
SEMI-STABLE REDUCTION OF FOLIATIONS

MICHAEL MCQUILLAN

Abstrat. The ontent, 1, is the minimal model theorem for foliations by urves. It on-

tinues the roll out of the various ingredients in the Green-Gri�ths onjeture for algebrai

surfaes, [MQ℄. The minimal model theorem is, however, of an independent purely algebro-

geometri interest, and is presented as suh, i.e. a self ontained theorem in omplex algebrai

geometry without foliation dynamis, and independent of the aforesaid motivation. A working

knowledge of algebrai hamps (the mis-translation stak will be eshewed) is required.
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Introdution

In a historial quirk, f. [Kol96, Intro.℄, the study of the anonial bundle of higher dimensional

varieties initiated by [Mor82℄, and, as suh, often alled Mori theory, has long eased the original

fous on rational urves in favour of a o-homologial approah whih would be better desribed

as Kawamata theory. It is, therefore, not without irony that the study of rational urves on

varieties foliated by urves is, arguably, Mori theory as Mori intended and leads to a omplete

minimal model programme.

Everything takes plae in harateristi zero, so, say a projetive variety X/C, and a foliation

by urves, F , is just a (usually saturated) rank 1 sub-sheaf of the tangent sheaf, (I.19). Lo-

ally where both X and F are smooth this orresponds, by the lassial Frobenius theorem,

to a smooth �bration in the analyti topology. We therefore adopt the notation (and it's only

notation) X → [X/F ] for foliations in order to re�et better the underlying geometry/real

de�nition of a quotient of X by the holonomy groupoid, f. II.a.2 & II.a.3. Irrespetively,

there is, under mild hypothesis, e.g. X smooth, a well de�ned bundle, KF , of forms along the

leaves, and orresponding notions, I.b.1, of foliated Gorenstein, resp. Q Gorenstein singular-

ities. Similarly, there are, funtorially with respet to the ideas, notions of foliated terminal,

log-terminal, anonial and log-anonial singularities, I.b.3. Unlike their lassial ounter-

parts, however, these de�nitions always admit a simple desription in terms of loal algebra.

For example, terminal (Gorenstein) is equivalent, I.b.13, to smooth along the foliation, or,

equivalently given everywhere loally by a non-vanishing vetor �eld, ∂, while a Gorenstein

log-anonial singularity is a point, p, where although ∂ vanishes, the implied linearisation

(0.1) ∂ :
m(p)

m2(p)
→ m(p)

m2(p)

is non-nilpotent, I.b.5.

Already this loal global translation is highly indiative of why Mori theory of foliations by

urves is that muh more tratable than that of varieties. Nevertheless, there is no free lunh,

i.e. it transpires that from ambient dimension 3 on that there are foliations by urves whih

never have log-anonial singularities on any smooth bi-rational model of the ambient spae.

The phenomenon is quite general, [MP13, �.III.iii℄, and, in se, straightforward enough, i.e.

there are ertain �nite group ations on vetor �elds whose �xed points annot be separated

from the singularities while preserving smoothness of the ambient spae. In pratie, however,

it means that if one wants a model of a foliation X → [X/F ] with (foliated) log-anonial

singularities, and X smooth, then one is obliged to pass from the ategory of varieties to the

2-ategory of Deligne-Mumford hamps. In this ontext, the main theorem of [MP13℄ is the

existene of log-anonial resolutions in ambient dimension 3, and, the reader should be aware

that for the moment the existene of log-anonial resolutions in higher dimension is open.

Irrespetively, we are obviously obliged to take as our starting point smooth foliated hamp

X → [X /F ] with log-anonial singularities- from the existene of the Gorenstein overing

hamp, I.b.7 & [BM97℄: if there is a model with log-anonial singularities then there is one in

whih the ambient hamp is smooth. This begins, however, to show signs of a rather pleasing
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loop sine the natural ontext of the lassi�ation, [MQ08℄, of foliated algebrai surfaes

is exatly foliated smooth bi-dimensional hamps, while the universal algebrai foliation in

(hyperboli) urves Mg,1 →Mg is again, naturally, a smooth Deligne-Mumford hamp.

To say that this begs the question of whether the minimal model programme for foliations by

urves ould be run wholly inside the 2-ategory in whih the ambient hamp is smooth may,

to experts in the Mori theory of varieties, seem rather absurd. It transpires, however, to be the

ase in a way highly reminisent of the struture of Mg,1 →Mg. The preise theorem is,

1. Main Theorem. (IV.e.6, IV.e.7, IV.e.8) Let X → [X /F ] be a foliated hamp whih

enjoys the following further properties

(0.2) smooth; projetive moduli; log anonial, resp. anonial, foliation singularities

then there is a sequene of ontrations and �ips

(0.3)

X = X0 X1 · · · · · · Xn = Xmin




y
−−99K





y
−−99K −−99K





y

[X /F ] = [X0/F0] [X1/F1] [Xn/Fn] = [Xmin/Fmin]

suh that eah Xi → [Xi/Fi] enjoys all the (respetive) properties (0.2), and exatly one of the

following ours

(a) KFmin
is nef.

(b) Xmin → [Xmin/Fmin] is a Mori �bre spae, i.e. the lous of a single extremal ray is all

of Xmin, and the foliation is a bundle of foliated varieties where the universal over of a

�bre is the radial (supposed saturated in dimension 1) foliation on a weighted projetive

hamp, I.d.2, whose dimension is 1 i� the foliation singularities are anonial.

Here a radial foliation is just the hamp/weighted projetive spae variant of a penil of lines

through a point of projetive spae, and in a further irony, the harder part of the theorem is

(b) in whih the use of the word �ip is slightly loose sine it may, when the singularities are

anonial, involve �very exeptional �ips�, IV.e.5, i.e. a little invariant blowing up in the �nal

stage, to preserve projetivity. The ontent of the theorem, however, should be lear: i.e. either

we get a minimal model, or a bundle of Fano objets, and the Fano objets are partiularly

simple, in fat, to all intents and purposes, rational urves if the singularities are anonial.

This said, let us give a brief breakdown both of the paper and the proof.

I. The �rst hapter is preliminary in nature. It ontains: generalities, I.a, on Deligne-Mumford

hamps; a revision of foliation singularities, I.b; the theory of weighted projetive hamps, I.,

and their radial foliations, I.d; a non-embedded variant of ompletion, I.e; and some remarks

on the analyti topology, I.f. Tehnially, it's worth �agging the last 2 setions sine the fat

that many things fail to be an embedding for (separated) hamps whih are trivially so in the

world of varieties, e.g. graphs of maps, is an issue, albeit sometimes it's true for trivial reasons,

i.e. that the étale topology is non-lassial, but in the analyti topology one an still embed.

II. The seond hapter is the ritial one. It �rst proves the one theorem, II.d.1, in maximal

generality. This was already done in [BM16℄ for foliated Gorenstein varieties, and its extension

to foliated Gorenstein hamp, II.a-II.d, may, largely, be onsidered tehnial in nature. In any

ase, it reveals, that the KF -negative extremal rays are invariant paraboli (i.e. dominated

by a rational urve) hamps, L , not fatoring through the singular lous. Their partiularly

simple intersetion with the singular lous, whih ours at a unique point p : pt→ L , of the

foliation is desribed in II.e, their normal bundle (should they have only nodes) by II.f, and

their formal neighbourhoods (again for singularities no worse than nodes) in II.g. The key point

here, II.g.3, is not only that the normal bundle determines the formal neighbourhood, but that

everything is determined by the linearisation, (0.1), at the singularity p whose eigenvalues are,
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up to saling, the slopes of the Harder-Narismhan �ltration of the normal bundle. The setion

onludes with an examination of the funtoriality of the relationship between between (0.1)

and the Harder-Narismhan �ltration, II.h, i.e. the said saling is ambiguous in a non-trivial

way up to ±1, and this has a global manifestation; along with the neessary preliminaries, II.i,

for studying extremal rays with usps.

III. The third hapter globalises the in�nitesimal information of the seond to desribe the

sub-hamps swept out by extremal rays beginning with the general disussion III.a whih leads

to a de�nition in the spei�, III.a.4, of extremal hamps. As suh III.b-III.d is devoted to

desribing their struture, whih, as one might imagine from 1.(b) is, III.d.7, basially that

of a bundle of radially projetive hamps. The base of this bundle is essentially a smooth

omponent of the singular lous, but the aforesaid issue of ±1 in the saling of (0.1) means

that even when it has sense for it to be a Zariski bundle, it may not be.

IV. Finally we onstrut ontrations and �ips, or, better, �aps, sine everything is just a

question of blowing up and down. Indeed, as one might imagine, ontrations, IV.a-IV.b, are

easy. A ritial fat, however, emerges, IV.a.4 that although a ontration renders the ambient

hamp less spae like, i.e. an inrease the loal monodromy, it renders the foliation ompletely

smooth about the ontrated lous. As suh, when one brings the full weight of the in�nitesimal

knowledge of �.II to bear in order to desribe the formal neighbourhoods of extremal hamp in

a similar manner, IV., to that of a single ray in order to �ip, IV.d, by the simple expedient of

weighted blowing up and down, one onludes that �ipping must terminate beause it destroys

a omponent of the singular lous at eah stage. This leaves only loose ends, IV.e, to tie up

related to saling by ±1 of (0.1), all of whih an only our when the generi leaf of the

foliation is dominated by a rational urve. Consequently we onlude the demonstration of 1

in IV.e, and provide a log-variant in IV.f.

I am indebted to Bogomolov for pointing out that the language of algebrai hamps was the

orret setting for the main theorem; to Brunella for explaining to me the role of holonomy; to

MKernan for furnishing an example that the issue of (0.1) with integer eigenvalues being only

well de�ned up tp ±1 is genuine; to Marie Claude for the �gures; and Céile for the original

typesetting, with any subsequent �aws being the result of my own lumsy modi�ation.

I. Preliminaries

I.a. Normal-folds. A normal-fold is a partiularly simple kind of hamp,to wit:

I.a.1. De�nition. A normal fold is a not neessarily tame (although this will always be our

ontext) exellent normal separated Noetherian Deligne-Mumford hamp every generi point

of whih is sheme like.

A partiularly important lass of examples is given by

I.a.2. Fat/De�nition. ([Vis89, 2.8℄) Following standard usage a smooth (over an impliit

base S) normal-fold will be referred to as an orbifold. In partiular: a (separated) algebrai

spae, X, of �nite type over a �eld k has strit (or even non-strit if the ation is tame) quotient

singularities i� there is an almost étale map, µ : X → X, from a smooth (over k) orbifold. In
this ase X is the moduli, [KM97, 1.3℄, of X , and onversely X is unique up to equivalene.

As suh X will be referred to as the Vistoli overing hamp of X.

The following is a tiny variation on [Vis89, 2.8℄'s treatment of the Vistoli overing hamp

I.a.3. Lemma. Let µ : X → X be the moduli of a normal-fold, with U → X an étale atlas

then

(I.1) R :=
(

normalisation of U ×X U
)

⇒ U

de�nes a groupoid and X is equivalent to the lassi�er [U/R].
4
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Proof. U ×X U ⇒ U is a groupoid, so its normalisation is too. Now, let V →֒ X be the

everywhere sheme like embedded dense Zariski open guaranteed by the de�nition, I.a.1, and

U ′ := U ×X V , then V is embedded in X, so U ′ ×V U ′
is a Zariski dense open of R. It is,

however, also a Zariski dense open of R1 := U ×X U , and we have a �bre square

(I.2)

U ×X U ←−−−− R1




y





y

X ×X X
∆X /X←−−−− X

where by hypothesis the lower horizontal is �nite. Consequently R1 → R is a �nite bi-rational

map of exellent normal shemes so they're equal. �

Irrespetive of normality we have the further simpli�ation

I.a.4. Lemma. Let µ : X → X be the moduli of a separated exellent Deligne-Mumford hamp,

X ′ →֒ X the (open, possibly empty) lous where µ is an isomorphism, and f : Y → X a map

suh that f−1(X ′) meets every generi point then f lifts to a omposition Y → X
µ−→ X i�

it lifts everywhere loally, i.e. for every étale neighbourhood U → X of the image f(y) of a

geometri point y there is an étale neighbourhood Vy of y and a lifting Vy → U of f .

Proof. Neessity is obvious. By [KM97, 1.3℄ and [Vis89, 2.8℄, there is, independently of any

normal-fold hypothesis, an étale atlas U =
∐

α Uα of X and �nite groups Gα ating on Uα

suh that V :=
∐

α Vα := Uα/Gα is an étale atlas of X with Uα = X ×X Vα. Now for anything

with a well de�ned map to X denote with a

′
the �bre over X ′

, so, we have open embeddings

(I.3) Y ′ →֒ Y , Y ′
α →֒ Yα := Y ×X Vα

Consequently, by hypothesis, and re�ning Uα if neessary, there is an étale atlas Yα → Yα and

maps fα : Yα → Uα suh that

(I.4)

Yα −−−−→
fα

Uα





y





y

Yα −−−−→ Vα

ommutes. In partiular, therefore, the Gα torsor Yα ×Vα U ′
α is trivial, and we onsider

(I.5)

Y0 :=
∐

Yα ×Gα
y×σ−−−−−−→

7→σ.fα(y)
Uα

left vertial





y
in (I.4)

Y

whih leads (it's here, f. I.a.5, we use generially sheme like) to a ommutative square

(I.6)

Y ′
0

horizontal−−−−−−→
in (I.5)

U ′

via vertial





y
in (I.5)





y

X ′ −−−−→ X

As suh, if we form the groupoids R := U ×X U ⇒ U , and Y1 := Y0 ×Y Y0 ⇒ Y0 then (I.6)

ensures that Y ′ → X ′ →֒X is equivalent to the omposition of funtors

(I.7) Y ′
1 → R′ = U ′ ×X U ′ →֒ R

while by hypothesis Y ′
1 is dense in Y1 and X is separated, so the simple of expedient of taking

the losure in (I.7) de�nes a funtor Y1 → R. �
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This is su�iently lose to optimal as to merit

I.a.5. Remark. One annot replae X ′
by a Zariski open sub-hamp X ′ →֒X in I.a.4. Indeed

take X to be the weighted projetive hamp P(n, n), I..1, n > 1. It's moduli is P1
, so the �bre,

X ′
, over a standard A1

is an embedded Zariski open. Moreover it's isomorphi to A1 × Bµn ,

so in partiular admits a setion, and we ould try to take Y = P1
. The gerbe P(n, n)→ P1

is,

however, non-trivial so the map Y ′ → X ′
annot be extended to Y → X even though it is

loally trivial, whene a fortiori without loal obstrution. The problem is that if one replaes

the moduli X, resp. X ′
, by X , resp. X ′

, in (I.6) then the diagram needn't 2-ommute in a

slightly unusual way. Spei�ally, it's 2-ommutative on geometri points, p say, by way of a

natural transformation ηp between either possible omposition, whih, in the spei� example,

if say U0, U∞ are points in the standard a�nes around 0 and in�nity is

(I.8) ηp =

{

1p if p ∈ U0,

p−1 p−1/n

−−−−→ p if p ∈ U∞\0,

where the latter arrow is to be understood in the presentation (I.32). Plainly, however, p→ ηp

isn't even ontinuous for p in U∞\0, and (I.6) fails to be 2-ommutative.

This an often be ombined with

I.a.6. Fat. Let X be a (onneted) normal (or slightly more general uni-branh) exellent

Deligne-Mumford hamp then there is a unique normal-fold X0 (slightly more generally uni-

branh-fold with the obvious de�nition of that notion) suh that X →X0 is a loally onstant

gerbe under some �nite group BG.

Proof. Sine X is exellent and uni-branh one an insist, [EGA-IV.2, 7.6.3℄, that the atlas

U =
∐

α Uα enountered at the beginning of the proof of I.a.4 onsists solely of irreduible

(a�ne) shemes Uα. Now for Gα of op. it. de�ne G′
α as the kernel of the representation

Gα → Aut(Uα) with G′′
α the image, then sine X is uni-branh

∐

α Uα × G′
α is a normal

(groupoid sense [KM97, 7.1℄) U -group sheme of the stabiliser, so for R := U ×X U ⇒ U , there

is, op. it. 7.4, a well de�ned quotient R→ R′′
where the latter is loally of the form [Uα/G′′

α].
As suh de�ne X0 to be [U/R′′], and observe that all the G′

α are isomorphi. �

Finally another important appliation of normality. Spei�ally let U be the spetrum of a

Noetherian loal ring, A, with losed point x, and j : U ′ → U a Zariski open whose omplement

is de�ned by a regular sequene of length at least 2. As suh, for n ∈ N the Kummer sequene,

(I.9) 0→ µn → Gm
n−→ Gm → 0,

applied to U and U ′
ombine to a�ord a short exat sequene

(I.10) 0→ H1(U,µn)→ H1(U ′, µn)→ Pic(U ′)[n]→ 0

In partiular therefore, if A is stritly Henselian and n−1 ∈ A,

(I.11) H1(U ′, µn)
∼→ Pic(U ′)[n]

Now in the partiular ase that A is normal exellent we an take U ′
to be the regular lous,

and identify (primitive) generators of the right hand side of (I.11) with Q-Cartier divisors, L,
on U of index n = n(x), i.e. a Weil divisor, L, on U suh that nL, but no smaller multiple,

mL, 1 ≤ m < n, is a line bundle, while the elements of order n on the left are just µn-torsors

V ′ → U ′
of order exatly n, and we assert

I.a.7. Fat/De�nition. For a Q-Cartier divisor, L, of index n on a normal stritly Henselian

U over whih n is invertible, the assoiated index 1-over, V → U , is the integral losure of U
in the orresponding µn-torsor V ′ → U ′

. By onstrution L | V is the trivial bundle, and, in a

6
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sense, universally so, i.e. if W → U is any �nite map from a normal sheme W every omponent

of whih is dominant suh that L | W is trivial then it fators uniquely as W → V → U . In

partiular if ∆→ U is the strit Henselisation of some (sheme) point u of U of index m|n then

the normalisation, N , of V ×U ∆ is the trivial µ n
m
-torsor over the index 1-over, M , of ∆.

Proof. It remains to address the universal property, wherein, without loss of generality W is

onneted. As suh all of U , V , W are the spetra of normal Henselian loal rings, so they

are all domains, while the funtion �eld of V over that of U is Galois by onstrution, so the

fatorisation is unique if it exists. Now let W ′
be the �bre over U ′

then by (I.11) the µn-torsor

W ′ ×U ′ V ′
has a setion, whih gives the fatorisation W ′ → V ′ → U ′

, and sine everything is

S2 the simple expedient of taking global funtions on these opens gives W → V → U . Applying

this to the in partiular: there is a map from N to M , while V ′ ×U ′ ∆ is a Zariski dense open

of the former whih is the trivial µ n
m

torsor over the pre-image of U ′
in the latter. �

In the ategory of spaes it's rather rare that index 1-overs an be glued whereas:

I.a.8. Fat. Let L be a Q-Cartier divisor on an exellent normal Deligne-Mumford hamp X
then there is a �nite map, f : Y → X , from a normal Deligne-Mumford suh that f∗L is

Cartier enjoying the following universal property: if g : Z →X is a �nite map from a normal

hamp suh that g∗L is Cartier, then there is a 2-ommutative fatorisation

(I.12) Z X

Y

h

=={{{{{{{{{{

f

!!C
CC

CC
CC

CC
C

g
//

ξ

KS

suh that for any other fatorisation, ξ̄ : g ⇒ fh̄ there is a unique θ : h ⇒ h̄ for whih

(g∗θ)ξ = ξ̄.

Proof. For every losed point x of X let n(x) be the index of L at x, and Ux →X a su�iently

small étale neighbourhood suh that the index 1-over Vx → Ux of I.a.7 is well de�ned, with

U ′
x, V ′

x as per op. it.. Now, for U =
∐

x Ux, we an without loss of generality suppose that X
is the lassifying hamp of the étale groupoid R0 := U ×X U ⇒ U , and that U ′ :=

∐

x U ′
x is

the lous where U is not regular. As suh, the restrition, R′
0 ⇒ U ′

is a dense Zariski open of

R0 equivalent to the restritions R′ ⇒ V ′ :=
∐

V ′
x, where R′ → R′

0 is both étale and �nite, and

we de�ne R ⇒ V to be the integral losure of R0 in R′
. Consequently from the ommutative

diagram of �bre squares

(I.13)

R0 ←−−−− R′
0 ←−−−− R′





y





y





y

U × U ←−−−− U ′ × U ′ ←−−−− V ′ × V ′

and V × V → U × U �nite, R ⇒ V de�nes a groupoid whih by the in partiular in I.a.7 has

étale soure and sink.

Now let g : Z → X be given, then, up to equivalene, we an identify this with a funtor of

groupoids, g : W 1 → R0, where W 1 = W ×Z W ⇒ W for some étale over W → Z �ner than

the pre-image of U . By I.a.7, W → U fators (uniquely) through V a�ording a (unique) map,

(I.14) h1 : W 1 → R0 ×U×U V × V

and R is the normalisation of the latter, while every loal ring of W 1
is �nite over U × U so

this atually fators as a funtor (beause everything is unique) h : W 1 → R. As suh we get

a unique stritly ommutative fatorisation g = hf given W → U . This supposes, however,
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that all of X , Y , Z were the lassifying hamp of the said groupoids, whereas they may be

no better than equivalent to suh, and whene the uniqueness statement (I.12). �

In the same vein one has

I.a.9. Fat/De�nition. Let D →֒ X be an e�etive Cartier divisor on a normal hamp X .

As suh for a su�iently �ne atlas U →X we may identify X with the lassi�er of a groupoid

(s, t) : R0 ⇒ U and suppose that D |U is de�ned by z = 0 where s∗z = gt∗z for some o-yle

g : R0 → Gm. Now for n ∈ N invertible in every loal ring of X de�ne a groupoid with objets

(I.15) normalisation of (T n = z) →֒ U × A1
.

and arrows the normalisation, R′
, of the base hange groupoid R0 ⇒ V , i.e. the �bre

(I.16)

R′
0 −−−−→ V × V





y





y

R0
s×t−−−−→ U × U

so that R′ ⇒ V is a groupoid beause R′
0 ⇒ V is, and everything is normal. Equally R′

admits

the expliit desription:

(I.17) normalisation of (T n
1 = s∗z, T n

2 = t∗z) →֒ R0 × A2
.

whih is the same thing as taking normalised nth roots of s∗z and the (invertible) transition

funtion g. By hypothesis, however, n is everywhere invertible, so R′ ⇒ V has étale soure and

sink, and we de�ne X ′ = [V/R′] → X to be the (extration of a) nth root of D . Observe,

moreover, that a setion of s : R′ → V is a hoie of nth root of g, so from the C¥h boundary

in (I.9), the lass of the �bration D ′ = D ×X X ′ → D in Bµn 's is exatly

(I.18) c1(D) ∈ H2(D , µn)

I.b. Foliation singularities. This setion is largely a summary, for the onveniene of the

reader of the relevant parts of [MP13℄. The one exeption to this rule is the onluding di-

gression, I.b.12-I.b.15, on how to avoid the study of boundaries altogether. Our interest is

exlusively in foliations by urves, i.e. if X is a Deligne-Mumford hamp of �nite type over a

�eld k (so Ω1
X /k is well de�ned) a torsion free quotient

(I.19) Ω1
X /k → Q→ 0

whih is rank 1 at every generi point. Arguably this is not the right de�nition in positive or

mixed harateristi sine in suh situations (I.19) is not likely to be loally integrable in any

meaningful sense. Fortunately we never have to worry about this, so we proeed diretly from

(I.19) to

I.b.1. De�nition. If X is normal and the double dual Q∨∨
is a bundle, resp. a Q-Cartier

divisor, then we say that the foliation, F , is Gorenstein, resp. Q-Gorenstein, or possibly

foliated Gorenstein, resp. foliated Q-Gorenstein, if there is any danger (whih there won't be)

of onfusion. In either ase, and indeed even if X were only normal, we write KF instead

of Q∨∨
, so that in the Gorenstein ase there is an ideal IZ supported in the o-dimension 2

(shemati) singular lous Z suh that

(I.20) Q = KF · IZ →֒ Q∨∨ = KF

As suh, even in the analyti topology, the lassifying hamp, [X /F ] may have no sense,

albeit analytially (and with probability zero in any algebrai topology) [X \Z/F ] has sense.
Nevertheless to better onvey the idea we write

(I.21) X → [X /F ]

as a short hand for I.19, and Ω1
X /F for the kernel in op. it..
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Unfortunately it's not tehnially orret to view a quasi-projetive variety as a proper hamp

with in�nite monodromy on the boundary, so we make

I.b.2. Remark. All of this is equally valid for hamps with boundary, i.e. a ouple (X ,D), for
D →֒ X a redued Weil divisor. Usually there'll be some further regularity, e.g. X and D
smooth over k, but all that's a priori required is that we an give a sense to the sheaf Ω1

X (log D),
so, X normal is su�ient. In any ase, it therefore follows that the anonial bundle of the

foliation F may have ompeting de�nitions aording as to whether a boundary is involved,

KF , or not, Knolog
F . These are related by,

(I.22) KF = Knolog
F +

∑

i

ǫ(Di)Di

where Di are the irreduible omponents of D , and for W a Weil divisor

(I.23) ǫ(W ) =

{

0 if W is F ( the sense of I.b.1) invariant,

1 otherwise.

Similarly there may also be ompeting de�nitions of invariant aording as to whether this is

understood for a saturated sub-sheaf of TX or TX (− log D) so that should there be any risk

of onfusion the former, equiavelently, I.b.1 will, following [MP13, I.i.2℄, be refered to as stritly

invariant. Regardless, almost always our boundary will be empty, but when it isn't: KF will,

as suggested by (I.22), be reserved for the anonial with log-poles sine this is more natural

and the resulting formulae are leaner.

A ase in point is the following ut and paste of [MP13, I.ii.1℄

I.b.3. De�nition. Let (U,D,F ) be an irreduible loal germ of a Q-Gorenstein foliated loga-

rithmi geometrially normal k-variety, i.e. the germ about the generi point of a sub-variety Y
of a geometrially normal variety suh that the log anonial bundle KF is a Q-divisor, then for

v a divisorial valuation of k(U) entred on Y the log disrepany, aF (v) is de�ned as follows:

By hypothesis there is a normal modi�ation π : Ũ → U of �nite type, together with a divisor E
on Ũ suh that OŨ ,E is the valuation ring of v. In partiular, bearing in mind (I.22), there is an

indued foliation F̃ with log anonial bundle KF̃ , i.e. whose dual is saturated in TŨ (− log E).
Thus there is a unique integer aF (v) suh that

(I.24) KF̃ = π∗KF + aF (v)E

and for ǫ as in (I.23) we say that the loal germ (U,D,F ) is,

(1) Terminal if aF (v) > ǫ(v).

(2) Canonial if aF (v) ≥ ǫ(v).

(3) Log-Terminal if aF (v) > 0.

(4) Log-anonial if aF (v) ≥ 0.

(I.25)

Where the slightly unsettling shift of the de�nitions by ǫ(v) ours as a result of the onvention
adopted in I.b.2 together with their orret funtorial interpretation.

