t5. Fact. If % — % is an embedding of smooth complex Deligne-Mumford champ with %
proper, then there are a family of open embeddings Y — U — X with W% = % and each

R AN deformation retract with i;ry homotopic to the identity.

Proof. The expedient of taking the trace under G, in [LI]l affords locally equivariant metrics
which by (CZ8) can be patched to a smooth metric, w, on Z". As such at every geometric point
x there is a G equivariant neighbourhood V, < Ty, of 0 such that the exponential afforded
by w yields an embedding

(L.79) exp : [Vo/Gy| = X
On the other hand by ([[CZ7) the exact sequence
(1.80) 0—=Ty =Ty — Nysg —0

has a smooth splitting, n : Ng, 9 — Ty so exp(n) restricted to appropriate neighbourhoods
of the zero section in Ny 4 gives what we want. O

This is, of course, just the usual proof of the corresponding fact for smooth manifolds so it’s
worth making

[.£.6. Remark. Slightly, but not much, more subtly if X is Kahler then so is %2 .

Finally we require a baby GAGA,

L{.7. Fact. Let 2 /C be a normal complex analytic champ, i.e. the classifier of an étale groupoid
R = U in the analytic topology, whose moduli p: 2~ — X 1is a finite map to an algebraic space
with algebraic ramification in co-dimension 1 then 2 is an algebraic Deligne-Mumford champ.
Similarly, if % — % is a smooth champ finite over the neighbourhoods of [].3, then there is
an algebraic champ %" — % such that (in the notation of op. cit.) % is equivalent to r; %" .
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Proof. Without loss of generality 2" is connected, so exactly as in[Lafl there is a map 2~ — 20
expressing 2" as a locally constant gerbe in Bp’s for some finite group I" wherein the stabiliser
of the generic point of 2y is trivial, and by [ATf66, 5.1] 2y is algebraic. As to 2" — 2o, we
must first consider the link in the sense of Giraud, [Gir7), IV.1.1.7.3], i.e. the representation of
m1(Z0) in the outer automorphisms of I', but these are the same in the algebraic and analytic
categories, so the next port of call is the obstruction to the existence of a champ with a given
link. This is, [Gir7l, VI.2.3], a class in H3(2p, Z), where Z is the centre of the link, i.e. the
locally constant sheaf in the centre of I' with induced m (%) action. By [SGA-IV] Exposé
XVI.4.1], étale and analytic cohomology coincide, while the obstruction vanishes analytically,
so there is at least one algebraic champ, 2" — 2( which is a locally constant gerbe in Br’s for
the same link. Equally 2" is an analytic champ, so, in either case the equivalence class of all
possible champs with this link is, [Gir71], IV.3.4], the orbit of 2 under H?( %y, Z), and whence
2 — 2y is algebraic by another application of [SGA-IV] Exposé XVI.4.1]. The argument for
the second part about the %;’s proceeds mutatis mutandis given [CT3 O

II. K NEGATIVE CURVES

II.a. Foliations as birational groupoids. As we've already remarked prior to [LhJlthe point
of view of a foliation as an integrable quotient of the cotangent sheaf is misleading. Rather a
foliation should be considered as an infinitesimal equivalence relation outside of its singularities,
and the equivalence of this definition to that involving linear 15* order data as a non-trivial
theorem (not withstanding the triviality of the proof) specific to characteristic zero. In any
case let us begin by reviewing the equivalence, whence let X be a normal affine variety over
C and . a smooth foliation on X. Notice that X may be singular, so .% smooth means that
(everywhere locally) for some (and indeed any) embedding of X in a smooth variety M the
composition,

(IL.1) Ty — Ix =Ty ® Ox

is an injection of bundles. Now consider the diagonal A in X x X, with p; the projections,
and p5T'# the foliation obtained by pull-back from the 224 direction. Dualising commutes
with flat pull-back so this is notationally unambiguous, whence shrinking X as necessary we
can find a local generator 0 of Tz and f € Ia such that p50(f) is non-zero on X. We put
§ = (p30(f))~10, and for any function g on X x X define,

from(g)

[ee])

(I.2) g = nz::()(—l)n o €0a= l%n Oxxx/|IN

then 6§ = 0, and better still if A is the completion of X x X in A then the inclusion of rings,
(IL.3) Oz ={h e Ox:0h=0}C Or

corresponds to a relatively smooth fibration of formal schemes,

<~ D>
I
>

Ficure 1. Construction of the infinitesimal groupoid
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such that the pull-back of the image of A in Spf 04 is the corresponding infinitesimal equiva-
lence relation, i.e. the formal sub-scheme of A defined by the ideal generated by &'z N Za or
equivalently the maximal sub-ideal of .ZA invariant by .%#. Rather more picturesquely, fig. [,
what we have done is add a small germ in the p5T# direction for each point in the diagonal.

To extend this to champs, even separated ones, is a little delicate since unless the champ is in
fact an algebraic space the diagonal will fail to be an embedding. To remedy this it suffices to
observe that we’ve actually been working in,

(IL.4) Px :=Spf Py, Px =lim 2

where (@g—l) is Grothendieck’s sheaf of n-jets viewed as a nilpotent Ox-algebra by way of the
15t-projection. If, however, 2", is Deligne-Mumford champ, then by definition it is equivalent
to a groupoid with étale source and sink so there are well defined sheaves of nilpotent & g--
algebras, e@gfl) of n-jets, and of course idem, modulo replacing nilpotent by topologically so,
for the inverse limit &4 . Equally the formation of the formal spectrum is a local construction,
while both the projectors and the diagonal embedding patch, so we obtain an object which we
summarise by way of,

[I.a.1. Definition. The jet groupoid of a champ de Deligne-Mumford Z" is the formal champ,
(I1.5) Bz =Spf Py = X

with source map pi, sink po, and identity the diagonal.

Notice in particular that the diagonal is actually embedded in the jet groupoid, so its worth
emphasising what’s happening. Specifically for a geometric diagonal point x X z in 2" x 2, its
automorphism group is simply Aut(z) x Aut(z). Inside this group we have a copy of Aut(x)
sitting diagonally. Now any attempt to define diagonal type subgroups of automorphisms for
off diagonal points, and whence define an actual étale “neighbourhood” in which 2~ embeds
in some sort of diagonal way, is doomed to failure. At the infinitesimal level this can, and is,

achieved by [Ladl

Turning then to champs foliated by curves, or indeed even foliated full stop, the corresponding
foliations on étale neighbourhoods of the champ are again by supposition invariant by the
corresponding étale groupoid so that we may once again apply the expedient of summary by
way of definition, i.e.

[I.a.2. Summary/Definition. Let 2" — [Z /%] be a foliated champ, 2 its singular locus,
and 7 = 2\ Z the smooth locus then the infinitesimal equivalence relation § = % defined
according to the correspondence which associates to .% a formal subscheme of the jet groupoid,
fig. M et. seq., will be denoted the smooth infinitesimal groupoid of .%.

This construction may, however, fail catastrophically over 2, i.e. consider:

X

o4 XL
FIGURE 2. A groupoid with essential singularity.
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then over 2 we may have an essential singularity, so that the smallest closed formal sub-champ
of P4 containing § is Py itself.

To remedy this latest difficulty we allow the possibility of birational groupoids, i.e. such that
the identity map is simply birational. With this extra flexibility we can complete across the
singularities. Specifically let,

(IL.6) T:Pa — Por

be the blow up of in the diagonal embedding A(Z) of 2 understood with any implied nilpotent
structure on the singular locus. Now let U — 2" be an étale neighbourhood of a geometric
point z € Z with U — M an embedding into a smooth. Consider coordinates z1,...,x, on
M restricting to functions on U, then for .# |y Gorenstein, and shrinking U as necessary we
may suppose that the foliation is defined by a vector field 0 on U, which we write using the
summation convention as,

0
(I1.7) 0= a; oz,
so that |y = (a;). Now introduce z;,y; as coordinates on U x U obtained from our initial
coordinates by way of 15¢ and 2°¢ pull-back respectively, and put z; = x; — v;, then in z;,x;
coordinates,

(IL.8) P20 = paai e = TPl 5~

1 )

Consequently on the blow up, [Lf around U on the pfa; # 0 patch, we have:

(1L9) a< i ) _ —piai _ (vl —pjai).
D14 D1 pia;

On the other hand the diagonal embedding of 2 x 2 U has ideal (pja;, z;) so on the proper
transform A of A in P4 not only can we locate each point in some pia; # 0 patch for an
appropriate i, but indeed the function z;/pja; in I3 enjoys a non-zero derivation with respect
to 7*0. Better still we have blown up in a centre invariant by p5.# so the induced foliation

gg’ on ‘i? 2 is both smooth in a neighbourhood of A and everywhere transverse to it. Whence
we can just repeat our minor variant of the classical Frobenius theorem to obtain,

IL.a.3. Fact/Definition. Let 2" — [2/.F] be a foliated Gorenstein champ, then there is a
formal sub-champ § of P4, [[LH), together with projection maps, p; o, i = 1 or 2 defining a
birational groupoid, i.e.

(11.10) =2

where the identity and composition are rational maps. In addition the projection p; o w factors
as,

(IL.11) LA 2

with the former map in ([[LI])) relatively smooth of dimension 1. We call this structure the
infinitesimal birational groupoid of the foliation.

Notice in particular,

ILa.4. Fact. There is an isomorphism, N 5 — Ox(p5T7).
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I[I.b. Chow’s Lemma. We'll confine ourselves to that which is strictly necessary for appli-
cations. Our interest centres on smooth formal champs § whose trace € is a smooth champ
of dimension 1. From our utilitarian point of view we’ll confine ourselves to the case where
dim§ = 2. Irrespectively there is a well defined normal bundle Ng /5, and we make,

I1.b.1. Definition. § is a concave formal neighbourhood of ¢ if deg(N¢ /z) > 0.

Unsurprisingly the classical Chow lemma continues to hold, i.e.

II.b.2. Lemma. (Chow, Grauert et al.) Let L be a line bundle on § then there is a quadratic
polynomial Pr,, depending on L, such that for all n € N,

(I1.12) RO(F, LE™) < Pp(n).
Proof. Let §,, be the m*-thickening of € then we have an exact sequence,
(I1.13) 0— Symm]\f%/3 — 03,01 — O3, — 0.
On the other hand if h%(¥, L" ® SymmN(;/S) # 0, then,
(I1.14) mdeg(Ney/5) < ndegy(L).
Consequently for any n € N,
(I1.15) H(05,, ., ® L") — H(05,, @ L™)
o . ndegy (L)
is injective, provided m > M := ——="—~ and whence
deg(Ncg/g)
M

0 n n n

(I1.16) RO(F, L2") = lim h(§m, L") < hO(€, L" @ NgJ7).

k=0

Moreover by [BNO6, 1.1] we can find a map, p : C — € from an honest curve, while for any
bundle E, h°(¢,E) < h(C, p*E), so we conclude by Riemann-Roch. O

II.c. Bend & Break. We are now in a position to extend the results of [BMI6|, so to this
end let 2" — [2 /] be a foliated Gorenstein normal champ with projective moduli space
m: Z — X, and H an ample bundle on the latter. As ever the basic object of study is K #
negative curves on 2, i.e., profiting once more from [BNO6, 1.1], maps f : C — 2 from
a smooth curve such that Kz, C < 0. We impose further the condition that f does not
factor through the singular locus 2 = sing(.%). Consequently if we consider the infinitesimal
birational groupoid as fibred over 2 = Bly(2) via p in [[LID), then f admits a lifting
f:C — 2 and we may form the fibre square,

—

!

C

E

5
(11.17) pl

—

!

In addition the identity map of the groupoid gives a section s of p of the left, so a fortiori of
the right, vertical arrow, which is everywhere well defined since we're worklng with 2 rather
than .2". Consequently, by [Tz, §¢ is a concave, LB neighbourhood of s(C'), and for P 4
as per ([LA), we have natural maps,

(I1.18) Sc— Cx Py — C xBlaz) (2 x Z)

where the moduli, W, of Bly(#)(2" x Z7) is projective because X is, and we assert,
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IL.c.1. Claim. The Zariski closure of the image of ¢ in C' x W is irreducible of dimension 2.

Proof. Indeed let Y be the Zariski closure, which is irreducible since Fc is. Moreover if L is an
ample line bundle on C' x W then by definition,

(IL.19) HO(Y, L) — H(§o, L)
is injective by the definition of Y, so we're done by the Chow lemma, [L.h.2 O

Now let 2" be Y X(oxw) (C x Bla(z) (2" x 27)) then we further assert

IL.c.2. Better Claim. For % /C viewed as a C-champ via the projection C' x W — C there is
a net C-map §o — % . In particular, therefore, this affords a section s : C' — % such that:

(a) # is smooth in a neighbourhood of s(c).
(b) K90, C =Kz, C.
(c) The 2nd projection yields a map of foliated champs (#/C) — (2" — [Z /.Z]).

Proof. By base change in the fibre square:
§xC —— 3¢
(11.20) px fl l

,%; % ,%; diagonal ,%;
the above horizontal is net, while, ¢f. T2l Ps — 2 x 2 is net, so Py — Bla(z) (2 x Z)
is t0o, and § is embedded in P4 by definition As such §o — C x Bl (2 x Z7)) is
a composition of net maps, which, by construction, has an image embedded in #. O

The following, therefore, affords invariant rational curves through a generic point of the image

of C.

II.c.3. Fact. Suppose in addition to [[LcA (a)-(b) a family p : & — C of uni-dimensional
champ with a section s satisfies Ko jc., C <0 then there is a finite extension C(C) — K such
that Pc is dominated by P .

Proof. We may, without loss of generality, suppose that 2, and indeed any base change thereof,
is normal. In particular, therefore, [[a.fl there is a fibration % — % expressing the former as
a locally constant gerbe over a normal-fold, so that by [BNOGL 1.1] we may further suppose that
% = %;. As such if the generic fibre of p is not dominated by a rational curve then, op. cit.,
there is a finite extension C(C') — K such that % x¢ K is an orbifold of the form [Sk /G] for
some non-rational K-curve Sk and finite group G acting generically freely. Denoting by Y the
moduli of %', and identifying K with the function field of a smooth curve B, we can suppose
that Sk is the generic fibre over B of the integral closure S of Y in the function field of Sk.
The normalisation .¥ of the fibre % xy S is, therefore, a gerbe over S with generic fibre Sk.
Consequently, by purity, ¢ : .%¥ — % is ramified only in components of fibres of % — C. In
addition ¢ is étale locally Galois since S — Y is and % — C is smooth in a neighbourhood
of the section s(C), so by [SGA-I, Exp. XIII, Cor. 5.3], q is étale locally around s(C') the
extraction of roots of fibres. As such, by the simple expedient of taking C(C') — K sufficiently
large, we can suppose- around s(C') and it’s pre-image- that ¢ is scheme like and S is smooth.
Better still since ¢ is only ramified in fibres,

(11.21) KS/B = q*Kg/c, and thus, KS/B s B <0,

for any lifting § of s. Consequently, we may from from either [BMI6] or the classical theorem

of Arakelov, [Szp81], conclude to the absurdity that the generic fibre of S — B is a rational

curve. t
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The fibres of p in [Lc3 may not themselves be rational curves, and it is convenient to give
them a name, to wit

II.c.4. Fact /Definition. A smooth 1-dimensional Deligne-Mumford champ, .Z, over a field k is
said to be parabolic if it’s geometric fibre is dominated by a rational curve. Rather conveniently
this occurs, [BNO6, 1.1], iff the topological Euler-characteristic x(-£) > 0.

From which we can proceed to our conclusion

II.c.5. Proposition. Let 2" — [Z"/.Z] be a foliated normal gerbe over a projective variety X,
which is foliated Gorenstein along some K& negative curve Cy C X around the generic point
of which F is a non-singular foliation of Z°, then for a generic ¢ € Cy there is an invariant
parabolic champ, g. : L. — Z such that for M any nef. R-divisor on 2", and || the moduli,

M, C
Proof. We apply with C' a curve mapping to the normalisation of the gerbe over Cp in
Z. By the generic fibre of % — (' is an invariant parabolic champ, so it only remains
to produce the degree bound. To this end identify the image of the section s with a curve C
such that C?2 = —K # - C in the normal surface which is the moduli. Whence if L is a generic
fibre of the same, M is notationally confused with the restriction of the given nef. R-divisor,
and z € R+ then by the Hodge index theorem,

(11.23) 2z - (L-M)C? < (L+aM)*C? < {C - (L+xM)}?
so taking x = (M - C)~! we conclude. O

The same proof works, under the weaker hypothesis that only a neighbourhood of Cy in the
moduli is projective. More interestingly, the presence of even the most mild non-scheme like
structure on 2 can necessitate the precision of [LcH that the existence of a parabolic invariant
champ .Z > c is only guaranteed for generic ¢. Indeed:

II.c.6. Remark. Take a section C with positive square of a Hizerbruch surface P — C'. In the
fibre through some ¢ € C, choose some set @) of points off C', and for ¢ € Q let n, € Ny
be given. Choose a germ of a smooth curve, v transverse to the fibre P, at ¢. Blowing up
in g, we get the proper transform ~; of v, we then blow up in the point where this crosses
the exceptional divisor, and repeat this process n, times before blowing down the first ny — 1
curves. The resulting surface S then has isolated cyclic quotient singularities with monodromy
Z/ng at each ¢ in the proper transform of P, which itself meets at each ¢ a rational curve in
the fibre, but the said proper transform is the only component of the fibre meeting the section.
Passing to the Vistoli covering champ, we see the necessitate for taking ¢ € C' generic in [Lc3,
since the gerbe over the proper transform fails to be parabolic as soon as, > (1 —1/ng) > 2.

II.d. The Cone of Curves. We may now apply the basic estimate [LcH to the cone of curves
of a foliated Gorenstein normal champ 2~ — [2" /%] over C. Indeed more precisely we have,

I1.d.1. Fact. Let 2" — [Z/F] be a foliated Gorenstein normal champ with log-canonical
singularities in dimension 1 and projective moduli, then there are countably many % -invariant
parabolic, champ %;, with, 0 < —K #. %, < 2 such that,

(11.24) NE (2)r =NE(2)kz>0+ > Ry %

where ﬁ(%‘)[{yzo 15 the sub-cone of the closed cone of curves on which K # is non-negative.
Better still the Ry %, are locally discrete, and if R C NE (2 )r is an extremal ray in the half
space NEg . <o then it is of the form Ry .Z;.
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This is a wholly formal consequence, as per [Kol96, I111.1.2], of the following variant of

I1.d.2. Variant. Let 2" — [2 /Z] be as above, and Cy C X a Kgz-negative curve in the
moduli, then for generic ¢ € Cy there is a .Z -invariant parabolic champ Z. > f(c) with 0 <
—Kgz - %, <2 such that for all nef. R-divisors M on X, and || the moduli,

(M. Cy)

11.25 M| L] <272
(I1.25) el <20

The variant requires a couple of facts of independent interest to wit

I1.d.3. Fact. If Z is the singular locus of a foliated Gorenstein-champ 2 — [Z |.F]| with
log-canonical singularities in dimension 1, then O (K #) is semi-ample.

Proof. Consider the linearisation map, i.e. the composition of,

(11.26) D: Iy 5% — Q9 8oy Oy — K5 ® Iy I5

By the Leibniz rule, this map is &% linear, and since the singularities are log-canonical in
dimension 1, for z € % outside a finite set, some symmetric function of D defines a section
over 2, non-vanishing at z, of some power K%", [MPT3, Lii.4|, and we conclude by the Zariski-
Fujita theorem. O

I1.d.4. Fact/Definition. Let 2" — [2"/.Z] be a foliated Gorenstein champ; f: . £ — 2  the
normalisation of an invariant uni-dimensional champ not factoring through the singular locus
Z; x(Z) its topological Euler-characteristic; and s#(f) the Segre class of f along &, i.e. the
multiplicity (counted with stabilisers) of the pre-image f~'I of the ideal of singularities, then

Kz -p 2 =—x(Z) - Ramy +s7(f)

(I1.27) > (&) + L
2D D o)

Proof. The image of f*Q,- is Qb is always Q% (—Ramy), while in the particular, [20 it’s
equally f*K z.f 114, which proves the 1st line in (IL27). To get the second, observe that in
characteristic 0 f can only ramify where it meets 2. On the other hand if f : A — U is a local
branch of f meeting a singularity in f(0), and

0 0

is a local generator of .# with x; coordinates on a smooth embedding of U then the local
contribution to —Ramy +sz(f) is

- miin{ord(j:i(t))} + miin{ord(f* (@)}, f:t— zi(t)
— 14 (minford(f(a)} — minford(f*(x))}) > 1

whence the 2nd line on correcting for the order of the stabiliser. U

(11.29)

At which point we can return to

proof of [[AA By [Ld3 we need only prove the variant under the additional condition present
in [Lc.d that the foliated champ is non-singular over a generic point of Cy. As such re-taking
the notation of the proof of op. cit., we have a bi-dimensional champ p : ¢ — C whose fibres
map invariantly by g to 27, which is the normalisation of its image. The said image, <7, say,
admits a possibly non-saturated, injection T — 7,,. Every component of the singular locus is
invariant by every vector field, so by [BM97], normalisation (in characteristic 0) can be realised
in co-dimension 1 by a sequence of blow ups in Z-invariant centres. Thus g*T'z maps to T ¢
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in co-dimension 1, whence, everywhere since %/, and therefore 7 ¢, is S_2. Consequently for
generic ¢ € C,

(I1.30) ~-Kgz . C<Iy)c-C

while by the adjunction formula, [Ld4 and smoothness of % in co-dimension 2, we have,
(I1.31) T 0 Ye=—x(%) <2

so, indeed —K # -4, C < 2 for generic ¢ as required. O

In particular, under the hypothesis of log-canonical singularities in dimension 1, K z-negative
curves are never contained in the singular locus of the foliation, and we proceed to examine
the possibilities for K& negative invariant parabolic champs outside the same. Whence let
f % — Z be the normalisation of such, which we express as a locally constant gerbe,
L — %, over a champ without generic stabiliser, then by ([IL27)

(11.32) 0> Ky, 2> (2 %) —2+tf(2)+ Y (1—di)

ag¢mf~1(2) !
where in the sum, d, is the order of the local monodromy, and f means integer valued cardinality
of a set. As such,

I1.d.5. Fact/Definition. For a Gorenstein foliation 2~ — [27/.#] in the presence of log-
canonical singularities in dimension 1, an irreducible K #-negative invariant champ (or just an
irreducible K z-negative invariant champ whose generic point meets the smooth locus of the
foliation if there are no hypothesis on the singularities of 2~ — [2"/.%#]) has a normalisation,
% — Z, with & parabolic, and furthermore:

(a) The pre-image under f of the singular locus 2 is supported in at most 1 point.