In ontrast to this funtorial framework, there is a "ompeting" loal notion of what ought to

be a good lass of foliation singularities, viz:

I.b.4. Set Up. Let ∂ be a singular derivation of a loal ring, O, with residue �eld k. Thus, by
de�nition, if m is the maximal ideal of O, ∂ : O → m and

(I.26) ∂̄ :
m

m2
→ m

m2
: x 7→ ∂(x)

is k-linear by Leibniz's rule.
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The relation between the linearisation (I.26) and (I.25) is as good as possible

I.b.5. Revision. [MP13, I.ii.3℄. A Gorenstein foliation over the omplex numbers is log-

anonial i� every point is either smooth, or, its linearisation, (I.26), is non-nilpotent.

Better still, one an always redue to the Gorenstein ase thanks to the spei�s of one dimen-

sional leaves, i.e.

I.b.6.Revision. Let (V, D̃, F̃ )→ (U,D,F ) be the index 1-over of the germ in I.b.3 assoiated

to the log-anonial bundle KF in the sense of I.a.7, or, more generally an almost étale map,

then for any (n) in (I.25), 1 ≤ n ≤ 4, (U,D,F ) is (n) i� (V, D̃, F̃ ) is.

Proof. The easy ones are n = 4, [MP13, I.ii.5℄, and the if diretion for 1 ≤ n ≤ 3, [MP13,

III.i.5℄, whih also overs the subtler onverse. �

Manifestly, therefore,

I.b.7. Fat/De�nition. Let X \D → [X \D/F ] be a Q-foliated Gorenstein logarithmi

hamps, then the index 1-over, π : X̃ → X , de�ned by the log-anonial divisor KF , I.a.8,

will be referred to as the Gorenstein overing hamp. The map π is étale in o-dimension 2;

there is an identity KF̃ = π∗KF of log-anonial divisors; X̃ \D̃ → [X̃ \D̃/F̃ ] is Gorenstein;
and the over enjoys (n), 1 ≤ n ≤ 4, of (I.25) i� X \D → [X \D/F ] does.

As suh, we work almost exlusively with Gorenstein foliations. Similarly the already small

di�erene between log-anonial and anonial beomes lose to irrelevant for minimal model

theory, i.e.

I.b.8. De�nition. Let (U,D,F ) be a germ of a normal foliated Gorenstein log-variety about

a point p suh that a generator (in the sense of I.b.1 vanishes along a sub-variety Y then a

singularity is alled radial i� after ompletion in the maximal ideal we an �nd a generator of

the foliation of the form,

(I.27) ∂ = n1x1
∂

∂x1
+ . . . + nrxr

∂

∂xr
+ δ

where xi = 0 de�ning Y are linearly independent modulo m2
U,p, ni ∈ N, and δ ∈ Der(K, IY )

for some quasi-oe�ient �eld K. In partiular for U smooth: D is stritly invariant, I.b.2, i�

codim(Y ) = r ≥ 2.

By way of lari�ation let us make

I.b.9. Remark. This isn't quite a ut and paste from [MP13℄, sine op. it. III.i.2 insists that

Y of I.b.8 has o-dimension at least 2, whih, although entirely a question of onvention, isn't

right for doing minimal model theory. In partiular, therefore, when Y has o-dimension 1, e.g.
I.b.10.(), D = Y .

Irrespetively, the above de�nition of a radial singularity shouldn't be onfused with the losely

related notion of a radial foliation I.d.2, and in any ase the important point is,

I.b.10. Revision. [MP13, III.i.3℄. For (U,D,F ) a germ of a normal foliated Gorenstein variety

over a �eld k of harateristi 0 the following are equivalent,

(a) The singularity is radial.

(b) The singularity is log-anonial but not anonial.

() Y is the entre of a divisorial valuation of k(U) of (log)-disrepany zero and divisor,

f. I.b.9, not stritly invariant.

From whih it follows that the passage from log-anonial to anonial is exatly
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I.b.11. Revision. [MP13, III.ii.2℄. If X \D → [X \D/F ] is a foliated smooth hamp over a

�eld of harateristi zero whih has log-anonial but not anonial singularities then every

omponent of sing(F ) where this ours is smooth, and there is a smoothed weighted blow

up, [MP13, I.iv.3℄, in eah of whih suh that the indued log-foliation on the resulting bi-

rational modi�ation X̃ → X has everywhere anonial logarithmi foliation singularities,

whih amounts to the rather strong: at every point of the exeptional divisor, E , the indued
foliation is smooth and every where transverse to E .

Suh attention to the details of the logarithmi ase notwithstanding our ultimate intention is

to work almost exlusively with an empty boundary. In order to do this we introdue

I.b.12. De�nition. A foliated spae with orbifold boundary is a triple (U,∆,F ), where U →
[U/F ] is a foliation in the sense of I.b.1 and ∆, is a formal linear ombination

∑

i ai∆i of

e�etive Weil divisors, where ai = 1 − n−1
i for some positive integers ni < ∞; and we say

(slightly ontrary to standard usage) that (U,∆,F ) is Q-Gorenstein if U → [U/F ] is and eah

∆i is Q-Cartier. Moreover if D is the Weil divisor

∑

i ∆i, then the disrepany, a∆
F (v), of

(U,∆,F ) along a divisorial valuation v is de�ned to be

(I.28) a∆
F (v) := aF (v) −

∑

i

ǫ(∆i)mi(1− ai)

where aF (v) are the logarithmi disrepanies, (I.24), of the foliated log-variety (U,D,F ); ǫ is
as (I.23); and mi are the multipliities of the ∆i along the exeptional divisor E enountered

in I.b.3. As suh, we then say that (U,∆,F ) satis�es the orresponding properties (I.25) if the
respetive inequalities hold for a∆

F (v) rather than αF (v).

The introdution of suh orbifold boundaries is very muh temporary sine

I.b.13. Revision. [MP13, III.i.1℄. Let (U,D,F ) be a foliated germ of a smooth log-variety

supported at Z then the following are equivalent,

(1) (U,D,F ) is terminal.

(2) (U,D,F ) is log-terminal.

(3) D is stritly (i.e. in the sense of I.b.1) invariant and F is smooth transverse to the

generi point of Z.

whih in turn a�ords

I.b.14. Corollary. Let (U,∆,F ) be a germ of a log-anonial foliation singularity with F -

Gorenstein and non-empty orbifold boundary every omponent, ∆i, of whih is Cartier, then

in fat it's anonial, and exatly one of the following holds

(1) Not only (U,F ) but also (U,∆,F ) is terminal while the non-invariant part of ∆ has

multipliity 1 and is everywhere transverse to F .

(2) (U,F ), but not (U,∆,F ), is terminal, the weight of every non-invariant omponent of ∆
(of whih there are at most 2) is 1/2, and the non-invariant part of D is de�ned by a single

equation f of multipliity 2 suh that for a loal generator, ∂, of the foliation ∂2(f) is a unit.

(3) As per item (2) exept that f has multipliity 1 and enjoys a simple tangeny with F , i.e.

∂2(f) is again a unit.

Proof. From (I.24) and (I.28), the singularity (U,F ) without boundary is log-terminal, while

it is Gorenstein by hypothesis. Thus by I.b.13 it is de�ned by a no-where vanishing vetor �eld

∂, and, [MP13, III.i.1℄ every valuation, v, entred on the singularity has ǫ(v) = 0. In partiular,

therefore, (U,∆,F ) is always anonial, and it's terminal i� it's log-terminal.

Now, supposing, without loss of generality, that no omponent, ∆i, is invariant onsider the

e�et of blowing up in the maximal ideal of the germ. The disrepany of (U,F ) is 1, so the
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only way for the multipliity of D to be more than 1 is if it's 2 and all the weights ai = 1/2.
In this latter ase the initial modi�ation of (U,∆,F ) is, therefore, repant, so the proper

transform must itself be log-anonial, and whene the proper transform of D must only ut

the exeptional divisor in smooth points of the indued foliation, i.e. ∂2(f) is a unit for f of

multipliity 2 de�ning D. To see that suh a singularity is indeed anonial observe (proof of

[MP13, III.i.1℄) that in the loal ring, R, of a divisorial valuation v, we an write

(I.29) ∂ = π−m∂̃, f = πnf̃ , ∂̃(π) = 0, v(π) = 1, m, n ∈ N

for ∂̃ a derivation of R. As suh,

(I.30) ǫ(v) = 0 = v(∂2f) = (n− 2m) + v(∂̃2(f̃)) ≥ n− 2m

whih is exatly the anonial ondition.

Alternatively, therefore, the multipliity of D is exatly 1, and if it's not everywhere transverse

to the indued foliation then the proper transform of D must ut the exeptional divisor in

the singular lous of the transformed foliation, and a blow up in this (singular) lous a�ords a

valuation of negative disrepany unless the weight is 1/2. As suh, we're in ase (1) of I.b.14

or most of ase (3), i.e. it remains to prove that the tangeny is simple. Observe, however, that

D uts the exeptional divisor in a smooth invariant sub-spae, and blowing up in this not only

yields a seond exeptional divisor along whih the disrepany is zero, but separates the proper

transform of D from the proper transform of the initial exeptional divisor. Consequently, if

the tangeny weren't simple, the doubly transformed D would ontain an invariant subspae

of the indued foliation in the seond exeptional divisor, and a blow up in this would a�ord a

valuation of negative disrepany. Conversely a simple tangeny with weight 1/2 is anonial

for the same reason as (I.29)-(I.30), while an everywhere transverse divisor of any weight is

log-terminal beause the "weight 1 ase", i.e. r = 1 in (I.27) is, I.b.10, log-anonial. �

This an be applied to redue to an empty boundary in the obvious way, to wit:

I.b.15. Constrution. Suppose (U,∆,F ) is a Q-Gorenstein log-anonial foliated germ with

orbifold boundary, with no boundary omponent invariant. Then omposing the index 1-overs

assoiated to F and the boundary omponents ∆i, we �nd a foliated germ with orbifold

boundary (U ′,∆′,F ′) satisfying the hypothesis of I.b.14 suh that U ′ → U is almost étale. By

op. it. and [MP13, III.i.1℄, the proof of [MP13, III.i.5℄ goes through verbatim, and the obvious

variant of I.b.6 holds, i.e. for any (n) in (I.25), 1 ≤ n ≤ 4, (U,∆,F ) is (n) i� (U ′,∆′,F ′) is.
Ignoring, for the sake of argument, the ases (2) and (3) of I.b.14, the latter boundary is, in the

presene of log-anonial singularities an everywhere transverse Cartier divisor of multipliity

1 together with a weight 1 − n−1
. As suh if f = 0 is a loal equation for ∆′

then we ould

extrat a nth root π : V → U ′
to obtain a Gorenstein foliation V → [V/F̃ ] suh that,

(I.31) KF̃ = π∗(KF + ∆)

and again the obvious variant of I.b.6 holds- for any (n) in (I.25), 1 ≤ n ≤ 4, (V, F̃ ) is (n)
i� (U ′,∆′,F ′) is- for exatly the same reason as above. Plainly all suh loal onstrutions

will glue as hamps by muh the same argument as I.b.7, so all this is just the obvious fat

that minimal model theory for foliations with orbifold boundary an be dedued from the

minimal model theory of hamps without boundary. The slightly subtler point, however, is

that if one were to begin with a foliated hamp X \D → [X \D/F ] with (integral) boundary,

then extrating a n(> 2)th root, Xn → X of D yields a foliation Xn → [Xn/Fn] whih has

log-anonial singularities i� X \D → [X \D/F ] does, so that not only the minimal model

theory for foliations with orbifold boundary, but also with integral boundary, �.IV.f, an be

dedued from the hamps theorem without boundary.
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I.. Weighted projetive hamps. All of this setion works in arbitrary generality, so over

a base, say Spec(k), where k is a ring, with the objet of interest being

I..1. De�nition. For a = (a0, . . . , an) ∈ Zn+1
>0 , n > 0, let Ak := An+1

k \0 then by the

weighted projetive hamp P(a0, . . . , an), or just P(a), is to be understood the lassifying hamp

[Ak/Gm,k] of the ation,

(I.32) Rk := Gm,k ×Ak ⇒ Ak : (x0, . . . , xn)← [ λ× (x0, . . . , xn) 7→ xλ := (λa0x0, . . . , λ
anxn)

Just like any quotient spae under a group there is a tautologial torsor, i.e. Ak × Gm with

Gm ation

(I.33) Gm ×
(

Ak ×Gm

)

: λ× (x× z) 7→ xλ × (λz)

whih one extends to a line bundle in the usual way, to wit:

I..2. Fat/De�nition. Choose an embedding Gm →֒ Ga : z 7→ z, then by the tautologial line

bundle, O(1), on P(a) is to be understood the line bundle Ga×Ak with Gm ation given by (I.33)

and our aforesaid hoie of embeddings. In partiular, therefore, we've de�ned V(O(1)) |Ak
-

EGA notation- whene as an equivariant OAk
-module O(1) has generator T where

(I.34) T λ = λ−1T

so that the bundle ωAk/k of volume forms on Ak desends to the bundle ω := O(−a0− . . .−an)
on P(a).

Unsurprisingly Serre's expliit alulation generalises to:

I..3. Fat. The bundle O(1) freely generates the Piard group of P(a); there are, for p ≥ 0,
anonial (dual) isomorphisms of free k-modules

H0(P(a),O(p)) = Sp :=
∐

p0a0+···pnan=p

k · xp0a0

0 · · · xpnan
n

Hn(P(a), ω(−p)) = S′
p :=

∏

p0a0+···pnan=p

k · dx0 · · · dxn

x0 · · · xn
· x−p0a0

0 · · · x−pnan
n

(I.35)

and any other o-homology of any other line bundle in any degree vanishes.

Proof. The Piard group of Ak is trivial, so a line bundle on P(a) is the same thing as a map

φ : Rk → Gm from the groupoid (I.32) satisfying the o-yle ondition φ(gf) = φ(g)φ(f).
There are, however, no (algebrai) maps from Ak to Gm, so all suh o-yles are integer

multiples of the tautologial one. As to the seond part: if π : Ak → P(a) is the projetion

then for any sheaf F on Ak the Leray spetral sequene reads

(I.36) Hi(P(a), Rjπ∗F )⇒ Hi+j(Ak,F )

Now the o-homology of the right hand side of (I.36) is known, i.e. there are anonial dual,

[SGA-II, Exposé IV.5.5℄, isomorphisms

(I.37) H0(Ak,OAk
) =

∐

p

Sp, Hn(Ak, ωAk/k) =
∐

p

S′
p

while on the left hand side there are anonial isomorphisms

(I.38) π∗OAk

∼−→
∐

q∈Z

O(q), π∗ωAk/k
∼−→

∏

q∈Z

ω(q)

and all higher diret images in (I.36) vanish, whene (I.35) by identifying the weight of the

ation of Gm in the equivariant isomorphism between (I.37) and (I.38) a�orded by (I.36). �

In addition the bundle ω is the bundle of volume forms on P(a) when this has sense, i.e.
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I..4. Claim. The moduli of any P(a) is projetive, in fat better there is a �nite �at map

(I.39) Pn
k → P(a) : [x0, . . . , xn] 7→ [xa0

0 , . . . , xan
n ]

and P(a) is Deligne-Mumford i� all the ai are invertible in k. In addition the oordinate

funtions, ∂i = ∂
∂xi

, a�ord a Gm equivariant isomorphism

(I.40)

∐

i O(ai)
∼−−−−−−→

∂0+···+∂n

TAk/k

leading to the Euler sequene of Gm-modules on Ak, equivalently bundles on P(a)

(I.41) 0→ TGm

∼→ O
aixi∂i−−−−→

∐

i

O(ai)→ π∗TP(a)/k → 0

whenever P(a) is Deligne-Mumford, so in partiular

(I.42) ΛnΩP(a)/k
∼−→ ω

Proof. The funtor λ × xi 7→ λ × xai
i of the orresponding groupoids in (I.32) yields (I.39),

while the stabiliser of the point with all but the ith oordinate 0 is µai so the Deligne-Mumford

riteria is plainly neessary, and, similarly it is su�ient sine sliing (I.32) along xi = 1 overs

P(a) by a�nes with µai-ation. The rest just amounts to λ ating on ∂i by λ−ai
. �

The triviality of (I.39) notwithstanding we have

I..5. Corollary. If k is simply onneted, then every Pk(a) is simply onneted, i.e. irrespe-

tively of any Deligne-Mumford riteria, there are no non-trivial Γ-torsors over P(a) for every

�nite group Γ.

Proof. By hypothesis Pn
k is simply onneted, so it's su�ient by (I.39) to prove vanishing of a

suitable C¥h group, i.e. that the groupoid

(I.43) R := Pn
k ×P(a) Pn

k ⇒ Pn
k

doesn't admit any non-trivial funtors to Γ. The spae R may, by I.32, be expressed as the

lassi�er of the Gm ation (xi, yi) 7→ (λxi, λyi) on the produt of a�ne urves

(I.44) (xi)
ai = (yi)

ai ⊂ A2
k

omplemented in 0× 0. Now the urves in (I.44) are geometrially onneted, so their produt

is onneted. It's also l..i. of dimension at least 2, so it's homotopy depth is at least 2,

whene the omplement in 0 of the produt is onneted, and we're done a fortiori- the fat

that projetions in (I.44) are the soure and sink in (I.43) isn't even needed. �

Of whih we will require the following variant

I..6. Corollary. If k is simply onneted, and π : P → Pk(a) is a �bration in loally onstant

gerbes BG for some �nite group G suh that P is simply onneted, then G is a yli group

of order a (invertible in k) and P
∼→ Pk(aa) in suh a way that π is just λ 7→ λa

in I..1.

Proof. The right way to prove this is the long exat sequene of homotopy groups of a �bration,

whih may be done wholly algebraially [MQ15, III.g℄. However, for onveniene here is an ad

ho argument.

From I..5, Pk(a) is simply onneted, so by [Gir71, IV.3.4℄ the loally onstant gerbes up to

isomorphism in BG's over Pk(a) are anonially isomorphi to

(I.45) H2(Pk(a), Z)
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where Z is the entre of G. In partiular if P → P ′
is P modulo the entre, f. I.a.6, then

P ′ ∼→ Pk(a)× BG/Z , whih isn't simply onneted. As suh, without loss of generality G = Z

is abelian, and the Leray spetral for π a�ords an isomorphism

(I.46)

E0,1
2 = End(Z)

∼−−−−→
d0,1
2

H2(Pk(a), Z) = E2,0
2

If, however, p is the harateristi of k then from indutive appliation of the Artin-Shrier

sequene

(I.47) 0→ Fp → Ga → Ga → 0

the latter group in (I.46) is the prime to p part of Z, so our initial G is yli of some order a
prime to p. We have however a �bration,

(I.48) Pk(aa)→ Pk(a)

in Bµa 's by the simple expedient of sending λ to λa
in I..1, whih is the generator of (I.45). �

Another very important fat whih generalises is

I..7. Fat. Let n = 1 and E a vetor bundle on P(α) then there are unique integers bj suh

that (non-anonially)

(I.49) E
∼→

∐

j

O(bj)

Proof. We've done the rank 1 ase in I..3, and we go by indution on the rank, r > 1. The

push-forward of E to the moduli of P(a) is oherent, so there are plenty of meromorphi setions.

As suh, hoose one of maximal degree to get a short exat sequene of bundles

(I.50) 0→ O(br)→ E → E′′ → 0

Now by the indution hypothesis and I..3 this is split unless there is some bj > br, j < r, suh
that

(I.51) H0(P(a),O(bj − br − a0 − a1)) 6= 0

Consequently if we twist (I.50) by O(−br − a0) then the kernel has no o-homology by I..3,

while the o-kernel has a diret summand O(bj − br − a0) whih has a non-trivial setion given

by tensoring anything in (I.51) with Xa1

1 , and we ontradit the maximality of br. �

We've passed over the uniity sine

I..8. Remark. The uniqueness of the integers bj in (I.49) is just an easy version of the uniqueness

of the Harder-Narismhan �ltration whih, for βj a omplete repetition free list of the bj ordered

by β1 < β2 < · · · < βm takes the form

(I.52) E = E0 ⊃ E1 =
∐

bj>β1

O(bj) ⊃ · · · ⊃ Em−1 =
∐

bj>βm−1

O(bj) ⊃ Em = 0

I.d. Radial foliations. In this setion we work over C, and, unfortunately we'll need

I.d.1. Notation. The vetor a ∈ Zn+1
>0 will be written (at least for this setion) as the n-tuple

of positive integers (a0, aa1, . . . , aan), n ≥ 1, where a1, . . . , an are relatively prime, and a ∈ N.

The lak of symmetry in the notation is in the nature of

I.d.2. De�nition. The radial foliation, R, on P(a) is equivalently

(a) The foliation de�ned by the 0th oordinate O(a0)→ TP(a) in the Euler sequene (I.41).

(b) The foliation de�ned by the (rational) projetion P(a) 99K P(aa1, . . . , aan).
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In the partiular ase that n = 1 there is a ertain ambiguity in the de�nition aording as to

whether one saturates (a) at the entre of the projetion in (b), albeit, fortunately this tends

to be lear aording to ontext.

To whih one an add a bunh of properties whih will aid in radial foliation reognition

I.d.3. Fats. Given a radial foliation P(a)→ [P(a)/R],

(a) It's anonial bundle, KR (understood logarithmially if n = 1) is O(a0).
(b) On the étale neighbourhood of the (unique) singular point given by x0 = 1, xi = 0,

i ≥ 1 in (I.32), R is generated by the vetor �eld a1x1
∂

∂x1
+ · · · anxn

∂
∂xn

() The ith oordinate axis in (b) is a smooth embedded R-invariant P(a0, aai) with KR

degree −1/aai, while the degree of the generi invariant hamp is −1/a.
(d) The smoothed weighted blow up, [MP13, I.iv.3℄, P → P(a) in the singularity with

weights a1, . . . , an resolves I.d.2.(b). Indeed, f. I.b.11, the indued foliation P →
[P/R̃] is a bundle of P(a0, a)'s over a P(aa1, . . . , aan), and KR̃(+E ) = KR for E the

exeptional divisor.

Proof. Of these only (d) is meritorious of omment. Spei�ally smoothed weighted blow ups

in [MP13, I.iv.3℄ are understood to have weights without a ommon divisor, so in the �rst plae

by the formulae of [MP13, pg. 89℄ and I.a.4, we have a resolution

(I.53)

P0 −−−−→
ρ0

P(a1, . . . , an)

π0





y
weighted blow up with weights ai

P(a0, aa1, . . . , aan)

in whih the exeptional divisor E0 is isomorphi to Bµa0
× P(a1, . . . , an), and the various

bundles are related by

(I.54) ρ∗0OP(a1,...,an)(1) = π∗
0O(a) − E0

All of whih beomes muh leaner if, the ommon divisor not withstanding, one permits the

weights aa1, . . . , aan. This is equivalent to taking an ath root of E0, so we get a diagram in

whih the square is �bred

(I.55)

P(a0, aa1, . . . , aan)
weighted blow up←−−−−−−−−−−−
with weights aai

P
extrat ath root−−−−−−−−−−→

of E0

P0

ρ





y





y

ρ0

P(aa1, . . . , aan)
non-trivial gerbe−−−−−−−−−−→

of order a
P(a1, . . . , an)

by (I.54), i.e. the gerbe of the bottom horizontal is the lass of O(1) in H2(P(a1, . . . , an), µa).
In partiular, therefore, if E is the new exeptional divisor then (I.54) beomes

(I.56) ρ∗OP(aa1,...,aan)(1) = π∗O(1) − E

while the �bres of ρ are identially those of ρ0. The latter, however, are simply onneted sine

ρ0 has a setion, so, [BN06, 1.1℄, a loal alulation of their non-sheme like points implies that

they're all P(a0, a)'s. �

By way of disambiguation let us present the next proposition in the form

I.d.4. Fat/De�nition. Every deformation of a radial foliation is loally trivial, i.e. if for a

(geometrially) pointed sheme pt
s−→ S we have a map X → [X /F ] → S (equivalently of
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foliations indexed by the points of S) for whih the speial �bre Xs → [Xs/Fs] is a radial

foliation, then there is an étale neighbourhood U → S suh that

(I.57)

X ×S U
∼−−−−→ Xs × U





y





y

[X ×S U/F ]
∼−−−−→ [Xs/Fs]× U

ommutes, with the horizontal arrows isomorphisms.

Proof. By [Art69℄ it will su�e to replae S, resp. X , by its ompletion in s, resp. the �bre, and

to prove (I.57) in the formal ategory- so, keeping the same notation, U
∼→ S. Consequently,

if m is the ideal of s and Sn = Spec(OS/mn), it will even su�e to prove (I.57) with U = Sn,

where, by way of notation, Xn := X ×S Sn. Proeeding by indution on n ≥ 1, the ase

n = 1 is given, while [SGA-I, Exposé III.5℄ applies as written to show that the obstrution to

extending an isomorphism from Xn to X0 × Sn to the n + 1th thikening lies in

(I.58) H1(X0, TX0
⊗mn/mn+1)

By the Euler sequene, (I.41), and Serre's expliit alulation, (I..3), this is zero. As suh,

we an ertainly �nd an isomorphism f : Xn
∼→ X0 × Sn, but it may not be foliated, i.e. the

omposition

(I.59) f∗ΩX0×Sn+1/F → ΩXn+1
→ KF ⊗ OXn+1

may be non-trivial. We have, however, a foliated isomorphism at the nth level, and X0 is S2

so (I.59) is, equivalently, a non-trivial map

(I.60) TF |X0

∼→ O(a0)→ TX0/F

where the normal sheaf to the radial foliation is by (I.41) desribed by the ommutative diagram

with exat rows and olumns

(I.61)

0 0




y





y

O O




y





y

0 −−−−→ O(a0) −−−−→
∐

j O(aaj) −−−−→
∐

j>0 O(aaj) −−−−→ 0
∥

∥

∥





y





y

0 −−−−→ O(a0) −−−−→ TX0
−−−−→ TX0/F −−−−→ 0





y





y

0 0

Twisting by O(−a0) an arrow (I.60) is, therefore, a quotient of the spae of global setions in

the middle of the rightmost olumn of (I.61), i.e. the C-vetor spae of vetor �elds with, in
the notation of (I.32), basis

(I.62) xi0
0 xi1

1 · · · xin
n ·

∂

∂xj
, a0i0 + aa1 + · · · aan = aj − a0 j > 0, ik ≥ 0

On the other hand- [SGA-I, Exposé III.5℄ again- the possibilities for hanging the isomorphism

f are a prinipal homogeneous spae under

(I.63) H0(X0, TX0
⊗mn/mn+1)
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whose e�et on (I.60) is given by the Lie braket

(I.64) TX0
→ Hom(TF , TX0/F ) : D 7→ [−,D]

whih at the level of global setions has, by expliit alulation, image exatly (I.62), so a

suitable twist of f under (I.63) is a foliated isomorphism. �

We will equally need a slight generalisation, to wit:

I.d.5. Remark. The same statement is equally true under the hypothesis that the universal

over of Xs is a radial foliation. Indeed sine for π1 a �nite group, all modules in whih the

ardinality of π1 is invertible are ayli, and we're in harateristi zero, so the obstrution

(I.58) still vanishes and (I.64) is still surjetive on global setions.

I.e. Net ompletion. The entire ontents of this setion should be standard, but it's not in

the EGA's, so we give the details. We begin with the easiest ase, viz: a loal embedding

f : Y → X of (not neessarily separated) shemes. Thus by de�nition, [EGA-I, 4.2.1 & 4.5.1℄,

for every y ∈ Y there are (Zariski) open neighbourhoods Y ⊇ U ∋ y, resp. X ⊇ V ∋ f(y),
suh that

(I.65) f : U →֒ V

is a losed embedding. In partiular, therefore, we have a short exat sequene

(I.66) 0→ I → f−1OX → OY → 0

of sheaves, for some ideal I , and we observe

I.e.1. Fat/De�nition. For every n ∈ Z>0, de�ne Ofn := f−1OX/I n
, then the ringed spae

Yn := (Y,Ofn) is a sheme.

Proof. The question is loal on Y , so, modulo notation we an, (I.65), suppose f : Y →֒ X is

a losed embedding of a�nes. In partiular, therefore, it's de�ned by a quasi-oherent sheaf of

ideals J . As suh Ofn is the sheaf (on Y ) assoiated to the pre-sheaf,

(I.67) U 7→ lim←−
V ∩Y =U

Γ(V,OX)/Γ(V,J )n

This is, however, already not only a sheaf, but the struture sheaf, OX/J n
, of the nth thik-

ening of Y in X, so Yn is a sheme. �

For the avoidane of possibly ompeting de�nitions when (without relevane to our urrent

onsiderations) things fail to be Noetherian or exellent or whatever let us make

I.e.2. Fat/De�nition. A morphism f : Y → X of Deligne-Mumford hamps is net if it

is étale loally a losed embedding, i.e. for every geometri point y of Y there are étale

neighbourhoods U → Y of y, resp. V → X of x = f(y), together with a losed embedding

U →֒ V suh that

(I.68)

U −−−−→ V




y





y

Y
f−−−−→ X

ommutes. Consequently if everything is Noetherian, then f is net i� the strit Henselisation

Oh
Y ,y is a quotient of Oh

X ,x in every point, f. [SGA-I, Exposé I,3.7℄.

Now suppose f : Y → X is a net map of algebrai spaes. Replaing X by a suitable (embedded)

Zariski open, we may by I.68 �nd étale overs U → Y , resp. V → X, a�ording (a not

neessarily �bred) square of the form (I.68) in whih U →֒ V is a losed embedding. As suh

R0 := V ×Y V ⇒ V , resp. R := U × U ⇒ U are (not neessarily losed unless Y , resp. X
18
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is separated) embedded in V × V , resp. U × U so that the indued funtor R0 → R is a not

neessarily losed embedding, and we make

I.e.3. Fat/De�nition. For every n ∈ N, Rn →֒ R, resp. Un →֒ V is the nth thikening of

R0 →֒ R, resp. U →֒ V , in the sense of I.e.1. In partiular Rn ⇒ Un is an étale equiva-

lene relation, and we de�ne the nth thikening, Yn, of Y along f to be the quotient Un/Rn.

Consequently if Y is a sheme, then Yn is too.

Proof. Consider the diagram

(I.69)

R0 −−−−→ RU −−−−→ R

s





y





y





y

s

U U −−−−→ V

where the rightmost square is �bred. Thus all the vertials are étale, the rightmost horizontals

are losed embeddings, while the omposition of the top row is an embedding, so R0 →֒ R is an

open embedding, and whene the soure and sink of Rn ⇒ Un are étale. Finally for any sheme

T , the sets R(T ) ⇒ V (T ) form an equivalene relation, and we an identify the T -points of
Rn with those of R suh that the nth power of the ideal of the �bre over R0 is 0, whih sine

everything is étale implies that Rn(T ) ⇒ Un(T ) is an equivalene relation. �

This brings us to a net map, f : Y → X , of hamps, then proeeding exatly as above,

(U → X , V → Y étale overs et.) we �nd that f is equivalent to a funtor R0
F−→ R between

groupoids, whih as a map is itself net, and whene

I.e.4. Fat/De�nition. The nth thikening of Yn along f is the lassifying hamp [Un/Rn] of
the étale groupoid Rn ⇒ Un where Rn is the nth thikening of R0 along the funtor F , so,

inter alia there is a natural map fn : Yn →X extending f .

Proof. The fat that Rn ⇒ Un is an étale groupoid is mutatis mutandis the proof of I.e.3, and

the desription of the T -points therein also su�es to onlude that fn exists. Finally, re�ning

the overs U , V as neessary, the de�nition of Yn is, up to equivalene, independent of the

given presentation. �

It therefore only remains to make

I.e.5. Fat/De�nition. The ompletion, Y, along a net map f : Y → X of shemes is the

diret limit, lim−→n
Yn, in the ategory of formal shemes of the nth thikenings fn : Yn → X of

I.e.3. Similarly the ompletion, Ŷ , along a net map f : Y → X of hamp is the lassi�er of

the étale groupoid whih is the ompletion, R ⇒ U, along the net funtor F : R0 → R of I.e.4.

Consequently, by onstrution, f fators as

(I.70) Y →֒ Ŷ
f̂−→ X

where the former map is an embedding, and the latter is net.

I.f. Trivial remarks on the analyti topology. As we've observed in the proof of I.a.4 every

separated Deligne-Mumford hamp is étale loally the lassi�er, [U/G], of a (not neessarily

faithful) �nite group ation G×U ⇒ U . An étale neighbourhood is, however, rarely embedded,

so this isn't quite as onvenient as the orresponding analyti statement, i.e.

I.f.1. Fat. If X /C is a separated Deligne-Mumford hamp of �nite type, then for every geo-

metri point, x, there is an étale neighbourhood x ∈ ∆ → X in the analyti topology together

with a �nite group ation Gx × ∆ ⇒ ∆ of the stabiliser suh that [∆/Gx] →֒ X is an open

embedding.
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Proof. From the algebrai statement: the oarse moduli U/Gx is an étale neighbourhood of the

moduli µ : X → X suh that we have a �bre square

(I.71)

X ←−−−− [U/Gx]

µ





y





y

X ←−−−− U/Gx

There is however an open embedding ∆′ →֒ U/Gx whose omposition with the lower horizontal

in (I.71) is an embedding, so µ−1(∆′) is embedded in both X and [U/Gx], while it's pre-image,

∆, in U is both embedded and Gx equivariant. �

We will only ever have to onsider smooth hamps in the analyti topology, but as it happens,

everything works in maximal generality. We require:

I.f.2. Lemma. If X is a redued omplex spae then the sheaf, RX , of real analyti funtions

on X is oherent.

Proof. The disussion is loal, so we an suppose that X is a losed analyti subset of U ⊂ Cn

with �nitely many irreduible omponents X1, · · · ,Xr. Eah Xi has a onjugate X̄i and by

[Nar66, V, Prop. 8℄ for any x ∈ Xi the omplexi�ation of Xi at x in the real manifold Rn ×
R(1)n is Xi×X̄i. Consequently, op. it. V, Prop. 1, ∪iXi×X̄i ontains the omplexi�ation of

X at any x ∈ X; and eah Xi is everywhere loally Zariski dense in Xi×X̄i, so X is everywhere

loally Zariski dense in ∪iXi × X̄i . Consequently by op. it., ∪iXi × X̄i is everywhere the

omplexi�ation of X, so by op. it. V, Prop. 5, RX is oherent. �

This ombines with Malgrange's preparation theorem to a�ord:

I.f.3. Fat/De�nition. If C• is the sheaf of ontinuous funtions on a topologial spae, and

X/C is a redued omplex spae then, funtorially in X, there is a well de�ned subsheaf,

AX →֒ CX of smooth funtions. In the partiular ase that µ : X → X is the moduli of a

separated Deligne-Mumford hamp,

(I.72) µ∗AX ⊆ AX ⊆ µ∗CX = CX

Proof. First pass to the real analyti funtions RX , and for a loal embedding i : X →֒ M in

a smooth about x ∈ X, with ideal IX in RM we have by I.f.2 and [Mal02, VI.3.10℄ an exat

sequene

(I.73) 0← RX ⊗RM
AM ← AM ← AM ⊗RM

IX ← 0

wherein AM⊗RM
IX is equally the ideal of smooth funtions, AM , vanishing on X. In partiular,

therefore, we have an embedding

(I.74) A M
X := RX ⊗RM

AM →֒ CX

Now observe (by way of the obvious diagram hase implied by (I.73)) that if M has the em-

bedding dimension of X at x then for any other smooth embedding X →֒ N at x, there is a

unique isomorphism whih �lls the right hand side of

(I.75)

RX −−−−→ A N
X

∥

∥

∥

RX −−−−→ A M
X

in suh a way that the diagram ommutes. As suh X 7→ AX is a well de�ned, and funtorial,

while (I.72) is immediate from I.f.1 and (I.74). �

In order to apply this we need another
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I.f.4. Lemma. Let µ : X → X be the moduli of a Deligne-Mumford hamp and

∐

α∈A Wα → X
an open over (in the lassial sense) then up to passing to a loally �nite re�nement there are

funtions

(I.76) ρα ∈ Γ(X,µ∗AX ) with support in Wα suh that

∑

α

ρα = 1

In partiular for M any sheaf of AX -modules,

(I.77) Hq(X ,M ) = 0, ∀q > 0

Proof. Re�ning as neessary we an suppose that we have overs

∐

α∈A Uα,
∐

α∈A Vα with Ūα ⊂
Vα; V̄α ⊂Wα and eah of Uα, Vα, Wα satis�es I.f.1, i.e. there are étale overs

∐

α∈A U ′
α →X ,

et.; �nite group ations Gα ⇒ U ′
α et.; Gα equivariant inlusions Ū ′

α ⊂ V ′
α et.; and ompatible

identi�ations of Uα with U ′
α/Gα et.. As suh if fα : W ′

α → [0, 1] is a smooth (in the sense

of I.f.3) funtion whih is identially 1 on U ′
α, resp. identially 0 o� V ′

α then its trae, gα, is a

global setion of µ∗AX supported in Wα whih is identially 1 on Uα, resp. identially 0 o�

Vα, and

(I.78) ρα(x) :=
gα(x)

∑

β gβ(x)

does the job. Consequently any sheaf of µ∗AX modules is �asque, while µ∗ is ayli on

Q-vetor spaes, and whene (I.77). �

We ome therefore to the point of the disussion, by way of

I.f.5. Fat. If Y →֒ X is an embedding of smooth omplex Deligne-Mumford hamp with Y
proper, then there are a family of open embeddings Y →֒ Ut →֒ X with ∩tUt = Y and eah

Y
it−→ Ut

rt−→ Y a deformation retrat with itrt homotopi to the identity.

Proof. The expedient of taking the trae under Gx in I.f.1 a�ords loally equivariant metris

whih by (I.76) an be pathed to a smooth metri, ω, on X . As suh at every geometri point

x there is a Gx equivariant neighbourhood Vx →֒ TX ,x of 0 suh that the exponential a�orded

by ω yields an embedding

(I.79) exp : [Vx/Gx]→X

On the other hand by (I.77) the exat sequene

(I.80) 0→ TY → TX → NY /X → 0

has a smooth splitting, n : NY /X → TX so exp(n) restrited to appropriate neighbourhoods

of the zero setion in NY /X gives what we want. �

This is, of ourse, just the usual proof of the orresponding fat for smooth manifolds so it's

worth making

I.f.6. Remark. Slightly, but not muh, more subtly if X is Kähler then so is X .

Finally we require a baby GAGA,

I.f.7. Fat. Let X /C be a normal omplex analyti hamp, i.e. the lassi�er of an étale groupoid

R ⇒ U in the analyti topology, whose moduli µ : X → X is a �nite map to an algebrai spae

with algebrai rami�ation in o-dimension 1 then X is an algebrai Deligne-Mumford hamp.

Similarly, if Y ′
t → Ut is a smooth hamp �nite over the neighbourhoods of I.f.5, then there is

an algebrai hamp Y ′ → Y suh that (in the notation of op. it.) Y ′
t is equivalent to r∗t Y

′
.
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Proof. Without loss of generality X is onneted, so exatly as in I.a.6, there is a map X →X0

expressing X as a loally onstant gerbe in BΓ's for some �nite group Γ wherein the stabiliser

of the generi point of X0 is trivial, and by [Art66, 5.1℄ X0 is algebrai. As to X → X0, we

must �rst onsider the link in the sense of Giraud, [Gir71, IV.1.1.7.3℄, i.e. the representation of

π1(X0) in the outer automorphisms of Γ, but these are the same in the algebrai and analyti

ategories, so the next port of all is the obstrution to the existene of a hamp with a given

link. This is, [Gir71, VI.2.3℄, a lass in H3(X0, Z), where Z is the entre of the link, i.e. the

loally onstant sheaf in the entre of Γ with indued π1(X0) ation. By [SGA-IV, Exposé

XVI.4.1℄, étale and analyti ohomology oinide, while the obstrution vanishes analytially,

so there is at least one algebrai hamp, X ′ → X0 whih is a loally onstant gerbe in BΓ's for

the same link. Equally X ′
is an analyti hamp, so, in either ase the equivalene lass of all

possible hamps with this link is, [Gir71, IV.3.4℄, the orbit of X ′
under H2(X0, Z), and whene

X → X0 is algebrai by another appliation of [SGA-IV, Exposé XVI.4.1℄. The argument for

the seond part about the Ut's proeeds mutatis mutandis given I.f.5. �

II. KF negative urves

II.a. Foliations as birational groupoids. As we've already remarked prior to I.b.1 the point

of view of a foliation as an integrable quotient of the otangent sheaf is misleading. Rather a

foliation should be onsidered as an in�nitesimal equivalene relation outside of its singularities,

and the equivalene of this de�nition to that involving linear 1

st
order data as a non-trivial

theorem (not withstanding the triviality of the proof) spei� to harateristi zero. In any

ase let us begin by reviewing the equivalene, whene let X be a normal a�ne variety over

C and F a smooth foliation on X. Notie that X may be singular, so F smooth means that

(everywhere loally) for some (and indeed any) embedding of X in a smooth variety M the

omposition,

(II.1) TF → TX → TM ⊗ OX

is an injetion of bundles. Now onsider the diagonal ∆ in X × X, with pi the projetions,

and p∗2TF the foliation obtained by pull-bak from the 2

nd
diretion. Dualising ommutes

with �at pull-bak so this is notationally unambiguous, whene shrinking X as neessary we

an �nd a loal generator ∂ of TF and f ∈ I∆ suh that p∗2∂(f) is non-zero on X. We put

δ = (p∗2∂(f))−1∂, and for any funtion g on X ×X de�ne,

(II.2) g̃ :=

∞
∑

n=0

(−1)n
fnδn(g)

n!
∈ Ô∆ := lim←−

n

OX×X/I n
∆

then δg̃ = 0, and better still if ∆̂ is the ompletion of X ×X in ∆ then the inlusion of rings,

(II.3) OF := {h ∈ Ô∆ : ∂h = 0} ⊂ Ô∆

orresponds to a relatively smooth �bration of formal shemes,

Spf 

∆̂ =

=

F
∆

∆

Figure 1. Constrution of the in�nitesimal groupoid
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suh that the pull-bak of the image of ∆ in Spf OF is the orresponding in�nitesimal equiva-

lene relation, i.e. the formal sub-sheme of ∆̂ de�ned by the ideal generated by OF ∩I∆ or

equivalently the maximal sub-ideal of I∆ invariant by F . Rather more pituresquely, �g. 1,

what we have done is add a small germ in the p∗2TF diretion for eah point in the diagonal.

To extend this to hamps, even separated ones, is a little deliate sine unless the hamp is in

fat an algebrai spae the diagonal will fail to be an embedding. To remedy this it su�es to

observe that we've atually been working in,

(II.4) PX := Spf PX , PX = lim←−
n

P
(n)
X

where P
(n)
X is Grothendiek's sheaf of n-jets viewed as a nilpotent OX-algebra by way of the

1

st
-projetion. If, however, X , is Deligne-Mumford hamp, then by de�nition it is equivalent

to a groupoid with étale soure and sink so there are well de�ned sheaves of nilpotent OX -

algebras, P
(n)
X of n-jets, and of ourse idem, modulo replaing nilpotent by topologially so,

for the inverse limit PX . Equally the formation of the formal spetrum is a loal onstrution,

while both the projetors and the diagonal embedding path, so we obtain an objet whih we

summarise by way of,

II.a.1. De�nition. The jet groupoid of a hamp de Deligne-Mumford X is the formal hamp,

(II.5) PX = Spf PX ⇒ X

with soure map p1, sink p2, and identity the diagonal.

Notie in partiular that the diagonal is atually embedded in the jet groupoid, so its worth

emphasising what's happening. Spei�ally for a geometri diagonal point x×x in X ×X , its

automorphism group is simply Aut(x) × Aut(x). Inside this group we have a opy of Aut(x)
sitting diagonally. Now any attempt to de�ne diagonal type subgroups of automorphisms for

o� diagonal points, and whene de�ne an atual étale �neighbourhood� in whih X embeds

in some sort of diagonal way, is doomed to failure. At the in�nitesimal level this an, and is,

ahieved by II.a.1.

Turning then to hamps foliated by urves, or indeed even foliated full stop, the orresponding

foliations on étale neighbourhoods of the hamp are again by supposition invariant by the

orresponding étale groupoid so that we may one again apply the expedient of summary by

way of de�nition, i.e.

II.a.2. Summary/De�nition. Let X → [X /F ] be a foliated hamp, Z its singular lous,

and U = X \Z the smooth lous then the in�nitesimal equivalene relation F ⇒ U de�ned

aording to the orrespondene whih assoiates to F a formal subsheme of the jet groupoid,

�g. 1 et. seq., will be denoted the smooth in�nitesimal groupoid of F .

This onstrution may, however, fail atastrophially over Z , i.e. onsider:

Figure 2. A groupoid with essential singularity.
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then over Z we may have an essential singularity, so that the smallest losed formal sub-hamp

of PX ontaining F is PX itself.

To remedy this latest di�ulty we allow the possibility of birational groupoids, i.e. suh that

the identity map is simply birational. With this extra �exibility we an omplete aross the

singularities. Spei�ally let,

(II.6) π : P̃X → PX

be the blow up of in the diagonal embedding ∆(Z ) of Z understood with any implied nilpotent

struture on the singular lous. Now let U → X be an étale neighbourhood of a geometri

point z ∈ Z with U →֒ M an embedding into a smooth. Consider oordinates x1, . . . , xn on

M restriting to funtions on U , then for F |U Gorenstein, and shrinking U as neessary we

may suppose that the foliation is de�ned by a vetor �eld ∂ on U , whih we write using the

summation onvention as,

(II.7) ∂ = ai
∂

∂xi

so that IZ |U = (ai). Now introdue xi, yi as oordinates on U × U obtained from our initial

oordinates by way of 1st
and 2nd

pull-bak respetively, and put zi = xi − yi, then in zi, xi

oordinates,

(II.8) p∗2∂ = p∗2ai
∂

∂yi
= −p∗2ai

∂

∂zi
.

Consequently on the blow up, II.6, around U on the p∗1ai 6= 0 path, we have:

(II.9) ∂

(

zi

p∗1ai

)

=
−p∗2ai

p∗1ai
= 1 +

(p∗1ai − p∗2ai)

p∗1ai
.

On the other hand the diagonal embedding of Z ×X U has ideal (p∗1ai, zi) so on the proper

transform ∆̃ of ∆ in P̃X not only an we loate eah point in some p∗1ai 6= 0 path for an

appropriate i, but indeed the funtion zi/p
∗
1ai in I∆̃ enjoys a non-zero derivation with respet

to π∗∂. Better still we have blown up in a entre invariant by p∗2 F so the indued foliation

p̃∗2 F on P̃X is both smooth in a neighbourhood of ∆̃ and everywhere transverse to it. Whene

we an just repeat our minor variant of the lassial Frobenius theorem to obtain,

II.a.3. Fat/De�nition. Let X → [X /F ] be a foliated Gorenstein hamp, then there is a

formal sub-hamp F̃ of P̃X , (II.6), together with projetion maps, pi ◦ π, i = 1 or 2 de�ning a

birational groupoid, i.e.

(II.10) F̃ ⇒ X

where the identity and omposition are rational maps. In addition the projetion p1 ◦π fators

as,

(II.11) F̃
p−→ ∆̃→X

with the former map in (II.11) relatively smooth of dimension 1. We all this struture the

in�nitesimal birational groupoid of the foliation.

Notie in partiular,

II.a.4. Fat. There is an isomorphism, N∆̃/F̃

∼−→ O∆̃(p∗2 TF ).
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II.b. Chow's Lemma. We'll on�ne ourselves to that whih is stritly neessary for appli-

ations. Our interest entres on smooth formal hamps F whose trae C is a smooth hamp

of dimension 1. From our utilitarian point of view we'll on�ne ourselves to the ase where

dim F = 2. Irrespetively there is a well de�ned normal bundle NC /F, and we make,

II.b.1. De�nition. F is a onave formal neighbourhood of C if deg(NC /F) > 0.

Unsurprisingly the lassial Chow lemma ontinues to hold, i.e.

II.b.2. Lemma. (Chow, Grauert et al.) Let L be a line bundle on F then there is a quadrati

polynomial PL, depending on L, suh that for all n ∈ N,

(II.12) h0(F, L⊗n) ≤ PL(n) .

Proof. Let Fm be the mth
-thikening of C then we have an exat sequene,

(II.13) 0→ SymmN∨
C /F→ OFm+1

→ OFm → 0 .

On the other hand if h0(C , Ln ⊗ SymmN∨
C /F

) 6= 0, then,

(II.14) m deg(NC /F) ≤ n degC (L) .

Consequently for any n ∈ N,

(II.15) H0(OFm+1
⊗ Ln) →֒ H0(OFm ⊗ Ln)

is injetive, provided m > M :=
n degC (L)

deg(NC /F)
and whene

(II.16) h0(F, L⊗n) = lim←−
m

h0(Fm, L⊗n) ≤
M
∑

k=0

h0(C , Ln ⊗N−k
C /F

) .

Moreover by [BN06, 1.1℄ we an �nd a map, ρ : C → C from an honest urve, while for any

bundle E, h0(C , E) ≤ h0(C, ρ∗E), so we onlude by Riemann-Roh. �

II.. Bend & Break. We are now in a position to extend the results of [BM16℄, so to this

end let X → [X /F ] be a foliated Gorenstein normal hamp with projetive moduli spae

π : X → X, and H an ample bundle on the latter. As ever the basi objet of study is KF

negative urves on X , i.e., pro�ting one more from [BN06, 1.1℄, maps f : C → X from

a smooth urve suh that KF ·f C < 0. We impose further the ondition that f does not

fator through the singular lous Z = sing(F ). Consequently if we onsider the in�nitesimal

birational groupoid as �bred over X̃ = BlZ (X ) via p in (II.11), then f admits a lifting

f̃ : C → X̃ and we may form the �bre square,

(II.17)

F̃ ←−−−− F̃C

p





y





y

p

X̃ ←−−−−
f̃

C

In addition the identity map of the groupoid gives a setion s of p of the left, so a fortiori of

the right, vertial arrow, whih is everywhere well de�ned sine we're working with X̃ rather

than X . Consequently, by II.a.4, F̃C is a onave, II.b.1, neighbourhood of s(C), and for P̃X

as per (II.6), we have natural maps,

(II.18) F̃C → C × P̃X → C × Bl∆(Z )(X ×X )

where the moduli, W , of Bl∆(Z )(X ×X ) is projetive beause X is, and we assert,
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II..1. Claim. The Zariski losure of the image of F̃C in C ×W is irreduible of dimension 2.

Proof. Indeed let Y be the Zariski losure, whih is irreduible sine F̃C is. Moreover if L is an

ample line bundle on C ×W then by de�nition,

(II.19) H0(Y,L)→ H0(F̃C , L)

is injetive by the de�nition of Y , so we're done by the Chow lemma, II.b.2. �

Now let Y be Y ×(C×W ) (C × Bl∆(Z )(X ×X )) then we further assert

II..2. Better Claim. For Y /C viewed as a C-hamp via the projetion C ×W → C there is

a net C-map F̃C → Y . In partiular, therefore, this a�ords a setion s : C → Y suh that:

(a) Y is smooth in a neighbourhood of s(c).
(b) KY /C·s C = KF ·f C.

() The 2nd projetion yields a map of foliated hamps (Y /C)→ (X → [X /F ]).

Proof. By base hange in the �bre square:

(II.20)

F̃× C ←−−−− F̃C

p×f̃





y





y

X̃ × X̃
diagonal←−−−−− X̃

the above horizontal is net, while, f. II.a.1, PX →X ×X is net, so P̃X → Bl∆(Z )(X ×X )

is too, and F̃ is embedded in PX by de�nition II.a.3. As suh F̃C → C ×Bl∆(Z )(X ×X )) is
a omposition of net maps, whih, by onstrution, has an image embedded in Y . �

The following, therefore, a�ords invariant rational urves through a generi point of the image

of C.

II..3. Fat. Suppose in addition to II..2.(a)-(b) a family p : Y → C of uni-dimensional

hamp with a setion s satis�es KY /C·s C < 0 then there is a �nite extension C(C)→ K suh

that YK is dominated by P1
K .

Proof. We may, without loss of generality, suppose that Y , and indeed any base hange thereof,

is normal. In partiular, therefore, I.a.6, there is a �bration Y → Y0 expressing the former as

a loally onstant gerbe over a normal-fold, so that by [BN06, 1.1℄ we may further suppose that

Y = Y0. As suh if the generi �bre of p is not dominated by a rational urve then, op. it.,

there is a �nite extension C(C)→ K suh that Y ×C K is an orbifold of the form [SK/G] for
some non-rational K-urve SK and �nite group G ating generially freely. Denoting by Y the

moduli of Y , and identifying K with the funtion �eld of a smooth urve B, we an suppose

that SK is the generi �bre over B of the integral losure S of Y in the funtion �eld of SK .

The normalisation S of the �bre Y ×Y S is, therefore, a gerbe over S with generi �bre SK .

Consequently, by purity, q : S → Y is rami�ed only in omponents of �bres of Y → C. In

addition q is étale loally Galois sine S → Y is and Y → C is smooth in a neighbourhood

of the setion s(C), so by [SGA-I, Exp. XIII, Cor. 5.3℄, q is étale loally around s(C) the

extration of roots of �bres. As suh, by the simple expedient of taking C(C)→ K su�iently

large, we an suppose- around s(C) and it's pre-image- that q is sheme like and S is smooth.

Better still sine q is only rami�ed in �bres,

(II.21) KS/B = q∗KY /C , and thus, KS/B ·s̃ B < 0,

for any lifting s̃ of s. Consequently, we may from from either [BM16℄ or the lassial theorem

of Arakelov, [Szp81℄, onlude to the absurdity that the generi �bre of S → B is a rational

urve. �
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The �bres of p in II..3 may not themselves be rational urves, and it is onvenient to give

them a name, to wit

II..4. Fat/De�nition. A smooth 1-dimensional Deligne-Mumford hamp, L , over a �eld k is

said to be paraboli if it's geometri �bre is dominated by a rational urve. Rather onveniently

this ours, [BN06, 1.1℄, i� the topologial Euler-harateristi χ(L ) > 0.