(b) If this pre-image is # (), then % has at most one non-scheme like point outside it.

(c) If there is no such singular point 2~ — [2"/.Z] is generically a fibration in parabolic
champs.

Proof. Items (a) and (b) are clear from ([L32)) which leaves (c). In this case f is an embedding
whose normal bundle is flat via the representation afforded by the linear holonomy, while 7y ~($ )

is finite, so, for f . P — I the composition with the universal cover, the deformations of f are
(locally) a smooth space of dimension dim(2") — 1, and every deformation of f is invariant. [J

II.e. Singular structure of K z-negative curves. Throughout this section f : % — 2 is
a map from a smooth invariant K z-negative curve with the further specifications of In
particular f is an embedding everywhere except possibly at a point p € f~1(2°). At p, however
not only may the monodromy exceed that of the generic point of ., but f may fail to be an
embedding because it has a cusp and/or because the image is not uni-branched. Nevertheless
there is a certain limit to the complication, whose description is the goal of this section, i.e.

IL.e.l. Fact/Definition. Let everything be as in [LdH albeit we insist that 2~ — [27/.Z]
has log-canonical singularities, and suppose moreover that f~1(2°) # () with p : pt — & the
resulting geometric point, then the étale local contribution, ([[L29), to —Ramy + s (f) at p is

exactly 1. As such by ([I27) and ([[L32)
(I1.33) Ky & =-1/d
where d is the maximum value of a stabiliser of .Z outside p, which is either attained at a

unique point or is the same everywhere in the complement of p, and we refer to such curves as
—é F curves.

We proceed by a series of lemmas beginning with
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IT.e.2. Claim. The foliation .%, by way of restriction over the generic point, affords a singular
derivation of .Z.

Proof. We re-take the notation of ([[28)-([[T29) in the proof of [LL4Al It therefore follows
exactly as in the proof of that O defines a derivation of &a, and it remains to prove
that it’s actually singular at p. To see this observe that if b : 2 — 2 were the blow up in p
then the induced foliation (understood without saturation if the singularities are not canonical,
i.e. locally defined by b*0) cannot (by the Frobenius theorem) be smooth where the proper
transform of f crosses the exceptional divisor. On the other hand, a sequence of blow ups in
singular points resolves any singularity of any branch of f, so for b : 2" — 2 now a chain
of such, we can suppose that the proper transform f Y — 2 is an embedding crossing
the exceptional divisor in a singular point, f(p), of the regular derivation b*0, i.e. O affords a
singular derivation of Oa. O

Applying [Led], we can, in the said notation, write the restriction to % of a generator étale
locally as

(I1.34) 0= y’”“u(y)(%, u(y) € OX, r € Lo,

and the content of [Ledlis that » = 0. All of which is a useful, if non-essential, point of reference
in establishing our next

[I.e.3. Claim. Understanding 2" — [2 /%] in the log-sense, [, if necessary, ¢f. [LhI0
Without loss of generality 2" in [Ledl is a smooth champ.

Proof. By [BM97]| there is a .#-equivariant resolution of singularities
(I1.35) b: 2 — X

So that understanding 2~ — [f%; /ﬁi | in the log-sense if necessary the canonical bundle is
unchanged. As such if b is an isomorphism at the generic point of f, there is a unique lifting
f: Y22 satisfying the hypothesis of [Ledl and there is nothing to do. It may, however,
happen that b is a modification around the image of f. Nevertheless every component of the
fibre over the said image is invariant, amongst which we choose one over the generic point of f
and normalise it to get a not necessarily fibred square

R —
F
(11.36) ”l l B
Z g A4
wherein any vector field along .%# on the bottom left hand corner lifts naturally everywhere

else. In particular, therefore, there is a possibly very far (even logarithmically) from saturated
(¢f. [Le2) bundle of derivations

(I1.37) F'v'Ty — Ty
whose singular locus is contained in B~!(p), so that the restriction
(11.38) F*0"T'7 |sing(F*b*T5)

is trivial. On the other hand b, and whence B, is relatively projective, so ¢ has projective
moduli and since ([L38) provides an appropriate variant of we may, since it makes no
other use of saturation, apply [Ld1l to conclude that there are F*b*K 7 = B* f*K z-negative
invariant curves

(I1.39) P X



lifting f. Of course, plausibly, % — & is ramified over p, but this would only cause a non-zero
value of 7 in ([[I34) to go up. O

Now, as we've said, [LdH (a) notwithstanding the image of f in 2" can even fail to be uni-
branch. However

II.e.4. Claim. Hypothesis as in [Le3l then without loss of generality f is an embedding.

Proof. In an easier variant of the proof of [Ce3l given f: ¥ — 2 with 2" smooth, we can
find a composition, b : 2~ — 27, of blow ups in singular points of the foliation such that the
unique lifting f : £ — 2 is an embedding. O

At which juncture we have a well defined normal bundle N, 5 and a specialised foliation to
the same. Indeed somewhat more generally

IL.e.5. Fact/Definition. Let f : 4 — 2 be net, albeit that much more, [[edl is true,
descent yields a well defined normal cone Cy 9. Specifically if V' — 2 is étale, then there is a
sufficiently small étale neighbourhood U of any geometric point of % X 9~ V' such that U — V,
and the pull-back to U of the associated cone is,

© Iy
(11.40) Spec S := P T

n=0 UV
In particular if the image of f is invariant, then the foliation leaves I;y invariant, so a local
generator 0 of Tz passes to a graded derivation of S by way of applying it to any lifting
of an element in the n''-graded piece, and then reducing modulo I{}J{/l. This process may
not immediately lead to a foliation, but only a pre-foliation, i.e. the spécialisation may not be
saturated. Nevertheless, for ease of notation, ¢f. [Le3 we continue to ignore such a distinction,
which, in any case, we'll clear up in [LIl Irrespectively, if % is a smooth invariant curve not
factoring through the singular locus, 2, for y a coordinate along U around a point of f~1(2),
and x; normal coordinates the specialisation of d takes, by ([[L34), the form,

(I1.41) d:y— bly) =y u(y)dy (mod Iy), x; — a;(y) x; = Ox; (mod Iy y)
where the summation convention is employed, so, equivalently the specialisation may be viewed

as a connection on Ny 4 with singularities.

By way of [Le3 and [Ted this may be applied to the case in point via

Il.e.6. Fact. Let 2" — [Z7/.Z] be a foliated smooth champ, and f : £ — Z an invariant

net map from a (smooth) parabolic champ not factoring through the singularities such that
Kz -§ £ < 0 then either r = 0 or the linearisation, [[28), 0 of a generator at the singular
point is nilpotent.

Proof. Without loss of generality, .# is simply connected so . — P(d,e) for some d,e € N,
[BNO6, 1.1]. We have, therefore, a rather explicit description of &, to wit:

t—t— ¢

B

~

Gm U’

(11.42) o l“

L= A p] — Al —— U

Furthermore, by [[L.d.3 we may suppose that the pre-image of the singular locus is a point p
which we identify with 0 (the origin in U) while co will denote the origin in U’. Consequently
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by [Lc there is a longitudinal coordinate g, resp. 7, and normal coordinates x;, resp. & in
neighbourhoods of 0, resp. oo such that

(I1.43) B =t"°¢ afy=tl B =t"%ar;
where the integers a; are afforded by the Harder-Narismhan filtration

(I1.44) Ngjo = [ O2(a)

s0, the basis x;, resp & may even be supposed f, resp jiq invariant, i.e.
(1145) (67 xl) = E_aimia (67 €Z) = 5—111'62,7 € € [he, (S Hd

Irrespectively, Tz — Og(e — dr), where by hypothesis e > dr, and we normalise generators
around 0 and oo according to

(I1.46) do(y) =dy"™,  Ox(n) = —e

so that for a specialised foliation described, ¢f. ([LZd)), by matrices A, resp. B, over U, resp.
U/

1
te—dr

(11.47) At — A = DB(t=¢)D~!

where A, resp. D, is the diagonal matrix with entries a;, resp t*. Consequently if we order
the a; to be decreasing in i, then every i < jth entry of DBD™! on the right of ([LZD) is
a polynomial in ¢!, so from e > dr, A(t?) is an upper semi-triangular matrix with diagonal
a;t% and whence the said linearisation is nilpotent if > 0. ]

Manifestly this completes the proof of [Ledl by LA and merits

IL.e.7. Remark. The difficulty in [LeTl comes from the fact that if X were the completion in the
singularity p,

(11.48) HY(%,T7)

may not contain a generator, 0. Indeed supposing f an embedding (just to fix ideas since it’s
of no importance) so that the monodromy, G, at p acts on the coordinate y of ([L34)) by a
character, ~y, then

(I1.49) 7=0=nv0)=1 oceCG
On the other hand from the adjunction formula, [LI4 in the notation of ([T32)

r 1
1150 Kz %= (% %) (-0 — o)
( ) F ( 0) ord(’y) dq
which from ([IZ9) is non-negative as soon as r > 0. There is, however, not only no way to
guarantee that ([LZR) contains a generator, but this may well be impossible on every birational
model with log-canonical singularities since this is the root cause, [MPT3, IILiii.3.bis|, of why
log-canonical resolutions need not exist in the category of varieties.

ILf. Linear Holonomy of, at worst, nodal —%F Curves. Throughout 2" — [2 /7] is
a (saturated) foliation of a smooth complex Deligne-Mumford champ; f: .2 — 2 is a —é F
curve, with f net, and . smooth. As such we have a specialised foliation, [Led, to the normal
bundle, Ny, 4, and we assert

I1.f.1. Claim. The specialised foliation is in fact saturated.
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Proof. Suppose & is simply connected (which one can always reduce to by [SGA-I, Exposé
I, 8.3], or [McQI5, IV.a.2] in a slightly more appropriate generality, and [[el)) then by the
definition of a —é F curve we have r = 0 in ([I47), while lack of saturation is equivalent to
the matrix A of op. cit. being divisible by ¢ which can only happen if the matrix A therein
is 0, i.e. the normal bundle is trivial. Thus, exactly as in the proof of [LLA f moves in a
covering family, f;, of disjoint invariant parabolic champ each of which must meet sing(.%#) for
numerical reasons- i.e. Kz -y £ = Kg -5, £, (LL4), and generic f; a generic embedding- so
the singular locus of .% must be a divisor. U

As such we can cease to worry about whether the foliation is a saturated or not, and
I1.f.2. Set Up. We further suppose that % is simply connected, i.e. it is a weighted projective
champ P1(d,e), [l

In particular therefore we can describe the total space, N := Ng, o — £, of the normal
bundle as the classifying champ [E/G,,] of the action

(IL.51) E:= ((AZ\O) X A")) X Gt (Y0, y1) X (1, &) X X — (Ayg, Xoyp) x (%)
where as in the weights
(I1.52) ap > as--+ > ap

are those of the Harder-Narismhan filtration, [T of the normal bundle. Consequently if
m: E — N is the projection then the tangent space to the normal bundle is described by an
Euler sequence of G,,-equivariant, cf. [Lc2 bundles

(I11.53) 0— 0 0 Ty = 6(d) 11 O(e) 1L; O(a;) — 7Ty — 0
where p is the radial, cf. [LL2, vector field

0 0
11.54 = dyg— + - i p—
( ) p = ayo Do €Y1 — o + a1$1a o + - Fanx Bz,

Now by [Ledl the canonical bundle of the specialised foliation is &(—e), while for any G,-
equivariant coherent sheaf & we have, in the notation of [LcTl, a Hoschild-Serre spectral sequence

(IL55) HP(Bg, ,HI(Ay, &)) = HPY(PL(d, e), &)
and whence by
(I1.56) HY(Bg, ,m"Kz) =0

Combining this with ([[L33]) implies that the specialised foliation on the normal bundle is defined
by a vector field 9 on the total space E such that

(I1.57) =17, NeG,

At the same time, by construction, ([LZI]), there are functions F,, 4;; in C[A?] such that
d 0 0 .

(I1.58) 0= Foa—o + Fla + Awm’]a 1<4,j<n

where as per op. cit. we employ the summation convention. As such from ([L32), ([[L37), and
our normalisation, ([[L42), that the singularity is at (0, 1),

(I1.59) Fy=0, I, € C*, A;j, is a; — aj — e weighted homogeneous.

In particular therefore, by [[LZ2), A;; is an upper semi-triangular matrix with 0 diagonal. We
can, however, do better, to wit:
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I1.f.3. Fact. For a possibly different splitting of the Harder-Narismhan filtration, [[c8, of Ny o
and after a trivial renormalisation by a constant
0

11.60 0=—e—
(I1L.60) =

Proof. Consistent with the notation of ([L32) the Harder-Narismhan filtration may be written
as

(I1.61) =N GNiGNoG -G Ne=Ny)o

where the normal bundle of N; in N;;1 restricted to the zero section is a trivial bundle twisted
by some O g(a;) for a; a complete repetition free list of the a;’s; thus strictly decreasing as
one proceeds up the chain. By ([LZ3) this is equally a filtration by .Z-invariant sub-bundles,
so, understanding the induced foliation on a sub-bundle logarithmically, [h2 if necessary (i.e.
a; = 0) we prove ([LE0) by induction on the length of the chain ([L&Il). The case k = 1 is
immediate by ([[L2J), so by induction the matrix A;; is an idempotent of the form

(1L.62) [O A

0 0}, A € Homg,, (Ng/Ng—1, Ni—1)(—e)

Plainly, we aim for ([I23) via a change of coordinates of the form

(11.63) [“}“i@‘k] - [1 B} [xai<“k], B € Homg,, (Ni/Ni—1, Ny_1)

Za;=ay 0 1)Zg;=ay

so that what we have to solve (in matrices of function in C[A?]) is:

OB
11.64 2 — A
(I1.64) o
in a way that respects the G,,-equivariance of ([L62))-([[L&3), which, ([[L3D), is clear. O

To re-interpret this in terms of the standard affine patches U, U’ of ([LZ2)-([[LZ3) one simply
splits ([L33)) along the inclusion of the respective (quasi) transversals y, = 1, i.e.

II.f.4. Summary. Suppose the (embedded) —% F curve has at worst nodes, equivalently that
its normalisation is net over 2", and that the universal cover, .2, of the same is a P!(d, ¢), then
£ — Z is net with a well defined normal bundle Ng, 4 such that after pulling back, A
to the universal cover we have in the étale description, ([LZ2)-([T43), of the normal bundle

(1) On U = A! an étale neighbourhood of the singularity a j. invariant generator of the
specialised foliation, and ( € pe-action given by,

0 0 .
(I1.65) 0 =dy— + ajzi—, y—Cly z— %z, ;€N
(2) On U" = Al a complementary neighbourhood of the singularity, a basis &; of functions
invariant by the specialised foliation, on which ¢ € ug acts via & — (*&;.
(3) A patching t% 3*¢; = a*z; in the notation of ([L42), and whence, an isomorphism

(11.66) Ngjo = H Oy (ai)

In particular the canonical or Harder-Narismhan filtration of Ny, 4, [[L&), is a filtration by
F-invariant sub-bundles whose slopes and rank may be read directly from the generator ([L63)

at the singularity.
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II.g. Formal Holonomy. We wish to extend the previous discussion of linear holonomy of
smooth —é F champs to the rather more delicate case of formal holonomy. Plainly when the
curve, .Z, is smooth and simply connected, the calculations are easier, and we denote by
X — [X/.Z] a foliated smooth formal champ whose trace £ is a —é F champs isomorphic to
P!(d,e). In practice X will, by [SGA-I, Exposé I, 8.3] or [McQT5, IV.a.2|, be the universal cover
of the the completion of a smooth foliated algebraic champ 2~ — [Z /.#] along the net map,
[Ced afforded by the normalisation of an at worst nodal —é [F curve. For the moment, however,
this is logically irrelevant. Supposing no risk of confusion with the notation of ([LZ0)-({[LT41),
we replace U’ by V in ([LZ2)), and take 4 — X, resp. U — X, to be formal étale neighbourhoods
in the analytic topology with trace the AYs U, resp. V of ([LZD). In particular, therefore, 4,
resp. U, has a ., resp. g, action and there are open analytic embeddings [/u.] — X, resp.
[0/ 1q] — X, extending [U/pe] — &, resp. [V/pg] — £. Whence U is simply connected,
and, in the analytic topology, there is a certain strengthening of [LE4l viz: the foliation may be
supposed trivial over U, i.e. we have analytic coordinate functions &;, n normal and parallel to
our A respectively such that in % the foliation is just the formal fibration &; x - - -x &, : 0 — A”,
where the latter space is a n-polydisc completed in the origin. The algebra C [[¢1,. .., &,]] comes
equipped with a pg action- the formal holonomy representation- which, modulo the maximal
ideal, is nothing other than that of the linear holonomy, ([[L43). The said algebra is, however,
an inverse limit of finite dimensional vector spaces over a field in which d is invertible, so the
action may be written & — ¢(~%¢; without prejudice to [LT4L(1)-(3).

Now, we can choose 0 on i to be p invariant, and, inductively we further suppose: for m € N
given, and a possibly different p-invariant generator, 9, on 4 that there is a coordinate function
y restricting to that of [LTA(1), such that,

(I1.67) Oy =dy(%), (Cy) =y (IL), ((.0) — e Der(Oy), (€ pe

The space 4, unlike its trace U, has non-trivial units, so, a priori this isn’t equivalent to the
weaker

(I1.68) oy = duy(S3), (Cy) = ¢y (FP), ((.9)— d€Der(Gy), ¢ € pe
for u invertible modulo .#7. Nevertheless, we're in characteristic zero, so, in fact

II.g.1. Claim. The conditions ([[L&A) and ([[LER) are equivalent.

Proof. Supposing ([[LG8)), we have

(I1.69) Oy) —duy=f, y*=Cy=g [,9€T(U, 72
from which the invariance of 0 affords,
(IL.70) d¢hy(ut —u) = ¢Uf =[S+ 0(g) — du‘g € T(U, 7)

and we conclude that u¢ —u € H'(pe, ¥ ). Since everything is tame, however, such a co-
homology group vanishes, so we can find a p-invariant unit v equal to v modulo .#7, and

replacing 0 by v~10 we deduce ([LE7) from ([LG9). O

Denoting by X,,, Upm, Vin, etc. the reduction of whatever modulo ¥}, observe, by [LE4(3),
that for y as in ([[LGZ) there is a function ¢y on U,, Xx V;, such that ytg 4 is congruent to
1 modulo nilpotents. We are, however, in characteristic 0, so, from the power series of the
logarithm, yt, 4 has a dth root. Thus

(IL.71) 3t €T (U xx Vin) 3 Y [Uxzvin= 1%

and we further assert,
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II.g.2. Claim. Suppose that ([[L&A) holds, then for a possibly different pg linear basis &; of
the algebra C[[{1,...,&,]] compatible with any previous choice of the same modulo fgl for
m' < m,

(1) There are coordinates x; normal to . on U such that in fg/ﬂ?“,
(IL72
(2
(I1.73) o] I a;)

where O%,, (1) is the bundle with transition function t on Uy, X x Vi,.

) O(w;) = ajz; x> (Mg, (€ pe;a; €N, 1<i<n
)

The z; glue to the &; via a*z; = t%[3*¢; as global sections of the %, module

Proof. We proceed inductively on m, the case m = 1 being [LE4 so, by the first item of the
induction hypothesis for m — 1, m > 2, we can find coordinate functions x; normal to £ whose
reduction modulo Jff are a basis of the normal bundle over U such that,

(IL74) Ow:) — aiw; = aiy(y) 2’ € VU, S5 /5571,

where z” is the monomial x{l e x%", J1+- -+ jn = m, the summation convention is employed,
and a;7(y) is an entire function. Similarly by the second part of the inductive hypothesis:

(I1.75) 9 — i Uy kg V= big(t) 27 € DUy, X 97 Vi, I/ I

with the same conventions, but where, now, b;;(¢) are only holomorphic for t € G,,. Combining

[CZA) & ([[TE), we obtain,
(11.76) thiy +bis(as — a;) = —ais (1) € Og,,

where ay =) j; a;, and no summation is implied. Again we can integrate this, by way of
i

d ; .
(1177) E ( (ag—a;) bZJ) — _ aij(td) taJ_az_]. )
A priori, however, the b;; are holomorphic for ¢t € G,,, so the b;; are, in fact, meromorphic,

and no a;yt* ~%~! has a residue, whence:

Ai
(I1.78) biy = hiy(t%) + =2

tas—a;

where h;; is entire, and \;; is a constant. In particular,

(I1.79) Zi = x; + hiy(tYx? satisfies 9(;) = a;i; (mod A
and defines n normal coordinate functions on i, such that,

(11.80) .’i‘i = t‘“éi, Where, fz = 52 — )\Z'JEJ.

The far left hand side of ([[LZ9) is entire in t%, so & is still a yg-linear basis of S/ IL |y,
(compatible with our previous choices), and a; = a;(d) if \;; # 0 by the coincidence of the
formal holonomy with the linear holonomy ([[LZH). It therefore only remains to guarantee the

pe linearity, ([LZ3). To this end, supposing the change of basis in ([[L79) & (LX) already
made so as to momentarily drop the ™ from the notation, we have for { € u. a generator:

(11.81) 2§ — CYzi = gis(y)a”! € T(Un, S5/ IS5 H)
Applying the invariance of 9 in ([LE&7), the right hand side of ([[LEIl) must belong to the

eigenspace of a; for 9 viewed as a C-linear map. As such,

(I1.82) giry) = Y. gimy"

nd+aj=a;
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and we can suppose that the x; have been rendered p.-linear by a coordinate change,
(I1.83) Bi=ai+ Y fumy'r?
nd+aj=a;

which yields new functions over oo,

(I1.84) G=t""F =&+ > fumé’
nd+aj=a;
and since J now has cardinality at least 2, this is also a ug linear coordinate change. U

Let us now observe how to boot strap in the presence of [[.g.2 by finding some y satisfying
([IED) modulo £ m > 1. Over U we have, in the notation /spirit of the proof of g9}
(I1.85) Oy =dy+cy :E‘](fgﬂ) . 0xy =a; T + CiKx a:K(f;”)

where the summation convention is back in force, with respect to multi-indices J and K of
degrees m, m + 1 respectively, all the ¢,’s are regular functions of y, and by tameness of the
monodromy (C,y) — C%, ¢ € pe in all of Oy. We know that the holonomy of the system
([[LRA) is a quotient of pg, s0, we again take ¢ as in ([LZ]), and at a presumably negligible risk
of notational confusion let,

(11.86) & =t% x; + b (t) ™ (mod S T?)

be a basis of invariant functions on an analytic étale neighbourhood of G,,, with summation
over the multi-index K of degree m + 1 being implied. Combining these, yields for any ¢,
4y as—(d+1) i oK — 2J g for some J,

0 otherwise

(I1.87) cigc tler a4 % (t" big) = {

By LTl we known there is some 7 with a; # 0, while b;x must be holomorphic in G,,, so

(I1.88) if ay = d then ¢;(0) =0,

since in such an eventuality the exponent of the leftmost term, a;—1, is non-negative. Similarly,
if much more straightforwardly, the p. invariance of 9, and our insistence that y — ¢%y implies,

(1189) Cg = Cd_chJa bJ = Z bl,]u fOI‘, J= (j17 oo 7]71)

with b; as per [[.g.2} (1), and whence,
(I1.90) if ¢;(0) # 0,then by = d(e).

On the other hand consider the obstruction to finding a coordinate § over U restricting to the
same on .Z such that,

(IL.91) 0y =d(1+ N g (L™, X=Xl e IZ, N\ € Opny.

If we look for such a § in the form, y + Ay z”/, with A constants, then we require to solve,
(I1.92) (ag —d)Ay—d\jy=—cy

for all J. However if a; # d, then A; = —c;(0)(ay — d)~', and \; whatever, will do, while

if a; = d, then by ([[I8]) we can take Ay = 0, and A\; = c;y~'. Whether trivially in the

latter case, or by ([IL39)-([[I™) in the former case, §¢ = ¢%j (fiﬁ“), so we obtain ([L68), and
whence ([LG7) by [T.g 1]

As per [Tz the coordinate g also restricts to the previous choice modulo £, so we obtain
in the limit an extension of the canonical /Harder-Narismhan filtration to the whole neighbour-
hood, i.e.

37



II.g.3. Proposition/Summary. Let X — [X/.7] be a foliated smooth formal champ whose
trace is a smooth simply connected —é F curve, & = PL(d,e), then,

(1) There is a bundle Ox(1) lifting O (1) and a smooth formal invariant divisor D, with
Ox(D) = Ox(d) transverse to £ which restricts to the unique point z of £ N sing (.F).

(2) There is a filtration of formal invariant sub-champs,
(11.93) L=%X &G X=X

such that if g > --- > oy, are the distinct eigenvalues of O considered linearised in End (Ng/x@
C(2)), and normalised by [[I.J (1) with nq, ..., ny the dimensions of the corresponding eigen-
spaces then X; is defined by ¥ -invariant global sections y; of Ox(« ), j > i, and nj-sections
for each j. In particular,

(11.94) Ngjx, — [[ Oz (i)™
J<i

(8) All of this is encoded in a particular . linear coordinate system, y, z;, y — %y, x; — (%
of an étale neighbourhood $4 — X with trace A' containing the singular point over which we
have a (e invariant generator,

0 0
I1. = dy— T —
(I1.95) 0 dy(‘)y + a;x oz,

summation convention in force, so that the o, are a complete repetition free list of the a;.

[I.Lh. Jordan Decomposition. We briefly interrupt our discussion of K z-negative invariant
champs to recall some salient facts on Jordan decomposition which will be relevant both to our
study of cusps, and the local uniqueness of the Harder-Narismhan filtration. The situation is
entirely local and, initially, scheme-like, i.e. & is the ring of formal power series C [[x1, ..., zy]],
m its maximal ideal, and 9 a C-derivation of & with a singularity at the origin. Recall that
since € is an inverse limit of finite dimensional vector spaces 9 admits a Jordan decomposition,
i.e. 0 = 0dg + dn, where the semi-simple part dg acts as a semi-simple matrix on each &'/m",
n € N, Oy is nilpotent, and of course [dg, Oy] = 0. In particular if ds = \; ; 8%1-’ summation
convention, then a conventional choice of basis for the nilpotent fields commuting with Jg is,

n

ILh.1. Revision. (cf. [Marf1]) Notations as above then Oy =3 3 ag,2%z;5>, ag, € C,
-1 i

where either,

(i) Qi=(q1,---,qn), ¢ € NU{0}, a:Qi::I,‘?l Ll A-Q; =0, or
(11) Qi:(qla"'7Qn)7qi:_17 qJENU{O}a‘Y#Z; :Z:Ql:xl anA QZ_O

Now the Jordan decomposition of a vector field is certainly unique, and whence the property of
semi-simplicity of a vector field is wholly unambiguous. For a foliation however the situation is
rather more delicate since there is a question of rescaling by units. Whence suppose our field
9 is semi-simple, and consider a field d = ud, where u = 1( ) to avoid stupidity. Furthermore
let’s say, without loss of generality, that 0 = dg = \; z; a - then we assert,

[Lh.2. Claim. Notations as above, there is a change of coordinates of the form, & = wu; z;,
u; = 1(m), and € = 0(m) with de = 0 such that the Jordan decomposition of 9 is,

0
5 0

ie. 9 may not be semi-simple, but the extent to which it is not is very particular.
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Proof. Consider the following inductive proposition for k£ € N,

there are coordinates x;; = ik x;, uyp = 1(m), O = up O, O = N Tik %, ur = 1(m) such
that u,;l = 1+ &g + dk, where ¢, d; are defined by way of the Jordan decomposition of m as
Ker 0, @ Im 0y, and §; € mF.

The case k = 1 is simply our given data. Otherwise consider trying to improve the situation
lzy putting, Tx+1 = Uik Tik, Uik = 1(m) to be chosen. If such a change were to actually render
0 semi-simple then we would have to solve,

(11.97) ak log Vik = )\z‘ <ui — 1) = >\z(5k + 514:)
k

which plainly may not be possible if \; # 0, and e, # 0. However we can solve 0 log v;, = A; Ok,
so that in particular, v;; = 1(m*), while in the new coordinates,
14 0 \ 0
TR N —
1+ep+ 0 ik 0

(I1.98) 0 =
Lik+1
which is indeed what we’re looking for, since putting ugi1 = (1 + 0g) ux then,

(11.99) Uty =1 +ec(L+0)  =1+e+ Y (-1)"erdp

so that 64 € mFHL,

Certainly therefore the 6 — 0, but the proof also shows that for each ¢ the infinite product,
[ ] vir converges to some u;, so putting &; = u; x; we're certainly done on observing that de = 0
k

obliges,

0 0

8—&,€>\ é.z =0.

(11.100) Xi & 7,

0

The consequence of the fact that not only can Jordan decomposition of a rescaling of semi-
simple only fail in a very controlled way, but also that Jordan decompositions of rescalings are
related in such a straight forward way suggests that we introduce,

IL.h.3. Definition. A germ of a foliation (A”, Z) on a formal disc, i.e. Spf(Cl[[t1, - ,tn]]),
with a not necessarily isolated singularity at the origin is said to be semi-simple, if Ty = 0,0
for some semi-simple vector field 0.

As an important example/application consider the situation of blowing up in the origin, i.e.
p: (X, F)— (A", .Z) is the said modification with induced foliation and X is the completion
in the exceptional divisor of the blow up of Spec @. Denoting by, 9 = ds + dy a Jordan
decomposition of any generator T'z we have,

IL.h.4. Fact. Suppose Os # 0 and (X, 7 61) is not everywhere smooth (which in any case could
only happen if in suitable coordinates 0 = x; o ) then the following are equivalent,

(1) (An, F) is semi-simple.
(2) (X, 9:) is semi-simple at all of its singular points.
X, .7)

(3) (X,

m?.
(4) (X, F) is semi-simple at one of its singular points.

~

is semi-simple at one of its singular points, and (A™, F) is semi-simple modulo

Before proceeding, we will require a lemma, to wit:
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I1.h.5. Lemma. Notations as above, then at every point of its singular locus, p*On is nilpotent.

Proof. Without loss of generality we can suppose the projective coordinates of some singular
point, p, in the exceptional divisor to be [1,0,...,0]. Thus if dy = aijxja%i, summation
convention in force, then a;;(0) = 0 for every ¢ > 2. This is equivalent, however, to the column
vector defined by p being an eigenvector, so a11(0) = 0 too. Now, observe that a square matrix,
[cijlij>1 with a zero first column is nilpotent iff the matrix [¢;;]; j>2 is nilpotent, while the
linearisation of p*dy in p is,

m®) 0 0
9921 (0)
I1.101 o
( ) 5 PN . aij(O) PN
85;"11 (0) oo
which has a zero first row, so it’s also nilpotent. D

proof of [Tg} Since (X, .%) is not everywhere smooth the induced foliation is given every-
where by p* 0 (cf. [LRIM) so trivially (1) implies everything else, while both (2) & (3) trivially
imply (4). Consider therefore (4) = (1). As in the above proof of [LLA a singular point
of the singular locus of p*0 is an eigenvector of its linearisation, whence an eigenvector of the
linearisations of p*ds & p*dn , and thus a singularity of both p*ds & p*dn. We know, however,
that every singularity of the former is semi-simple, so by [LLLA, p*0 = p*ds + p*On remains
a Jordan decomposition at every point of the singular locus of Z. By hypothesis, at such a
point p, there is some semi-simple generator 5, so an application of [Lh2 yields e € % X,p such

that p*d(e) = 0, and,
(I1.102) eptds =p"On.

As such, if, x; is an eigenvector of dg, with eigenvalue A; # 0, then for f = On(z1), € =
p*(f/A1z1), while:

(I1.103) 0=210(f/z1) zaf—xil-()\lm—kf)

so z1 | f, and € is actually a function on A", from which we conclude. O

A further question which we may reasonably address here is the uniqueness, or lack thereof, of
the Jordan decomposition. Even without rescaling the particular choice of coordinates in which
we may write a semi-simple field as \; x; 0/0x; may be catastrophically non-unique. Plainly
the worst possible case is when all the \; are rational, or equivalently up to a harmless rescaling
integers. Even this is of course not unique but it’s not too bad since of course any rational
point in some PV (Q) is up to multiplication by +1 uniquely represented by a tuple of relatively
prime integers, consequently let’s establish some notation,

ILh.6. Notation. Let O be a semi-simple derivation of & with integer eigenvalues ay,..., a,,
—b1,..., =bs, a;, bj € Z~q, s zeroes, r > 1, although possibly ¢ = 0, i.e. no negatives, and
(aty..., ap, by,..., by) =1, then we will suppose these ordered by decreasing size, i.e.

(I1.104) ap=Zaz > 2a>0> by > > —b

and by a1, ..., a, kE <r, G1,..., 0, Il <t a complete repetition free list of the same, so that,

ar=a1>ag > >a >0

I1.105
( ) 0>—f > =fr>->—f1=—b1.

Now for a given choice of basis of a semi-simple derivation 0 with the said eigenvalues i.e. a
particular way of writing it as a; y; 8%_ —bjx; %, with say zx the null vectors, we can introduce,
i J
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IL.h.7. Definition. The Harder-Narismhan pair of (A”, ) with respect to the data (0, yi, ;)
is the invariant formal sub-schemes, X, X_ whose ideals are generated by the non-positive,
respectively non-negative, eigenvectors of 0. If instead we take strictly negative, respectively
strictly positive, eigenvectors then the resulting subschemes, denoted Xfo, XEO, will be called
the non-strict Harder-Narismhan pair.

Manifestly, apart from abbreviating Harder-Narismhan to H-N, what’s important is that the
H-N pairs are well defined up to +1, i.e.

IL.h.8. Fact. Fiz a choice of semi-simple O with integer eigenvalues normalised as per [LL.A,
then the following are equivalent,

(1) {X4, X_}, respectively {X=°, X=C}, is the H-N, resp. non-strict H-N, pair with respect
to O in the basis {x;, y;}.

(2) {X4, X_}, resp. {Xfo, X=%, is the H-N, resp. non-strict H-N, pair with respect to 0
i any semi-simple basis.

(3) {X4, X_}, resp. {Xfo, X=%, is the H-N, resp. mnon-strict H-N, pair of any semi-
simple d = ud in any semi-simple basis for the same, where u = 1(m).

Proof. (3) = (2) = (1) are all trivial, so consider (1) = (3). By [LL.2, we know that we can
find units u;, v; = 1(m) such that if n; = u; y;, §; = v; x; then d=a;n; C%_ —bj & C%. As such
{X;, X_}, resp. {Xfo, X=% is the H-N, resp. strict, pair of 0 in the basis {&;, nj}. Now
suppose 0 = a; f; aifi —bj g; % in some other basis fi, g;. At the mod m? level this is just a
question of the uniqueness of diagonalisation/the commutator of a diagonal matrix, so without
loss of generality let’s say f; = &;, and g; = nj(m2). For higher order terms, consider the Taylor
expansion,

(I1.106) fi=&+ > cmn&n* ¢t
#I+H#K>2
where, as ever, £ etc. is the monomial 5{1 e d’“ etc., and (q,..., (s are the null vectors. Now
d [i = a; fi so,
(I1.107) CiJKL#Oizaaja_Zbﬁkﬁ:ai-
« b

Consequently if f; ¢ (&1,...,&), then we have a manifest absurdity, and so conclude by sym-
metry. O

The dependence on =1 is, however, unavoidable. Indeed let, A" — [A" /Z] be a germ of a
singular foliation invariant by a finite group G, or, equivalently for 9 a generator,

(I1.108) ° =cdo !t =u(0)d, u:G— ﬁ’zn

where u is a group co-cycle, so, better, by the acylicity of Bg on torsion free abelian groups, a
character y on replacing d by v0 for a suitable unit. At which point, however, if 9 = ds + dn
is a Jordan decomposition of J, then 97 = 9% + 0%, is a Jordan decomposition of 97, so by
unicity of the same,

(I1.109) 0% = x(0)ds, and, 0%y = x(0)In
As such, if in addition A" — [A"/.Z] is semi-simple, then, by [TLA & and ds generate the

same foliation, so,

I[1.h.9. Fact. If Ar — [A”/f] 15 a germ of a singular semi-simple foliation tnvariant by a
finite group G, then there is a character x : G — Q(1)/Z(1) of G and a semi-simple generator
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0 of the foliation such that, 0° = x(0)0, for all o € G. In particular, if the eigenvalues of a
linearisation in m/m? are in P"~1(Q) then x takes values in {£1}, and,

(a) If x is trivial, all of Xy, X_, Xfo, X=0 gre G invariant, and there is a H-N pair, respec-
twely non-strict H-N pair, of embedded .7 -invariant formal sub-champs, {[X+/G], [X_/G]},
respectively {[XEO/G], [(X=Y/G1}, in [A"/G).

(b) Otherwise, in the notation of [LLA, a; = b, r = t, etc., and [X;/Kery], respectively
[X_%O/Kerx], is isomorphic to [X_ /Ker,], respectively [X="/Ker,], but is only net in [X, U
X_/G], respectively [XfO U X=°/G], which in turn are embedded in [A™/G), being defined by
the G-invariant ideal (x;y;, zr), respectively (x;y;).

Proof. If x is an eigenvector of d with eigenvalue A, then for any o € G, x7 is an eigenvector of
0 with eigenvalue Ax(o)~!, so when the eigenvalues are rational, y must take values in rational
roots of unity. O

Consequently, even in a purely scheme like situation, we have two canonical pairs rather than
two pairs of canonical sub-schemes, and we make:

IL.h.10. Remark/Definition. Let A" — [A"/.Z] be a germ of a singular semi-simple foliation
such that the eigenvalues of a linearisation in m/m? are in P"~1(Q) then there are two canonical
pairs of invariant formal subschemes, the H-N pair, {X;, X_}, and the non-strict H-N pair
{Xfo, X=% where the former intersect in the origin, the latter in the whole singular locus. If
no-confusion is likely, the suffices may be dropped.

In the particular case of [I.g.3] the trace of the formal neighbourhood X affords a distinguished
eigenvector, so the character appearing in [LI.9 around the singularity, p, is trivial. As such, by
op. cit., the H-N pair, respectively non-strict H-N pair, extends from a formal neighbourhood
of p to a pair of embedded invariant formal sub-champs {X,, X_}, respectively, {Z{io, x=0
of X. An important further task will be to extend this to cusps.

[1.i. Cusps. We consider the consequences of the previous discussion for cuspidal —% F curves,
f: % — 2, where, as ever, 2" — [2"/.Z] is a foliated smooth champ. In the first instance the
discussion is purely local, so, say, f : Al - X , the map between completions in the singularity
0€ f1(2), for Z = sing(F). By, for example [BM7], the cusp may, cf. [Ledl be resolved
by the étale local operation of blowing up in the sequence of closed points,

(I1.110) X =IN— ... 21— 2=

of which the first is z := f(0), and subsequently where the proper transform of f meets the
exceptional divisor until such time that f becomes an embedding, f , say, meeting the proper
transform in Z. Necessarily each blow up in ([[LTI) is in a point where the foliation is singular,
so K 7 < Kgz|,, and f can only fail to be a —é F curve if .7 is smooth everywhere around f
Now although such an occurrence is highly simplifying, e.g. % is algebraic in conics, [LdH (c),
the foliation has a first integral in a (finite) étale neighbourhood of .Z etc., it’s preferable to
avoid a separation of cases by viewing such a final situation as a —éF curve for Kz + E,
equivalently working logarithmically, [h.2), around the final exceptional divisor, £, in ([LII0).
In this way, [[.g.3} (3) and [LL4 are always valid, from which:

IIi.1. Lemma. Let f: L — 2 bea —éF curve meeting the singular locus in z, then around
z the foliation is semi-simple.