From whih we an proeed to our onlusion

II..5. Proposition. Let X → [X /F ] be a foliated normal gerbe over a projetive variety X,

whih is foliated Gorenstein along some KF negative urve C0 ⊂ X around the generi point

of whih F is a non-singular foliation of X , then for a generi c ∈ C0 there is an invariant

paraboli hamp, gc : Lc →X suh that for M any nef. R-divisor on X , and || the moduli,

(II.22) M·|gc|
|Lc| ≤ 2

M·f C

−KF · C

Proof. We apply II..2 with C a urve mapping to the normalisation of the gerbe over C0 in

X . By II..3 the generi �bre of Y → C is an invariant paraboli hamp, so it only remains

to produe the degree bound. To this end identify the image of the setion s with a urve C
suh that C2 = −KF · C in the normal surfae whih is the moduli. Whene if L is a generi

�bre of the same, M is notationally onfused with the restrition of the given nef. R-divisor,
and x ∈ R>0 then by the Hodge index theorem,

(II.23) 2x · (L ·M)C2 ≤ (L + xM)2 C2 ≤ {C · (L + xM)}2

so taking x = (M · C)−1
we onlude. �

The same proof works, under the weaker hypothesis that only a neighbourhood of C0 in the

moduli is projetive. More interestingly, the presene of even the most mild non-sheme like

struture on X an neessitate the preision of II..5 that the existene of a paraboli invariant

hamp L ∋ c is only guaranteed for generi c. Indeed:

II..6. Remark. Take a setion C with positive square of a Hizerbruh surfae P → C. In the

�bre through some c ∈ C, hoose some set Q of points o� C, and for q ∈ Q let nq ∈ N>1

be given. Choose a germ of a smooth urve, γ transverse to the �bre Pc at q. Blowing up

in q, we get the proper transform γ1 of γ, we then blow up in the point where this rosses

the exeptional divisor, and repeat this proess nq times before blowing down the �rst nq − 1
urves. The resulting surfae S then has isolated yli quotient singularities with monodromy

Z/nq at eah q in the proper transform of Pc, whih itself meets at eah q a rational urve in

the �bre, but the said proper transform is the only omponent of the �bre meeting the setion.

Passing to the Vistoli overing hamp, we see the neessitate for taking c ∈ C generi in II..5,

sine the gerbe over the proper transform fails to be paraboli as soon as,

∑

q(1− 1/nq) > 2.

II.d. The Cone of Curves. We may now apply the basi estimate II..5 to the one of urves

of a foliated Gorenstein normal hamp X → [X /F ] over C. Indeed more preisely we have,

II.d.1. Fat. Let X → [X /F ] be a foliated Gorenstein normal hamp with log-anonial

singularities in dimension 1 and projetive moduli, then there are ountably many F -invariant

paraboli, hamp Li, with, 0 < −KF · Li ≤ 2 suh that,

(II.24) NE (X )R = NE(X )KF≥0 +
∑

i

R+ Li

where NE (X )KF≥0 is the sub-one of the losed one of urves on whih KF is non-negative.

Better still the R+ Li are loally disrete, and if R ⊂ NE (X )R is an extremal ray in the half

spae NEKF<0 then it is of the form R+ Li.
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This is a wholly formal onsequene, as per [Kol96, III.1.2℄, of the following variant of II..5

II.d.2. Variant. Let X → [X /F ] be as above, and C0 ⊂ X a KF -negative urve in the

moduli, then for generi c ∈ C0 there is a F -invariant paraboli hamp Lc ∋ f(c) with 0 <
−KF ·Lc ≤ 2 suh that for all nef. R-divisors M on X, and || the moduli,

(II.25) M· |Lc| ≤ 2
(M· C0)

−KF · C0
.

The variant requires a ouple of fats of independent interest to wit

II.d.3. Fat. If Z is the singular lous of a foliated Gorenstein-hamp X → [X /F ] with
log-anonial singularities in dimension 1, then OZ (KF ) is semi-ample.

Proof. Consider the linearisation map, i.e. the omposition of,

(II.26) D : IZ /I 2
Z −→

d
ΩX ⊗Ox OZ −→ KF ⊗IZ /I 2

Z

By the Leibniz rule, this map is OZ linear, and sine the singularities are log-anonial in

dimension 1, for z ∈ Z outside a �nite set, some symmetri funtion of D de�nes a setion

over Z , non-vanishing at z, of some power K⊗n
F , [MP13, I.ii.4℄, and we onlude by the Zariski-

Fujita theorem. �

II.d.4. Fat/De�nition. Let X → [X /F ] be a foliated Gorenstein hamp; f : L → X the

normalisation of an invariant uni-dimensional hamp not fatoring through the singular lous

Z ; χ(L ) its topologial Euler-harateristi; and sZ (f) the Segre lass of f along Z , i.e. the

multipliity (ounted with stabilisers) of the pre-image f−1IZ of the ideal of singularities, then

KF ·f L = −χ(L )− Ramf + sZ(f)

≥ −χ(L ) +
∑

l∈f−1(Z )

1

|AutC (c)|
(II.27)

Proof. The image of f∗Ω1
X is Ω1

L is always Ω1
L (−Ramf ), while in the partiular, I.20, it's

equally f∗KF .f−1IZ , whih proves the 1st line in (II.27). To get the seond, observe that in

harateristi 0 f an only ramify where it meets Z . On the other hand if f : ∆→ U is a loal

branh of f meeting a singularity in f(0), and

(II.28) ∂ = a1
∂

∂x1
+ · · ·+ an

∂

∂xn

is a loal generator of F with xi oordinates on a smooth embedding of U then the loal

ontribution to −Ramf + sZ(f) is

−min
i
{ord(ẋi(t))}+ min

i
{ord(f∗(ai))}, f : t 7→ xi(t)

= 1 + ( min
i
{ord(f∗(ai))} −min

i
{ord(f∗(xi))}) ≥ 1

(II.29)

whene the 2nd line on orreting for the order of the stabiliser. �

At whih point we an return to

proof of II.d.2. By II.d.3 we need only prove the variant under the additional ondition present

in II..5 that the foliated hamp is non-singular over a generi point of C0. As suh re-taking

the notation of the proof of op. it., we have a bi-dimensional hamp p : Y → C whose �bres

map invariantly by g to X , whih is the normalisation of its image. The said image, A , say,

admits a possibly non-saturated, injetion TF → TA . Every omponent of the singular lous is

invariant by every vetor �eld, so by [BM97℄, normalisation (in harateristi 0) an be realised

in o-dimension 1 by a sequene of blow ups in F -invariant entres. Thus g∗TF maps to TY /C
28



in o-dimension 1, whene, everywhere sine Y , and therefore TY /C , is S_2. Consequently for

generi c ∈ C,

(II.30) −KF ·gc C ≤ TY /C · C
while by the adjuntion formula, II.d.4, and smoothness of Y in o-dimension 2, we have,

(II.31) TY /C · Yc = −χ(Yc) ≤ 2

so, indeed −KF ·gc C ≤ 2 for generi c as required. �

In partiular, under the hypothesis of log-anonial singularities in dimension 1, KF -negative

urves are never ontained in the singular lous of the foliation, and we proeed to examine

the possibilities for KF negative invariant paraboli hamps outside the same. Whene let

f : L → X be the normalisation of suh, whih we express as a loally onstant gerbe,

π : L → L0, over a hamp without generi stabiliser, then by (II.27)

(II.32) 0 > KF ·f L ≥ (L : L0) ·







−2 + ♯ f−1(Z ) +
∑

q /∈πf−1(Z )

(1− 1

dq
)







where in the sum, dq is the order of the loal monodromy, and ♯ means integer valued ardinality

of a set. As suh,

II.d.5. Fat/De�nition. For a Gorenstein foliation X → [X /F ] in the presene of log-

anonial singularities in dimension 1, an irreduible KF -negative invariant hamp (or just an

irreduible KF -negative invariant hamp whose generi point meets the smooth lous of the

foliation if there are no hypothesis on the singularities of X → [X /F ]) has a normalisation,

f : L →X , with L paraboli, and furthermore:

(a) The pre-image under f of the singular lous Z is supported in at most 1 point.

(b) If this pre-image is 6= ∅, then L0 has at most one non-sheme like point outside it.

() If there is no suh singular point X → [X /F ] is generially a �bration in paraboli

hamps.

Proof. Items (a) and (b) are lear from (II.32) whih leaves (). In this ase f is an embedding

whose normal bundle is �at via the representation a�orded by the linear holonomy, while π1(L )

is �nite, so, for f̃ : L̃ → X the omposition with the universal over, the deformations of f̃ are

(loally) a smooth spae of dimension dim(X )−1, and every deformation of f̃ is invariant. �

II.e. Singular struture of KF -negative urves. Throughout this setion f : L → X is

a map from a smooth invariant KF -negative urve with the further spei�ations of II.d.5. In

partiular f is an embedding everywhere exept possibly at a point p ∈ f−1(Z ). At p, however
not only may the monodromy exeed that of the generi point of L , but f may fail to be an

embedding beause it has a usp and/or beause the image is not uni-branhed. Nevertheless

there is a ertain limit to the ompliation, whose desription is the goal of this setion, i.e.

II.e.1. Fat/De�nition. Let everything be as in II.d.5 albeit we insist that X → [X /F ]
has log-anonial singularities, and suppose moreover that f−1(Z ) 6= ∅ with p : pt → L the

resulting geometri point, then the étale loal ontribution, (II.29), to −Ramf + sZ (f) at p is

exatly 1. As suh by (II.27) and (II.32)

(II.33) KF · L = −1/d

where d is the maximum value of a stabiliser of L outside p, whih is either attained at a

unique point or is the same everywhere in the omplement of p, and we refer to suh urves as

−1
d F urves.

We proeed by a series of lemmas beginning with
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II.e.2. Claim. The foliation F , by way of restrition over the generi point, a�ords a singular

derivation of L .

Proof. We re-take the notation of (II.28)-(II.29) in the proof of II.d.4. It therefore follows

exatly as in the proof of II.d.2 that ∂ de�nes a derivation of O∆, and it remains to prove

that it's atually singular at p. To see this observe that if b : X̃ → X were the blow up in p
then the indued foliation (understood without saturation if the singularities are not anonial,

i.e. loally de�ned by b∗∂) annot (by the Frobenius theorem) be smooth where the proper

transform of f rosses the exeptional divisor. On the other hand, a sequene of blow ups in

singular points resolves any singularity of any branh of f , so for b : X̃ → X now a hain

of suh, we an suppose that the proper transform f̃ : L → X̃ is an embedding rossing

the exeptional divisor in a singular point, f̃(p), of the regular derivation b∗∂, i.e. ∂ a�ords a

singular derivation of O∆. �

Applying II.e.2, we an, in the said notation, write the restrition to L of a generator étale

loally as

(II.34) ∂ = yr+1u(y)
∂

∂y
, u(y) ∈ O×

∆ , r ∈ Z≥0,

and the ontent of II.e.1 is that r = 0. All of whih is a useful, if non-essential, point of referene

in establishing our next

II.e.3. Claim. Understanding X → [X /F ] in the log-sense, I.b.2, if neessary, f. I.b.10,

Without loss of generality X in II.e.1, is a smooth hamp.

Proof. By [BM97℄ there is a F -equivariant resolution of singularities

(II.35) b : X̃ →X

So that understanding X̃ → [X̃ /F̃ ] in the log-sense if neessary the anonial bundle is

unhanged. As suh if b is an isomorphism at the generi point of f , there is a unique lifting

f̃ : L → X̃ satisfying the hypothesis of II.e.1, and there is nothing to do. It may, however,

happen that b is a modi�ation around the image of f . Nevertheless every omponent of the

�bre over the said image is invariant, amongst whih we hoose one over the generi point of f
and normalise it to get a not neessarily �bred square

(II.36)

X̃ ←−−−−
F

Y

b





y





y
B

X
f̃←−−−− L

wherein any vetor �eld along F on the bottom left hand orner lifts naturally everywhere

else. In partiular, therefore, there is a possibly very far (even logarithmially) from saturated

(f. II.e.2) bundle of derivations

(II.37) F ∗b∗TF → TY

whose singular lous is ontained in B−1(p), so that the restrition

(II.38) F ∗b∗TF |sing(F ∗b∗TF )

is trivial. On the other hand b, and whene B, is relatively projetive, so Y has projetive

moduli and sine (II.38) provides an appropriate variant of II.d.3 we may, sine it makes no

other use of saturation, apply II.d.1 to onlude that there are F ∗b∗KF = B∗f∗KF -negative

invariant urves

(II.39) f̃ : L̃ → Y → X̃
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lifting f . Of ourse, plausibly, L̃ → L is rami�ed over p, but this would only ause a non-zero

value of r in (II.34) to go up. �

Now, as we've said, II.d.5.(a) notwithstanding the image of f in X an even fail to be uni-

branh. However

II.e.4. Claim. Hypothesis as in II.e.3, then without loss of generality f is an embedding.

Proof. In an easier variant of the proof of II.e.3: given f : L → X with X smooth, we an

�nd a omposition, b : X̃ → X , of blow ups in singular points of the foliation suh that the

unique lifting f̃ : L → X̃ is an embedding. �

At whih junture we have a well de�ned normal bundle NL /X and a speialised foliation to

the same. Indeed somewhat more generally

II.e.5. Fat/De�nition. Let f : Y → X be net, I.e.2 albeit that muh more, I.e.5, is true,

desent yields a well de�ned normal one CY /X . Spei�ally if V →X is étale, then there is a

su�iently small étale neighbourhood U of any geometri point of Y ×X V suh that U →֒ V ,

and the pull-bak to U of the assoiated one is,

(II.40) SpecS :=
∞

⊕

n=0

In
U,V

In+1
U,V

.

In partiular if the image of f is invariant, then the foliation leaves IU,V invariant, so a loal

generator ∂ of TF passes to a graded derivation of S by way of applying it to any lifting

of an element in the nth
-graded piee, and then reduing modulo In+1

U,V . This proess may

not immediately lead to a foliation, but only a pre-foliation, i.e. the speialisation may not be

saturated. Nevertheless, for ease of notation, f. II.e.3, we ontinue to ignore suh a distintion,

whih, in any ase, we'll lear up in II.f.1. Irrespetively, if Y is a smooth invariant urve not

fatoring through the singular lous, Z , for y a oordinate along U around a point of f−1(Z ),
and xi normal oordinates the speialisation of ∂ takes, by (II.34), the form,

(II.41) ∂ : y 7→ b(y) = yr+1u(y)∂y (mod IU,V ) , xi 7→ aij(y)xj = ∂xi (mod IU,V )

where the summation onvention is employed, so, equivalently the speialisation may be viewed

as a onnetion on NY /X with singularities.

By way of II.e.3 and II.e.4 this may be applied to the ase in point via

II.e.6. Fat. Let X → [X /F ] be a foliated smooth hamp, and f : L → X an invariant

net map from a (smooth) paraboli hamp not fatoring through the singularities suh that

KF ·f L < 0 then either r = 0 or the linearisation, (I.26), ∂̄ of a generator at the singular

point is nilpotent.

Proof. Without loss of generality, L is simply onneted so L
∼−→ P(d, e) for some d, e ∈ N,

[BN06, 1.1℄. We have, therefore, a rather expliit desription of L , to wit:

(II.42)

Gm
t7→t−e

−−−−→
β

U ′ ∼−−−−→ A1 → [A1/µd] →֒ L

t7→td





y

α

L ←֓ [A1/µe]← A1 ∼−−−−→ U

Furthermore, by II.d.5, we may suppose that the pre-image of the singular lous is a point p
whih we identify with 0 (the origin in U) while ∞ will denote the origin in U ′

. Consequently
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by I..7 there is a longitudinal oordinate y, resp. η, and normal oordinates xi, resp. ξi in

neighbourhoods of 0, resp. ∞ suh that

(II.43) β∗η = t−e, α∗y = td, β∗ξi = t−aiα∗xi

where the integers ai are a�orded by the Harder-Narismhan �ltration

(II.44) NL /X
∼−→

∐

i

OL (ai)

so, the basis xi, resp ξi may even be supposed µe, resp µd invariant, i.e.

(II.45) (ǫ, xi) 7→ ǫ−aixi , (δ, ξi) 7→ δ−aiξi , ǫ ∈ µe, δ ∈ µd

Irrespetively, TF
∼−→ OL (e − dr), where by hypothesis e > dr, and we normalise generators

around 0 and ∞ aording to

(II.46) ∂0(y) = dyr+1, ∂∞(η) = −e

so that for a speialised foliation desribed, f. (II.41), by matries A, resp. B, over U , resp.

U ′
,

(II.47) A(td) − tdr∆ =
1

te−dr
DB(t−e)D−1

where ∆, resp. D, is the diagonal matrix with entries ai, resp tai
. Consequently if we order

the ai to be dereasing in i, then every i ≤ jth entry of DBD−1
on the right of (II.47) is

a polynomial in t−1
, so from e > dr, A(td) is an upper semi-triangular matrix with diagonal

ait
dr
, and whene the said linearisation is nilpotent if r > 0. �

Manifestly this ompletes the proof of II.e.1 by I.b.5, and merits

II.e.7. Remark. The di�ulty in II.e.1 omes from the fat that if X were the ompletion in the

singularity p,

(II.48) H0(X, TF )

may not ontain a generator, ∂. Indeed supposing f an embedding (just to �x ideas sine it's

of no importane) so that the monodromy, G, at p ats on the oordinate y of (II.34) by a

harater, γ, then

(II.49) ∂σ = ∂ ⇒ γ(σ)r = 1 σ ∈ G

On the other hand from the adjuntion formula, II.d.4, in the notation of (II.32)

(II.50) KF ·L = (L : L0)
( r

ord(γ)
− 1

dq

)

whih from (II.49) is non-negative as soon as r > 0. There is, however, not only no way to

guarantee that (II.48) ontains a generator, but this may well be impossible on every birational

model with log-anonial singularities sine this is the root ause, [MP13, III.iii.3.bis℄, of why

log-anonial resolutions need not exist in the ategory of varieties.

II.f. Linear Holonomy of, at worst, nodal −1
d F Curves. Throughout X → [X /F ] is

a (saturated) foliation of a smooth omplex Deligne-Mumford hamp; f : L → X is a −1
d F

urve, with f net, and L smooth. As suh we have a speialised foliation, II.e.5, to the normal

bundle, NL /X , and we assert

II.f.1. Claim. The speialised foliation is in fat saturated.
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Proof. Suppose L is simply onneted (whih one an always redue to by [SGA-I, Exposé

I, 8.3℄, or [MQ15, IV.a.2℄ in a slightly more appropriate generality, and I.e.5) then by the

de�nition of a −1
d F urve we have r = 0 in (II.47), while lak of saturation is equivalent to

the matrix A of op. it. being divisible by t whih an only happen if the matrix ∆ therein

is 0, i.e. the normal bundle is trivial. Thus, exatly as in the proof of II.d.5, f moves in a

overing family, ft, of disjoint invariant paraboli hamp eah of whih must meet sing(F ) for
numerial reasons- i.e. KF ·f L = KF ·ft L , (II.d.4), and generi ft a generi embedding- so

the singular lous of F must be a divisor. �

As suh we an ease to worry about whether the foliation is a saturated or not, and

II.f.2. Set Up. We further suppose that L is simply onneted, i.e. it is a weighted projetive

hamp P1(d, e), I..1.

In partiular therefore we an desribe the total spae, N := NL /X → L , of the normal

bundle as the lassifying hamp [E/Gm] of the ation

(II.51) E :=
(

(A2\0)× An)
)

×Gm : (y0, y1)× (x1, · · · , xn)× λ 7→ (λdy0, λ
ey1)× (λaixi)

where as in II.e.6 the weights

(II.52) a1 ≥ a2 · · · ≥ an

are those of the Harder-Narismhan �ltration, I..7 of the normal bundle. Consequently if

π : E → N is the projetion then the tangent spae to the normal bundle is desribed by an

Euler sequene of Gm-equivariant, f. I..2, bundles

(II.53) 0→ O
17→ρ−−−→ TE = O(d) ∐O(e) ∐i O(ai)→ π∗TN → 0

where ρ is the radial, f. I.d.2, vetor �eld

(II.54) ρ := dy0
∂

∂y0
+ ey1

∂

∂y1
+ a1x1

∂

∂x1
+ · · ·+ anxn

∂

∂xn

Now by II.e.1 the anonial bundle of the speialised foliation is O(−e), while for any Gm-

equivariant oherent sheaf E we have, in the notation of I..1, a Höshild-Serre spetral sequene

(II.55) Hp(BGm ,Hq(Ak,E ))⇒ Hp+q(P1(d, e),E )

and whene by I..3

(II.56) H1(BGm , π∗KF ) = 0

Combining this with (II.53) implies that the speialised foliation on the normal bundle is de�ned

by a vetor �eld ∂ on the total spae E suh that

(II.57) ∂λ = λ−e∂, λ ∈ Gm

At the same time, by onstrution, (II.41), there are funtions Fp, Aij in C[A2] suh that

(II.58) ∂ = F0
∂

∂y0
+ F1

∂

∂y1
+ Aijxj

∂

∂xi
, 1 ≤ i, j ≤ n

where as per op. it. we employ the summation onvention. As suh from (II.52), (II.57), and

our normalisation, (II.42), that the singularity is at (0, 1),

(II.59) F0 = 0, F1 ∈ C×, Aij, is ai − aj − e weighted homogeneous.

In partiular therefore, by (II.52), Aij is an upper semi-triangular matrix with 0 diagonal. We

an, however, do better, to wit:
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II.f.3. Fat. For a possibly di�erent splitting of the Harder-Narismhan �ltration, I..8, of NL /X

and after a trivial renormalisation by a onstant

(II.60) ∂ = −e
∂

∂y1

Proof. Consistent with the notation of (II.52) the Harder-Narismhan �ltration may be written

as

(II.61) [0] = N0 $ N1 $ N2 $ · · · $ Nk = NL /X

where the normal bundle of Ni in Ni+1 restrited to the zero setion is a trivial bundle twisted

by some OL (αi) for αi a omplete repetition free list of the ai's; thus stritly dereasing as

one proeeds up the hain. By (II.59) this is equally a �ltration by F -invariant sub-bundles,

so, understanding the indued foliation on a sub-bundle logarithmially, I.b.2, if neessary (i.e.

a1 = 0) we prove (II.60) by indution on the length of the hain (II.61). The ase k = 1 is

immediate by (II.59), so by indution the matrix Aij is an idempotent of the form

(II.62)

[

0 A
0 0

]

, A ∈ HomGm(Nk/Nk−1, Nk−1)(−e)

Plainly, we aim for (II.59) via a hange of oordinates of the form

(II.63)

[

x̃ai<αk

x̃ai=αk

]

=
[

1 B
0 1

][

xai<αk

x̃ai=αk

]

, B ∈ HomGm(Nk/Nk−1, Nk−1)

so that what we have to solve (in matries of funtion in C[A2]) is:

(II.64) e
∂B

∂y1
= A,

in a way that respets the Gm-equivariane of (II.62)-(II.63), whih, (II.59), is lear. �

To re-interpret this in terms of the standard a�ne pathes U , U ′
of (II.42)-(II.43) one simply

splits (II.53) along the inlusion of the respetive (quasi) transversals yp = 1, i.e.

II.f.4. Summary. Suppose the (embedded) −1
d F urve has at worst nodes, equivalently that

its normalisation is net over X , and that the universal over, L , of the same is a P1(d, e), then
L → X is net with a well de�ned normal bundle NL /X suh that after pulling bak, II.f.2,

to the universal over we have in the étale desription, (II.42)-(II.43), of the normal bundle

(1) On U
∼−→ A1

an étale neighbourhood of the singularity a µe invariant generator of the

speialised foliation, and ζ ∈ µe-ation given by,

(II.65) ∂ = dy
∂

∂y
+ aixi

∂

∂xi
, y 7→ ζdy xi 7→ ζaixi, ai ∈ N

(2) On U ′ ∼−→ A1
a omplementary neighbourhood of the singularity, a basis ξi of funtions

invariant by the speialised foliation, on whih ζ ∈ µd ats via ξi 7→ ζaiξi.
(3) A pathing taiβ∗ξi = α∗xi in the notation of (II.42), and whene, an isomorphism

(II.66) NL /X
∼−→

∐

i

OL (ai)

In partiular the anonial or Harder-Narismhan �ltration of NL /X , (II.61), is a �ltration by

F -invariant sub-bundles whose slopes and rank may be read diretly from the generator (II.65)

at the singularity.
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II.g. Formal Holonomy. We wish to extend the previous disussion of linear holonomy of

smooth −1
d F hamps to the rather more deliate ase of formal holonomy. Plainly when the

urve, L , is smooth and simply onneted, the alulations are easier, and we denote by

X → [X/F ] a foliated smooth formal hamp whose trae L is a −1
d F hamps isomorphi to

P1(d, e). In pratie X will, by [SGA-I, Exposé I, 8.3℄ or [MQ15, IV.a.2℄, be the universal over

of the the ompletion of a smooth foliated algebrai hamp X → [X /F ] along the net map,

I.e.5, a�orded by the normalisation of an at worst nodal −1
d F urve. For the moment, however,

this is logially irrelevant. Supposing no risk of onfusion with the notation of (II.40)-(II.41),

we replae U ′
by V in (II.42), and take U→ X, resp. V→ X, to be formal étale neighbourhoods

in the analyti topology with trae the A1
's U , resp. V of (II.42). In partiular, therefore, U,

resp. V, has a µe, resp. µd, ation and there are open analyti embeddings [U/µe] →֒ X, resp.

[V/µd] →֒ X, extending [U/µe] →֒ L , resp. [V/µd] →֒ L . Whene V is simply onneted,

and, in the analyti topology, there is a ertain strengthening of II.f.4, viz: the foliation may be

supposed trivial over V, i.e. we have analyti oordinate funtions ξi, η normal and parallel to

our A1
respetively suh that in V the foliation is just the formal �bration ξ1×· · ·×ξn : V→ ∆̂n

,

where the latter spae is a n-polydis ompleted in the origin. The algebra C [[ξ1, . . . , ξn]] omes

equipped with a µd ation- the formal holonomy representation- whih, modulo the maximal

ideal, is nothing other than that of the linear holonomy, (II.45). The said algebra is, however,

an inverse limit of �nite dimensional vetor spaes over a �eld in whih d is invertible, so the

ation may be written ξi → ζ−aiξi without prejudie to II.f.4.(1)-(3).

Now, we an hoose ∂ on U to be µe invariant, and, indutively we further suppose: for m ∈ N
given, and a possibly di�erent µe-invariant generator, ∂, on U that there is a oordinate funtion

y restriting to that of II.f.4.(1), suh that,

(II.67) ∂y ≡ dy(I m
L ), (ζ, y) 7→ ζdy (I m

L ), (ζ, ∂) 7→ ∂ ∈ Der(OU ), ζ ∈ µe

The spae U, unlike its trae U , has non-trivial units, so, a priori this isn't equivalent to the

weaker

(II.68) ∂y ≡ duy(I m
L ), (ζ, y) 7→ ζdy (I m

L ), (ζ, ∂) 7→ ∂ ∈ Der(OU ), ζ ∈ µe

for u invertible modulo I m
L . Nevertheless, we're in harateristi zero, so, in fat

II.g.1. Claim. The onditions (II.67) and (II.68) are equivalent.

Proof. Supposing (II.68), we have

(II.69) ∂(y)− duy = f, yζ − ζdy = g f, g ∈ Γ(U,I m
L )

from whih the invariane of ∂ a�ords,

(II.70) dζdy(uζ − u) = ζdf − f ζ + ∂(g) − duζg ∈ Γ(U,I m
L )

and we onlude that uζ − u ∈ H1(µe,I
m
L ). Sine everything is tame, however, suh a o-

homology group vanishes, so we an �nd a µe-invariant unit v equal to u modulo I m
L , and

replaing ∂ by v−1∂ we dedue (II.67) from (II.69). �

Denoting by Xm, Um, Vm, et. the redution of whatever modulo I m
L , observe, by II.f.4.(3),

that for y as in (II.67) there is a funtion t0 on Um ×X Vm suh that yt−d
0 is ongruent to

1 modulo nilpotents. We are, however, in harateristi 0, so, from the power series of the

logarithm, yt−d
0 has a dth root. Thus

(II.71) ∃ t ∈ Γ(Um ×X Vm) ∋ y |Um×XVm= td,

and we further assert,
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II.g.2. Claim. Suppose that (II.67) holds, then for a possibly di�erent µd linear basis ξi of

the algebra C [[ξ1, . . . , ξn]] ompatible with any previous hoie of the same modulo I m′

L for

m′ < m,

(1) There are oordinates xi normal to L on U suh that in IL /I m+1
L ,

(II.72) ∂(xi) = aixi xi 7→ ζaixi, ζ ∈ µe, ai ∈ N, 1 ≤ i ≤ n

(2) The xi glue to the ξi via α∗xi = taiβ∗ξi as global setions of the OXm module

(II.73) IL /I m+1
L (ai)

where OXm (1) is the bundle with transition funtion t on Um ×X Vm.

Proof. We proeed indutively on m, the ase m = 1 being II.f.4, so, by the �rst item of the

indution hypothesis for m−1, m ≥ 2, we an �nd oordinate funtions xi normal to L whose

redution modulo I 2
L are a basis of the normal bundle over U suh that,

(II.74) ∂(xi)− aixi = aiJ(y)xJ ∈ Γ(Um,I m
L /I m+1

L ),

where xJ
is the monomial xj1

1 . . . xjn
n , j1 + · · ·+ jn = m, the summation onvention is employed,

and aiJ(y) is an entire funtion. Similarly by the seond part of the indutive hypothesis:

(II.75) taiξi − xi |Um×xVm= biJ(t)xJ ∈ Γ(Um ×X Vm, I m
L /I m+1

L )

with the same onventions, but where, now, biJ(t) are only holomorphi for t ∈ Gm. Combining

(II.74) & (II.75), we obtain,

(II.76) t ḃiJ + biJ(aJ − ai) = −aiJ(td) ∈ OGm

where aJ =
∑

i
ji ai, and no summation is implied. Again we an integrate this, by way of

(II.77)

d

dt
(t(aJ−ai) biJ) = − aiJ(td) taJ−ai−1 .

A priori, however, the biJ are holomorphi for t ∈ Gm, so the biJ are, in fat, meromorphi,

and no aiJ taJ−ai−1
has a residue, whene:

(II.78) biJ = hiJ (td) +
λiJ

taJ−ai

where hiJ is entire, and λiJ is a onstant. In partiular,

(II.79) x̃i := xi + hiJ(td)xJ
satis�es ∂(x̃i) = aix̃i (mod Im+1

L )

and de�nes n normal oordinate funtions on U, suh that,

(II.80) x̃i = tai ξ̃i, where, ξ̃i := ξi − λiJξJ .

The far left hand side of (II.79) is entire in td, so ξ̃i is still a µd-linear basis of IL /I n+1
L |Vm

(ompatible with our previous hoies), and aJ ≡ ai(d) if λiJ 6= 0 by the oinidene of the

formal holonomy with the linear holonomy (II.45). It therefore only remains to guarantee the

µe linearity, (II.45). To this end, supposing the hange of basis in (II.79) & (II.80) already

made so as to momentarily drop the˜ from the notation, we have for ζ ∈ µe a generator:

(II.81) xζ
i − ζaixi = giJ (y)xJ ∈ Γ(Um,I m

L /I m+1
L )

Applying the invariane of ∂ in (II.67), the right hand side of (II.81) must belong to the

eigenspae of ai for ∂ viewed as a C-linear map. As suh,

(II.82) giJ(y) =
∑

nd+aJ=ai

giJnyn
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and we an suppose that the xi have been rendered µe-linear by a oordinate hange,

(II.83) x̃i = xi +
∑

nd+aJ =ai

fiJnynxJ

whih yields new funtions over ∞,

(II.84) ξ̃i := t−ai x̃i = ξi +
∑

nd+aJ=ai

fiJnξJ

and sine J now has ardinality at least 2, this is also a µd linear oordinate hange. �

Let us now observe how to boot strap in the presene of II.g.2, by �nding some y satisfying

(II.67) modulo I m+1
L , m ≥ 1. Over U we have, in the notation/spirit of the proof of II.g.2,

(II.85) ∂y = dy + cJ xJ(I m+1
L ) , ∂xi = ai xi + ciK xK(I m+2

L )

where the summation onvention is bak in fore, with respet to multi-indies J and K of

degrees m, m + 1 respetively, all the c∗'s are regular funtions of y, and by tameness of the

monodromy (ζ, y) 7→ ζdy, ζ ∈ µe in all of OU . We know that the holonomy of the system

(II.85) is a quotient of µd, so, we again take t as in (II.71), and at a presumably negligible risk

of notational onfusion let,

(II.86) ξi = t−ai xi + biK(t)xK (mod I m+2
L )

be a basis of invariant funtions on an analyti étale neighbourhood of Gm, with summation

over the multi-index K of degree m + 1 being implied. Combining these, yields for any i,

(II.87) ciK t(aK−ai−1) +
d

dt
(taK biK) =

{

ai
d · cJ taJ−(d+1)

if xK = xJxi for some J ,

0 otherwise

By II.f.1, we known there is some i with ai 6= 0, while biK must be holomorphi in Gm, so

(II.88) if aJ = d then cJ(0) = 0,

sine in suh an eventuality the exponent of the leftmost term, aJ−1, is non-negative. Similarly,

if muh more straightforwardly, the µe invariane of ∂, and our insistene that y 7→ ζdy implies,

(II.89) cζ
J = ζd−bJ cJ , bJ =

∑

i

biji, for, J = (j1, . . . , jn)

with bi as per II.g.2.(1), and whene,

(II.90) if cJ (0) 6= 0, then bJ ≡ d(e).

On the other hand onsider the obstrution to �nding a oordinate ỹ over U restriting to the

same on L suh that,

(II.91) ∂ỹ = d(1 + λ) ỹ (I m+1
L ) , λ = λJ xJ ∈ I m

L , λJ ∈ OU∩L .

If we look for suh a ỹ in the form, y + ΛJ xJ
, with ΛJ onstants, then we require to solve,

(II.92) (aJ − d)ΛJ − dλJ y = −cJ

for all J . However if aJ 6= d, then ΛJ = −cJ(0)(aJ − d)−1
, and λJ whatever, will do, while

if aJ = d, then by (II.88) we an take ΛJ = 0, and λJ = cJ y−1
. Whether trivially in the

latter ase, or by (II.89)-(II.90) in the former ase, ỹζ ≡ ζdỹ (I m+1
L ), so we obtain (II.68), and

whene (II.67) by II.g.1.

As per II.g.2, the oordinate ỹ also restrits to the previous hoie modulo I m
L , so we obtain

in the limit an extension of the anonial/Harder-Narismhan �ltration to the whole neighbour-

hood, i.e.
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II.g.3. Proposition/Summary. Let X → [X/F ] be a foliated smooth formal hamp whose

trae is a smooth simply onneted −1
d F urve, L

∼−→ P1(d, e), then,

(1) There is a bundle OX(1) lifting OL (1) and a smooth formal invariant divisor D, with

OX(D) = OX(d) transverse to L whih restrits to the unique point z of L ∩ sing (F ).

(2) There is a �ltration of formal invariant sub-hamps,

(II.93) L = X0 $ X1 $ · · · $ Xk = X

suh that if α1 > · · · > αk are the distint eigenvalues of ∂ onsidered linearised in End (NL /X⊗
C(z)), and normalised by II.f.4.(1) with n1, . . . , nk the dimensions of the orresponding eigen-

spaes then Xi is de�ned by F -invariant global setions γj of OX(αj), j > i, and nj-setions

for eah j. In partiular,

(II.94) NL /Xi

∼−→
∐

j≤i

OL (αj)
nj

(3) All of this is enoded in a partiular µe linear oordinate system, y, xi, y 7→ ζdy, xi 7→ ζaixi

of an étale neighbourhood U → X with trae A1
ontaining the singular point over whih we

have a µe invariant generator,

(II.95) ∂ = dy
∂

∂y
+ ai xi

∂

∂xi

summation onvention in fore, so that the αj , are a omplete repetition free list of the ai.

II.h. Jordan Deomposition. We brie�y interrupt our disussion of KF -negative invariant

hamps to reall some salient fats on Jordan deomposition whih will be relevant both to our

study of usps, and the loal uniqueness of the Harder-Narismhan �ltration. The situation is

entirely loal and, initially, sheme-like, i.e. O is the ring of formal power series C [[x1, . . . , xn]],
m its maximal ideal, and ∂ a C-derivation of O with a singularity at the origin. Reall that

sine O is an inverse limit of �nite dimensional vetor spaes ∂ admits a Jordan deomposition,

i.e. ∂ = ∂S + ∂N , where the semi-simple part ∂S ats as a semi-simple matrix on eah O/mn
,

n ∈ N, ∂N is nilpotent, and of ourse [∂S , ∂N ] = 0. In partiular if ∂S = λi xi
∂

∂xi
, summation

onvention, then a onventional hoie of basis for the nilpotent �elds ommuting with ∂S is,

II.h.1. Revision. (f. [Mar81℄) Notations as above then ∂N =
n
∑

i=1

∑

Qi

aQix
Qixi

∂
∂xi

, aQi ∈ C,

where either,

(i) Qi = (q1, . . . , qn), qj ∈ N ∪ {0}, xQi = xq1

1 . . . xqn
n , Λ ·Qi = 0, or

(ii) Qi = (q1, . . . , qn), qi = −1, qj ∈ N ∪ {0}, j 6= i, xQi = xq1

1 . . . xqn
n , Λ ·Qi = 0.

Now the Jordan deomposition of a vetor �eld is ertainly unique, and whene the property of

semi-simpliity of a vetor �eld is wholly unambiguous. For a foliation however the situation is

rather more deliate sine there is a question of resaling by units. Whene suppose our �eld

∂ is semi-simple, and onsider a �eld ∂̃ = u∂, where u ≡ 1(m) to avoid stupidity. Furthermore

let's say, without loss of generality, that ∂ = ∂S = λi xi
∂

∂xi
then we assert,

II.h.2. Claim. Notations as above, there is a hange of oordinates of the form, ξi = ui xi,

ui ≡ 1(m), and ε ≡ 0(m) with ∂ε = 0 suh that the Jordan deomposition of ∂̃ is,

(II.96) ∂̃ = λi ξi
∂

∂ξi
+ ε λi ξi

∂

∂ξi

i.e. ∂̃ may not be semi-simple, but the extent to whih it is not is very partiular.
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Proof. Consider the following indutive proposition for k ∈ N,

there are oordinates xik = uik xi, uik ≡ 1(m), ∂̃ = uk ∂k, ∂k = λi xik
∂

∂xik
, uk ≡ 1(m) suh

that u−1
k = 1 + εk + δk, where εk, δk are de�ned by way of the Jordan deomposition of m as

Ker ∂k ⊕ Im ∂k, and δk ∈ mk
.

The ase k = 1 is simply our given data. Otherwise onsider trying to improve the situation

by putting, xik+1 = vik xik, vik ≡ 1(m) to be hosen. If suh a hange were to atually render

∂̃ semi-simple then we would have to solve,

(II.97) ∂k log vik = λi

(

1

uk
− 1

)

= λi(εk + δk)

whih plainly may not be possible if λi 6= 0, and εk 6= 0. However we an solve ∂k log vik = λi δk,

so that in partiular, vik ≡ 1(mk), while in the new oordinates,

(II.98) ∂̃ =
1 + δk

1 + εk + δk
λi xik+1

∂

∂xik+1

whih is indeed what we're looking for, sine putting uk+1 = (1 + δk)uk then,

(II.99) u−1
k+1 = 1 + εk(1 + δk)

−1 = 1 + εk +

∞
∑

n=1

(−1)n εk δn
k

so that δk+1 ∈ mk+1
.

Certainly therefore the δk → 0, but the proof also shows that for eah i the in�nite produt,

∏

k

vik onverges to some ui, so putting ξi = ui xi we're ertainly done on observing that ∂ε = 0

obliges,

(II.100)

[

λi ξi
∂

∂ξi
, ε λi ξi

∂

∂ξi

]

= 0 .

�

The onsequene of the fat that not only an Jordan deomposition of a resaling of semi-

simple only fail in a very ontrolled way, but also that Jordan deompositions of resalings are

related in suh a straight forward way suggests that we introdue,

II.h.3. De�nition. A germ of a foliation (∆̂n, F ) on a formal dis, i.e. Spf(C[[t1, · · · , tn]]),
with a not neessarily isolated singularity at the origin is said to be semi-simple, if TF = O∆̂n∂
for some semi-simple vetor �eld ∂.

As an important example/appliation onsider the situation of blowing up in the origin, i.e.

ρ : (X, F̃ )→ (∆̂n, F ) is the said modi�ation with indued foliation and X is the ompletion

in the exeptional divisor of the blow up of SpecO. Denoting by, ∂ = ∂S + ∂N a Jordan

deomposition of any generator TF we have,

II.h.4. Fat. Suppose ∂S 6= 0 and (X, F̃ ) is not everywhere smooth (whih in any ase ould

only happen if in suitable oordinates ∂ = xi
∂

∂xi
) then the following are equivalent,

(1) (∆̂n, F ) is semi-simple.

(2) (X, F̃ ) is semi-simple at all of its singular points.

(3) (X, F̃ ) is semi-simple at one of its singular points, and (∆̂n, F ) is semi-simple modulo

m2
.

(4) (X, F̃ ) is semi-simple at one of its singular points.

Before proeeding, we will require a lemma, to wit:
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II.h.5. Lemma. Notations as above, then at every point of its singular lous, ρ∗∂N is nilpotent.

Proof. Without loss of generality we an suppose the projetive oordinates of some singular

point, p, in the exeptional divisor to be [1, 0, . . . , 0]. Thus if ∂N = aijxj
∂

∂xi
, summation

onvention in fore, then ai1(0) = 0 for every i ≥ 2. This is equivalent, however, to the olumn

vetor de�ned by p being an eigenvetor, so a11(0) = 0 too. Now, observe that a square matrix,

[cij ]i,j≥1 with a zero �rst olumn is nilpotent i� the matrix [cij ]i,j≥2 is nilpotent, while the

linearisation of ρ∗∂N in p is,

(II.101)









a11(0) 0 . . . 0
∂a21

∂x1
(0) . . . . . . . . . . . . . . .

. . . . . . aij(0) . . .
∂an1

∂x1
(0) . . . . . . . . . . . . . . .









whih has a zero �rst row, so it's also nilpotent. �

proof of II.h.4. Sine (X, F̃ ) is not everywhere smooth the indued foliation is given every-

where by ρ∗ ∂ (f. I.b.10) so trivially (1) implies everything else, while both (2) & (3) trivially

imply (4). Consider therefore (4) ⇒ (1). As in the above proof of II.h.5, a singular point

of the singular lous of ρ∗∂ is an eigenvetor of its linearisation, whene an eigenvetor of the

linearisations of ρ∗∂S & ρ∗∂N , and thus a singularity of both ρ∗∂S & ρ∗∂N . We know, however,

that every singularity of the former is semi-simple, so by II.h.5, ρ∗∂ = ρ∗∂S + ρ∗∂N remains

a Jordan deomposition at every point of the singular lous of F̃ . By hypothesis, at suh a

point p, there is some semi-simple generator ∂̃, so an appliation of II.h.2 yields ε ∈ ÔX,p suh

that ρ∗ ∂(ε) = 0, and,

(II.102) ε ρ∗ ∂S = ρ∗ ∂N .

As suh, if, x1 is an eigenvetor of ∂S , with eigenvalue λ1 6= 0, then for f = ∂N (x1), ε =
ρ∗(f/λ1x1), while:

(II.103) 0 = x1∂(f/x1) = ∂f − f

x1
· (λ1 x1 + f)

so x1 | f , and ε is atually a funtion on ∆̂n
, from whih we onlude. �

A further question whih we may reasonably address here is the uniqueness, or lak thereof, of

the Jordan deomposition. Even without resaling the partiular hoie of oordinates in whih

we may write a semi-simple �eld as λi xi ∂/∂xi may be atastrophially non-unique. Plainly

the worst possible ase is when all the λi are rational, or equivalently up to a harmless resaling

integers. Even this is of ourse not unique but it's not too bad sine of ourse any rational

point in some PN (Q) is up to multipliation by ±1 uniquely represented by a tuple of relatively

prime integers, onsequently let's establish some notation,

II.h.6. Notation. Let ∂ be a semi-simple derivation of O with integer eigenvalues a1, . . . , ar,

−b1, . . . , −bt, ai, bj ∈ Z>0, s zeroes, r ≥ 1, although possibly t = 0, i.e. no negatives, and

(a1, . . . , ar, b1, . . . , bt) = 1, then we will suppose these ordered by dereasing size, i.e.

(II.104) a1 ≥ a2 ≥ · · · ≥ ar > 0 > −bt ≥ · · · ≥ −b1

and by α1, . . . , αk, k ≤ r, β1, . . . , βl, l ≤ t a omplete repetition free list of the same, so that,

a1 = α1 > α2 > · · · > αk > 0

0 > −βl > · · · − β2 > · · · > −β1 = −b1 .
(II.105)

Now for a given hoie of basis of a semi-simple derivation ∂ with the said eigenvalues i.e. a

partiular way of writing it as ai yi
∂

∂yi
−bj xj

∂
∂xj

, with say zk the null vetors, we an introdue,
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II.h.7.De�nition. The Harder-Narismhan pair of (∆̂n, F ) with respet to the data (∂, yi, xj)
is the invariant formal sub-shemes, X+, X− whose ideals are generated by the non-positive,

respetively non-negative, eigenvetors of ∂. If instead we take stritly negative, respetively

stritly positive, eigenvetors then the resulting subshemes, denoted X≥0
+ , X≤0

− , will be alled

the non-strit Harder-Narismhan pair.

Manifestly, apart from abbreviating Harder-Narismhan to H-N, what's important is that the

H-N pairs are well de�ned up to ±1, i.e.

II.h.8. Fat. Fix a hoie of semi-simple ∂ with integer eigenvalues normalised as per II.h.6,

then the following are equivalent,

(1) {X+, X−}, respetively {X≥0
+ , X≤0

− }, is the H-N, resp. non-strit H-N, pair with respet
to ∂ in the basis {xi, yj}.

(2) {X+, X−}, resp. {X≥0
+ , X≤0

− }, is the H-N, resp. non-strit H-N, pair with respet to ∂
in any semi-simple basis.

(3) {X+, X−}, resp. {X≥0
+ , X≤0

− }, is the H-N, resp. non-strit H-N, pair of any semi-

simple ∂̃ = u∂ in any semi-simple basis for the same, where u ≡ 1(m).

Proof. (3) ⇒ (2) ⇒ (1) are all trivial, so onsider (1) ⇒ (3). By II.h.2, we know that we an

�nd units ui, vj ≡ 1(m) suh that if ηi = ui yi, ξj = vj xj then ∂̃ = ai ηi
∂

∂ηi
− bj ξj

∂
∂ξj

. As suh

{X+, X−}, resp. {X≥0
+ , X≤0

− }, is the H-N, resp. strit, pair of ∂̃ in the basis {ξi, ηj}. Now

suppose ∂̃ = ai fi
∂

∂fi
− bj gj

∂
∂gj

in some other basis fi, gj . At the mod m2
level this is just a

question of the uniqueness of diagonalisation/the ommutator of a diagonal matrix, so without

loss of generality let's say fi ≡ ξi, and gj ≡ ηj(m
2). For higher order terms, onsider the Taylor

expansion,

(II.106) fi = ξi +
∑

#J+#K≥2

ciJKL ξJ ηK ζL ,

where, as ever, ξJ
et. is the monomial ξj1

1 . . . ξjr
r et., and ζ1, . . . , ζs are the null vetors. Now

∂̃ fi = ai fi so,

(II.107) ciJKL 6= 0⇒
∑

α

aα jα −
∑

b

bβ kβ = ai .

Consequently if fi /∈ (ξ1, . . . , ξr), then we have a manifest absurdity, and so onlude by sym-

metry. �

The dependene on ±1 is, however, unavoidable. Indeed let, ∆̂n → [∆̂n/F ] be a germ of a

singular foliation invariant by a �nite group G, or, equivalently for ∂ a generator,

(II.108) ∂σ = σ∂σ−1 = u(σ)∂, u : G→ O×

∆̂n

where u is a group o-yle, so, better, by the ayliity of BG on torsion free abelian groups, a

harater χ on replaing ∂ by v∂ for a suitable unit. At whih point, however, if ∂ = ∂S + ∂N

is a Jordan deomposition of ∂, then ∂σ = ∂σ
S + ∂σ

N is a Jordan deomposition of ∂σ
, so by

uniity of the same,

(II.109) ∂σ
S = χ(σ)∂S , and, ∂σ

N = χ(σ)∂N

As suh, if in addition ∆̂n → [∆̂n/F ] is semi-simple, then, by II.h.2, ∂ and ∂S generate the

same foliation, so,

II.h.9. Fat. If ∆̂n → [∆̂n/F ] is a germ of a singular semi-simple foliation invariant by a

�nite group G, then there is a harater χ : G→ Q(1)/Z(1) of G and a semi-simple generator
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∂ of the foliation suh that, ∂σ = χ(σ)∂, for all σ ∈ G. In partiular, if the eigenvalues of a

linearisation in m/m2
are in Pn−1(Q) then χ takes values in {±1}, and,

(a) If χ is trivial, all of X+, X−, X≥0
+ , X≤0

− are G invariant, and there is a H-N pair, respe-

tively non-strit H-N pair, of embedded F -invariant formal sub-hamps, {[X+/G], [X−/G]},
respetively {[X≥0

+ /G], [X≤0
− /G]}, in [∆̂n/G].

(b) Otherwise, in the notation of II.h.6, ai = bi, r = t, et., and [X+/Kerχ], respetively

[X≥0
+ /Kerχ], is isomorphi to [X−/Kerχ], respetively [X≥0

− /Kerχ], but is only net in [X+ ∪
X−/G], respetively [X≥0

+ ∪X≥0
− /G], whih in turn are embedded in [∆̂n/G], being de�ned by

the G-invariant ideal (xiyi, zk), respetively (xiyi).

Proof. If x is an eigenvetor of ∂ with eigenvalue λ, then for any σ ∈ G, xσ
is an eigenvetor of

∂ with eigenvalue λχ(σ)−1
, so when the eigenvalues are rational, χ must take values in rational

roots of unity. �

Consequently, even in a purely sheme like situation, we have two anonial pairs rather than

two pairs of anonial sub-shemes, and we make:

II.h.10. Remark/De�nition. Let ∆̂n → [∆̂n/F ] be a germ of a singular semi-simple foliation

suh that the eigenvalues of a linearisation in m/m2
are in Pn−1(Q) then there are two anonial

pairs of invariant formal subshemes, the H-N pair, {X+, X−}, and the non-strit H-N pair

{X≥0
+ , X≤0

− }, where the former interset in the origin, the latter in the whole singular lous. If

no-onfusion is likely, the su�es may be dropped.

In the partiular ase of II.g.3, the trae of the formal neighbourhood X a�ords a distinguished

eigenvetor, so the harater appearing in II.h.9 around the singularity, p, is trivial. As suh, by
op. it., the H-N pair, respetively non-strit H-N pair, extends from a formal neighbourhood

of p to a pair of embedded invariant formal sub-hamps {X+, X−}, respetively, {X≥0
+ , X

≤0
− }

of X. An important further task will be to extend this to usps.

II.i. Cusps. We onsider the onsequenes of the previous disussion for uspidal −1
d F urves,

f : L →X , where, as ever, X → [X /F ] is a foliated smooth hamp. In the �rst instane the

disussion is purely loal, so, say, f : ∆̂1 → X̂, the map between ompletions in the singularity

0 ∈ f−1(Z ), for Z = sing(F ). By, for example [BM97℄, the usp may, f. II.e.4, be resolved

by the étale loal operation of blowing up in the sequene of losed points,

(II.110) X̃ = XN → . . .→X1 →X0 = X

of whih the �rst is z := f(0), and subsequently where the proper transform of f meets the

exeptional divisor until suh time that f beomes an embedding, f̃ , say, meeting the proper

transform in z̃. Neessarily eah blow up in (II.110) is in a point where the foliation is singular,

so KF̃ ≤ KF |X̃ , and f̃ an only fail to be a −1
d F urve if F̃ is smooth everywhere around f̃ .

Now although suh an ourrene is highly simplifying, e.g. F is algebrai in onis, II.d.5.(),

the foliation has a �rst integral in a (�nite) étale neighbourhood of L et., it's preferable to

avoid a separation of ases by viewing suh a �nal situation as a −1
d F urve for KF̃ + E,

equivalently working logarithmially, I.b.2, around the �nal exeptional divisor, E, in (II.110).

In this way, II.g.3.(3) and II.h.4 are always valid, from whih:

II.i.1. Lemma. Let f : L →X be a −1
d F urve meeting the singular lous in z, then around

z the foliation is semi-simple.

Consequently, let's say, ∂ = λixi
∂

∂xi
a semi-simple generator of the foliation in the omplete

loal ring OX̂,z, with f : t 7→ xi(t) = tviui(t) an expression for the usp in terms of some loal
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parameter t, with vi ∈ Z>0, and ui units whenever f∗xi is not identially zero. As suh, for

any pair of indies i, j for whih f∗(xixj) is not identially zero,

(II.111)

ẋi(t)

λixi
=

ẋj(t)

λjxj

Whene, if we re-label the oordinate system as yi for those non-zero on the urve, xj for those

identially zero, and y1(t) = tv1
, then:

(II.112)

ẏi(t)

yi
=

vi

t
+ holomorphi =

λiv1

λ1t

so, yi(t) = ηit
vi
, for some onstant ηi, thus, without loss of generality ηi = 1 and λi = vi.

Proeeding thus, there may be some mild redundany. Indeed, the usp has an embedding

dimension k, and re-labelling so that v1 is minimal, then if v1|vi one an replae any xi by

something in the same eigenspae (of ∂ qua operator on O) whih vanishes identially, viz:

yi − y
vi/v1

1 , and in general, one an ahieve,

(II.113) v1 < v2 < · · · < vk , and vi+1 /∈ Z≥0 v1 + · · ·+ Z≥0 vi .

for eah 1 ≤ i ≤ k, so we get exatly k yi's, the vi have gd 1 sine f is bi-rational, and every

other oordinate is a xj vanishing identially.