Consequently, let’s say, 0 = )‘ixiaixi a semi-simple generator of the foliation in the complete
local ring O _, with f : ¢+ x;(t) = t"u;(t) an expression for the cusp in terms of some local
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parameter ¢, with v; € Z~g, and wu; units whenever f*x; is not identically zero. As such, for
any pair of indices 4, j for which f*(z;x;) is not identically zero,

£i(t) _ aj(t)

)\ixi )‘jmj

(I1.111)

Whence, if we re-label the coordinate system as y; for those non-zero on the curve, z; for those
identically zero, and y;(t) = t", then:
0 (1 , s
(I1.112) vilt) =Yy holomorphic = i
Yi t A1t
so, yi(t) = n;t", for some constant 7;, thus, without loss of generality n7; = 1 and \; = wv;.
Proceeding thus, there may be some mild redundancy. Indeed, the cusp has an embedding
dimension k, and re-labelling so that vy is minimal, then if v1|v; one can replace any x; by
something in the same eigenspace (of 0 qua operator on ¢) which vanishes identically, wviz:

Yi — y?’/ "' and in general, one can achieve,
(I1.113) v <vp <o <k, and vig1 & Zsov1+ -+ Z>ov; .

for each 1 < i < k, so we get exactly k y;’s, the v; have ged 1 since f is bi-rational, and every
other coordinate is a x; vanishing identically.

Now, by hypothesis the local monodromy group, G, preserves the foliation on the formal com-
pletion, X , of 2" at the singular point. Appealing to ([[LI0%), we may suppose that it acts
on the above 0 by a character y, and we denote by H the stabiliser of the image C of (the
irreducible branch) f: L — X obtained by completing the local ring of £ at p. Consequently
there is a factorisation,

(IL.114) FolL/H) % [0/H] L [X/G]

and since everything is convergent in the étale topology, this can be glued to a global factori-
sation,

(I1.115) fie Y6 2
where the first map is the normalisation of €, ¢ is net, and % is uni-branch. As such, outwith
the unique singular point p, v is an isomorphism, and ¢ a closed embedding. Equally, the

wholly general applies, so there is a formal champ X with trace ¢ such that X — 2" onto
the completion of 2" in the image of f is étale representable, and,

I1.i.2. Fact. Let f : & — € — X — 2 be the above factorisation of the mormalisation,
[ L — Z of a —1/dF cusp, with v; as {[LIL3), and y;, x;, as above, suitable formal
coordinates (on X) about the singular point, then there are a; € Z such that the foliation is
generated by,

0
(I1.116) 0 = dv; y; 8—% + a;

T
J .
0z

Proof. 1f there is a divisorial valuation of negative discrepancy passing through the closed
singular point, then the proposition follows from [LEI0, ([LTT3)), and the fact that the v; have
g.c.d. 1, so we may suppose that the singularity is canonical rather than just log-canonical.
Now we require a certain re-appraisal of ([LT1)-({[LII3)) in the presence of the action of H in
([LI14). To this end let I be the ideal of the image, C, of the cusp in the completion X in
the singular point p whose maximal ideal we denote by m, then we have a H-equivariant exact
sequence

(I1.117) 0—I/INm®>— Q;®C(p) = Qe @C(p) — 0
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which is equally equivariant under a semi-simple generator @ of the foliation. In particular,
therefore, the induced endomorphism

(I1.118) 9:Qc®C(p) — Q@ C(p)

may be supposed to have eigenvalues the (distinct) v; of ([LII3) with multiplicity (both geo-
metric and algebraic) equal to 1. As such, although H acts on 0 a priori by a character, ([LT09),
such an action must, ¢f. [LLLA be trivial. Consequently the C-linear decomposition of m into
eigenspaces of 0 is also H-equivariant. On the other hand all exact sequences of C[H]-modules
are split exact, so from

(IL119) 0 — (I(\) Nnm?)/(I(\) NmF) — T(N)/(I(A\) Nm*) — (I(\) Nm?) — 0, k> 2, etc.
for any eigenvalue X of 0, we can write the H-action as blocks of C-linear actions
(I1.120) H 30 :xi)— Ag(o)zjn, v xi(o)y:

for a coordinates system {z; ,v;} in which x; x € I()), the y;’s afford eigenvectors of ([LIIS)
with eigenvalues v;, and the x; are characters. In particular there is a filtration which is both
H and % equivariant
b; CiA .

(I1.121) FP=([Twr [T : Do) + > cin > p)

i 7oA i JA
of the complete local ring. Plainly, however, the filtration ([[LI2])) is actually the completion
of a bi-equivariant filtration of the Henselian local ring of X (in fact even that of 27, albeit
here, ([LT14)), the invariance under the possibly larger local monodromy may fail) so it affords,
[MPT3], Liv.3], a smoothed .Z-invariant weighted blow up

(11.122) p:X— %

which is an isomorphism off p. In particular, therefore, the unique lift f : .2 — X of f of ([(L113)
is a —% IF curve with smoothly embedded image, and [Tig-3holds. By direct calculation, ([(TI24),
cf. [MPI3, pg. 180], however, the eigenvalues (in an étale patch) of 9 and p*9 along the proper
transforms of the z; )’s differ by 1, so ([[LIIA) follows from ([LA33) applied to p*o. O

Of course, we also proved that not just the linear holonomy, but actually all of the holonomy
is cyclic of order dividing d, so although is sufficient for applications, we can actually do
better thanks to,

I1.i.3. Fact. Let X — [X/Z] be a foliated smooth formal champ whose trace has an étale
neighbourhood the invariant affine cusp, C, i.e. image of t — (t",... t%), for v; as per
(IL113), t € A', with the origin the unique point where C meets the foliation singularities, then
the formal holonomy is cyclic of order at most d iff we can find formal holomorphic functions,
Ylyeo s Yky T1 ..., Ty, rEstricting to a coordinate system on an analytic neighbourhood in X of
the singular point with the y;’s embedding coordinates respecting (LILIL3), x; vanishing on the
cusp and a generator O for the foliation all of which are holomorphic on an étale neighbourhood
(in the analytic topology) of X with trace C' such that for some a; € Z,

0
11.123 0=dv;y; — X —
( ) Vi Yi Av; +a; z; Oz
holds on an any analytic étale neighbourhood of the singularity where the y;, x; form a system
of coordinates.

Proof. The if direction is trivial, and for smooth curves this is [[L.g:3}, or, more accurately a

slight re-phrasing thereof. In any case, the affine cusp has no (holomorphic) Picard group, so a

global holomorphic generator, d, of the foliation on X exists, and we proceed to combine [Lg.3|

with to achieve the required form. In particular, by the latter, and [LL2, we can find

coordinates y;, x; and an invariant function ¢, all in the completion in the singularity, 0, which
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render 0 := (1 +¢)~'d in the given form. A local coordinate system for the weighted blow up

[LI22) is given by:

(I1.124) =97 vi =G x5 = 50
in which ¢; = 1, ¢ > 1 where our cusp crosses the exceptional divisor, p, say, so the v1th roots
of unity act without fixed points in a neighbourhood of p, and 1, z; := y; — 1, Z; furnish

coordinates in which p*é is semi-simple at p.
Now we appeal to[[T.g.3] to find a possibly different generator, D = vp*d for v a (holomorphic)
unit on an étale neighbourhood of X with trace the resolution C' of C', such that,

0 0
11.125 D=dn—+ (a; —d)&;—
(11.125) gyt~ g
along with some other coordinate (;, such that, n, ¢;, &; agree with 91, %;, Z; modulo m(p)?, but
the former are defined on all of X. Both coordinate systems are semi-simple, so [LDh.2 applies
to yield units u, u;, ¢ > 1, w; in the completion at p such that 1 = uy, ¢; = u;%;, {§ = w;T; are
a semi-simple coordinate system for D in the complete local ring at p. Effecting an appropriate
linear change, this latter coordinate system is related to that in the 7, ¢;, &; by,

(I1.126) d=n+> > emile

m22|I|+[J|=m

and similarly, employing the notation of ([IZ74) et seq., for the (;, and the éj. Both the left and
right hand sides in ([[LI26]) have the same eigenvalue, viz: d, so for all I, J we must have,

(IL.127) dncy;(n) + (ay —d|J|)ers(n) =0

and a; takes only finitely many values for |I| + |J| bounded. Consequently, for every m such
that, |I|+ |J| = m, cr; is a polynomial in 7, from which 7 converges not just in the completion
at p, but in the full étale neighbourhood with trace C.

Argulng snmlarly for the Q, 5] s, and €, we may, without loss of generality, suppose, = 7,
G=0C, &= 53, and that ¢ is defined in a neighbourhood with trace C'. Thus we may suppose
that € = 0, and whence

Du Du; Dw;
I1.12 =d(1— t=0, —L =(a; —d)(1—
( 8) " (1—-w), ” ' w; (aj —d)(1 —v)

where, without loss of generality, all of u, u;, w; are congruent to 1 modulo .#5. Thus, for
example, we can write,

(I1.129) u:exp(z Z ury(n)¢'e?)

m>2 |I|+|J|=m

so if 977(n) are the coefficients of a similar Taylor expansion for v(1 + €), then from ([[LI128)-

([C129),
(I1.130) dnuy;(n) + ayury(n) = —dor;(n)

where the right hand side is holomorphic in 7, while, a priori, the left hand side is formal,
whence, a postiori, holomorphic. Consequently u is well defined on our étale neighbourhood
with trace C, so, idem for ¢, and by an identical argument, all of the Z;, ; are equally so
defined on the said neighbourhood. The relation of these to the original coordinates y;, z;
defined on completing X in the singular point is given by ([LI24), so, not just the normalising
factor (1 4 €), but also the y;, x;, are defined on an étale neighbourhood of X with trace C.
By construction, however, y;, x; are already a formal coordinate system at the singularity, so
they are in fact coordinates on at worst an analytic neighbourhood of the same, while on any

such ([LIZ3) holds by construction. O
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The role of the analytic topology in and its proof merits clarification by way of

I1.i4. Remark. Profiting from the Euclidean algorithm to solve c¢j vy + -+ + ¢y v = 1, for
some integers ¢;, one would might like to make a more strict analogue of [[.,g:3] Indeed in the
above notation, ¢ = yi'...y;* is a meromorphic function on the affine cusp which, close to
the singularity, restricts to a coordinate function on the normalisation, and one might hope
to form an explicit patch with an étale affine neighbourhood of the non-scheme like point at
infinity according to the relation ¢¢ = s~%, for s a coordinate on the A! 5 oo, ¢f (LI &
([CI24). In principle, however, ¢ so constructed has an essential singularity at infinity. Plainly
the problem is the intervention of v in ([[LI28), which unlike the smooth case cannot be avoid.
Specifically, as in the smooth case, for ¢ the unique (up to scaling by a constant) coordinate on
the normalisation of the affine cusp, one would like to normalise, ¢f. ([[L48), a generator O of
the foliation restricted to the cusp according to

(11.131) o) =t

so that a postiori ¢ =t and everything is meromorphic over co. It can, however, happen under
the hypothesis of that ([LI31) doesn’t admit a solution. If one follows the proof of
and takes 0 to be holomorphic then this is equivalent to asking that the unit v which appears
restricts to a unit defined on the affine cusp rather than just its normalisation. Similarly, if
one works algebraically this is equivalent to Kz restricting to an algebraically (rather than
just holomorphically) trivial bundle on the affine cusp. Consequently a counter example where
([[LI3T) cannot be solved is

(11.132) 8:2(x+y)(%+3(y+x2)(%, y? =2 C A%

Since for t = /x, 9(t) = t(1 +t), and T'» defined by gluing this to the unique (up to scaling
by a constant) nowhere vanishing field, 0, on V' = Al 3 oo along the open set V\{—1,00}
by way of

(1+t)-8

(I1.133) 0=
defines a bundle whose restriction to the affine cusp is algebraically non-trivial. As such:

I1.i.5. Warning. Formal neighbourhoods of cusps, even though the problem is wholly at the
level of the bundle of derivations defined by restricting the foliation to the reduced cuspidal
curve, do not admit a description comparable to [[[.g.3] Ultimately, therefore, our treatment of
cusps, JIIT.d requires global hypothesis, [TLcTl rather than the local hypothesis of

On the bright side, however:

I1.i.6. Remark. In the course of the proof, we’ve complemented [[I.g-3] even in the smooth case,
since, in principle, even if a generator 0 on the étale neighbourhood U of [[I.g.3} (3) were semi-
simple at the singular point, there might have been an obstruction to expressing 0 in terms of
semi-simple coordinates on an analytic neighbourhood of 0 € U, as found in op. cit., due to a
possible re-scaling by a unit implicit in ([[L3I)). We see, however, from the proof of [LL3 that
there is no such obstruction.

III. EXTREMAL SUBVARIETIES

IIl.a. Generalities. Unless specified otherwise, throughout this chapter 2~ — [27/.7] will

be a foliated non-singular champ, with log-canonical foliation singularities. We switch our

attention from Kz negative curves, to Kz negative extremal rays R. The moduli X is of

course supposed projective so if Hp is a nef. Cartier divisor supporting the ray, i.e. Hr. o =0,

and « in the closed cone of curves iff &« € R, then for sufficiently large m € N, A :==m Hrp— K »
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is ample. In any case following Kollar, Mori, et al., cf. [Kol96] III.1, we introduce our main
object of study, by way of,

[II.a.1. Definition. The locus of R, Loc (R) is the set of closed points z € X(C) such that
there is a curve 2 € C' C X with [C] € R C NS;(X).

Observe that a priori Loc (R) is not a subvariety of X. Indeed for m € N, we can filter Loc (R)
by sub-schemes Loc,, (R) on demanding that = € Loc,, (R) if we can take the curve C of the
definition to have Ag. C' < m. That Loc,, (R) is a sub-scheme is immediate from the existence
of the Hilbert scheme. To remedy this let us consider,

[II.a.2. Definition. A R-pre-extremal subvariety is an irreducible subvariety Y C Loc (R)
maximal amongst the set of irreducible varieties contained in the locus.

Trivially, the dimension in chains of proper inclusions of irreducible varieties must increase so
R-pre-extremal subvarieties exist; any € Loc (R) is contained in one; and Loc (R) is the a
priori countable union of all of them. Now if Y is R-pre-extremal, and y € Y then there is a
C, with [Cy] C R containing y. However applying [ILd2 we know, for y generic, there is an
invariant parabolic champ f, : £, — 2 through y with moduli L, such that,

Hg.C,y _0
-Kz.Cy ’

So in fact L, € R, and Ag. Ly < 2. Additionally L, cannot be contained in sing (.#) since it has
K z-negative degree, so we can make a .#-invariant subvariety W by adding to generic points
of Y an appropriate L,. On the other hand Y is by hypothesis R-pre-extremal, so W =Y,
ie. Y is . invariant, with the induced foliated variety Y — [Y/.#] being a pencil of rational
curves of A degree at most 2. Hilbert schemes, however, exist, and being invariant is a closed
condition so in fact there are at most finitely many R-pre-extremal subvarieties for a given
R. Better still the Hilbert scheme yields for any R-pre-extremal subvariety Y a flat family,
L — T, for some irreducible sub-scheme T of the Hilbert scheme such that the projection of
L to X factors as a generically finite map over Y. An awkward case occurs when X is itself a
R-pre-extremal subvariety, i.e. 2 — [2 /%] is a pencil in parabolic champs. As a result we
introduce,

(111.1) Hp L, <2

III.a.3. Definition/More Terminology. A R-extremal subvariety Y is a subvariety of a R-
pre-extremal subvariety Y’/ which is maximal amongst the subvarieties of Y’ which are covered
by invariant curves passing through at least one point of the image in X of the singular locus

of 2 — [2 ) 7).

So indeed unless 2" — [2/#] is a pencil in parabolic champs then extremal and pre-extremal
coincide, while in the awkward case an extremal variety will be specified by taking the invariant
curves passing through an appropriate component of the singular locus. Now pulling everything
back by the moduli map, 7 : 2~ — X, define a R-extremal champ as the fibre over an extremal
sub-variety, idem whether for pre-extremal or the locus, denoted Zoc (R), and observe,

[Il.a.4. Fact. The locus Loc (R) of an extremal ray, is a finite union of R-pre-extremal champs.
Denote by Zoc’ (R) the subvariety which is the union of R-extremal champs, then any % C
Zocd (R) making up this union is covered by —1/dF curves, where d may vary from curve to
curve. There is however a family £ — T of champs, possibly non-flat at the non-scheme like
points, such that, (£ —T) — (¥ — [Y/.F]) is a generically finite map of foliated champs.

In the same, albeit more refined, vein we will also employ:

IIL.a.5. Fact. Suppose 2 is a smooth separated champ (over a field for ease of exposition) and
f:Y —= 2 a map from a proper algebraic space then there is a separated (Deligne-Mumford)
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champ 7 and a deformation F :' Y x T — 2 of f such that if G :' Y x M — % is any
deformation of f parametrised by an algebraic space M, then there is a map g : M — 7 and
a natural transformation v : G = F(idy X g) such that if h : M — 7 is any other map for
which there is a natural transformation 0 : G = F(idy x h) then there is a unique natural
transformation « : g = h for which 0 = F,(id x «)y. In addition the dimension of 7 at the
point afforded by the trivial deformation and the above universal property is at least,

(I11.2) WO(f* Ty ) = W' (f* Ty)

Proof. The existence of 7 is a special (if key) case of the main theorem of [OIs06]. As such
the dimension computation is infinitesimal and wholly space like in nature, ¢f. [Ladl i.e.
deformations of the trace of the formal space

(I11.3) B :=Spf(f*P4)
so we can replace 2 in by P and appeal to [Kol96], 1.2.16]- we only need the case Y
projective. O

IILb. Finding Weighted Projective Spaces. Aseverlet 2" — [2 /.Z] be a foliated smooth
champ with log canonical foliation singularities, albeit with projective moduli, and f : . — 2
the normalisation of a —é FF curve with at worst nodes, and, in the notation of[[I.g.3] eigenvalues
a; > ag > --- > a, of a generator 0, in the normal directions, at the unique point p where
f meets the singular locus. If a; < 0, then we simply have nothing to say for the moment.
Otherwise, consider the net completion, g : X — 2 ,Ced of 2" along the composite of f with
the the universal cover, ¢ : . — . By [[L.g.3] cf. [LLI0, there is a unique invariant closed
formal sub-champ, X, — X such that,

(TI1.4) Nyx, = [ 0(a)

a; >0
By the Chow lemma, [LL2 there is an irreducible sub-variety X, of the moduli X of 2" of
the same dimension as X obtained by taking the Zariski closure of the image of this in X. We
therefore have maps,

(I1L.5) l l

X — X

so the leftmost vertical factors through the gerbe 27 = 2" xx X1 — X4, and even through
the normalisation, 9@1 — 24, since X4 is smooth. The said vertical arrow is, however, net
so X4 — ,%;Jr is étale. Indeed the assertion is local, and everything is excellent, so it suffices
to work with the corresponding complete local rings in geometric points, but then X4 can be
identified with an irreducible component of 27y, from which its isomorphic to its image in the
normalisation, and we assert:

IIL.b.1. Claim. There is a smoothed weighted, [MPI3, Liv.3], blow up 8 : 2} — 2~ supported
in the point p such that the induced (after saturation) foliation 2, — [2p/%] is smooth and
everywhere transverse to the exceptional divisor.

Proof. Since p is isolated and, as above, X and 9@1 have isomorphic complete local rings it
will suffice to prove that there is a smoothed weighted blow up of the complete local ring, &, of

X4 completed in p which is independent of any automorphism, o, of % preserving the foliation.
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Now by [[T.2.34(3) there are coordinates yo, 1, - , ¥, in &; positive integers a; > 0, 0 < i < r;
and a generator 0 of the foliation such that

0 0
(I11.6) 0= doyog -+ Gilig -
wherein y; = 0, ¢ > 0 define £, so that for i > 0, a; are as in ([IL4), while ap = d in the
notation of ([LOH). As such if o is an automorphism of 0 preserving the foliation, then there
is a unit u, such that

(I11.7) ° = 0o = uyd

and y7 is an eigenvector of the linearisation of O with eigenvalue u,(0)"ta;, for all 0 < i < r,
50 u,(0) = 1. Consequently, by [LL.2 and a; > 0, 97 is not only semi-simple but

0 0
(ITL.8) 0 = agno7— m + a; ni 57— o

for a coordinate system of the form 7; = w;y;, u; a unit, 0 < ¢ < r. If, therefore, we define a
filtration of & by the ideals

(I11.9) Iy = (Y -yl Jagty + - - - + apt, > n)

then this is independent of the choice of y; in ([ILH) since a basis of the eigenvectors of J with
eigenvalue a; are monomials yé‘) - ylr with agtg+- - - +art, = a;, and it is independent whether
of o, resp. the choice of 9, by ([ILH), resp. mutatis mutandis. The filtration, ([ILY), defines a
weighted blow up exactly as in ([ILI8) with smoothing as per (IILIJ). O

Now let us apply this to a qualitative description of 27, i.e.

II1.b.2. Corollary. If .Z corresponds to an extremal ray R in Néron-Severi, with supporting
function Hg, and ample bundle Arp = mHpr — K #, then for all x € 27, there is a —1/d(z) F-
so, by definition, [Ld3lan invariant parabolic champ %, > x in 2" which, in addition, meets
the singular locus in the same singular point p as .Z; and every invariant curve is not only of
this form, but is parallel to R in Néron-Severi. In particular the singular locus of the induced
foliation in 27y is the isolated point p.