Now, by hypothesis the loal monodromy group, G, preserves the foliation on the formal om-

pletion, X̂, of X at the singular point. Appealing to (II.109), we may suppose that it ats

on the above ∂ by a harater χ, and we denote by H the stabiliser of the image C of (the

irreduible branh) f : L→ X̂ obtained by ompleting the loal ring of L at p. Consequently
there is a fatorisation,

(II.114) f : [L/H]
ν−→ [C/H]

φ−→ [X̂/G]

and sine everything is onvergent in the étale topology, this an be glued to a global fatori-

sation,

(II.115) f : L
ν−−−−→ C

φ−−−−→ X

where the �rst map is the normalisation of C , φ is net, and C is uni-branh. As suh, outwith

the unique singular point p, ν is an isomorphism, and φ a losed embedding. Equally, the

wholly general I.e.5 applies, so there is a formal hamp X with trae C suh that X→ X̂ onto

the ompletion of X in the image of f is étale representable, and,

II.i.2. Fat. Let f : L → C →֒ X → X be the above fatorisation of the normalisation,

f : L → X of a −1/d F usp, with vi as (II.113), and yi, xj, as above, suitable formal

oordinates (on X̂) about the singular point, then there are aj ∈ Z suh that the foliation is

generated by,

(II.116) ∂ = dvi yi
∂

∂yi
+ aj xj

∂

∂xj

Proof. If there is a divisorial valuation of negative disrepany passing through the losed

singular point, then the proposition follows from I.b.10, (II.113), and the fat that the vi have

g..d. 1, so we may suppose that the singularity is anonial rather than just log-anonial.

Now we require a ertain re-appraisal of (II.111)-(II.113) in the presene of the ation of H in

(II.114). To this end let I be the ideal of the image, C, of the usp in the ompletion X̂ in

the singular point p whose maximal ideal we denote by m, then we have a H-equivariant exat

sequene

(II.117) 0→ I/I ∩m2 → ΩX̂ ⊗ C(p)→ ΩC ⊗ C(p)→ 0
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whih is equally equivariant under a semi-simple generator ∂ of the foliation. In partiular,

therefore, the indued endomorphism

(II.118) ∂ : ΩC ⊗ C(p)→ ΩC ⊗ C(p)

may be supposed to have eigenvalues the (distint) vi of (II.113) with multipliity (both geo-

metri and algebrai) equal to 1. As suh, although H ats on ∂ a priori by a harater, (II.109),

suh an ation must, f. II.h.9, be trivial. Consequently the C-linear deomposition of m into

eigenspaes of ∂ is also H-equivariant. On the other hand all exat sequenes of C[H]-modules

are split exat, so from

(II.119) 0→ (I(λ) ∩m2)/(I(λ) ∩mk)→ I(λ)/(I(λ) ∩mk)→ (I(λ) ∩m2)→ 0, k ≥ 2, et.

for any eigenvalue λ of ∂, we an write the H-ation as bloks of C-linear ations

(II.120) H ∋ σ : xi,λ 7→ Aij(σ)xj,λ, yi 7→ χi(σ)yi

for a oordinates system {xi,λ, yi} in whih xi,λ ∈ I(λ), the yi's a�ord eigenvetors of (II.118)

with eigenvalues vi, and the χi are haraters. In partiular there is a �ltration whih is both

H and F equivariant

(II.121) F p =
(

∏

i

ybi
i

∏

j,λ

x
cj,λ

j,λ :
∑

i

(bivi) +
∑

j,λ

cj,λ ≥ p
)

of the omplete loal ring. Plainly, however, the �ltration (II.121) is atually the ompletion

of a bi-equivariant �ltration of the Henselian loal ring of X (in fat even that of X , albeit

here, (II.114), the invariane under the possibly larger loal monodromy may fail) so it a�ords,

[MP13, I.iv.3℄, a smoothed F -invariant weighted blow up

(II.122) ρ : X̃→ X

whih is an isomorphism o� p. In partiular, therefore, the unique lift f̃ : L → X̃ of f of (II.115)

is a−1
d F urve with smoothly embedded image, and II.g.3 holds. By diret alulation, (II.124),

f. [MP13, pg. 180℄, however, the eigenvalues (in an étale path) of ∂ and ρ∗∂ along the proper

transforms of the xi,λ's di�er by 1, so (II.116) follows from (II.95) applied to ρ∗∂. �

Of ourse, we also proved that not just the linear holonomy, but atually all of the holonomy

is yli of order dividing d, so although II.i.2 is su�ient for appliations, we an atually do

better thanks to,

II.i.3. Fat. Let X → [X/F ] be a foliated smooth formal hamp whose trae has an étale

neighbourhood the invariant a�ne usp, C, i.e. image of t 7→ (tv1 , . . . , tvk), for vi as per

(II.113), t ∈ A1
, with the origin the unique point where C meets the foliation singularities, then

the formal holonomy is yli of order at most d i� we an �nd formal holomorphi funtions,

y1, . . . , yk, x1 , . . . , xℓ, restriting to a oordinate system on an analyti neighbourhood in X of

the singular point with the yi's embedding oordinates respeting (II.113), xj vanishing on the

usp and a generator ∂ for the foliation all of whih are holomorphi on an étale neighbourhood

(in the analyti topology) of X with trae C suh that for some aj ∈ Z,

(II.123) ∂ = dvi yi
∂

∂yi
+ aj xj

∂

∂xj

holds on an any analyti étale neighbourhood of the singularity where the yi, xj form a system

of oordinates.

Proof. The if diretion is trivial, and for smooth urves this is II.g.3, or, more aurately a

slight re-phrasing thereof. In any ase, the a�ne usp has no (holomorphi) Piard group, so a

global holomorphi generator, ∂, of the foliation on X exists, and we proeed to ombine II.g.3

with II.i.2 to ahieve the required form. In partiular, by the latter, and II.h.2, we an �nd

oordinates yi, xj and an invariant funtion ε, all in the ompletion in the singularity, 0, whih
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render ∂̃ := (1 + ε)−1∂ in the given form. A loal oordinate system for the weighted blow up

(II.122) is given by:

(II.124) y1 = ỹv1

1 , yi = ỹiỹ
vi
1 , xj = x̃j ỹ1

in whih ỹi = 1, i > 1 where our usp rosses the exeptional divisor, p, say, so the v1th roots

of unity at without �xed points in a neighbourhood of p, and ỹ1, z̃i := ỹi − 1, x̃j furnish

oordinates in whih ρ∗∂̃ is semi-simple at p.

Now we appeal to II.g.3, to �nd a possibly di�erent generator, D = vρ∗∂ for v a (holomorphi)

unit on an étale neighbourhood of X̃ with trae the resolution C̃ of C, suh that,

(II.125) D = dη
∂

∂η
+ (aj − d)ξj

∂

∂ξj

along with some other oordinate ζi, suh that, η, ζi, ξj agree with ỹ1, z̃i, x̃j modulo m(p)2, but

the former are de�ned on all of X̃. Both oordinate systems are semi-simple, so II.h.2 applies

to yield units u, ui, i > 1, wj in the ompletion at p suh that η̃ = uỹ, ζ̃i = uiz̃i, ξ̃j = wj x̃j are

a semi-simple oordinate system for D in the omplete loal ring at p. E�eting an appropriate

linear hange, this latter oordinate system is related to that in the η, ζi, ξj by,

(II.126) η̃ = η +
∑

m≥2

∑

|I|+|J |=m

cIJ(η)ζIξJ

and similarly, employing the notation of (II.74) et seq., for the ζ̃i, and the ξ̃j. Both the left and

right hand sides in (II.126) have the same eigenvalue, viz: d, so for all I, J we must have,

(II.127) dηc′IJ (η) + (aJ − d|J |)cIJ (η) = 0

and aJ takes only �nitely many values for |I| + |J | bounded. Consequently, for every m suh

that, |I|+ |J | = m, cIJ is a polynomial in η, from whih η̃ onverges not just in the ompletion

at p, but in the full étale neighbourhood with trae C̃.

Arguing similarly for the ζ̃i, ξ̃j's, and ε, we may, without loss of generality, suppose, η̃ = η,

ζi = ζ̃i, ξi = ξ̃j , and that ε is de�ned in a neighbourhood with trae C. Thus we may suppose

that ε = 0, and whene

(II.128)

Du

u
= d(1− v),

Dui

ui
= 0,

Dwj

wj
= (aj − d)(1− v)

where, without loss of generality, all of u, ui, wj are ongruent to 1 modulo IC̃ . Thus, for

example, we an write,

(II.129) u = exp(
∑

m≥2

∑

|I|+|J |=m

uIJ(η)ζIξJ)

so if ṽIJ(η) are the oe�ients of a similar Taylor expansion for v(1 + ǫ), then from (II.128)-

(II.129),

(II.130) dηu′
IJ(η) + aJuIJ(η) = −dṽIJ(η)

where the right hand side is holomorphi in η, while, a priori, the left hand side is formal,

whene, a postiori, holomorphi. Consequently u is well de�ned on our étale neighbourhood

with trae C̃, so, idem for ỹ1, and by an idential argument, all of the z̃i, x̃j are equally so

de�ned on the said neighbourhood. The relation of these to the original oordinates yi, xj

de�ned on ompleting X in the singular point is given by (II.124), so, not just the normalising

fator (1 + ε), but also the yi, xj, are de�ned on an étale neighbourhood of X with trae C.

By onstrution, however, yi, xj are already a formal oordinate system at the singularity, so

they are in fat oordinates on at worst an analyti neighbourhood of the same, while on any

suh (II.123) holds by onstrution. �
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The role of the analyti topology in II.i.3 and its proof merits lari�ation by way of

II.i.4. Remark. Pro�ting from the Eulidean algorithm to solve c1 v1 + · · · + ck vk = 1, for
some integers ci, one would might like to make a more strit analogue of II.g.3. Indeed in the

above notation, φ = yc1
1 . . . yck

k is a meromorphi funtion on the a�ne usp whih, lose to

the singularity, restrits to a oordinate funtion on the normalisation, and one might hope

to form an expliit path with an étale a�ne neighbourhood of the non-sheme like point at

in�nity aording to the relation φe = s−d
, for s a oordinate on the A1 ∋ ∞, f. (II.42) &

(II.124). In priniple, however, φ so onstruted has an essential singularity at in�nity. Plainly

the problem is the intervention of v in (II.128), whih unlike the smooth ase annot be avoid.

Spei�ally, as in the smooth ase, for t the unique (up to saling by a onstant) oordinate on

the normalisation of the a�ne usp, one would like to normalise, f. (II.46), a generator ∂ of

the foliation restrited to the usp aording to

(II.131) ∂(t) = t

so that a postiori φ = t and everything is meromorphi over ∞. It an, however, happen under

the hypothesis of II.i.3 that (II.131) doesn't admit a solution. If one follows the proof of II.i.3

and takes ∂ to be holomorphi then this is equivalent to asking that the unit v whih appears

restrits to a unit de�ned on the a�ne usp rather than just its normalisation. Similarly, if

one works algebraially this is equivalent to KF restriting to an algebraially (rather than

just holomorphially) trivial bundle on the a�ne usp. Consequently a ounter example where

(II.131) annot be solved is

(II.132) ∂ = 2(x + y)
∂

∂x
+ 3(y + x2)

∂

∂y
, y2 = x3 ⊂ A2.

Sine for t =
√

x, ∂(t) = t(1 + t), and TF de�ned by gluing this to the unique (up to saling

by a onstant) nowhere vanishing �eld, ∂∞, on V
∼→ A1 ∋ ∞ along the open set V \{−1,∞}

by way of

(II.133) ∂ =
(1 + t)

t
· ∂∞

de�nes a bundle whose restrition to the a�ne usp is algebraially non-trivial. As suh:

II.i.5. Warning. Formal neighbourhoods of usps, even though the problem is wholly at the

level of the bundle of derivations de�ned by restriting the foliation to the redued uspidal

urve, do not admit a desription omparable to II.g.3. Ultimately, therefore, our treatment of

usps, �III., requires global hypothesis, III..1, rather than the loal hypothesis of II.i.3

On the bright side, however:

II.i.6. Remark. In the ourse of the proof, we've omplemented II.g.3 even in the smooth ase,

sine, in priniple, even if a generator ∂ on the étale neighbourhood U of II.g.3.(3) were semi-

simple at the singular point, there might have been an obstrution to expressing ∂ in terms of

semi-simple oordinates on an analyti neighbourhood of 0 ∈ U , as found in op. it., due to a

possible re-saling by a unit impliit in (II.91). We see, however, from the proof of II.i.3, that

there is no suh obstrution.

III. Extremal Subvarieties

III.a. Generalities. Unless spei�ed otherwise, throughout this hapter X → [X /F ] will
be a foliated non-singular hamp, with log-anonial foliation singularities. We swith our

attention from KF negative urves, to KF negative extremal rays R. The moduli X is of

ourse supposed projetive so if HR is a nef. Cartier divisor supporting the ray, i.e. HR· α = 0,
and α in the losed one of urves i� α ∈ R, then for su�iently large m ∈ N, AR := m HR−KF
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is ample. In any ase following Kollàr, Mori, et al., f. [Kol96℄ III.1, we introdue our main

objet of study, by way of,

III.a.1. De�nition. The lous of R, Loc (R) is the set of losed points x ∈ X(C) suh that

there is a urve x ∈ C ⊂ X with [C] ∈ R ⊂ NS1(X).

Observe that a priori Loc (R) is not a subvariety of X. Indeed for m ∈ N, we an �lter Loc (R)
by sub-shemes Locm (R) on demanding that x ∈ Locm (R) if we an take the urve C of the

de�nition to have AR· C ≤ m. That Locm (R) is a sub-sheme is immediate from the existene

of the Hilbert sheme. To remedy this let us onsider,

III.a.2. De�nition. A R-pre-extremal subvariety is an irreduible subvariety Y ⊂ Loc (R)
maximal amongst the set of irreduible varieties ontained in the lous.

Trivially, the dimension in hains of proper inlusions of irreduible varieties must inrease so

R-pre-extremal subvarieties exist; any x ∈ Loc (R) is ontained in one; and Loc (R) is the a

priori ountable union of all of them. Now if Y is R-pre-extremal, and y ∈ Y then there is a

Cy with [Cy] ⊂ R ontaining y. However applying II.d.2, we know, for y generi, there is an

invariant paraboli hamp fy : Ly →X through y with moduli Ly suh that,

(III.1) HR· Ly ≤ 2
HR· Cy

−KF · Cy
= 0 .

So in fat Ly ∈ R, and AR· Ly ≤ 2. Additionally Ly annot be ontained in sing (F ) sine it has
KF -negative degree, so we an make a F -invariant subvariety W by adding to generi points

of Y an appropriate Ly. On the other hand Y is by hypothesis R-pre-extremal, so W = Y ,

i.e. Y is F invariant, with the indued foliated variety Y → [Y/F ] being a penil of rational

urves of AR degree at most 2. Hilbert shemes, however, exist, and being invariant is a losed

ondition so in fat there are at most �nitely many R-pre-extremal subvarieties for a given

R. Better still the Hilbert sheme yields for any R-pre-extremal subvariety Y a �at family,

L → T , for some irreduible sub-sheme T of the Hilbert sheme suh that the projetion of

L to X fators as a generially �nite map over Y . An awkward ase ours when X is itself a

R-pre-extremal subvariety, i.e. X → [X /F ] is a penil in paraboli hamps. As a result we

introdue,

III.a.3. De�nition/More Terminology. A R-extremal subvariety Y is a subvariety of a R-

pre-extremal subvariety Y ′
whih is maximal amongst the subvarieties of Y ′

whih are overed

by invariant urves passing through at least one point of the image in X of the singular lous

of X → [X /F ].

So indeed unless X → [X /F ] is a penil in paraboli hamps then extremal and pre-extremal

oinide, while in the awkward ase an extremal variety will be spei�ed by taking the invariant

urves passing through an appropriate omponent of the singular lous. Now pulling everything

bak by the moduli map, π : X → X, de�ne a R-extremal hamp as the �bre over an extremal

sub-variety, idem whether for pre-extremal or the lous, denoted L oc (R), and observe,

III.a.4. Fat. The lous L oc (R) of an extremal ray, is a �nite union of R-pre-extremal hamps.

Denote by L oc′ (R) the subvariety whih is the union of R-extremal hamps, then any Y ⊂
L oc′ (R) making up this union is overed by −1/d F urves, where d may vary from urve to

urve. There is however a family L → T of hamps, possibly non-�at at the non-sheme like

points, suh that, (L → T )→ (Y → [Y/F ]) is a generially �nite map of foliated hamps.

In the same, albeit more re�ned, vein we will also employ:

III.a.5. Fat. Suppose X is a smooth separated hamp (over a �eld for ease of exposition) and

f : Y → X a map from a proper algebrai spae then there is a separated (Deligne-Mumford)
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hamp T and a deformation F : Y × T → X of f suh that if G : Y ×M → X is any

deformation of f parametrised by an algebrai spae M , then there is a map g : M → T and

a natural transformation γ : G ⇒ F (idY × g) suh that if h : M → T is any other map for

whih there is a natural transformation θ : G ⇒ F (idY × h) then there is a unique natural

transformation α : g ⇒ h for whih θ = F∗(id × α)γ. In addition the dimension of T at the

point a�orded by the trivial deformation and the above universal property is at least,

(III.2) h0(f∗ TX )− h1(f∗ TX )

Proof. The existene of T is a speial (if key) ase of the main theorem of [Ols06℄. As suh

the dimension omputation is in�nitesimal and wholly spae like in nature, f. II.a.1, i.e.

deformations of the trae of the formal spae

(III.3) P := Spf(f∗PX )

so we an replae X in III.2 by P and appeal to [Kol96, I.2.16℄- we only need the ase Y
projetive. �

III.b. FindingWeighted Projetive Spaes. As ever let X → [X /F ] be a foliated smooth

hamp with log anonial foliation singularities, albeit with projetive moduli, and f : L →X
the normalisation of a −1

d F urve with at worst nodes, and, in the notation of II.g.3, eigenvalues

a1 ≥ a2 ≥ · · · ≥ an of a generator ∂, in the normal diretions, at the unique point p where

f meets the singular lous. If a1 ≤ 0, then we simply have nothing to say for the moment.

Otherwise, onsider the net ompletion, q : X→ X̂ , I.e.5, of X along the omposite of f with

the the universal over, q : L̃ → L . By II.g.3, f. II.h.10, there is a unique invariant losed

formal sub-hamp, X+ →֒ X suh that,

(III.4) NL̃ /X+

∼−→
∐

ai>0

OL̃ (ai)

By the Chow lemma, II.b.2, there is an irreduible sub-variety X+ of the moduli X of X of

the same dimension as X+ obtained by taking the Zariski losure of the image of this in X. We

therefore have maps,

(III.5)

X+ −−−−→ X+




y





y

X −−−−→ X

so the leftmost vertial fators through the gerbe X+ := X ×X X+ → X+, and even through

the normalisation, X̃+ → X+, sine X+ is smooth. The said vertial arrow is, however, net

so X+ → X̃+ is étale. Indeed the assertion is loal, and everything is exellent, so it su�es

to work with the orresponding omplete loal rings in geometri points, but then X+ an be

identi�ed with an irreduible omponent of X+, from whih its isomorphi to its image in the

normalisation, and we assert:

III.b.1. Claim. There is a smoothed weighted, [MP13, I.iv.3℄, blow up β : Xb → X̃+ supported

in the point p suh that the indued (after saturation) foliation Xb → [Xb/Fb] is smooth and

everywhere transverse to the exeptional divisor.

Proof. Sine p is isolated and, as above, X+ and X̃+ have isomorphi omplete loal rings it

will su�e to prove that there is a smoothed weighted blow up of the omplete loal ring, Ô, of

X+ ompleted in p whih is independent of any automorphism, σ, of Ô preserving the foliation.
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Now by II.g.3.(3) there are oordinates y0, y1, · · · , yr in Ô; positive integers ai > 0, 0 ≤ i ≤ r;
and a generator ∂ of the foliation suh that

(III.6) ∂ = a0y0
∂

∂y0
+ ai yi

∂

∂yi

wherein yi = 0, i > 0 de�ne L , so that for i > 0, ai are as in (III.4), while a0 = d in the

notation of (II.95). As suh if σ is an automorphism of Ô preserving the foliation, then there

is a unit uσ suh that

(III.7) ∂σ = σ∂σ−1 = uσ∂

and yσ
i is an eigenvetor of the linearisation of ∂ with eigenvalue uσ(0)−1ai, for all 0 ≤ i ≤ r,

so uσ(0) = 1. Consequently, by II.h.2 and ai > 0, ∂σ
is not only semi-simple but

(III.8) ∂ = a0η0
∂

∂η0
+ ai ηi

∂

∂ηi

for a oordinate system of the form ηi = uiyi, ui a unit, 0 ≤ i ≤ r. If, therefore, we de�ne a

�ltration of Ô by the ideals

(III.9) In = (yt0
0 · · · ytr

r | a0t0 + · · ·+ artr ≥ n)

then this is independent of the hoie of yi in (III.6) sine a basis of the eigenvetors of ∂ with

eigenvalue ai are monomials yt0
0 · · · ytr

r with a0t0 + · · ·+artr = ai, and it is independent whether

of σ, resp. the hoie of ∂, by (III.8), resp. mutatis mutandis. The �ltration, (III.9), de�nes a

weighted blow up exatly as in (III.18) with smoothing as per (III.19). �

Now let us apply this to a qualitative desription of X+, i.e.

III.b.2. Corollary. If L orresponds to an extremal ray R in Néron-Severi, with supporting

funtion HR, and ample bundle AR = mHR −KF , then for all x ∈X+, there is a −1/d(x) F-
so, by de�nition, II.d.5-an invariant paraboli hamp Lx ∋ x in X whih, in addition, meets

the singular lous in the same singular point p as L ; and every invariant urve is not only of

this form, but is parallel to R in Néron-Severi. In partiular the singular lous of the indued

foliation in X+ is the isolated point p.

Proof. The in partiular follows from the anteedents. Otherwise, without loss of generality,

we an replae X+ by X̃+; form the weighted blow up β : Xb → X̃+ of III.b.1; lift f to

f̃ : L̃ → Xb, for a possibly di�erent but still paraboli L̃ by II.d.5.(b), and argue as in op.

it. () to �nd a deformation M /T , T proper, of f̃ omposed with the universal over of L̃
whih overs X̃b, so, equivalently the push-forward of whih overs X̃+.

If, however,

∑

ai Ci is some e�etive invariant 1-yle numerially equivalent to a rational

multiple of π∗[L ] then every Ci generates R, so the gerbe Ci over any suh Ci is a KF

negative invariant urve. Consequently, we require, in the �rst instane, to show that every

KF negative invariant urve, with f : C → X̃+ it's normalisation, is a −1/d F urve for some

d, so, equivalently, avoiding the possibilities,

(a) f(C ) ⊆ sing(F ) ∩X+ ⊆ sing(F ), whih is impossible by the de�nition of log anonial

singularities as enountered in the proof of II.d.2.

(b) f(C ) ∩ sing(F ) 6= ∅. Should this our then f is an embedding, and for C̃ → C the

universal over, another appliation of II.d.5.() a�ords a �nite étale neighbourhood Ṽ → V of

the ompletion in C with trae C̃ , suh that the indued foliation in Ṽ is a smooth �bration.

From whih, the generi invariant urve misses p, whih is absurd.

Now, a fortiori, the singularities of the indued foliation in X+ are ontained in sing(F )∩X+,

and by onstrution this has at least the isolated point p. The leaves of F in X+ a�ord,

however, a family of onneted urves C → T in X over an irreduible base T , the gerbes over
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eah omponent of eah �bre of whih have been seen to be −1/d F urve for some d. As suh,
suppose there is another singular point q, then there is a −1/d F urve through it, and this

must be the gerbe over some omponent Ci of some �bre Ct. By de�nition, however, a −1/d F
urve annot meet sing(F ) in any other point, while meeting p is a losed ondition, so there is

a di�erent urve Cj in the �bre Ct through p. The �bre is, however, onneted, so there must

be a third urve Ck meeting the singular lous twie, whih is nonsense. �

From whih we dedue a series of orollaries,

III.b.3. Corollary. The hamp X̃+, but, f. the pre-amble to �II.e, maybe not X+, is smooth.

Proof. The singular lous, B, of X+ is invariant by every vetor �eld, so, a fortiori by F , while

every leaf meets p, so B must meet it, yet, by onstrution the omplete loal rings at p of X̃+

and X+ oinide, while the latter is smooth. �

III.b.4. Corollary. The moduli Y+ of any representable étale over Y+ → X̃+ has exatly one

point over p, so, in partiular if C →֒ X̃+ is any embedded −1/d F, then the natural map,

π1(C ) ։ π1(X+), be it of analyti or algebrai fundamental groups, is surjetive.

Proof. Any étale over Y+ → X̃+ still has étale neighbourhoods around a over of L satisfying

II.g.3 with X̃+ instead of X in op. it. As suh the proof of III.b.2 ertainly applies to

dedue that Y+, or, more orretly Y+ has foliation singularities supported in an isolated point

whenever Y+ is algebrai. It applies, however, even if Y+ were a priori analyti sine the

deformations of smooth paraboli invariant hamps in the weighted blow up guaranteed by

III.b.1 are ertainly open, but they're also losed by the simple expedient of taking the limit

algebraially and lifting to the universal over. As to the in partiular, otherwise, C ×X̃+
Y+ is

disonneted, and C → X̃+ is supposed an embedding, so there would be at least two singular

points in Y+. �

III.b.5. Corollary. For eah eigendiretion

∂
∂xi

of the linearisation of a foliation generator in

End (NL /X̃+
⊗C(p)) there is an at worst nodal −1/di F invariant hamp fi : L →X through

p with a branh parallel to

∂
∂xi

and a rational multiple of R in Néron-Severi.

Proof. There is a formal invariant urve in the said diretion in the formal étale neighbourhood

X+, but every leaf is a −1/d F urve for some d, and all branhes of the embedded image are

isomorphi. �

Additionally points in Pt(Q), t ∈ N, are, up to ±1, uniquely represented by t + 1 tuples of

integers with gcd = 1, so if we hange to a more homogeneous notation, viz:

III.b.6. New Notation. Linearise a loal generator ∂ of TF in the ompletion of ÔX ,p of

OX ,p in mX (p) by way of, ∂ = a1 y1
∂

∂y1
+ · · · + ar yr

∂
∂yr
− bi xi

∂
∂xi

, ai ∈ N, bi ∈ N ∪ {0},
(a1, . . . , ar, b1, . . . , bt) = 1, with xi = 0 loal equations for X̃+, the summation onvention in

the obvious way, and t the odimension of X+. As suh in the above situation, III.b.5, ai | di.

By III.b.4 we an (sine otherwise I..5 will do) onlude that X̃+ has �nite analyti, and

whene �nite algebrai, fundamental group on establishing,

III.b.7. Claim. Let C → P1
be a gerbe with at most 2 points whose monodromy exeeds that

of the generi point, and whih has a unique singular point, p, every branh of whih is smooth,

then the topologial fundamental group π1(C ) is �nite.
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Proof. The loal model, C, of C is b-smooth branhes through p on whih a �nite group ats

G transitively on the branhes branhes while �xing p. In partiular, the monodromy of the

generi point is isomorphi to the stabiliser of any point other than p, whih, in turn, is a

proper sub-group of G sine its image in the permutation representation on branhes �xes at

least one suh. Consequently, p is a point of C with non-generi monodromy, and we denote

by q the other suh, should it exist, or some point distint from p otherwise. In either ase, let

U ∋ p be the omplement of q in P1
.

Now, observe, that if L → C is the normalisation, and B →֒ C a branh whose stabiliser in

the permutation representation is H, then [B/H] is a loal model for L , and LU := L ×P1 U
has fundamental group H, and universal over isomorphi to U , with H ating linearly. In

partiular, if we identify a branh with a dis, ∆, in U , embed C in V where the latter is b
opies of U through the point p, and for good measure observe that all of this is neessarily

ompatible with a linearisation of G in appropriate oordinates, we �nd a ommutative diagram

of �bre squares with vertial embeddings,

(III.10)

C −−−−→ [C/G] −−−−→ ∆




y





y





y

V −−−−→ C ×P1 U −−−−→ U

The upper left horizontal arrow is, however, the universal over, and all the vertials are

homotopy equivalenes sine the rightmost is, so the lower left is a universal overing. As in

(II.42), the mapping U → LU may not extend over q as a map from P1
to L , but this holds

over some yli Galois over Ũ → U rami�ed exatly in p whih respets the ommutativity

of,

(III.11)

Ũ −−−−→ P1





y





y

U −−−−→ L

Better still, taking b opies Ṽ of Ũ , the resulting omposition Ṽ → C ×P1 U with the lower left

map in III.10, now admits an extension, V̄ → C , over b opies of P1
meeting in a single point

sine the upper horizontal in (III.11) is an embedding. By onstrution, V̄ → C is open in the

origin, and everywhere else it's �at, so it's open everywhere. As suh if M → L is any (not

neessarily �nite) representable onneted étale overing with group Γ, then M×L V̄
∼−→ V̄ ×Γ,

and the image of any V̄ × γ →M , γ ∈ Γ is open and losed, so it's all of M . �

Now let Y → X̃+ be the �nite universal over assured by III.b.4 and III.b.7, then we further

assert,

III.b.8. Claim. Pic(Y )
∼−→ Z.

Proof. By onstrution π : Y → Y is a gerbe over a projetive variety, and the proof of [DI87℄

that the Hodge-De Rham spetral sequene degenerates at E1 is valid mutatis mutandis sine

it only requires loal smoothness and the o-homologial riteria for ampleness both of whih

hold on Y . As suh, sine Y is simply onneted and π is ayli,

(III.12) H1(Y ,OY ) = H1(Y, π∗OY ) = H1(Y,OY ) = 0

Now quite generally we have that Pic (Y )Q = Pic (Y )Q, and by (III.12), these are equally their

respetive Néron-Severi groups with Q-oe�ients. The Néron-Severi group, NS1(Y )Q, of Y is,

however, known, e.g. [Kol96℄ II.4.21, to be of rank 1, so: Pic (Y )Q
∼−→ Q, whih is equally
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the image of the Piard group under (c1)Q in H2(Y , Q(1)) as dedued from the exponential

sequene,

(III.13) H1(Y ,OY ) = H1(Y,OY )→ Pic(Y )
c1−→ H2(Y , Z(1))

while the remaining possibility of torsion is exluded by Y simply onneted, and the exat

sequene,

H1(Y , Q(1)/Z(1)) → H2(Y , Z(1))→ H2(Y , Q(1)) �

We will need some auxiliary onstrutions, so, initially, Y0, i.e. Y modulo its generi stabiliser,

I.a.6, and their moduli, Y . At the singular point p identi�ed with the origin in the notation of

III.b.6, we have, therefore, its stabiliser G in Y , of whih the stabiliser G0 in Y0 is a quotient

ating faithfully on the loal ring. Furthermore in a minor variation of III.b.6 we have, étale

loally at p, a foliation generator ∂ with o-prime positive integer eigenvalues ai whih is

invariant by the ation G. Under this ation, however, eigenvetors must go to eigenvetors, so

the linear representation, ρ of G, whih is equally its loal ation, splits as a diret sum of ρα's,

where α ∈ A is a omplete repetition free list of the ai's, and ρα permutes the eigenvetors of ∂
with eigenvalue α. In partiular, therefore, in the notation of III.b.6, the ation of G ommutes

with the ation of Gm de�ned by,

(III.14) λ× (y1, . . . , yr) 7→ yλ = (λa1y1, . . . λ
aryr)

while the leaves may be identi�ed with the images of,

(III.15) φc : t 7→ (c1t
a1 , . . . , crt

ar ), where, c ∈ Ar\0

with two suh funtions φc, φc′ de�ning the same leaf in Y i�,

(III.16) c′ = (ρ(g)c)λ, g ∈ G, λ ∈ Gm

with Gm ation as per (III.14), whih, as we've said, ommutes with G, so if H is the image of

the representation

(III.17) G→ Aut(P (a1, . . . , ar))

in automorphisms of the moduli of the weighted projetive hamp P(a1, . . . , ar), then the leaf

spae is P (a1, . . . , ar)/H.

Similarly, if we onsider the weighted blow up,

(III.18) Y1 := Proj(
∐

n

In)→ Y0, In = (yt1
1 . . . ytr

r : a1t1 + . . . artr ≥ n)

then the moduli, E, of the exeptional divisor is equally the said leaf spae, so we have a map

Y1 → E. In addition Y1 has only quotient singularities, so we an form the smoothed weighted

blow up Y2 → Y1, [MP13, I.iv.3℄, or if one prefers not to ross referene, replae Y1 by what

is loally its Vistoli overing hamp, I.a.2. In partiular Y2 is smooth, with smooth onneted

exeptional divisor E2. Certainly the moduli of E2 is E, but it's usually false that Y2 maps

to E2 beause the latter is highly non-sheme like. Indeed sine ρ|G0
is faithful, the stabiliser

of a generi point is the kernel, K of G0 → H, whih by (III.16) and (III.14) is isomorphi

under the restrition of ρ to some �nite group of roots of unity µa0
ating aording to (III.14),

albeit for λ ∈ µa0
. Alternatively: in the stabiliser of every geometri point of E2, K may be

identi�ed with the normal sub-group of pseudo-re�etions in E2, and killing suh re�etions

a�ords a map Y2 → Ỹ , where Ỹ is smooth, still a gerbe over the moduli of Y1, and Y2 → Ỹ
is the extration of a a0th root of a smooth divisor E

∼−→ [P(a1, . . . , ar)/H]- this latter notation
being absolutely unambiguous sine H ats on P(a1, . . . , ar) beause of the ommutativity of
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G with (III.14). Consequently we have a diagram,

(III.19)

(Y1,E1)
Vistoli overing←−−−−−−−−− (Y2,E2 = 1

a0
· Ẽ )

Weighted blowup





y





y
a0th root

Y0 ∋ p
not de�ned at p←−−−−−−−−−−

if a0 > 1.
(Ỹ , Ẽ

∼−→ [P(a1, . . . , ar)/H])

where, to be preise, the �nal arrow is an isomorphism o� Ẽ and is de�ned over p i� a0 = 1.
This �nal auxiliary pair is the good one for extending the map Y1 → E, to wit:

III.b.9. Claim. The moduli of the Y1 → E lifts to a map π : Ỹ → Ẽ , and better still, not only

is this the quotient Ỹ → [Ỹ /F̃ ] but there is an a ∈ N suh that this expresses that foliation

as a �bration in P(1, a)'s in the étale site of Ẽ , while the identity,

(III.20) KF |Y2
= KF2

+ E2 = KF̃ + Ẽ |Y2

with implied pull-baks those in (III.19) not only gives sense to KF on Ỹ , but is a well de�ned

tautologial bundle, i.e. of degree 1/a on geometri �bres.

Proof. We will prove the statement in the analyti topology, sine by [Gir71, IV.3.4℄ and

[SGA-IV, XVI.4.1℄, f. [MQ15, IV.a.3℄, it is equivalent, and trying to avoid this just leads to

repeating variations on the steps in op. it.

The smoothed weighted blow up operation- left vertial followed by top horizontal in III.19-

smooth the foliation, and dropping to Ỹ it remains smooth sine E is everywhere transverse.

Now let q be a geometri point of Ẽ , with Sq its stabiliser in Ỹ , then we an �nd a polydis ∆r

entred on q with oordinates yi, y1 = 0 an equation for Ẽ , ∂̃ = ∂
∂y1

generating the foliation,

and Sq ating linearly via,

(III.21) y1 × σ 7→ χ(σ)y1, yi × σ 7→ θij(σ)yj

From whih, we an naturally identify θ : Sq → GL(r − 1, C) with the full (not just linear)

holonomy of the piee- [∆/Sq]- of the leaf Lq ∋ q through q in Ỹ , and θ is faithful beause

there are no pseudo-re�etions in Ẽ .

The foliation is smooth with proper leaves, so their universal over is onstant, and sine

the leaves are −1
d F-urves in Y0 without generi monodromy, and the generi point of Ẽ has

no-monodromy, this is P(1, a) for some a ∈ N, and the monodromy representation extends to,

(III.22) Sq = π1([∆/Sq])→ π1(Lq)→ GL(r − 1)

so the �rst arrow in (III.22) is an injetion. By either the long exat sequene of a �bration

or, more algebraially [MQ15, III..3℄, π1(Lq) is an extension of the fundamental group of the

orbifold over whih it is a loally onstant gerbe by a quotient of the generi monodromy by a

entral element, so Sq is also surjetive by II.d.5(b). As suh, the holonomy overing of Lq is

its universal overing, so that for Sq ating diagonally, we have an embedding,

(III.23) [P(1, a) ×∆r−1/Sq] →֒ Ỹ

for some possibly smaller transversal polydis, and the natural projetion,

(III.24) [P(1, a) ×∆r−1/Sq]→ [∆r−1/Sq] →֒ Ẽ

is the unique analyti ontinuation of our initial projetion [∆r/Sq] → Ẽ . This latter exists

everywhere in a neighbourhood of Ẽ - in fat everywhere in a formal neighbourhood would be

enough whih follows from the normal form III.b.6- so the projetions (III.24) glue by I.a.4

to a projetion on all of Ỹ . The �nal assertion, (III.20), is an easy loal alulation at the

singularity. �
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The �bration in III.b.9 has onneted and simply onneted �bres, so,

(III.25) π1(Ỹ )
∼−→ π1(Ẽ )

∼−→ π1([P(a1, . . . , ar)/H])

and by I..5, a weighted projetive spae is simply onneted, so this latter group is H,

whih in turn a�ords a onneted H-overing of Ỹ \Ẽ sine this is embedded as a repre-

sentable Zariski open of Ỹ . Further the diagram, (III.19) an be formed loally with Y0 either

[∆r/G0], or [∆r/K], yielding a pair of diagrams with the obvious ommutativity between

them. Consequently the above H-overing of Ỹ \Ẽ implied by (III.25) glues to the H-overing

[∆r/K] → [∆r/G0], and sine Y is simply onneted, we must have H = 1, and we further

assert,

III.b.10. Claim. The foliation Y0 → [Y0/F ] is isomorphi to the radial foliation, R, on the

weighted projetive hamp P(a0, aa1, . . . , aan). In partiular, sine Y0 is generially sheme

like, a, and a0 are relatively prime.

Proof. The start of the Leray spetral sequene applied to the �bration π of III.b.9 yields an

exat sequene,

(III.26) 0→ H1(Ẽ , Gm)
π∗

−→ Pic(Ỹ )→ H0(Ẽ , R1π∗Gm)
d0,1
2−−→ . . .

and by (III.20) this latter group is generated by the image of KF , so d0,1
2 = 0, and for a as per

III.b.9 we an write,

(III.27) OỸ (Ẽ ) = T a
F ⊗ OẼ (−m)

for some m ∈ N, with the latter bundle the tautologial bundle, I..2, on our weighted projetive

spae. Forming, the exat sequene,

(III.28) 0→ OỸ (aTF − E )→ OỸ (aTF )→ OẼ → 0

and pushing forward by π, a�ords,

(III.29) 0→ OẼ (m)→ π∗OỸ (aTF )→ OẼ → 0

whih by I..3 is a split rank 2 vetor bundle, V , with the splitting even being anonial if

a > 1. Indeed, we already know by III.b.9 that if there were extra monodromy at ∞ then it

forms a smooth divisor on Ỹ admitting a group of re�etions of order a, so, equivalently if we

killed these pseudo re�etions, then all of the above is equally valid for some Y0,a, Ỹa, et., and

Ỹ → Ỹa is an extration of an ath root of a setion, ∞, of the P1
bundle, P(V ) = Ỹa.

Now, by (III.25) et. seq. G0 = K, and the important thing to observe is that beause of

the ommutativity of the ation of G0 with the Gm-ation (III.14), the loally onstant gerbe

E2 → Ẽ of (III.19) in BK 's is in fat trivial, so a0|m by (I.18). If, however, a0 and a were to

have a non-trivial gd, α > 1, then the leafwise universal over,

(III.30) P(
a0

α
,
a1

α
)→ P(a0, a)

of the �bres of Y2 → Ẽ is globally well de�ned, i.e. by (III.29): raising to the power α

on the Gm torsor OẼ (m
α ) and extending over 0 and ∞. The resulting overing Ỹ2 → Y2 is

étale representable, and loally about the singularity, pathes to the µα overing [∆r/µ a0
α

] →
[∆r/µa0

], and whene the absurdity that Y isn't simply onneted.

Having thus established the in partiular, everything else follows quikly. The fat that a0

and a are relatively prime imply that in an embedded neighbourhood (formal will do) of the

singularity p, Y → [Y /F ] is isomorphi to the radial foliation, R, I.d.2, on the said weighted

projetive hamp, P. All of the above, and spei�ally (III.19), apply, f. I.d.3, if our starting

points is P → [P/R]. The fat that we have an isomorphism at p, and the same monodromy

at in�nity, obliges us to have the same P(1, a) bundle, so Ỹ → [Ỹ /F̃ ] and P̃ → [P̃/R̃]
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are isomorphi in a way ompatible with the initial isomorphism at p, and whene, I.d.3.(d),

Y0 → [Y0/F ] is isomorphi to P → [P/R]. �

Our initial Y is simply onneted, and a loally onstant gerbe over Y0, so by I..6, it is again

a weighted projetive hamp, and only the notation hanges,

III.b.11. Fat. The foliation Y → [Y /F ] is isomorphi to the radial foliation on the weighted

projetive spae P(a0, aa1, . . . , aan), where a0 is the order of the stabiliser of the singularity p,
and the generi leaf is a − 1

a-urve. In partiular the generi stabiliser is yli of order the gd

of a0 and a.

III.. Ignoring Cusps. So far we haven't disussed what may happen if our extremal ray R is

represented by an invariant hamp f : L →X whih has a usp at the unique singular point

z where f meets sing (F ). This is, however, easily redued to the previous ase by way of

III..1. Claim. Let z be a geometri point of the singular lous of a foliated smooth hamp,

X → [X /F ], with log-anonial foliation singularities, and projetive moduli, then if there is

a KF -negative extremal ray, R, represented by a −1/d F urve through z there exists a −1/d′ F
urve through z with at worst nodes.

Proof. Let π : X̃ → X be the blow up in z then the exeptional divisor, E is invariant and

π∗KF is again the foliated anonial bundle unless perhaps all the eigenvalues in say, III.b.6,

are equal, but then there are no −1/d F usps through z by II.i.2, and we're done. As suh, by

the one theorem, II.d.1, there is a −1/d′ F urve whose lass, R̃, in NE1(X̃ ) is extremal and

π∗R ≫ R̃. Consequently, without loss of generality, we may suppose that there is a −1/d F
urve f : L →X whih has a usp at z, and whose lass, resp. that of its proper transform f̃ ,
is extremal in NE1(X ), resp. NE1(X̃ ). The loal struture of a branh of a usp is desribed

by (II.113) and II.i.2, and, in the notation of op. it. f̃ meets the exeptional divisor with

a (loal) multipliity v1 in a sheme like hart. Now onsider, π′ : X ′ → X where X ′
is

the extration of a v1th root of E , then the indued map f ′ : L → X ′
has at worst nodes.

On the other hand E is invariant so the anonial lass is the same and f ′
is still extremal,

and, somewhat super�uously, the singularities X ′ → [X ′/F ′] are still log-anonial sine E is

smooth. In any ase, at the point z′ where f ′
rosses the exeptional divisor we an apply III.b.5

to �nd −1/di F urves with smooth branhes parallel to every axis a�orded by the embedding

dimensions of the original usp, any of whih represent the extremal ray. In partiular if one

takes the −1/d′ F urve in an eigendiretion normal to the exeptional divisor in the loal

oordinates at z′ implied by those of II.i.2 at z, then the projetion of this urve to X has at

worse nodes. �

III.d. Struture of Extremal Champs. We begin with exatly the same preliminaries as

III.b prior to (III.4) exept that in the notation of op. it. our interest is the unique formal

hamp X≥0 →֒ X with normal bundle

(III.31) NL̃ /X≥0

∼−→
∐

ai≥0

OL̃ (ai)

Now X→X is net so the tangent spae to the deformation spae (wherein we insist that the

deformation meets sing(F )) whether of f̃ : L̃ → X or any omposition with P1 → L̃ is the

tangent spae to the deformation spae whether of L̃ →֒ X≥0, or suh a omposition. The

latter are however un-obstruted, (III.2), so by way of X≥0 →֒ X → X the former are too.

Consequently there is a Zariski losed sub-variety, X≥0, of the moduli- the variety swept out

by the deformations of f̃ or ompositions thereof with P1 → L̃ - of the same dimension as X≥0
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and ontaining its image. Exatly as in (III.5) we therfore get maps

(III.32)

X≥0 −−−−→ X̃≥0 −−−−→ X≥0 −−−−→ X≥0




y





y

X −−−−→ X

wherein the square is �bred, X̃≥0 → X≥0 is normalisation, and the top leftmost arrow is an

étale over over its image. As ever we normalise a loal generator ∂ of the foliation in the

omplete loal ring ÔX ,p, for p = f−1(sing F ), aording to III.b.6 with d1 = a1d, d ∈ N albeit

with the re�nement

III.d.1. New Notation. Linearise a loal generator ∂ of TF in the ompletion of ÔX ,p of

OX ,p in mX (p) by way of, ∂ = a1 y1
∂

∂y1
+ · · · + ar yr

∂
∂yr
− bi xi

∂
∂xi

, ai ∈ N, bi ∈ N,

(a1, . . . , ar, b1, . . . , bt) = 1, with xi = 0 loal equations for X̃≥0, and z1, . . . , zs the additional

(formally invariant) funtions whih ut out X̃+, (III.5), so that t is now the odimension of

X≥0, and s + t the o-dimension of X+.

Now let us suppose that the −1/d F urve f : L → X a�ording (III.31) is an extremal ray,

R, then we have onstruted an integral invariant sub-hamp X≥0 of X through every point

of whih there is a −1/e F hamp, for varying e, parallel to R in Néron-Severi, and we assert

III.d.2. Claim. Let Z be the intersetion of X≥0 with the singular lous of F , then Z is

smooth and onneted.

Proof. Firstly, suppose Z is a disjoint union of omponents Z ′
, Z ′′

, then we may onsider the

sub-hamps Y ′
, Y ′′

whose moduli is overed by KF -negative extremal 1-dimensional hamps

parallel to R through Z ′
and Z ′′

respetively. Consequently if y ∈ Y ′ ∩ Y ′′
it is a singular

point of some extremal 1-dimensional invariants hamps L ′
, L ′′

, so in Z ′ ∩Z ′′
by II.d.5.(a),

whih is nonsense, and Z is onneted. Better still at the singularity, p, of the initial urve

f , we know, II.i.2, that Z is irreduible and smooth of dim = s, so there is some irreduible

omponent Z0 of sing(F ) of dimension s ontained wholly in Z . However for any ζ ∈ Z ,

there is a −1/e(ζ) F hamp Lζ ∋ ζ ontained in X≥0, so sing(F ) is smooth at ζ by another

appliation of II.i.2. Consequently ζ 7→ dimζ sing(F ) is not just upper semi-ontinuous but

ontinuous, i.e. onstant = s in the notation of III.d.1, , and sine Z is onneted: Z0 = Z is

smooth irreduible of dimension s. �

Now onsider the ideal IZ of Z in X , then the omposition

(III.33) IZ −→
d

ΩX −→ KF ·IZ .

a�ords an OZ -linear map

(III.34)

IZ /I2
Z −−−−→

DZ

IZ /I2
Z ⊗KF

of whih the trae gives a global setion of OZ (KF ). Plausibly this is zero, but by II.i.2 it

may, on normalising in the diretion of some smooth branh guaranteed by III..1 and (III.31),

be identi�ed loally with a Q-valued funtion, so, by III.d.2, it's non-zero i� the trae of the

normalisation III.d.1 is non-zero at some p ∈ Z . Similarly the 2nd symmetri funtion is a

global setion of OZ (2KF ) whih may loally be identi�ed with a Q-valued funtion, whose

expression in the notation of op. it. is

(III.35)

1

2





∑

i

ai −
∑

j

bj





2

− 1

2





∑

i

a2
i +

∑

j

b2
j
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so if the trae doesn't de�ne a nowhere vanishing setion of OZ (KF ) there is at worst an étale

double over Z +− → Z suh that KF |Z +− is trivial. As a result the eigenvalues of DZ are

well de�ned onstant funtions up to a hoie of generator of OZ (KF ) when this is possible,

and otherwise they're well de�ned on Z +−
. Thus if neessary we hoose a lifting p+

of the

singularity p of the urve of (III.31) to the double over, and subsequently hoose our loal gen-

erator in suh a way to have ompatibility with our formal linearisation at p (identi�ed loally

with p+
if neessary), i.e. the eigenvalues of DZ are everywhere a1, . . . , ar, −b1, . . . , −bt, with

ai, bj ∈ N, and gcd(a1, . . . , ar, b1, . . . , bt) = 1. In any ase, for every ζ ∈ Z , there is a well

de�ned pair of eigenspaes, {T+(ζ), T−(ζ)} of TX ⊗C(ζ), and every KF -negative 1-dimensional

invariant hamp has tangent spae at ζ ontained in preisely one of these. To fully pro�t from

this we will have to extend from the normal bundle to a formal neighbourhood of Z , whih

probably shows that being lazy about onvergene wasn't perhaps an optimal use of time. The

disussion is loal over a�ne neighbourhoods U of Z over whih the normal bundle and KF

trivialise, and whih we onsider entred on a point ζ of Z . To momentarily simplify the

notations let λi denote the neessarily non-zero eigenvalues of the normal bundle, and onsider

the following indutive proposition,

III.d.3. Claim. Let ÔU be the ompletion of OU in mX (ζ), then for k ∈ N, we have oordinates
xi normal to Z (evidently giving a basis for N∨

Z/x) and a generator ∂ of F over U suh that,

(1) ∂xi = λi xi (modIk
Z)

(2) There is a semi-simple generator ∂̂ of TF ⊗ ÔU,ζ of the form λi ξi
∂

∂ξi
, for ξi ∈ ÔU,ζ and

ξi = xi (modIk
Z).

Proof. The ase k = 2 trivially follows from the previous disussion, so onsider going from k
to k + 1, whih evidently we wish to be ompatible with restrition so that things onverge.

In any ase, in terms of our usual notations about monomials and summation onventions we

have, mod Ik+1
Z ,

(III.36) ∂xi = λi xi + aiJ xJ , aiJ ∈ OU , ξi = xi + biJ xJ , biJ ∈ ÔU,ζ .

Furthermore, ∂̂ = u∂, u ∈ ÔU,ζ , and, u = 1 + uiK xK
, uiK ∈ ÔU,ζ , with # J = k, # K = k− 1.

Now if we just put these equations together then we obtain,

(III.37) aiJ =

{

(λi − λJ) biJ − uiK λi if xK xi = xJ
,

(λi − λJ) biJ otherwise

without any summations. The seond ase is rather good sine if λi 6= λJ := jp λp we onlude

that the biJ are algebrai, so if without loss of generality we replae xi, by,

(III.38) xi 7→ xi +
∑

λi 6=λJ
xi∤xJ

biJ xJ

then in fat we onlude that aiJ = 0 if xi ∤ xJ
. As for the 1st

-ase we do what we an.

Spei�ally, again without loss of generality we an replae xi by,

(III.39) xi 7→ xi +
∑

λi 6=λJ

aiJ

λi − λJ
xJ

so that aiJ = 0 if λi 6= λJ , while if λi = λJ we onlude that uiK is algebrai. Thus if we

replae ∂ by,

(III.40) ∂ 7→



1 +
∑

λK=0

uiK xK



 ∂
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then uiK = 0 if λK = 0, so in fat we an suppose aiJ = 0 for all J . Consequently, ∂̂ has the

form,

(III.41)



1 +
∑

λK 6=0

uiK xK



 ∂ .

However if we replae ∂̂ by,

(III.42) ∂̃ =



1 +
∑

λK 6=0

ũiK ξK





−1

∂̂

for ũiK appropriate funtions of oordinates z in ÔZ,ζ whih restrit from oordinates in ÔU,ζ

annihilated by ∂, and of ourse ũiK = uiK (mod IZ), then by II.h.2 ∂̃ is still semi-simple,

with respet to a possibly di�erent basis ξ̃i of the form vi ξi, vi ≡ 1 (Ik−1
Z ). To omplete the

indution, therefore, it su�es to observe, on supposing without loss of generality that ξi = ξ̃i,

that,

(III.43) ξi 7→ ξi −
∑

λK=0

xJ=xi xK

b̃iJ(z) ξJ

for b̃iJ satisfying muh the same presriptions as the ũiK is still a trivialising basis for ∂̂. �

Consequently over an appropriately small a�ne U ontaining ζ, and bearing in mind that for

any ζ ′ ∈ Z we know we an �nd appropriate oordinates in ÔX ,ζ′ annihilated by ∂, we obtain

formal subshemes U+, U− of the ompletion Û of U in Z, whose subsequent ompletion at

any ζ ′ ∈ Z ∩ U is the non-strit Harder-Narismhan pair of II.h.10. The monodromy of the

pair {U+, U−} is preisely the monodromy of the pair {TX+
, TX−}, so either these path to

formal subhamps, X
≥0
+ , X

≤0
− of the ompletion of X in Z , whih ompleted at any point is

the non-strit H-N pair, and of ourse we normalise so that ∀ ζ ∈ Z, T+(ζ) = TX+
⊗ C(ζ),

T−(ζ) = TX− ⊗ C(ζ), or we get the same onlusion on a double overing of the ompletion.