Proof. The in particular follows from the antecedents. Otherwise, without loss of generality,
we can replace 27 by %Jr, form the weighted blow up g : 2 — ,%Gr of ML lift f to
f:% — 2, for a possibly different but still parabolic 2 by LIA(b), and argue as in op.
cit. (c) to find a deformation .# /T, T proper, of f composed with the universal cover of .Z
which covers 2, so, equivalently the push-forward of which covers ,%Cr

If, however, Y a;C; is some effective invariant 1-cycle numerically equivalent to a rational
multiple of 7.[.Z] then every C; generates R, so the gerbe %; over any such C; is a K&
negative invariant curve. Consequently, we require, in the first instance, to show that every
K 7 negative invariant curve, with f: % — 27 it’s normalisation, is a —1/dTF curve for some
d, so, equivalently, avoiding the possibilities,

(a) f(€¢) C sing(.#) N Z4 C sing(.#), which is impossible by the definition of log canonical
singularities as encountered in the proof of [L.d2

(b) f(%) Nsing(F) # 0. Should this occur then f is an embedding, and for € — € the
universal cover, another application of [CdH (¢) affords a finite étale neighbourhood V -V of
the completion in € with trace €, such that the induced foliation in V is a smooth fibration.
From which, the generic invariant curve misses p, which is absurd.

Now, a fortiori, the singularities of the induced foliation in 27 are contained in sing(.%)N 27,

and by construction this has at least the isolated point p. The leaves of % in 27 afford,

however, a family of connected curves C' — T in X over an irreducible base T, the gerbes over
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each component of each fibre of which have been seen to be —1/dF curve for some d. As such,
suppose there is another singular point ¢, then there is a —1/dF curve through it, and this
must be the gerbe over some component C; of some fibre C;. By definition, however, a —1/dF
curve cannot meet sing(.%) in any other point, while meeting p is a closed condition, so there is
a different curve C; in the fibre C; through p. The fibre is, however, connected, so there must
be a third curve C} meeting the singular locus twice, which is nonsense. O

From which we deduce a series of corollaries,

IIL.b.3. Corollary. The champ 27, but, cf. the pre-amble to §lLd maybe not 27, is smooth.

Proof. The singular locus, %, of 27 is invariant by every vector field, so, a fortiori by .7, while
every leaf meets p, so % must meet it, yet, by construction the complete local rings at p of 27
and X4 coincide, while the latter is smooth. U

[IL.b.4. Corollary. The moduli Y of any representable étale cover %, — fﬁ has exactly one
point over p, so, in particular if € — 27 is any embedded —1/dTF, then the natural map,
m (%) — w1 (Z75), be it of analytic or algebraic fundamental groups, is surjective.

Proof. Any étale cover #, — 2, still has étale neighbourhoods around a cover of & satisfying
[Tg-3 with 3&1 instead of 2 in op. cit. As such the proof of certainly applies to
deduce that %, or, more correctly Y, has foliation singularities supported in an isolated point
whenever Y, is algebraic. It applies, however, even if Y, were a priori analytic since the
deformations of smooth parabolic invariant champs in the weighted blow up guaranteed by
ML are certainly open, but they’re also closed by the simple expedient of taking the limit
algebraically and lifting to the universal cover. As to the in particular, otherwise, ¢ x 7 Y. is

disconnected, and ¢ — 9@1 is supposed an embedding, so there would be at least two singular
points in % . 0

ITII.b.5. Corollary. For each eigendirection 8%1- of the linearisation of a foliation generator in
End (N:f/gh ®C(p)) there is an at worst nodal —1/d; F invariant champ f; : £ — 2~ through

p with a branch parallel to 8%1_ and a rational multiple of R in Néron-Severi.

Proof. There is a formal invariant curve in the said direction in the formal étale neighbourhood
X4, but every leaf is a —1/dF curve for some d, and all branches of the embedded image are
isomorphic. O

Additionally points in PY(Q), t € N, are, up to +1, uniquely represented by t + 1 tuples of
integers with ged = 1, so if we change to a more homogeneous notation, viz:

III.b.6. New Notation. Linearise a local generator 0 of Tz in the completion of ﬁ%,p of
ﬁ%m in m%(p) by way of, 0= a1y % + -+ a,«y,«aiyr —~biaj‘iaixi, a; € N, b, € NU {0},
(aty..., ap, by,..., b) =1, with z; = 0 local equations for 27, the summation convention in
the obvious way, and ¢ the codimension of 27 . As such in the above situation, [ILDAH, a; | d;.

By TR we can (since otherwise will do) conclude that 27 has finite analytic, and
whence finite algebraic, fundamental group on establishing,

IIL.b.7. Claim. Let ¥ — P! be a gerbe with at most 2 points whose monodromy exceeds that
of the generic point, and which has a unique singular point, p, every branch of which is smooth,
then the topological fundamental group (%) is finite.

50



Proof. The local model, C, of € is b-smooth branches through p on which a finite group acts
G transitively on the branches branches while fixing p. In particular, the monodromy of the
generic point is isomorphic to the stabiliser of any point other than p, which, in turn, is a
proper sub-group of G since its image in the permutation representation on branches fixes at
least one such. Consequently, p is a point of € with non-generic monodromy, and we denote
by ¢ the other such, should it exist, or some point distinct from p otherwise. In either case, let
U > p be the complement of ¢ in P'.

Now, observe, that if . — % is the normalisation, and B — C a branch whose stabiliser in
the permutation representation is H, then [B/H] is a local model for £, and 4y := £ xp1 U
has fundamental group H, and universal cover isomorphic to U, with H acting linearly. In
particular, if we identify a branch with a disc, A, in U, embed C in V where the latter is b
copies of U through the point p, and for good measure observe that all of this is necessarily
compatible with a linearisation of GG in appropriate coordinates, we find a commutative diagram
of fibre squares with vertical embeddings,

cC — [C/G] — A

(LIL.10) l l l

V— xp U —— U

The upper left horizontal arrow is, however, the universal cover, and all the verticals are
homotopy equivalences since the rightmost is, so the lower left is a universal covering. As in
[[CTZ2), the mapping U — %y may not extend over ¢ as a map from P! to ., but this holds
over some cyclic Galois cover U — U ramified exactly in p which respects the commutativity
of,

U
(I11.11) l l

Better still, taking b copies V of U, the resulting composition V — € xp1 U with the lower left
map in [ILI0 now admits an extension, V — %, over b copies of P! meeting in a single point
since the upper horizontal in ([ILT]) is an embedding. By construction, V — % is open in the
origin, and everywhere else it’s flat, so it’s open everywhere. As such if .# — £ is any (not
necessarily finite) representable connected étale covering with group I, then .# x oV = V x T,
and the image of any V x v — .#, v € T is open and closed, so it’s all of .. U

Now let ¥ — 3&1 be the finite universal cover assured by [ILD.A and [ILH7 then we further
assert,

IILb.8. Claim. Pic(%) = Z.

Proof. By construction 7 : % — Y is a gerbe over a projective variety, and the proof of [DIST]
that the Hodge-De Rham spectral sequence degenerates at E; is valid mutatis mutandis since
it only requires local smoothness and the co-homological criteria for ampleness both of which
hold on %'. As such, since % is simply connected and = is acyclic,

(I11.12) HY %, 04) =H (Y, 1.00) = H(Y, Oy) = 0

Now quite generally we have that Pic (%)g = Pic (Y )g, and by ([ILT2), these are equally their
respective Néron-Severi groups with Q-coeflicients. The Néron-Severi group, NS;(Y)q, of Y is,

however, known, e.g. [Kol96] 11.4.21, to be of rank 1, so: Pic (%) — Q, which is equally
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the image of the Picard group under (c1)g in H2(%#,Q(1)) as deduced from the exponential
sequence,

(I11.13) HY (%, 05) = H\(Y, Oy) — Pic(%) <5 HY(%, Z(1))

while the remaining possibility of torsion is excluded by % simply connected, and the exact
sequence,

HY(#,Q(1)/2(1)) — BX(#, Z(1)) — H*(#,Q(1)) .

We will need some auxiliary constructions, so, initially, %, i.e. % modulo its generic stabiliser,
[Cafl and their moduli, Y. At the singular point p identified with the origin in the notation of
[MCLA we have, therefore, its stabiliser G' in %/, of which the stabiliser G in %4 is a quotient
acting faithfully on the local ring. Furthermore in a minor variation of we have, étale
locally at p, a foliation generator @ with co-prime positive integer eigenvalues a; which is
invariant by the action G. Under this action, however, eigenvectors must go to eigenvectors, so
the linear representation, p of GG, which is equally its local action, splits as a direct sum of p,’s,
where o € A is a complete repetition free list of the a;’s, and p, permutes the eigenvectors of 0
with eigenvalue a. In particular, therefore, in the notation of [ILL.6l the action of G commutes
with the action of G,, defined by,

(I11.14) AX (Y1, ye) =y = (A y,. . Ay,
while the leaves may be identified with the images of,

(II1.15) ¢c it — (cit™, ..., ¢ t"), where, c € A"\0
with two such functions ¢., ¢ defining the same leaf in Y iff,

(IT1.16) ¢ =(p(9)e)’, g€G AEG,

with G, action as per ([ILI4)), which, as we’ve said, commutes with G, so if H is the image of
the representation

(TI1.17) G — Aut(P(ar, ..., ar))

in automorphisms of the moduli of the weighted projective champ P(aq,...,a,), then the leaf
space is P(ay,...,a,)/H.

Similarly, if we consider the weighted blow up,

(I11.18) 2 =Proj([[ 1) = %, Tn= (1" .y aits +...anty > n)
n

then the moduli, F, of the exceptional divisor is equally the said leaf space, so we have a map
% — FE. In addition %4 has only quotient singularities, so we can form the smoothed weighted
blow up % — %, [MPI3, Liv.3], or if one prefers not to cross reference, replace % by what
is locally its Vistoli covering champ, [La2 In particular % is smooth, with smooth connected
exceptional divisor &5. Certainly the moduli of &5 is E, but it’s usually false that % maps
to & because the latter is highly non-scheme like. Indeed since pl|q, is faithful, the stabiliser
of a generic point is the kernel, K of Gy — H, which by ([ILIf) and ([[ILI4) is isomorphic
under the restriction of p to some finite group of roots of unity p,, acting according to ([ILT4),
albeit for A\ € pg,. Alternatively: in the stabiliser of every geometric point of &5, K may be
identified with the normal sub-group of pseudo-reflections in &3, and killing such reflections
affords a map % — %, where % is smooth, still a gerbe over the moduli of %4, and % — %
is the extraction of a agth root of a smooth divisor & = [P(a1,...,a,)/H]- this latter notation
being absolutely unambiguous since H acts on P(ay,...,a,) because of the commutativity of
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G with ([ILI4). Consequently we have a diagram,

(%’ éal) Vistoli covering (%’ & = % ) éN")
(111‘19) Weighted blowupl laoth root
Yp>p LLIARD gy 5 P(ay,. .., an)/H])

if ag > 1.

where, to be precise, the final arrow is an isomorphism off & and is defined over p iff ay = 1.
This final auxiliary pair is the good one for extending the map % — FE, to wit:

[ILb.9. Claim. The moduli of the #7 — E lifts to a map 7 : Y — éNa, and better still, not only
is this the quotient %" — [#'/.Z] but there is an a € N such that this expresses that foliation
as a fibration in P(1,a)’s in the étale site of &, while the identity,

(I11.20) Kzlgs =Kz, + & =Kz + 8|y

with implied pull-backs those in ([ILT3) not only gives sense to Kz on &, but is a well defined
tautological bundle, i.e. of degree 1/a on geometric fibres.

Proof. We will prove the statement in the analytic topology, since by [Gir7Zll, 1V.3.4] and
[SGA-TV], XVI.4.1], ¢f. [McQI5, IV.a.3|, it is equivalent, and trying to avoid this just leads to
repeating variations on the steps in op. cit.

The smoothed weighted blow up operation- left vertical followed by top horizontal in [1LI9
smooth the foliation, and dropping to ¢ it remains smooth since & is everywhere transverse.
Now let ¢ be a geometric point of &, with S, its stabiliser in %/, then we can find a polydisc A"
centred on ¢ with coordinates y;, y1 = 0 an equation for &, 0 = aiyl generating the foliation,
and S, acting linearly via,

(IT1.21) y1 X o — x(o)y1, i xo—b;(0)y;

From which, we can naturally identify 6 : S, — GL(r — 1,C) with the full (not just linear)
holonomy of the piece- [A/Sy]- of the leaf .Z, > ¢ through ¢ in %, and 6 is faithful because
there are no pseudo-reflections in &.

The foliation is smooth with proper leaves, so their universal cover is constant, and since

the leaves are —é F-curves in % without generic monodromy, and the generic point of & has
no-monodromy, this is P(1,a) for some a € N, and the monodromy representation extends to,

(I11.22) Sq=m([A/Sq]) = m(ZL) — GL(r — 1)

so the first arrow in ([IT22) is an injection. By either the long exact sequence of a fibration
or, more algebraically [McQI5|, IIL.c.3], 71 (%) is an extension of the fundamental group of the
orbifold over which it is a locally constant gerbe by a quotient of the generic monodromy by a

central element, so S, is also surjective by [Ld3(b). As such, the holonomy covering of .%; is
its universal covering, so that for S, acting diagonally, we have an embedding,

(I11.23) [P(1,a) x A" 71/S,]| — &
for some possibly smaller transversal polydisc, and the natural projection,
(I11.24) [P(1,a) x A"71/S,] — [AT71/S,] — &

is the unique analytic continuation of our initial projection [A"/S,] — &. This latter exists

everywhere in a neighbourhood of &- in fact everywhere in a formal neighbourhood would be

enough which follows from the normal form so the projections ([IL24)) glue by [adl

to a projection on all of % . The final assertion, ([IL20), is an easy local calculation at the

singularity. U
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The fibration in has connected and simply connected fibres, so,
(I11.25) () = m (&) = m([Play, ..., a,)/H))

and by [Cchl a weighted projective space is simply connected, so this latter group is H,
which in turn affords a connected H-covering of % \és since this is embedded as a repre-
sentable Zariski open of % . Further the diagram, ([IIT9) can be formed locally with % either
[A"/Go], or [A"/K], yielding a pair of diagrams with the obvious commutativity between
them. Consequently the above H-covering of Y \éND implied by ([IL23) glues to the H-covering
[AT/K] — [A"/Gp], and since % is simply connected, we must have H = 1, and we further
assert,

II1.b.10. Claim. The foliation %y — [%#/.#] is isomorphic to the radial foliation, #, on the
weighted projective champ P(ag, aaq,...,aa,). In particular, since % is generically scheme
like, a, and ag are relatively prime.

Proof. The start of the Leray spectral sequence applied to the fibration 7 of [ILDh.Y yields an
exact sequence,
0,1

(I11.26) 0 — HY(&,Gp) = Pic() — HA(&, R'm.Gp) 2 ...

and by ([IL20) this latter group is generated by the image of Kz, so dg’l =0, and for a as per
L LD.9Y we can write,

(I11.27) 047(8) =T% @ 6:(—m)

for some m € N, with the latter bundle the tautological bundle, L2 on our weighted projective
space. Forming, the exact sequence,

(IT1.28) 0—0;(aly —&)— Oy(aly) — Oz — 0
and pushing forward by 7, affords,
(I11.29) 0— 0Oz(m) = m0yz(alg)— Oz — 0

which by is a split rank 2 vector bundle, V', with the splitting even being canonical if
a > 1. Indeed, we already know by that if there were extra monodromy at oo then it
forms a smooth divisor on & admitting a group of reflections of order a, so, equivalently if we
killed these pseudo reflections, then all of the above is equally valid for some %4 4, %, etc., and
% — %, is an extraction of an ath root of a section, co, of the P! bundle, P(V) = %,.

Now, by [II23) et. seq. Gy = K, and the important thing to observe is that because of
the commutativity of the action of G with the Gy,-action ([ILT), the locally constant gerbe
& — & of ([IILTY) in Bg’s is in fact trivial, so ag|m by ([I). If, however, ag and a were to
have a non-trivial gcd, a > 1, then the leafwise universal cover,

ap ai
I11.30 P(—, — P
(111.30) (%, %) - Pla,a)
of the fibres of % — & is globally well defined, i.e. by ([IIZd): raising to the power «

on the Gy, torsor 0z(2) and extending over 0 and oo. The resulting covering % — % is
étale representable, and locally about the singularity, patches to the p, covering [A"/pao] —

[A"/11q,], and whence the absurdity that % isn’t simply connected.

Having thus established the in particular, everything else follows quickly. The fact that ag

and a are relatively prime imply that in an embedded neighbourhood (formal will do) of the

singularity p, % — [%# /%] is isomorphic to the radial foliation, Z, [Ld2, on the said weighted

projective champ, &2. All of the above, and specifically ([ILT), apply, ¢f. [LL3, if our starting

points is & — [ /Z%]. The fact that we have an isomorphism at p, and the same monodromy

at infinity, obliges us to have the same P(1,a) bundle, so # — [#/.F]| and & — [P /%)
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are isomorphic in a way compatible with the initial isomorphism at p, and whence, L3l (d),
% — % /.F] is isomorphic to & — [P/ X]. O

Our initial % is simply connected, and a locally constant gerbe over %4, so by [Lcf it is again
a weighted projective champ, and only the notation changes,

IIL.b.11. Fact. The foliation % — [% | F] is isomorphic to the radial foliation on the weighted
projective space P(ag,aay, ..., aa,), where ag is the order of the stabiliser of the singularity p,
and the generic leaf is a —é—curve. In particular the generic stabiliser is cyclic of order the gcd
of ag and a.

[II.c. Ignoring Cusps. So far we haven’t discussed what may happen if our extremal ray R is
represented by an invariant champ f: % — £  which has a cusp at the unique singular point
z where f meets sing (.%). This is, however, easily reduced to the previous case by way of

[II.c.1. Claim. Let z be a geometric point of the singular locus of a foliated smooth champ,
2 — [Z).7], with log-canonical foliation singularities, and projective moduli, then if there is
a K z-negative extremal ray, R, represented by a —1/dF curve through z there exists a —1/d' F
curve through z with at worst nodes.

Proof. Let 7 : 2 — 2 be the blow up in z then the exceptional divisor, & is invariant and
7*K # is again the foliated canonical bundle unless perhaps all the eigenvalues in say, [ILD.6
are equal, but then there are no —1/dTF cusps through z by [L12 and we're done. As such, by
the cone theorem, [Tl there is a —1/d’F curve whose class, R, in NE{(2") is extremal and
7R > R. Consequently, without loss of generality, we may suppose that there is a —1/dF
curve f : £ — 2 which has a cusp at z, and whose class, resp. that of its proper transform f ,
is extremal in NE;(2), resp. NE;(£"). The local structure of a branch of a cusp is described
by (III3) and 12 and, in the notation of op. cit. f meets the exceptional divisor with
a (local) multiplicity v1 in a scheme like chart. Now consider, 7’ : 27 — 2 where 2" is
the extraction of a vith root of &, then the induced map f’: % — 2" has at worst nodes.
On the other hand & is invariant so the canonical class is the same and f’ is still extremal,
and, somewhat superfluously, the singularities 2/ — [2”/.Z] are still log-canonical since & is
smooth. In any case, at the point 2z’ where f’ crosses the exceptional divisor we can apply [ILL3
to find —1/d; F curves with smooth branches parallel to every axis afforded by the embedding
dimensions of the original cusp, any of which represent the extremal ray. In particular if one
takes the —1/d’F curve in an eigendirection normal to the exceptional divisor in the local
coordinates at 2z’ implied by those of [LT2 at z, then the projection of this curve to 2" has at
worse nodes. U

ITII.d. Structure of Extremal Champs. We begin with exactly the same preliminaries as
[TTH prior to ([IL4) except that in the notation of op. cit. our interest is the unique formal
champ X>g < X with normal bundle

(IT1.31) Nz, = II ¢4(a)

alzo

Now X — 27 is net so the tangent space to the deformation space (wherein we insist that the
deformation meets sing(.%#)) whether of f:% — 2 or any composition with P — £ is the
tangent space to the deformation space whether of L X>0, or such a composition. The
latter are however un-obstructed, ([ILJ), so by way of X>¢ — X — 2 the former are too.
Consequently there is a Zariski closed sub-variety, X>¢, of the moduli- the variety swept out

by the deformations of f or compositions thereof with P! — - of the same dimension as X>0
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and containing its image. Exactly as in ([IL3) we therfore get maps

X>0 P 20 — X>0
(I11.32) l l
X — X

wherein the square is fibred, 3&720 — Z>0 is normalisation, and the top leftmost arrow is an
étale cover over its image. As ever we normalise a local generator 0 of the foliation in the
complete local ring @A}%J,, for p = f~!(sing.#), according to MDA with di = a1d, d € N albeit
with the refinement

IT1.d.1. New Notation. Linearise a local generator 0 of Tz in the completion of ﬁ%,p of
Oyp in my(p) by way of, & = aryi 5= + -+ +ary7«a% —bizige, a; € N, b € N,
(a1,..., ap, by,..., b)) =1, with ; = 0 local equations for Z>¢, and z1,..., 2 the additional

(formally invariant) functions which cut out 27, ([IL3), so that ¢ is now the codimension of
Z>0, and s + t the co-dimension of 27 .

Now let us suppose that the —1/dF curve f : £ — 2 affording ([IL3])) is an extremal ray,
R, then we have constructed an integral invariant sub-champ 2> of 2 through every point
of which there is a —1/eF champ, for varying e, parallel to R in Néron-Severi, and we assert

III.d.2. Claim. Let Z be the intersection of 2> with the singular locus of .#, then £ is
smooth and connected.

Proof. Firstly, suppose £ is a disjoint union of components 27, 2", then we may consider the
sub-champs %, %" whose moduli is covered by K z-negative extremal 1-dimensional champs
parallel to R through 2 and 2 respectively. Consequently if y € %/ N %" it is a singular
point of some extremal 1-dimensional invariants champs ¢, Z” so in Z' N 2" by [LdI (a),
which is nonsense, and 2 is connected. Better still at the singularity, p, of the initial curve
f, we know, [LT2 that 2 is irreducible and smooth of dim = s, so there is some irreducible
component Zj of sing(.%#) of dimension s contained wholly in 2. However for any ¢ € 2,
there is a —1/e(¢) F champ .Z; > ¢ contained in Z>¢, so sing(.%#) is smooth at ¢ by another
application of [L12 Consequently ¢ — dim¢sing(.#) is not just upper semi-continuous but
continuous, i.e. constant = s in the notation of [ILAT] , and since % is connected: 2y = % is
smooth irreducible of dimension s. U

Now consider the ideal I of 2 in 2, then the composition
(IT1.33) IgTQX — Kz ly.

affords an O'«-linear map
(I11.34) I /Iy —— 12/I3 © Ks

of which the trace gives a global section of 0 (K ). Plausibly this is zero, but by it
may, on normalising in the direction of some smooth branch guaranteed by [ILcTland ([IT3T]),
be identified locally with a Q-valued function, so, by [ILd2 it’s non-zero iff the trace of the
normalisation [ILdT] is non-zero at some p € 2. Similarly the 2nd symmetric function is a
global section of 0 (2K #) which may locally be identified with a Q-valued function, whose
expression in the notation of op. cit. is

2

(IT1.35) % D ai—) b —% dai+) b
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so if the trace doesn’t define a nowhere vanishing section of &' (K #) there is at worst an étale
double cover 2T~ — % such that K4 |+ is trivial. As a result the eigenvalues of Dy are
well defined constant functions up to a choice of generator of &% (K #) when this is possible,
and otherwise they’re well defined on 2°"~. Thus if necessary we choose a lifting p* of the
singularity p of the curve of ([IL31)) to the double cover, and subsequently choose our local gen-
erator in such a way to have compatibility with our formal linearisation at p (identified locally
with pT if necessary), i.e. the eigenvalues of Dy are everywhere ay,..., a,, —by, ..., —bs, with
a;, b; € N, and ged(ai,..., ap, b1, ..., b) = 1. In any case, for every ¢ € 2, there is a well
defined pair of eigenspaces, {1 (¢), T—(¢)} of T2 ® C((), and every K z-negative 1-dimensional
invariant champ has tangent space at ¢ contained in precisely one of these. To fully profit from
this we will have to extend from the normal bundle to a formal neighbourhood of %, which
probably shows that being lazy about convergence wasn’t perhaps an optimal use of time. The
discussion is local over affine neighbourhoods U of 2 over which the normal bundle and K&
trivialise, and which we consider centred on a point ¢ of 2. To momentarily simplify the
notations let A; denote the necessarily non-zero eigenvalues of the normal bundle, and consider
the following inductive proposition,

I11.d.3. Claim. Let &} be the completion of &y in my (C), then for £ € N, we have coordinates
x; normal to Z (evidently giving a basis for N / ) and a generator 0 of . over U such that,

(1) Oz = \; 7; (mod %)
(2) There is a semi-simple generator dof Ty ® Oy, of the form \; §; %’ for & € Oy and
& = x; (modl%).

Proof. The case k = 2 trivially follows from the previous discussion, so consider going from k
to k 4+ 1, which evidently we wish to be compatible with restriction so that things converge.
In any case, in terms of our usual notations about monomials and summation conventions we
have, mod I?rl,

(IT1.36) aajizkiaﬁ%—aux‘], a;j € Oy, gi:.’EZ’—{—bZ’J.’E‘], b,y € éU,C‘

Furthermore, d= ud, u € @A’U,C, and, u = 1 +uig o5, uix € 5’(]74, with #J =k, # K =k — 1.
Now if we just put these equations together then we obtain,

{()‘i _)\J)biJ — Ui A ifoati = {1}‘]7
aig =

(I1L.37) .
(Ni — Ag) big otherwise

without any summations. The second case is rather good since if A\; # Ay := j, A, we conclude
that the b;; are algebraic, so if without loss of generality we replace xz;, by,

(IT1.38) €Tr; v X + Z biy x’

NiENg

zited
then in fact we conclude that a;; = 0 if x; ¢t x’. As for the 1%%-case we do what we can.
Specifically, again without loss of generality we can replace z; by,

a
(IT1.39) Y " _”)\J !
AiFEAg

so that a;; = 0 if A\; # Ay, while if A; = A; we conclude that wu;x is algebraic. Thus if we
replace 0 by,

(I11.40) O [1+ > wga™|o
A =0
57



then u;x = 0 if Ax = 0, so in fact we can suppose a;; = 0 for all J. Consequently, d has the
form,

(IIL.41) 1+ Y wga® |0,
A #£0

However if we replace d by,

-1

(I11.42) o= |1+ > axé| 0
Ax#0

for u;x appropriate functions of coordinates z in o 7z, which restrict from coordinates in 5’(],4
annihilated by 0, and of course 4;x = w;x (modIz), then by [LL.2 0 is still semi-simple,
with respect to a possibly different basis &; of the form v; &;, v; = 1 (1 é_l). To complete the

induction, therefore, it suffices to observe, on supposing without loss of generality that & = &;,
that,

(I11.43) G- Y. bu2)¢

for l~)Z 7 satisfying much the same prescriptions as the u;x is still a trivialising basis for 0. O

Consequently over an appropriately small affine U containing ¢, and bearing in mind that for
any (' € Z we know we can find appropriate coordinates in % ¢ annihilated by 0, we obtain
formal subschemes U,, U_ of the completion UofUin Z , whose subsequent completion at
any (' € ZNU is the non-strict Harder-Narismhan pair of The monodromy of the

pair {Uy,U_} is precisely the monodromy of the pair {Tx,,Tx_}, so either these patch to

formal subchamps, Z{io, x50 of the completion of 2" in 2, which completed at any point is

the non-strict H-N pair, and of course we normalise so that V{ € Z, T4.(¢) = Tx, ® C((),
T_(¢) =Tx_ ®C((), or we get the same conclusion on a double covering of the completion.

With this out of the way we can quickly proceed to a conclusion. To begin with complete 2>¢
in Z, call it 9. By [ILcTl there is, for every ¢ € 2, a —1/dF curve through ¢ with at worst
nodes and parallel to the given extremal ray. By the unicity of [ILdIlup to =& such a curve must
factor through X7° U X=°, which is always well defined even if X7°, X=° are only well defined
on a cover. In addition, exactly as post ([IL3]), the deformation space of the universal cover of

o . . . > <
the normalisation of such a curve is un-obstructed, so locally, it covers whichever of Z{;O, x=0

it factors through, and we’ve normalised so that our initial curve factors through Z{io, s0 Q) is
either %JZFO or, %JZFO U X=C. In particular, there is a smooth Zariski open % — Z>0\Z , which
close to 2 is just the complement of the same, so, all leaves in 2>¢ meet %. On the other
hand the singular locus of 2% is invariant by the induced foliation, so it’s at worst contained
in Z, and indeed it’s either empty or all of 2 according to whether its completion 2) is smooth
or not, i.e. iff the H-N pair is without monodromy or not. In the latter case, I = %io ux=Y
so the normalisation 2% is smooth, and indeed 259 — 250 is everywhere an isomorphism
except over 2 where it’s the double cover 2 T~ — 2, and for the unity of notation we put
P — 250 to be ZT7 or 2 as appropriate.

We next wish to consider the operation of “projecting to Z”, by sending an invariant 1-
dimensional champ to its unique singular point. To this end, we introduce the moduli, X,

and the orbifold 27, associated, [[af, to the normalisation 2>g. Again the issue is that we
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have to be careful about the gerbe structure on %, so, say

(I11.44) 25— 27200 the embedded sub-champ over the pre-image of the moduli Z of £,

and 2 the associated orbifold, so that 2 — 2 is a locally constant gerbe.

We now proceed as in [ILLA In the first instance [[ILIY) again affords a (well defined by
[T d3) weighted blow up ,%”210 — 200, whose exceptional divisor, &, is the projectivisation of
the graded & 4;-algebra

(IT1.45) A= HA” =1, ® ﬁgd, I, = (yil oyl arty L apt, > )

In particular therefore the automorphism group of any geometric point of 2 has a projective
representation in the automorphisms of Proj(A), and better still

I11.d.4. Claim. The kernel, ./, of the representation of the stabiliser, . — 2, in automor-
phisms of Proj(A) is locally constant, and the operation of quotienting by the stabiliser, cf.
[afl affords a factorisation 2 — 2 — 2§ of locally constant gerbes.

Proof. Let U — '%;200 be a small étale neighbourhood of ¢ € 2, with G the local monodromy,
then by definition any o € G which acts trivially on Proj(A) acts trivially on the pre-image

Z — U of 2, i.e. o is a well defined element of every stabiliser G, — G of every z € Z, which
stabilises Proj(A) around z by the uniform definition of the y;’s in ([(ILZ3), i.e. ILd3 O

Now, modulo notation, the diagram ([ILId) and the proof (which doesn’t employ the simple
connectedness of & of op. cit.) of [ILL.9 are valid as stated, so “projection along a leaf”
certainly yields, in the notation of op. cit.

(111.46) Y — &

On the other hand & maps, ¢f. ([ILI4) et seq., to Proj(A) understood as a cone over 2, and
whence ([IL46) affords a composition

(111.47) 2ZINY - 2 — %

which may, plainly, be extended everywhere locally around 2 while £ itself is an orbifold so
by [Cadl we finally get a projection

(IT1.48) o %7200 — 24 and a composition 7 : 259 — 3&7200 N, 2.
Before proceeding, let us emphasise the need for caution by way of

II1.d.5. Warning. In general ([ILZY) needn’t extend to a map to 2 or even Z’. As such the
extent to which one can profit from [ILLTTlis limited according to whether we can glue together
the universal covers of the fibres of 7 in ([IL4]), or some variant thereof for a different champ
structure over the base, which de facto requires that 7, or the said variant has a section.

Consequently we confine our description of 7 to

I11.d.6. Claim. Let 259 — [2>0/.7] be the induced foliation then r is a smooth . -equivariant
(foliated) fibre bundle (in the étale topology) with fibre a foliated champ whose (finite) universal
cover is described by LB i.e. a weighted projective champ in its radial foliation.

Proof. By construction, ([ILZ7), functions on 2 are invariant, i.e. 7 is certainly a .7-
equivariant morphism of smooth champs. As such the map

.0l 1

is given, locally, by a s x (r + s) matrix, P, say such that for d a local generator of the foliation
there is a (r +s) x (r + s) matrix B for which 9P = PB, so the locus where dr fails to have

full rank is .Z-invariant. By definition, however, every leaf of .Z meets %, and, [ILA3, = is
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smooth in a formal neighbourhood of 2, whence the co-kernel of ([ILZJ) is a vector bundle
of rank s everywhere, and a surjective map of smooth varieties is flat as soon as the fibres
are equidimensional, so 7 is smooth. As such the condition, ([[38), for 7 to be a bundle of
champs is is true by [ILHIT] and (because we're in characteristic zero) the Hoschild-
Serre spectral sequence. Consequently, by [ILD.ITl for V — 2§ a sufficiently small étale
neighbourhood, 771(V) is of the form [V x¢ Pc(a)/G] for G a finite group of automorphisms
of a weighted projective champ Pc(a). Again, however, by he Hoschild-Serre spectral sequence,
the representation of G cannot be deformed, so the only obstruction to having a bundle of
foliated champs is that radial foliations on weighted projective champs might deform. This is,
however, excluded by [LL4 O

We have, therefore, established

II1.d.7. Large Fact. Given a —1/dF curve f : £ — 2 parallel to an extremal ray R in
Néron-Severi meeting sing(.%#) with p the unique geometric point of their intersection, then
after multiplication by a suitable constant, a linearisation in End(Qq @ C(p)) of a generator
0 of the foliation is a diagonal matriz diag{a,..., a,, 0, =b1,..., =bs}, a;, bj € N without
common divisor and s zeroes. Better still, normalising so that the tangent space to f(.£) lies
in the positive eigenspace, there is an R-extremal champ Z>¢ — Z containing f such that,

(a) Z>0 contains a unique, smooth s-dimensional component % of the singular locus of F .
(b) The normalisation 3&720 retracts onto %, where the pre-image Z %720 of the singular
locus is a locally constant gerbe over 2y, (ILZ4), via © of (IL4R), and we have exactly
one of, B
(i) Kz | is trivial, and 250 — 2.
(ii) Kgp | is trivial, but Kz | & is not, then Z — % is an étale o covering which
15 exactly where 3;20 — A>0 fails to be an isomorphism.

(¢) The fibration m is actually an étale bundle of foliated varieties where the transition
functions are automorphisms of a foliated variety % — (% | F| whose (finite) universal
cover is the radial foliation on some P(ag, aay,...,aa,) for ag,a as per [ILL T

(d) Ewvery extremal champ meeting sing(.%) is of this form.

There are a few loose ends here which we’ll tidy up via

IT1.d.8. Remark. All of the above includes the case that sing.# has dimension zero at z but
non-trivial monodromy, ¢f. [L.A By [LLI (¢), the only way that an extremal ray can fail to
meet sing(.%) is if the foliation is generically a fibration in in parabolic champs. This is also the
only way not just that (b).(ii) (so inter alia an isolated singularity with monodromy switching
the H-N pair) can occur, but that (possibly different) extremal rays can factor through both
the positive and negative parts of the H-N pair. This is, however, more subtle, so its proof
is postponed. It is, therefore, not unreasonable to paraphrase [ILd1 as “every” extremal sub-
champ is a smoothly embedded bundle of radially foliated weighted projective spaces.

Irrespectively, however, of clarifying when b.(ii) does occur, we have

II1.d.9. Corollary. The number of extremal rays in the half space, NEx . < is finite.

Proof. An extremal ray which meets a singularity is described by [ILA1, and by it must
factor through either X, or X_ of the H-N pair, so every connected component of sing(.%#)
meets at most two such sub-champs which themselves are maximal amongst those covered by
extremal rays meeting sing(.%#). By [Ld3(c) we’re therefore done unless 2" — [2/%] is
generically a fibration in rational curves, but in this case, ¢f. op. cit., the component of the
deformation space of an invariant curve which doesn’t meet sing(.%#) cover 2~ with leaves, so
all such rays are equivalent. U
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IV. FrLip, FLAP, FLOP

IV.a. Contractions. We will profit from a number of simplifications afforded by the analytic
topology. As such we spell out our

IV.a.l. Set Up. Let 2" — [Z7/.#] be a foliated champ with projective moduli, and # — 2
be an embedded invariant sub-champ equal to 3&720 of ML I in case b.(i) for some extremal
ray. Fix a (not necessarily scheme like) point z < 2§, i.e. the pre-image of a point in the
moduli, for 2§ as in op. cit., and let 2" — 2" be an embedded analytic open neighbourhood
of %, whose intersection %’ < % with % is (as a foliated variety) of the form 7—!(2”),
[OCdA(c), for 2 € &' — 24 a small embedded analytic neighbourhood. Such data admits,
therefore, arbitrarily small shrinkings around %, which, in order to employ LT3 we ’ll make
without warning. This is equally the good set up for constructing flips, so in our immediate
context we add the precision that uniquely for this section, [N-al % is a divisor.

Profiting from [ILB.TTl and shrinking as necessary, we have, from [ILd7 (¢) and [LE3 that for
some polydisc V there is a fibred square

9 :=P(ag,aay,...,aa,) XV ——s X!
(IV.1) l l
T (2" — 2

where the horizontal arrows are embeddings; the vertical arrows étale Galois coverings under
m1(%,); a; as m[[ILdTL and a, ag as in[MLBTIl In particular, therefore, for (1) the tautological
bundle on the weighted projective space in the left hand corner of ([VTJ), [Tg-3] implies
for b = by of LAl Now consider the operation, Cad, of extracting a dth root of the Cartier
divisor 2,

@// :%‘//

(IV.3) l l

D) —— 2!
then, for any d the left hand vertical is a locally constant gerbe under B, and if, moreover
d = ab this gerbe is trivial, so by again, after appropriate shrinking there is a fibre square,

|7/

(IV.4) l l

@// rQ////
where, once more, the horizontals are embeddings, and the verticals étale coverings, but now
under fiqp. This construction has a number of convenient properties, to wit:

IV.a.2. Claim. The complement X* := A \Z is everywhere space like, and an étale Galois
covering of 27\#%" with group an extension of the form

(IV.5) 1 — pgp — B, - m(%) — 1, ie 2"\ = [X*/E,]

Proof. That we have a covering with the said group is immediate from (1)), (OC3), and ([4),
while by (V2) N, /g7 1s isomorphic to & (1). As such the local monodromy acts faithfully on

the complement of the zero section ¥ — N@/gg, so, a fortiori X™ is space like. U

Before profiting from this let us make,
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IV.a.3. Remark. One could certainly take an abth root, even globally of # «— 2" say
(IV.6) Loy — X

with 2, — 2 the resulting neighbourhood of #”. This does not imply, however, that ([\_3)
is split since there may be torsion effects in Pic(%)- ¢f. ([[I8). Similarly, if one is prepared to
assume that Pic(2™) = Pic(2) then one can do the steps ([3)-([4) in a single move, viz:
extract the abth root of the section of &(—ab) defined by Z. This is easy if one completes in
2, i.e. the exponential sequence for the nth thickening

(IV.7) 0 — I/ 2258 X 0% 0

and [Cc3 but otherwise would requires a little analysis that can reasonably be avoided, via
LA by confining ourselves to purely topological statements.

Having arrived to this juncture, however, we can complete 2 in 2 to a formal champ, z ,
with trace 2, and argue as in (1) to deduce

(IV.8) Pic(2) = Pic(2) = Z0(1)

As such the G,,-torsor X — 2~ defined by 0(1) has trace a product with V' of the G,,-torsor,
([C33), in the definition of a weighted projective space. The latter is, however, space like, so X
is a formal space, which can be described wholly explicitly, i.e.

(IV.9) x5 (A™N\{0}) x AxV, A :=SpfC[[x]]

on which A € G,, acts according to

(IV.10) (A" ™0} x A XV 3 (Yo, y1, ... yr) X & X 2 = (A%, X%y, .. A9 ) x Al x 2
Now observe that the ring, A, of G, invariant functions affords maps

(IV.11) X 2 2 ¥V X SpfA (S C[z%yo, 2%y, . .., 2% y,]])

where, by definition, A is equally the ring of formal functions on X. Consequently the final
map in ([CTT)) is a formal contraction in the sense of [ATE7()], and whence by op. cit. is the
completion in V' of the contraction of analytic spaces

9 '%7- moduli X
(IV-12) projection 7 of (II]IZSI)l Pl PO | contraction
Vv X, X,

In particular therefore by ([V11l) X, is smooth, and we're well advanced in proving

IV.a.4. Proposition/Summary. There is a Galois covering 2 — 2" under E,, (N3),
ramified uniquely over 2 — %", and there (in the notation of [ILAT and [ILLTT) to order
exactly ab such that

(a) The contraction, X, of ([OLID) is smooth.
(b) It’s E, equivariant, and although 2" — [X./E.] may not be defined at &, 2, , (OLH),
to [X,/E,] is everywhere defined.
(c) The contraction is birational, i.e. 2'\% = [X,\V/E,] = [X*/E.].
Better still, all of this globalises, i.e. there is a foliated smooth champ Zy — [Zo/Fo] fitting
into a diagram (the contraction of %) -described locally by (a)-(c)- and an isomorphism off ¥,

Ly —— 2o
p
(IV.13) Kg unmmiﬁedlm

Z
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Proof. We've done (a) & (c), and as per we have from the construction, (CIH), of
extracting roots a map 2" — Zu. If, however @ — 2, is the reduced fibre over % then

P — 9
(IV.14) l l

Yy —— '
is not just commutative but the top horizontal is the pull back of the locally constant gerbe

defined by the bottom horizontal. As such, the square is fibred so the left vertical is a repre-
sentable étale cover, and whence 2 is the universal cover of %7, so that shrinking as necessary,

X —Z - is equally the universal cover. In particular, therefore, we have a diagram

v — X,

(IV.15) l l

'Q//a/b [XZ/EZ]

wherein the left hand vertical is an E-torsor. Better still the pull-back of &1, (Z)t0 D — X
is 0(—1), so there is an E, action on the torsor X commuting with the G -action (VI0).
Consequently, the top horizontal is E, equivariant, so, by the definition of the bottom right
hand corner, the square can be completed along the bottom horizontal, i.e. (b) holds.

Turning to globalisation, the unicity of contractions ensures that the contraction of the subspace
of the moduli, X, of 2" defined by the moduli of # to that of 2 is an algebraic space Xy. Now
denote by * the complement of %, or the contracted locus as appropriate, then for ( another
point of Zp the normalisation of X} x x, X[ is equally that of X7 xx X! so by a3 either
projection of

(IV.16) R := ( normalisation of U xx, U) = U, U= HXZ

is unramified in co-dimension 1. Consequently, by purity, they’re unramified everywhere, and
since R* = U* is both a groupoid and dense in R, (NIA) defines an étale groupoid, or,
equivalently, an orbifold .#Zy — Xy with atlas U. At the same time, we can express Zg as a
locally constant gerbe in Br’s over an orbifold .Z for some finite group I'. Thus .# and .4
agree on an open dense set, so by [Ladl and ([VI2), there is a map p : # — .#y. Next observe
that the contracted locus is an embedded smooth sub-champ of real co-dimension at least 4,
whence the homotopy depth about the same, [SGAZTIl Exposé XIIL.6], is also at least 4, so the
locally constant gerbe 2™ — 4™ extends uniquely to a locally constant gerbe Zy — .#y. On
the other hand locally the universal cover is generically scheme like, [V-a.2 so from the long
exact sequence of a fibration we must have

(IV.17) 1—-T —E, =m(Z),) —m(#")—1

for .#" a small neighbourhood of %/, On the other hand in the diagram
X, — %

(IV.18) l l
My —— M’

the left hand is the universal cover of it’s image under the group E./T', so by (X.I7), the dia-
gram ([IX) is a pull-back of a covering along the bottom horizontal. In particular, therefore,
([OIR) is fibred so for a locally constant sheaf, A, R'p,A = 0, and the Leray spectral sequence
yields an exact sequence

(IV.19) 0 — H2( My, A) — H?(A, N) — HO( Ay, R?p,\)
63


http://arxiv.org/pdf/math/0511279v1

In addition 1 (.#) = m (M), so X and p* 2y are locally constant gerbes for the same link
in the sense of Giraud, [Gir7ll 1V.1.1.7.3], and their difference, op. cit. IV.3.4, defines a class
in H2(.#,A) for A the centre of the link- so locally the centre of the aforesaid group I'. Since
Zo — Ay is locally trivial by definition, the image of this class in the rightmost group of
([OZ19) is zero by ([OLIY) and ([V.I2), while the resulting class in the leftmost group is trivial
because this is the same as H2(.Z*, A). O

It follows that we’ve actually proved a little more, to wit:

IV.a.5. Remark/Definition. From ([.I3), the fibre of the horizontal arrow in (VI3)) has
fibre 2 over X », which, in turn is the smooth weighted blow up (composition of left vertical and
top horizontal in ([ILTY)) with weights ag, aay, . .., aa, in the obvious coordinates suggested by
(OCTT) while by purity the left vertical in (KIJ) is exactly the same as the rightmost vertical
in (ILT9), i.e. killing a group (here pq) of pseudo reflections. Moreover, since p : 2~ — 2y
needn’t be everywhere defined it’s more technically correct to call the birational map p a flip,
which, in turn has the very specific structure of ([I3l), which might reasonably be described

as a flap.
The resulting foliation on %2 is described by

IV.a.6. Corollary. The canonical bundles of the various foliations are related by
(IV.20) Kz,=Kg |Qfab: p*ngO + ao%y

so, in particular, %y is smooth and everywhere transverse to the contracted locus.

Proof. The first identity in (N20) is just that the left vertical in (V.I3)) is unramified along the
foliation because % is invariant, while the 2nd identity follows, for purely numerical reasons,
from (2) and [ITDBTT Now say D is a local generator of % on X, and sg is the coordinate
function of weight ag in (OCTT)), then, by ([O20), p*(soD) is an everywhere regular derivation
which coincides with a local generator of %, at every point where p*(sp) only vanishes along
the exceptional divisor. In particular, therefore, it coincides by [ILLTIIl with a local generator
close to sing(#4), where by op. cit. a local equation x = 0 for the exceptional divisor may
be supposed of the form z% = p*sg. Now the exceptional divisor is invariant, and by ([Lg.3)
defines a non-zero eigenspace at the singularity so p*(D(sg)) is non-zero everywhere, whence,
idem D(syp), O

IV.b. Projectivity of the contraction. By way of a rather general projectivity criteria

IV.b.1. Lemma. Let X be a proper algebraic space over a field k, then X s projective iff both
of the following conditions hold

(a) for every irreducible subspace Y — X
(NE1(Y)>a—0€NE((X)) =>a=0
(b) The cone NE1(X) C NS1(X)r doesn’t contain a line.

Proof. The conditions are clearly necessary. The second condition is equivalent to the existence
of a Cartier divisor H non-negative on NE;(X) such that

(IV.21) (NEi(X)2a— Ha=0)=a=0

Thus if (a) & (b) hold for X they hold for every sub-variety, so, by induction we can suppose

HImY) Yy > 0 for every non-trivial sub-variety of dimension smaller than that of X. Conse-

quently, by the Nakai-Moishezon criteria, [Kol90), 3.11], we require to prove for every irreducible

component of X of maximal dimension the top power of H is positive. As such, say, without

loss of generality, X irreducible of dimension d + 1 and p : X’ — X a projective modification,
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then p*H is nef. Better still some Zariski open of X is a scheme, whence it contains sub-varieties
of all possible dimensions, thus H? = p,(p*H?) is a non-zero class in NE{(X), and so by (b)
HL > 0. O

A less general, but more relevant variation of the same is

IV.b.2. Corollary. Let p: X’ — X be proper; an isomorphism off Z < X; with X’ projective
and X a Q-factorial algebraic space over a field k, then X is projective iff both of the following
conditions hold

(a) for every irreducible subspace Y — Z
(NE1(Y)>a—0€eNE{(X)) =>a=0

(b) The cone NE;(X) C NS;(X)r doesn’t contain a line.

Proof. Again necessity is obvious and (b) affords a Cartier divisor H non-negative on NE;(X)
satisfying ([2T)) which we prove satisfies op. cit. (and whence Dl (a) ) for all sub-varieties
Y — X by induction on their dimension. In dimension 1, there are two cases a curve, Y,
factors through Z so H-Y > 0 by D2 (a), or it doesn’t. In the latter case, however, Y\ Z is
a non-empty curve in the quasi-projective variety X\Z, so it certainly intersects non-trivially
some divisor D — X\Z without being contained in it. By hypothesis, however, the closure
D — X of D is Q-Cartier so D -Y # 0 and [.EJl(a) holds. Similarly for ¥ of dimension
d+1 < dim(X) we again distinguish 2-cases. If Y factors through Z we're done by hypothesis,
otherwise we prove H |y is ample. In the latter case, by Nakai-Moishezon and our induction
hypothesis it’s sufficient to prove H¥1.Y > 0. As before, however, there is a Cartier divisor, D
on X intersecting Y non-trivially, so H¢-D-Y > 0, while: for all € > 0 sufficiently small, H —eD
satisfies (N21)), so p*(H — eD) is nef., and (H — eD)%*1 .Y >0, whence H¥*1 .Y >0. O

Of which a corollary to the corollary is
IV.b.3. Corollary. Let everything be as in then we can replace condition (a) by

(IV.22) Z is projective and (NE1(Z) 2 a+— 0 € NE{ (X)) = a=0

Which may be applied to the case in point, i.e.
IV.b.4. Fact. The moduli of the contraction is projective.

Proof. Observe that under the hypothesis of [V.adl the locus of the extremal ray R must be
the connected smooth divisor %" because % - R < 0. Now, let p: X — X be the moduli of
the contraction ([VI3)), with Z the moduli of the singular locus in X meeting the extremal
ray, then since Xy is Q-factorial, p* : NS'(X() — NS!(X) is injective with image classes in the
latter annihilated by R. Consequently, by duality there is an exact sequence

(IV.23) 0 — R — NS;(X) 25 NS;(Xg) — 0

while NE;(X) — NE1(Xj), so R (b) holds because R is extremal. Now although there
may be ambiguity, [ILdA about the champ structure on the singular locus and the base of the
contraction, there is no such ambiguity at the level of the moduli, ¢.e. Z is a section of the
locus where p fails to be an isomorphism, so by ([V.22) and ([23)) we need only check that a
non-zero class in NE;(Z) cannot belong to R, which is clear, e.g. K& |7 is nef. O
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I[V.c. The H-N Filtration again. We will require knowledge of the normal bundle of the
extremal smooth sub-champ % «— 2 of [N.a]l, akin to [[I.g.3] so, without loss of generality
dim(#') > 1. Our primary interest is the local variation of Ny /2 over a small embedded
analytic open, 2’ of the base/singular locus, so to begin with, and essentially without loss
of generality, we’ll restrict attention to the case s = 0, [ILAL7 As ever we first carry out our
analysis at the level of the universal cover of %/, i.e. a radially foliated weighted projective
champ, LTIl and so abuse notation slightly, i.e. replace % by its universal cover, 2~ by
a small neighbourhood of the former etc.. Naturally there are two tautological bundles of
relevance, namely, &(1), on the weighted projective champ ¢/, which, op. cit. is related to the
radial foliation, Z, by

(IV.24) Ky = 0(—ap)

and the relative tautological bundle of p : & := ]P’(Ng/%) = P(Ny,9) — % which we’ll
denote H, while P, Y etc. will be the corresponding moduli. Now say .# is the specialisation,
cf. & LIl of our original foliation to the projective normal cone, then Ko = p*Ky
so a K z-negative extremal ray, R, of £, has to be, [Ld]l an invariant curve of .% lying over
an invariant curve of #. By [MLcdl we may suppose that the former has at worst nodes, and
whence also the latter from our explicit knowledge, [L12 of the singularity. The moduli of such
a champ is the moduli of its normalisation, so, without loss of generality, R is an extremal ray
of P(f*Ny o) for f: £ — % some coordinate axis of the radial foliation %- all of which are
smooth and embedded on a weighted projective space. By [[L.g.3 we know exactly what these
are, and in terms of & ML dJl we may describe them as follows: the local monodromy at
the singularity, p, of the radial foliation is jg,, and by hypothesis, [ILL7 (b).(i), there exists a
local generator, 0, of the ambient foliation on 2~ which is p,,-invariant so that the eigenvectors
of Jordan decomposition of 0 at p afford a ji,, equivariant decomposition,

(IV.25) Ny ©Clp)= [ Vi

1<i<l
for V; the subspace generated by the eigenvectors of weight —/3; for 3; a complete repetition free
list of the b;, amongst which, [LILA —/3; is largest. The decomposition ([X23) then describes
the singular locus of the specialised foliation exactly, 1.e. it is a disjoint union

(IV.26) sing(.# H P(V;) x By,
1<i<l

and the extremal ray in question is any invariant section over . which cuts P(V}), or, to be
more precise, cuts P(V}) x B, < & which is the embedded component of the smgular locus.
We can, therefore, apply[[IEjto conclude that the extremal rays define a sub-champ %) — &
together with a projection

(IV.27) % — P(V))

whose fibres have universal cover a weighted projective champ P(cg, ¢1, ..., ¢.) for some weights
¢; to be determined, radially foliated by %', say. Now, by ([28), (VZ7) has a section so
P(c) x P(V7) is the universal cover of %]. We have, however, by [[.g-3] .#-invariant embeddings
% — % lifting any coordinate axis f; : .4 — %, and each .%; is simply connected, so there
are %'-invariant embeddings f/ : £ < P(c) of every . = P(ay, aa;), and whence P(c) = %'
Better still,

(IV.28) Kgr = Kz lpo)xpvi)= Kz lp)xp) and Ky -yr £ = Ky -, £; by

so P(c) — [P(c)/Z'] is, unsurprisingly, the radial foliation % — [# /%] that we started with.
Consequently the map

(IV.29) Y — Y x P(V)
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afforded by the structural projection p and ([[V.27) is an étale cover. As such ([[V.29)) exhibits
the former as a locally constant gerbe over the latter. By explicit local calculation, however,
of. (O26), (V23)) is an isomorphism in a neighbourhood of the fibre over the singularity p,
S0 it’s an isomorphism everywhere. We have, therefore, proved most of

IV.c.1. Fact. Suppose, as above, that %" of [Zal is simply connected (whence isomorphic
to the product of a polydisc with a radially foliated weighted projective space) then there is a
filtration of Ny 9 |2 by invariant sub-bundles for the induced foliation,

O=N SN 1SN 2G-S No=Ny oy

such that if By > -+ > [ is a complete repetition free list of the by,. .., by of [ILAT, and g;,
1 < j < k the corresponding multiplicities, then for a as per [ILB T, locally over 2 :

Nj—l/Nj ;) ﬁg(_aﬁj)Gqu .
Proof. % of (O21) is, [MLA7 the image of a deformation space of extremal rays, which is
constant on taking products with a small polydisc, whence this addition changes nothing, and

for notational convenience we’ll continue to ignore it. In any case, the embedding %} — &
affords a sub-bundle

v
(IV.30) (0<H |2;)" = Noy o

which is the N;_;1th term in the above filtration. Moreover there is a canonical isomorphism
(IV.31) Ny 19 = p*(Ny 2 /Ni—1) @ H

and so we conclude by induction. O

Unsurprisingly we continue to refer to this as the H-N filtration, and observe

IV.c.2. Corollary. Let %' — 2" be simply connected, then there is a non-canonical splitting

(IV.32) Ny o o= [] O (—ap;)®%
J

and, better still, any section over %" of 19735/12@/% ® Og(—af;) can be lifted to a (formal)
section of Iy 9 ®0 -, (—af;) over the completion X of 7 in W'

Proof. The non-trivial case, given [N_c1l is when the fibres of " — 2" have dimension 1. This
is, however, [[.g.3], and otherwise it’s immediate by [V_c.1l and O

The apparently arbitrary choice of such sections notwithstanding, choose some, say

(IV.33) E=¢:0p(aB) =1y 900,, 1<j<t

and define, ¢f. ([ILIR), a filtration on I by way of:

(IV.34) Fé’f = (5{1 gl b A by > p) bj :=ap;

i.e. the ideal generated by the images of the &, (j1b1 + - - - j:b¢) under (V.33]), and observe

IV.c.3. Claim. The filtration ([[V.34) is algebraic, i.e. shrinking as necessary, there is a filtration
FPly o |2 whose completion is (N34)). Better still this is independent of the choice (N33),
and .% invariant.
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Proof. Plainly FP contains some power, say ¢, of I , so the first part just amounts to the
coherence of F?/I9 on the gth thickening of #”. As to the first part of the better still: say 7;
is another choice, then either this is the same as ;, or there is a smallest p > 0 such that

(IV.35) 0#& —n; € (FE/FE) @ Opi(—b) = I o»e-b)
. b1j1+-+beji=p
so p > bj, whence n; : 0 ,,(bj) — Ffbj, and we’re done by symmetry. Similarly, suppose the

composition
(TV.36) 0,(b) 5 Fil — 0, — Ky

doesn’t factor through Kz @ FY I, then there is a smallest bj > p > 0 through which it does
factor, so (V.30) affords a non-zero @y -linear map

(IV.37) Op)—Kre [ x> ][  Owlp-a)
biji++beji=p biji+--+beji=p
which is nonsense. O

Putting this all together we have therefore

IV.c.4. Fact/Definition. Let # — 2 be as in [V a1l then there is a .#-invariant filtration
(IV.38) e CFP CF=1y 9 COy

such that

(a) The restriction of ([V.38) to a small embedded analytic neighbourhood 2™ as defined
in [VaTl pulls back to (V.34)) on the universal cover of 2.

(b) For f : £ < X — 2 the normalisation of an extremal ray with at worst nodes
embedded in its net completion, the pull back of is the filtration defined by the
invariant divisors [[I.g-3}(2) combined in the (obvious) way suggested by ([\.34).

Proof. The filtration has already been defined on the universal cover, say 2" — 2" with
Galois group 7. As such, it descends to 27 provided ([V.34)) admits a w1 action, which is
clear from the proof of because the H-N filtration, [N.cl is mi-equivariant. Similarly:
to compare the filtrations on 2-small analytic open embeddings 27, — 27, 2 — 2~ we only
need to compare them on any (faithfully flat) étale covering of 2, N .2, ﬁ’, S0 again this is just
and the definition (V34 as is (b). O

IV.d. Existence of flips. Let # — 2 be as in [V althen by (X38)) there is a K z-invariant
smoothed weighted blow up, [MPI3, L.iv.3|, defined as in ([ILIJ), to wit:

%1 — Proj (Hp Fp) Vistoli covering %2’ KJQ _ ng |%2

(IV'39) weighted blowuplEverything Z invariant

A

Before progressing let us make a clarifying

IV.d.1. Remark. The implied weights in ([N39) are not the a; of N34 but b := b; /b where
b; are as per [ILdJland b is their ged. Following (V.13l), however, we’ll be taking the covering

1
(IV40) % abth root of & %ab’ %b — % ) 632

and the totality, i.e. the horizontal in ([C.3%) composed with (VAD), is, functorially with
respect to the ideas the smoothed weighted blow up with weights ab; where a is given by [ILHLI1
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and the b; by [ILLIl Consequently there’s a certain convenience in doing both steps at once,
or, at least, referring, as we will, to their totality in terms of the unifying idea.

This said the exceptional divisor & on 25 is described by

IV.d.2. Claim. The weighted projective bundle & — % enjoys the following triviality property:
for " — % as per [Vadl (27 — 2, understood sufficiently small) and %" — %" its finite

universal cover
(IV.41) £2|@”:—>@”><]P’( '1,...,b;)

Moreover the induced foliation (understood either logarithmically, LB2 or, equivalently, with-
out saturation if the fibres % — 2 have dimension 1) has canonical bundle the restriction of
K 7 and singular locus the fibre over the unique connected component 2 of sing(.%#) contained
in 7.

Proof. The pth factor of the graded algebra associated to (N.34) is O« (p) tensored with the
pth factor of the trivial graded algebra freely generated by generators of weights b;, 1 <@ < ¢,
of. (O3 & (OL3ZD), which has the same Proj as that which is freely generated after cancelling
the common factors, VA1l whence ([V.41]). As to the moreover: the exceptional divisor of
a (weighted) blow up in an invariant centre is always smooth in the foliation direction, so we
only have to compute what happens over the singular locus which we can do explicitly using
[V_c A by way of its relation, [T.g-3] (3), with the Jordan decomposition, and appropriate local

coordinates, cf. ([LI24). O

Now, irrespectively of whether &5 is extremal in 25, the cone theorem applies to & in it’s
induced foliation, while extremal rays in % with at worst nodes lift (¢f. the preamble to the
proof of V.cl) to the same in & by [I.g:3] As such [ILd7 applies to & in se (i.e. as the
locus of its own extremal ray) to imply

IV.d.3. Fact/Definition. The champ & is a bundle of foliated varieties (whose fibres have
universal covers radial foliations on a P(ag, aaq,...,aay)) over an orbifold 24 which (for good
measure) is itself a bundle, N of P(b],...,b})’s over the orbifold structure on the singular
locus of #. Consequently for 2, as in ([40) there is a contraction p : 2y, — 2o of %y
to a locally constant gerbe over 2§ such that the induced foliation 2y — [Z£0/-%0] is smooth
and everywhere transverse to the locus where p is not an isomorphism. The bi-rational map
p: X — Zy will, irrespectively of whether the moduli of 2y is projective, be referred to as a
flip, and the more precise data

Blow down, p4, with weights aa;

O
Blow up, p—, with weightslabj, 39 & ([0)
2z =%
of a weighted blow up followed by a weighted blow down as a flap.

Pab 2o

(IV.42)

Proof. As observed the structure of & is implied by [ILd4 given the structure, N.d2 of the
singular locus. This is, however, the sum total of what we need to deduce the existence of
the contraction p from [V.ad i.e. the condition that % is covered by extremal rays of the
ambient space is necessary for the projectivity of the moduli of the contraction, but not for its
existence as an algebraic space. U

To examine the projectivity of this construction let us suppose in addition to [N-al,
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IV.d.4. Set Up. Fix an extremal ray R and suppose that every —1/dTF curve equivalent to R
belongs to a connected smooth embedded sub-champ, %, — 2, of the form Va1l and all
such sub-champs are disjoint, equivalently none of the following occur

(a) For some smooth connected component 2 — sing(.%) there are 2 such sub-champs (for
the same R) meeting in 2,

(b) For some smooth connected component % — sing(.%#), and, again, the same R,
[T A7 (b).(ii) occurs.

(c) There is a representative of R avoiding the singular locus.

Observe that the criteria for the projectivity of the flip is particularly simple, i.e.
IV.d.5. Claim. In the context of ([NV.42), the following are equivalent

(a) The moduli of the flipped champ 2, is projective.
(b) The cone N FE1(%) does not contain a line.
(c) The —1/dF curve contracted by py is extremal.

Proof. Plainly (a) implies (b), and ([[V.22) always holds- same argument as end of the proof
of VB4 whence, conversely, [V.b3 (b) implies (a), while (b) iff (¢) is the general duality
considerations of ([V.23). O

The same applies, a little more generally, if one flips several sub-champs in 2 at the same
time, provided, as is our context, [N.d 4] the champs being flipped are all disjoint, which we’ll
employ without further comment in

IV.d.6. Claim. The flip, (CZD), of any of the #, has projective moduli.
Proof. Since the horizontal arrows in ([V42) are (étale locally) weighted blow downs it will

suffice to do everything at once, which is all we need anyway. As such, consider the totality, at
the level of the moduli, of the flaps (N.42) performed in all of the %, i.e.

X(R) —— Xy
(IV.43) p_l
X_

with EP the exceptional divisors; C? curves in the same contracted by p_; and Cﬁ — EP a
K z-negative invariant curve contracted by py. Fix p, then by the cone theorem, [L.dT], there
are finitely many extremal rays represented by (multiples of) K z-negative invariant curves, R;,
and a (pseudo) effective class Z, on which Kz is non-negative such that on X (R)

(IV.44) C? =Y Ri+ 2,
Now, by construction, [VI2), (p—)«(C%) is parallel to R, so (p—)«(Zp) is too. However, p_

is unramified in the foliation direction, so (p—)«(Z,) = 0. Consequently, by the projectivity of
X_, Zp,is a sum

(IV.45) d et L >0
q

On the other hand all the R; lie over R, so by our hypothesis V.4l and ([I2)) every R; is
parallel to some C{ for some ¢. Thus we equally have

(IV.46) Y Ri=) c1Ct, =0
q
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Combining all of ([VZ4)-([[V_46) we have therefore
(IV.47) Ct = Z(ciCi +¢2.C7), every C1 extremal by (\.40),

q
while all the divisors E, are disjoint and strictly negative on both C%, C%, so the only index

that can occur on the right of ([NAD) is p. Consequently, C% is extremal and we’re done by
|AVAG 5! O

[V.e. Exceptional flips and termination. The first case to be considered is

IV.e.l. Set Up. # — 2  is an extremal sub-champ satisfying [ILA7 (b).(ii), with 2 — %
the unique (smooth) connected component of sing(.%#) contained in it.

Now observe that by the unicity and local uniformity, ILLL.d. 3l of Jordan decomposition there is
a well defined (smoothed) weighted blow up supported in 2 whose weights in the notation of
[T 4T are

(IV.48) yi, resp. x;, has weight a;, resp. b;, where a; = b; and r = t.
and whose effect is described by

IV.e.2. Claim. Let 27 — 2 be the smoothed weighted blow up defined by ([V4]) with &
its exceptional divisor and %4 the proper transform of % then

(a) The singular locus of % over & is the intersection of &1 and #7. It is smooth connected,
and, for good measure, a P(aq,...,a,)-bundle over the us covering of 2 defined in
[OTdA (b).(ii).

(b) The embedded sub-champ % — 27 is the locus of (not just a connected component
of) an extremal ray R; satisfying [ILd7 (b).(i).

(c¢) The exceptional divisor & is covered by K z-nil invariant parabolic champs.

Proof. To calculate the singular locus we use the Jordan coordinates of [ILdIl so, [MPI13],
Liv.3|, on, say the y; # 0 chart we have local coordinates 7;, {; defined by

(IV49) Y1 = 77?17 Y2 = 77277?27 L Yr = 777«77?7 xr1 = 51771171, Ty = £T771T

which gives that étale locally there are 2 smooth component of the singular locus in the fibre of
& over Z, which in turn are the intersection of %4 and &1. Plainly (paragraph prior to ([ILZ0))
the local system defined by these components is the same as the pus cover 277~ — 2, so the
singular locus is connected, and the good measure part is clear. As to (b) this is just an easy
variation on ([V44)-([[\43). Specifically suppose the proper transform, Li, of an invariant
curve isn’t extremal then op. cit. and & - Ly > 0 imply the absurd. Finally (c) follows from
the explicit coordinates (N4AJ) and the fact that the canonical, Kz is just Kz |2;. O

We can, therefore, combine this with (N22)) to make

IV.e.3. Fact/Definition. By an ezceptional flip (or, better, flap) is to be understood, for
% — 2 as in[e]l the diagram

L 9
O
flip of inﬂEJp-of(ﬂm
(IV.50) PRI

Weighted blow up l

Z

Better still
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(a) The moduli of 27 is projective.

(b) The image &4 of & is covered by invariant parabolic champs (in fact it’s a bundle of
such over a P(a;) x P(bj)-bundle over 27~ ) none of which meet the singular locus, so
the generic fibre of 27 — [27 /%] is a smooth parabolic champ.

Proof. Part (a) follows from and e (b), while &, is contained in the smooth locus
of . by whence (b) by Ve (c) and [Ld3 (c). O

Similarly if [V.d4l (a) occurs or slightly more generally

IV.e.d. Claim. If there are 2 extremal (not necessarily for the same ray) champ meeting in
the same component of sing(.%) then the generic fibre of 2" — [2"/.%] is a parabolic champ.
Moreover if both varieties arise from the same extremal ray, i.e. [N.d. 4l (a), then the flip (V.42
does not have projective moduli, and there are invariant parabolic champ in (the original 2")
which do not meet sing(.%#) and are parallel to the given extremal rays, i.e. [N.d4l(c) also
holds.

Proof. Choose one, say %, of the extremal varieties, flip it, and irrespectively of whether the
moduli is projective and [LAA(¢) still apply. Furthermore, if both rays are extremal
then as in the proof of the proper transform, Ry, of an invariant curve in the other, say,
%" is an extremal ray. Plainly, however, the invariant curves, L, in the fibre over %" have the
form R; + C_ where C_ is contracted by p_, while the exceptional divisor, &1, of p_ is negative
on L, and positive on R1, whence it’s negative on C_, so C_ is effective; L isn’t extremal, and
the moduli of 27 isn’t projective. On the other hand (p_).R; is an invariant parabolic champ
missing sing(.#,), so it can be moved off the flipped locus to some R;. As such the proper
transform R, (in 2y of (NAD)) is a linear combination of L and R, so (p_).(Ry) is parallel
to the original extremal ray. U

Given the well defined way in which it occurs, the loss of projectivity in [V.e 4l is very far from
deadly. Nevertheless there are several obvious reasons for avoiding it so we make

IV.e.5. Fact/Definition. By a very ezceptional flip (or, better, flap) is to be understood, for
W' — 2 and ¥ — 2 a pair of extremal varieties meeting in the same component of the
singular locus, [V.d 4, of .% and parallel to the same extremal ray, [V.e4], the diagram ([V-50)
with the further proviso

(IV.51) The arrow p_, resp. p,, is the weighted blow up, resp. down, in both %’ and %" .

The moduli of the resulting champ 27 is projective, while the resulting foliation .#, is smooth
and everywhere transverse to the locus where p; is not an isomorphism for exactly the same
reasons that the corresponding statements hold for the exceptional flips of [N.e3}

Now flipping, be it exceptional or otherwise, manifestly terminates for the simple reason that
the number of connected components of the singular locus decreases by at least 1 with the flip
of any extremal ray, and so in increasing order of difficulty we have,

IV.e.6. Proposition/Summary. Let 2" — [2"/.F] be a foliated champ which is not a foliation
in parabolic champs and which enjoys the following further properties

(IV.52) smooth; projective moduli; log canonical, resp. canonical, foliation singularities

then there is a sequence of contractions and flips in the sense of [[V.a.] and VA3 (or alterna-
tively just flaps (LI3) & ([ ),

X =2 K AREEEREE P = Znin
(IV.53) l . l S ____{



such that each Z; — [Zi/.F:] enjoys all the (respective) properties ([NDD), and Kz, is nef.

Proof. The hypothesis that the foliation isn’t in parabolic champs implies, [V.e3} (b) & Vel
that we must, at every stage, be in the situation of ([NdA), i.e. ML (b).(i). Consequently
we eventually run out of components of the singular locus through which a —1/dF-curve can
pass, and we terminate with K & nef. by the cone theorem, [LdTl O

The alternative to which is

IV.e.7. Proposition/Summary. Let everything be as in [ e@ with the exception of the hy-
pothesis “not a foliation in parabolic champs” which we replace by “no model has nef. (foliated)
canonical bundle” then after a sequence of contractions and flips in the sense of [[V.a.4, resp.
L3 as described in (A3 all of (NE2) continues to hold (i.e. we’re still excluding the
exceptional cases [V e and [V e) and ezactly one of the following happens

(a) 2 — [Zn/Fn] is a Mori fibre space, i.e. the locus of a single extremal ray is all of 25,
and the foliation is a bundle of foliated varieties where the universal cover of a fibre is
the radial (supposed saturated in dimension 1) foliation on a weighted projective space
whose dimension is 1 iff the foliation singularities are canonical.

(b) At least one of [V_-dJ} (a) or (b) occurs at every connected component of the singular
locus. In particular, therefore, all of the foliation singularities are canonical.

Proof. If we exclude (b), then the only other thing that can happen is that the locus of an
extremal ray is everything with the champ itself described by LA (b).(i), i-e. (a), while the
various facts about canonical vs. log-canonical singularities are just the definitions. U

This leaves us to elaborate the final case

IV.e.8. Proposition/Summary. Should case (b) of [V A3 occur then, without loss of gener-
ality, there are no occurrences of either contractions, or the flips of 243, and should
there be any exceptional flips we continue by

(IV.54) (20— 20/ 7)) - (21 = (2o Foa])

wherein all possible exceptional flips Ve are performed at once with all of (N52) being
preserved. If we’re still not done, i.e. Fpiq isn’t smooth, then[[V.d.J (a) occurs, and we have
the following choices for (f%n—i-l - ['%n-i-l/gn-i-l]) -2 (f%n+2 - ['%n-i-l/gn-i-?]);

(a) For each component of the singular locus of %11 choose an extremal sub-champs and
flip it according to D23 This will necessarily result in the loss of projectivity, [[V.e)
but otherwise the list ([ND2) is conserved.

(b) Perform at the same time all possible very exceptional flips, Ve and thus preserve

the list (0N.D2) in its entirety.

In either case Zpio — [Znt2/ Fns2] is a bundle of 1-dimensional parabolic champs which is
wdentically its own Mori fibre space.

Proof. All exceptional or very exceptional flips can only occur at smooth connected components
of the singular locus so the extremal sub-champs that they determine cannot intersect (except,
of course, in a very exceptional flip wherein %/ U %" of should be thought of as a single
entity) so, without loss of generality, all these operations can be combined into one. Better still
both the extremal champ, %/, of an exceptional flip, V.e3 or %’ U %" in the case of a very
exceptional flip are the only invariant sub-champs meeting their respective components
of the singular locus, whence the two exceptional cases commute with contractions, [NVa.4]
and (non-exceptional) flips [V.d3, so there’s no loss of generality in supposing that all such
operations have already been exhausted. U
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IV.f. Logarithmic remarks. In order to reference it we spell out our

IV.f.1. Set Up. By hypothesis Z — 2 will be a divisor, no generic point of which is invariant,
in a connected smooth proper champ, and 2\2 — [2'\Z/.#] a foliation with log-canonical
singularities.

As such, by [LBI0, 2 is smooth and everywhere transverse to .%. In particular, therefore, for
every e € Z~1, the extraction € : 2°¢ — 2 of a eth root, [ of Z is smooth, and the induced
foliation 2°¢ — [2°¢/.7¢| has, [0 log-canonical singularities which, LT3 are terminal
around the pre-image of 2. Furthermore we assert,

IV.f.2. Claim. Let everything be as above with f : 4 — 2  a map from a (smooth irreducible)
curve such that (Kz + 2) -y % < 0 then f does not factor through Z. In particular, therefore,
there is a lifting f¢:¢° — 27 and Kgze -y €¢ < 0.

Proof. The tangency between ¥ and .# always yields a section of 0g(K 4z + ), which by
hypothesis is trivial, i.e. in a highly degenerate case of [Ld.3 the trace is a constant section
over?, so f certainly cannot factor through it. Assuch there is certainly a lifting f¢ : ¢ — 27,
while

(IV55) Kfje fe(geg(Kye—i—.@e)fe(ge:(Ky‘{‘.@)fcg<0

where €9 = e2¢, and 2° is smooth. O
It certainly therefore follows that if K ze is nef. then K g + & is nef., but, plausibly in running

the minimal model programme for 2°¢ — [27¢/.Z7¢| we could loose the hypothesis of NIl
Observe, however, that the operations of flipping and extracting roots commute, i.e.

IV.£.3. Fact. For any any contraction, resp. flip,

(IV.56) (% - [%E/ye]) (%f - [%j/ﬁ’j])
in the sense of [[V.a.4) resp. [Z.A3, there is a contraction, resp. flip,
(IV.57) (% - [%/,9?]) (&q - [3&@/%])

such that the proper transform, 2y — 2, satisfies[[V.]], and Z.f — 2 is the extraction of
an eth root of Y.

Proof. That a contraction, resp. flip, of 2°¢ — [27¢/.%¢] determines the same of 2~ — [Z"/.F]
is immediate from [T and the definitions if 2" has projective moduli. However, even without
this, it still follows since projectivity is only used, ¢f. [IL.d2, to ensure that the contracted,
resp. flipped, sub-champ % meets a unique component of sing(.#) through which each of the
—1/dTF curves which cover % must pass. Irrespectively, what we need to do in the first instance
is to prove that there is a map,

(IV.58) XE— 2

To this end observe, exactly as in the final steps of the proof, (NI et seq., of Va4l the ex-
pression of other side of (.28 as a locally constant gerbe over an orbifold, [[a.fl is determined
in co-dimension 2, so, without loss of generality, there is no generic stabiliser. Furthermore, flips
are actually flaps, so by the unicity of contraction both sides of (.58) have the same moduli
X, and whence they equally factor through the same Vistoli covering champ 27, La2 Now,
to go from any smooth champ to the Vistoli covering champ of its moduli one kills, [Vis89, 2.8],
pseudo reflections. A pseudo reflection, however, of a foliated champ stabilises exactly one of
an invariant divisor or a generically transverse divisor, so we have further factorisations such
as

kill transverse i Kkill invariant
(IV.59) gre Klluansverse, g Kl ivarant, - gy
reflections reflections
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and similarly for 27y — 27. Now let x be a geometric point of the proper transform 2¢ — 27¢
of 7; G, its stabiliser; and U — Z°¢ an étale neighbourhood then there is a non-trivial
normal sub-group, S,, generated by pseudo-reflections fixing smooth branches of 29, while
2 — [2¢)F¢] is smooth at « by our hypothesis NI and [VaZl As such by and
(the non-subtle) part of LG the induced foliation, ¢, on V := U/S,, is also smooth. Equally
U — V is ramified uniquely in the image, A, of &, to order e so, there is a factorisation

(IV.60) U—-Ve=V

through an eth root of A in which the first map is almost étale, so by op. cit. V¢ in the induced
foliation ¢°¢ is log-terminal. Consequently, V' — [V/.Z] with the orbifold boundary (1 —1/e)A
is also log-terminal, whence by [Lh.T4 A is smooth and everywhere transverse to ¢, and so 25
is too. This is, however, equivalent to: 5, is a cyclic normal sub-group of G, and the restriction
of the character, x, : G — G, afforded by Z¢ to S, is an isomorphism, so every sub-group
of S; is normal. The monodromy of every generic point of Z¢ is, moreover, of the form

(IVGl) 0 — pe = pleer — per — 0

where € is the order of the corresponding stabiliser in the original 2. Consequently, the p, in
([OZE0) afford a well defined normal sub-group scheme of the stabiliser . — Z¢ which just as
in (OCET) can be killed to yield a factorisation

kill reflections i kill all further
IV.62 ge T, g o8 T, gy
+ . - +
in fle reflections

in which the image in 2~ Jﬁ of Z% is smooth everywhere transverse to the foliation, and the

first map in (N.62) is just the extraction of an eth root. By definition, however, 2 JZ and 27
coincide in co-dimension 1, and since they’re both smooth they’re equal by purity and Cadl O

Next observe that we equally have a log cone theorem, u.e.

IV.f4. Fact. Let Z\2 — [Z 2/F] be a logarithmic foliated normal champ with both Kz

and 2 Cartier; log-canonical singularities in dimension 1 and projective moduli, then there are
countably many % -invariant parabolic, champ £;, with, 0 < —(K#. + 2) - % < 2 such that,

(IV.63) NE(2)r =NE(2)ks1050+ > Ry %

(2

where ﬁ(%)Kng@ZO 18 the sub-cone of the closed cone of curves on which Ko + & is non-
negative. Better still the R % are locally discrete, and if R C NE (2 )g is an estremal ray in
the half space NEg g0 then it is of the form Ry Z;.

Proof. By LT V-T2 is independent of any smoothness hypothesis, so, [LAIl we have a cone
theorem for K z.. On the other hand, if R C NE (2 )r is an extremal ray in the half space
NEg . +9<0 then it’s an extremal ray in the half space NEg ..o for all e > 0, whence by
[C AT there is an invariant parabolic champ f : £ — 2 with Kge -y £ > —2 parallel to it.
In particular, therefore, the extremal rays in this half space are locally discrete. Similarly if
p is the dimension of Néron-Severi, with a € NE{(.Z"), then there are a sequence of classes
e € NE(2)k 4.0, and generators Re; of extremal rays, 0 < i < n. < p, in the half space
NEk ;. <o such that

(IV.64) a=ac+ Yy Re
=1

Subsequencing in e as necessary, we may suppose n = n. is independent of n, and all of a.,

R¢; converge. Plainly, however, the o, converge to a class in the half space Kz > 0, which,

equally is either true of a given R.;, or it belongs to a half space K+ 2+ ¢H < 0- H is ample,

€ > 0- in which, as noted, extremal rays are discrete, so R} R,; is independent of e. O
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Which can be combined with [[V.f.3] to yield

IV.£.5. Proposition/Summary. Let 2\2 — [Z'\Z/.Z]| be as in[[V.]-1 with projective mod-
uli, and non-empty boundary 9; 2% — (272 ).F?] the square root of 2; X1 — 23/ Fiall
the result of a mazimal sequence of contractions and flips in the sense of [[V.a.4}, resp. [OZ.d3,
as described in ([LA3) (i.e. we exclude the exceptional cases [ e 3 and [DZeA) then there
is is a foliated logarithmic champ Zana\%inal — | Znal\Zhinal/ Foinal] satisfying [V 1 with
projective moduli, and non-empty boundary of which %ﬁial — Zfinal 15 the square root of Pgnal,

and exactly one of the following happens

(a) Kgzz ., so, VI3 a fortiori Kz, ., + Zhnal, is nef.

(b) The foliation 22,1 — [ 2.1/ F i is a bundle of foliated varieties where the universal
cover of a fibre is the radial foliation on a weighted projective space of dimension at least
2. As such the same is true of Ztinal\Znal — [Ztinal\Zinal/ Ffinal]; Z is the hyperplane
at infinity, i.e. up to change of weighted projective coordinates xg = 0 on the universal
cover in the notation of [LLA; and Kz, + Pfnal is torsion.

(c) Idem as item (b) except that the fibres of the bundle are weighted projective space of
dimension one, and the implied Mori fibre space is exactly the foliation Zfna\Zsna —
[Zfinal \ Zfinal / Finall, t.e. on each parabolic fibre Kz, . + Phnal is negative.

Proof. By the structure of a Kz + & negative invariant champ f : % — 2 is rather
particular, ¢.e. either it misses & completely, or it misses the singular locus completely, and cuts
9 in one point. If, however, N.e7 (b) were to occur for 22 — [272/.%2], then the foliation is
in parabolic champ; the generic champ must meet Z; but none of the smooth invariant champ
in the exceptional flipped locus- &; in [V.e3 (b)- can meet 2 because an extremal subvariety
satisfying [eJl must meet the singularities. Consequently by [V.I2] and it
remains to show that V&7l (a) implies (b) or (c), but this is clear since by [LI2 (a) and
the only divisors everywhere transverse to the radial foliation are, in the notation of op.
cit., defined by a weighted homogeneous function, F', of weight a¢ such that g—g #0. U

Finally, let us conclude with

IV .£.6. Remark. While it’s true, [[22 that the only part of a divisor which is relevant to minimal
model theory are the components whose generic points are transverse to the foliation, it may
well be case that one starts with a divisor 2 = 2’ + 2" where, say, 2’ satisfies NV.T1, 2"
is invariant, and whether 2, or just 2” is simple normal crossing, and, for whatever reason,
one wants to have a similar situation on Zgn, after running the minimal model programme
Now, certainly, hypothesis such as 2" simple normal crossing are nothing to do with
the definitions of log-canonical singularities, so there’s no reason for them to be conserved by
On the other hand, simple normal crossings whether of 2 or 2” can, by [BNM97] and the
definition of log-canonical singularities, be restored by invariant blowing up without prejudice
to the Kz + 2 nefness conclusion of [N.IH (a) or the smooth fibration in parabolic champ
statement [NTH (b).
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