With this out of the way we an quikly proeed to a onlusion. To begin with omplete X≥0

in Z , all it Y. By III..1 there is, for every ζ ∈ Z , a −1/d F urve through ζ with at worst

nodes and parallel to the given extremal ray. By the uniity of III.d.1 up to ± suh a urve must

fator through X
≥0
+ ∪ X

≤0
− , whih is always well de�ned even if X

≥0
+ , X

≤0
− are only well de�ned

on a over. In addition, exatly as post (III.31), the deformation spae of the universal over of

the normalisation of suh a urve is un-obstruted, so loally, it overs whihever of X
≥0
+ , X

≤0
−

it fators through, and we've normalised so that our initial urve fators through X
≥0
+ , so Y is

either X
≥0
+ or, X

≥0
+ ∪ X

≤0
− . In partiular, there is a smooth Zariski open U →֒ X≥0\Z , whih

lose to Z is just the omplement of the same, so, all leaves in X≥0 meet U . On the other

hand the singular lous of X≥0 is invariant by the indued foliation, so it's at worst ontained

in Z , and indeed it's either empty or all of Z aording to whether its ompletion Y is smooth

or not, i.e. i� the H-N pair is without monodromy or not. In the latter ase, Y = X
≥0
+ ∪ X

≤0
−

so the normalisation X̃≥0 is smooth, and indeed X̃≥0 → X≥0 is everywhere an isomorphism

exept over Z where it's the double over Z +− → Z , and for the unity of notation we put

Z̃ →֒ X̃≥0 to be Z +−
or Z as appropriate.

We next wish to onsider the operation of �projeting to Z �, by sending an invariant 1-

dimensional hamp to its unique singular point. To this end, we introdue the moduli, X≥0,

and the orbifold X̃ 0
≥0 assoiated, I.a.6, to the normalisation X̃≥0. Again the issue is that we
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have to be areful about the gerbe struture on Z , so, say

Z ′
0 →֒ X̃ 0

≥0 the embedded sub-hamp over the pre-image of the moduli Z of Z ,

and Z0 the assoiated orbifold, so that Z ′
0 → Z0 is a loally onstant gerbe.

(III.44)

We now proeed as in III.b.9. In the �rst instane (III.18) again a�ords a (well de�ned by

III.d.3) weighted blow up X̃ 1
≥0 →X 0

≥0, whose exeptional divisor, E , is the projetivisation of

the graded OZ ′
0
-algebra

(III.45) A :=
∐

An := In ⊗OZ ′
0
, In = (yt1

1 . . . ytr
r : a1t1 + . . . artr ≥ n)

In partiular therefore the automorphism group of any geometri point of Z ′
0 has a projetive

representation in the automorphisms of Proj(A), and better still

III.d.4. Claim. The kernel, S ′
, of the representation of the stabiliser, S → Z ′

0 , in automor-

phisms of Proj(A) is loally onstant, and the operation of quotienting by the stabiliser, f.

I.a.6, a�ords a fatorisation Z ′
0 → Z ′ → Z0 of loally onstant gerbes.

Proof. Let U → X̃ 0
≥0 be a small étale neighbourhood of ζ ∈ Z ′

0 , with G the loal monodromy,

then by de�nition any σ ∈ G whih ats trivially on Proj(A) ats trivially on the pre-image

Z →֒ U of Z ′
0 , i.e. σ is a well de�ned element of every stabiliser Gz →֒ G of every z ∈ Z, whih

stabilises Proj(A) around z by the uniform de�nition of the yi's in (III.45), i.e. III.d.3. �

Now, modulo notation, the diagram (III.19) and the proof (whih doesn't employ the simple

onnetedness of Y of op. it.) of III.b.9 are valid as stated, so �projetion along a leaf�

ertainly yields, in the notation of op. it.

(III.46) Ỹ → Ẽ

On the other hand Ẽ maps, f. (III.14) et seq., to Proj(A) understood as a one over Z ′
, and

whene (III.46) a�ords a omposition

(III.47) X̃ 0
≥0\Z ′

0 → Z ′ → Z0

whih may, plainly, be extended everywhere loally around Z ′
0 while Z0 itself is an orbifold so

by I.a.4 we �nally get a projetion

(III.48) π0 : X̃ 0
≥0 → Z0 and a omposition π : X̃≥0 → X̃ 0

≥0
π0−→ Z0.

Before proeeding, let us emphasise the need for aution by way of

III.d.5. Warning. In general (III.48) needn't extend to a map to Z ′
0 or even Z ′

. As suh the

extent to whih one an pro�t from III.b.11 is limited aording to whether we an glue together

the universal overs of the �bres of π in (III.48), or some variant thereof for a di�erent hamp

struture over the base, whih de fato requires that π, or the said variant has a setion.

Consequently we on�ne our desription of π to

III.d.6.Claim. Let X̃≥0 → [X̃≥0/F̃ ] be the indued foliation then π is a smooth F̃ -equivariant

(foliated) �bre bundle (in the étale topology) with �bre a foliated hamp whose (�nite) universal

over is desribed by III.b.11, i.e. a weighted projetive hamp in its radial foliation.

Proof. By onstrution, (III.47), funtions on Z0 are invariant, i.e. π is ertainly a F̃ -

equivariant morphism of smooth hamps. As suh the map

(III.49) dπ : Ω1
Z0
→ Ω1

X̃≥0

is given, loally, by a s× (r + s) matrix, P , say suh that for ∂ a loal generator of the foliation

there is a (r + s) × (r + s) matrix B for whih ∂P = PB, so the lous where dπ fails to have

full rank is F̃ -invariant. By de�nition, however, every leaf of F̃ meets Z̃ , and, III.d.3, π is
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smooth in a formal neighbourhood of Z̃ , whene the o-kernel of (III.49) is a vetor bundle

of rank s everywhere, and a surjetive map of smooth varieties is �at as soon as the �bres

are equidimensional, so π is smooth. As suh the ondition, (I.58), for π to be a bundle of

hamps is is true by III.b.11, I..3 and (beause we're in harateristi zero) the Höshild-

Serre spetral sequene. Consequently, by III.b.11, for V → Z0 a su�iently small étale

neighbourhood, π−1(V ) is of the form [V ×C PC(a)/G] for G a �nite group of automorphisms

of a weighted projetive hamp PC(a). Again, however, by he Höshild-Serre spetral sequene,

the representation of G annot be deformed, so the only obstrution to having a bundle of

foliated hamps is that radial foliations on weighted projetive hamps might deform. This is,

however, exluded by I.d.4. �

We have, therefore, established

III.d.7. Large Fat. Given a −1/d F urve f : L → X parallel to an extremal ray R in

Néron-Severi meeting sing(F ) with p the unique geometri point of their intersetion, then

after multipliation by a suitable onstant, a linearisation in End(ΩX ⊗ C(p)) of a generator

∂ of the foliation is a diagonal matrix diag{a1, . . . , ar, 0, −b1, . . . , −bt}, ai, bj ∈ N without

ommon divisor and s zeroes. Better still, normalising so that the tangent spae to f(L ) lies

in the positive eigenspae, there is an R-extremal hamp X≥0 →֒X ontaining f suh that,

(a) X≥0 ontains a unique, smooth s-dimensional omponent Z of the singular lous of F .

(b) The normalisation X̃≥0 retrats onto Z0 where the pre-image Z̃ →֒ X̃≥0 of the singular

lous is a loally onstant gerbe over Z0, (III.44), via π of (III.48), and we have exatly

one of,

(i) KF |Z is trivial, and X̃≥0
∼−→X≥0.

(ii) K⊗2
F |Z is trivial, but KF | Z is not, then Z̃ → Z is an étale µ2 overing whih

is exatly where X̃≥0 → X≥0 fails to be an isomorphism.

() The �bration π is atually an étale bundle of foliated varieties where the transition

funtions are automorphisms of a foliated variety Y → [Y /F ] whose (�nite) universal
over is the radial foliation on some P(a0, aa1, . . . , aan) for a0, a as per III.b.11.

(d) Every extremal hamp meeting sing(F ) is of this form.

There are a few loose ends here whih we'll tidy up via

III.d.8. Remark. All of the above inludes the ase that singF has dimension zero at z but

non-trivial monodromy, f. II.h.9. By II.d.5.(), the only way that an extremal ray an fail to

meet sing(F ) is if the foliation is generially a �bration in in paraboli hamps. This is also the

only way not just that (b).(ii) (so inter alia an isolated singularity with monodromy swithing

the H-N pair) an our, but that (possibly di�erent) extremal rays an fator through both

the positive and negative parts of the H-N pair. This is, however, more subtle, so its proof

is postponed. It is, therefore, not unreasonable to paraphrase III.d.7 as �every� extremal sub-

hamp is a smoothly embedded bundle of radially foliated weighted projetive spaes.

Irrespetively, however, of larifying when b.(ii) does our, we have

III.d.9. Corollary. The number of extremal rays in the half spae, NEKF<0 is �nite.

Proof. An extremal ray whih meets a singularity is desribed by III.d.7, and by II.h.9 it must

fator through either X+ or X− of the H-N pair, so every onneted omponent of sing(F )
meets at most two suh sub-hamps whih themselves are maximal amongst those overed by

extremal rays meeting sing(F ). By II.d.5.() we're therefore done unless X → [X /F ] is
generially a �bration in rational urves, but in this ase, f. op. it., the omponent of the

deformation spae of an invariant urve whih doesn't meet sing(F ) over X with leaves, so

all suh rays are equivalent. �
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IV. Flip, flap, flop

IV.a. Contrations. We will pro�t from a number of simpli�ations a�orded by the analyti

topology. As suh we spell out our

IV.a.1. Set Up. Let X → [X /F ] be a foliated hamp with projetive moduli, and Y →֒X
be an embedded invariant sub-hamp equal to X̃≥0 of III.d.7 in ase b.(i) for some extremal

ray. Fix a (not neessarily sheme like) point z →֒ Z0, i.e. the pre-image of a point in the

moduli, for Z0 as in op. it., and let X ′ →֒X be an embedded analyti open neighbourhood

of Yz whose intersetion Y ′ →֒ Y with Y is (as a foliated variety) of the form π−1(Z ′),
III.d.7.(), for z ∈ Z ′ →֒ Z0 a small embedded analyti neighbourhood. Suh data admits,

therefore, arbitrarily small shrinkings around Yz whih, in order to employ I.f.5, we 'll make

without warning. This is equally the good set up for onstruting �ips, so in our immediate

ontext we add the preision that uniquely for this setion, IV.a, Y is a divisor.

Pro�ting from III.b.11, and shrinking as neessary, we have, from III.d.7.() and I.f.5, that for

some polydis V there is a �bred square

(IV.1)

D := P(a0, aa1, . . . , aar)× V −−−−→ X 1





y





y

π−1(Z ′) −−−−→ X ′

where the horizontal arrows are embeddings; the vertial arrows étale Galois overings under

π1(Yz); ai as in III.d.1; and a, a0 as in III.b.11. In partiular, therefore, for O(1) the tautologial
bundle on the weighted projetive spae in the left hand orner of (IV.1), II.g.3 implies

(IV.2) ND/X 1
∼−→ O(−ab)

for b = b1 of III.d.1. Now onsider the operation, I.a.9, of extrating a dth root of the Cartier

divisor D ,

(IV.3)

D ′′ −−−−→ X ′′





y





y

D −−−−→ X 1

then, for any d the left hand vertial is a loally onstant gerbe under Bµd
and if, moreover

d = ab this gerbe is trivial, so by I.f.5 again, after appropriate shrinking there is a �bre square,

(IV.4)

D −−−−→ X̃




y





y

D ′′ −−−−→ X ′′

where, one more, the horizontals are embeddings, and the vertials étale overings, but now

under µab. This onstrution has a number of onvenient properties, to wit:

IV.a.2. Claim. The omplement X∗ := X̃ \D is everywhere spae like, and an étale Galois

overing of X ′\Y ′
with group an extension of the form

(IV.5) 1→ µab → Ez → π1(Yz)→ 1, i.e. X ′\Y ′ ∼−→ [X∗/Ez]

Proof. That we have a overing with the said group is immediate from (IV.1), (IV.3), and (IV.4),

while by (IV.2) ND/X̃ is isomorphi to O(1). As suh the loal monodromy ats faithfully on

the omplement of the zero setion D →֒ ND/X̃ , so, a fortiori X∗
is spae like. �

Before pro�ting from this let us make,
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IV.a.3. Remark. One ould ertainly take an abth root, even globally of Y →֒ X , say

(IV.6) Xab →X

with X ′
ab →֒X the resulting neighbourhood of Y ′

. This does not imply, however, that (IV.5)

is split sine there may be torsion e�ets in Pic(Y )- f. (I.18). Similarly, if one is prepared to

assume that Pic(X 1)
∼−→ Pic(D) then one an do the steps (IV.3)-(IV.4) in a single move, viz:

extrat the abth root of the setion of O(−ab) de�ned by D . This is easy if one ompletes in

D , i.e. the exponential sequene for the nth thikening

(IV.7) 0→ In/In+1 x 7→1+x−−−−−→ O×
n+1 → O×

n → 0

and I..3, but otherwise would requires a little analysis that an reasonably be avoided, via

I.f.5, by on�ning ourselves to purely topologial statements.

Having arrived to this junture, however, we an omplete X̃ in D to a formal hamp, X̂ ,

with trae D , and argue as in (IV.7) to dedue

(IV.8) Pic(X̂ )
∼−→ Pic(D) = ZO(1)

As suh the Gm-torsor X→ X̂ de�ned by O(1) has trae a produt with V of the Gm-torsor,

(I.33), in the de�nition of a weighted projetive spae. The latter is, however, spae like, so X

is a formal spae, whih an be desribed wholly expliitly, i.e.

(IV.9) X
∼−→ (Ar+1\{0}) × ∆̂× V, ∆̂ := SpfC[[x]]

on whih λ ∈ Gm ats aording to

(IV.10) (Ar+1\{0})×∆̂×V ∋ (y0, y1, . . . , yr)×x×z 7→ (λa0y0, λ
aa1y1, . . . , λ

aanyr)×λ−1x×z

Now observe that the ring, A, of Gm invariant funtions a�ords maps

(IV.11) X→ X̂
moduli−−−−→ X̂ → V × SpfA (

∼−→ C[[xa0y0, x
aa1y1, . . . , x

aanyr]] )

where, by de�nition, A is equally the ring of formal funtions on X̂ . Consequently the �nal

map in (IV.11) is a formal ontration in the sense of [Art70℄, and whene by op. it. is the

ompletion in V of the ontration of analyti spaes

(IV.12)

D −−−−→ X̃
moduli−−−−→ X̃

projetion π of (III.48)





y

ρ





y

ρ0





y
ontration

V −−−−→ Xz Xz

In partiular therefore by (IV.11) Xz is smooth, and we're well advaned in proving

IV.a.4. Proposition/Summary. There is a Galois overing X̃ → X ′
under Ez, (IV.5),

rami�ed uniquely over D → Y ′
, and there (in the notation of III.d.1 and III.b.11) to order

exatly ab suh that

(a) The ontration, Xz, of (IV.12) is smooth.

(b) It's Ez equivariant, and although X ′ → [Xz/Ez ] may not be de�ned at Y , X ′
ab, (IV.6),

to [Xz/Ez] is everywhere de�ned.

() The ontration is birational, i.e. X ′\Y ∼−→ [Xz\V/Ez ] = [X∗/Ez ].

Better still, all of this globalises, i.e. there is a foliated smooth hamp X0 → [X0/F0] �tting
into a diagram (the ontration of Y ) -desribed loally by (a)-()- and an isomorphism o� Y ,

(IV.13)

Xab −−−−→
ρ

X0

KF unrami�ed





y
(IV.6)

X
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Proof. We've done (a) & (), and as per IV.a.3 we have from the onstrution, (I.15), of

extrating roots a map X ′′ →Xab. If, however, Y ′
ab →֒X ′

ab is the redued �bre over Y then

(IV.14)

D ′′ −−−−→ D




y





y

Y ′
ab −−−−→ Y ′

is not just ommutative but the top horizontal is the pull bak of the loally onstant gerbe

de�ned by the bottom horizontal. As suh, the square is �bred so the left vertial is a repre-

sentable étale over, and whene D is the universal over of Y ′
ab, so that shrinking as neessary,

X̃ →X ′
ab is equally the universal over. In partiular, therefore, we have a diagram

(IV.15)

X̃ −−−−→ Xz




y





y

X ′
ab [Xz/Ez]

wherein the left hand vertial is an Ez-torsor. Better still the pull-bak of OX ′
ab

(Y ′
ab) to D →֒ X̃

is O(−1), so there is an Ez ation on the torsor X ommuting with the Gm-ation (IV.10).

Consequently, the top horizontal is Ez equivariant, so, by the de�nition of the bottom right

hand orner, the square an be ompleted along the bottom horizontal, i.e. (b) holds.

Turning to globalisation, the uniity of ontrations ensures that the ontration of the subspae

of the moduli, X, of X de�ned by the moduli of Y to that of Z0 is an algebrai spae X0. Now

denote by ∗ the omplement of Y , or the ontrated lous as appropriate, then for ζ another

point of Z0 the normalisation of X∗
z ×X0

X∗
ζ is equally that of X∗

z ×X X∗
ζ so by I.a.3, either

projetion of

(IV.16) R :=
(

normalisation of U ×X0
U

)

⇒ U, U =
∐

z

Xz

is unrami�ed in o-dimension 1. Consequently, by purity, they're unrami�ed everywhere, and

sine R∗ ⇒ U∗
is both a groupoid and dense in R, (IV.16) de�nes an étale groupoid, or,

equivalently, an orbifold M0 → X0 with atlas U . At the same time, we an express Xab as a

loally onstant gerbe in BΓ's over an orbifold M for some �nite group Γ. Thus M and M0

agree on an open dense set, so by I.a.4 and (IV.12), there is a map ρ : M →M0. Next observe

that the ontrated lous is an embedded smooth sub-hamp of real o-dimension at least 4,

whene the homotopy depth about the same, [SGA-II, Exposé XIII.6℄, is also at least 4, so the

loally onstant gerbe X ∗ →M ∗
extends uniquely to a loally onstant gerbe X0 →M0. On

the other hand loally the universal over is generially sheme like, IV.a.2, so from the long

exat sequene of a �bration we must have

(IV.17) 1→ Γ→ Ez = π1(X
′

ab)→ π1(M
′)→ 1

for M ′
a small neighbourhood of Y ′

ab. On the other hand in the diagram

(IV.18)

Xz ←−−−− X̃




y





y

M0 ←−−−− M ′

the left hand is the universal over of it's image under the group Ez/Γ, so by (IV.17), the dia-

gram (IV.18) is a pull-bak of a overing along the bottom horizontal. In partiular, therefore,

(IV.18) is �bred so for a loally onstant sheaf, Λ, R1ρ∗Λ = 0, and the Leray spetral sequene

yields an exat sequene

(IV.19) 0→ H2(M0,Λ)→ H2(M ,Λ)→ H0(M0, R
2ρ∗Λ)
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In addition π1(M )
∼−→ π1(M0), so X and ρ∗X0 are loally onstant gerbes for the same link

in the sense of Giraud, [Gir71, IV.1.1.7.3℄, and their di�erene, op. it. IV.3.4, de�nes a lass

in H2(M ,Λ) for Λ the entre of the link- so loally the entre of the aforesaid group Γ. Sine
X0 → M0 is loally trivial by de�nition, the image of this lass in the rightmost group of

(IV.19) is zero by (IV.18) and (IV.12), while the resulting lass in the leftmost group is trivial

beause this is the same as H2(M ∗,Λ). �

It follows that we've atually proved a little more, to wit:

IV.a.5. Remark/De�nition. From (IV.15), the �bre of the horizontal arrow in (IV.13) has

�bre X̃ over Xz, whih, in turn is the smooth weighted blow up (omposition of left vertial and

top horizontal in (III.19)) with weights a0, aa1, . . . , aan in the obvious oordinates suggested by

(IV.11) while by purity the left vertial in (IV.13) is exatly the same as the rightmost vertial

in (III.19), i.e. killing a group (here µab) of pseudo re�etions. Moreover, sine ρ : X → X0

needn't be everywhere de�ned it's more tehnially orret to all the birational map ρ a �ip,

whih, in turn has the very spei� struture of (IV.13), whih might reasonably be desribed

as a �ap.

The resulting foliation on X0 is desribed by

IV.a.6. Corollary. The anonial bundles of the various foliations are related by

(IV.20) KFab
= KF |Xab

= ρ∗KF0
+ a0Yab

so, in partiular, F0 is smooth and everywhere transverse to the ontrated lous.

Proof. The �rst identity in (IV.20) is just that the left vertial in (IV.13) is unrami�ed along the

foliation beause Y is invariant, while the 2nd identity follows, for purely numerial reasons,

from (IV.2) and III.b.11. Now say D is a loal generator of F0 on Xz, and s0 is the oordinate

funtion of weight a0 in (IV.11), then, by (IV.20), ρ∗(s0D) is an everywhere regular derivation

whih oinides with a loal generator of Fab at every point where ρ∗(s0) only vanishes along

the exeptional divisor. In partiular, therefore, it oinides by III.b.11 with a loal generator

lose to sing(Fab), where by op. it. a loal equation x = 0 for the exeptional divisor may

be supposed of the form xa0 = ρ∗s0. Now the exeptional divisor is invariant, and by (II.g.3)

de�nes a non-zero eigenspae at the singularity so ρ∗(D(s0)) is non-zero everywhere, whene,

idem D(s0), �

IV.b. Projetivity of the ontration. By way of a rather general projetivity riteria

IV.b.1. Lemma. Let X be a proper algebrai spae over a �eld k, then X is projetive i� both

of the following onditions hold

(a) for every irreduible subspae Y →֒ X
(

N̄E1(Y ) ∋ α 7→ 0 ∈ N̄E1(X)
)

⇒ α = 0

(b) The one NE1(X) ⊆ NS1(X)R doesn't ontain a line.

Proof. The onditions are learly neessary. The seond ondition is equivalent to the existene

of a Cartier divisor H non-negative on NE1(X) suh that

(IV.21)

(

N̄E1(X) ∋ α 7→ H.α = 0
)

⇒ α = 0

Thus if (a) & (b) hold for X they hold for every sub-variety, so, by indution we an suppose

Hdim(Y ).Y > 0 for every non-trivial sub-variety of dimension smaller than that of X. Conse-

quently, by the Nakai-Moishezon riteria, [Kol90, 3.11℄, we require to prove for every irreduible

omponent of X of maximal dimension the top power of H is positive. As suh, say, without

loss of generality, X irreduible of dimension d + 1 and p : X ′ → X a projetive modi�ation,
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then p∗H is nef. Better still some Zariski open of X is a sheme, whene it ontains sub-varieties

of all possible dimensions, thus Hd = p∗(p
∗Hd) is a non-zero lass in N̄E1(X), and so by (b)

Hd+1 > 0. �

A less general, but more relevant variation of the same is

IV.b.2. Corollary. Let p : X ′ → X be proper; an isomorphism o� Z →֒ X; with X ′
projetive

and X a Q-fatorial algebrai spae over a �eld k, then X is projetive i� both of the following

onditions hold

(a) for every irreduible subspae Y →֒ Z

(

N̄E1(Y ) ∋ α 7→ 0 ∈ N̄E1(X)
)

⇒ α = 0

(b) The one NE1(X) ⊆ NS1(X)R doesn't ontain a line.

Proof. Again neessity is obvious and (b) a�ords a Cartier divisor H non-negative on NE1(X)
satisfying (IV.21) whih we prove satis�es op. it. (and whene IV.b.1.(a) ) for all sub-varieties

Y →֒ X by indution on their dimension. In dimension 1, there are two ases a urve, Y ,

fators through Z so H ·Y > 0 by IV.b.2.(a), or it doesn't. In the latter ase, however, Y \Z is

a non-empty urve in the quasi-projetive variety X\Z, so it ertainly intersets non-trivially

some divisor D →֒ X\Z without being ontained in it. By hypothesis, however, the losure

D̄ →֒ X of D is Q-Cartier so D̄ · Y 6= 0 and IV.b.1.(a) holds. Similarly for Y of dimension

d+1 ≤ dim(X) we again distinguish 2-ases. If Y fators through Z we're done by hypothesis,

otherwise we prove H |Y is ample. In the latter ase, by Nakai-Moishezon and our indution

hypothesis it's su�ient to prove Hd+1 ·Y > 0. As before, however, there is a Cartier divisor, D̄
on X interseting Y non-trivially, so Hd ·D̄ ·Y > 0, while: for all ǫ > 0 su�iently small, H−ǫD̄
satis�es (IV.21), so p∗(H − ǫD̄) is nef., and (H − ǫD̄)d+1 · Y ≥ 0, whene Hd+1 · Y > 0. �

Of whih a orollary to the orollary is

IV.b.3. Corollary. Let everything be as in IV.b.2 then we an replae ondition (a) by

(IV.22) Z is projetive and

(

N̄E1(Z) ∋ α 7→ 0 ∈ N̄E1(X)
)

⇒ α = 0

Whih may be applied to the ase in point, i.e.

IV.b.4. Fat. The moduli of the ontration IV.a.4 is projetive.

Proof. Observe that under the hypothesis of IV.a.1 the lous of the extremal ray R must be

the onneted smooth divisor Y beause Y · R < 0. Now, let ρ : X → X0 be the moduli of

the ontration (IV.13), with Z the moduli of the singular lous in X meeting the extremal

ray, then sine X0 is Q-fatorial, ρ∗ : NS1(X0)→ NS1(X) is injetive with image lasses in the

latter annihilated by R. Consequently, by duality there is an exat sequene

(IV.23) 0→ R→ NS1(X)
ρ∗−→ NS1(X0)→ 0

while N̄E1(X) ։ N̄E1(X0), so IV.b.2.(b) holds beause R is extremal. Now although there

may be ambiguity, III.d.5, about the hamp struture on the singular lous and the base of the

ontration, there is no suh ambiguity at the level of the moduli, i.e. Z is a setion of the

lous where ρ fails to be an isomorphism, so by (IV.22) and (IV.23) we need only hek that a

non-zero lass in N̄E1(Z) annot belong to R, whih is lear, e.g. KF |Z is nef. �
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IV.. The H-N Filtration again. We will require knowledge of the normal bundle of the

extremal smooth sub-hamp Y →֒ X of IV.a.1, akin to II.g.3 so, without loss of generality

dim(Y ) > 1. Our primary interest is the loal variation of NY /X over a small embedded

analyti open, Z ′
, of the base/singular lous, so to begin with, and essentially without loss

of generality, we'll restrit attention to the ase s = 0, III.d.7. As ever we �rst arry out our

analysis at the level of the universal over of Y , i.e. a radially foliated weighted projetive

hamp, III.b.11, and so abuse notation slightly, i.e. replae Y by its universal over, X by

a small neighbourhood of the former et.. Naturally there are two tautologial bundles of

relevane, namely, O(1), on the weighted projetive hamp Y , whih, op. it. is related to the

radial foliation, R, by

(IV.24) KR
∼−→ O(−a0)

and the relative tautologial bundle of ρ : P := P(N∨
Y /X ) = P (NY /X ) → Y whih we'll

denote H, while P, Y et. will be the orresponding moduli. Now say F is the speialisation,

f. II.e.5 & II.f.1, of our original foliation to the projetive normal one, then KF = ρ∗KR

so a KF -negative extremal ray, R, of P, has to be, II.d.1, an invariant urve of F lying over

an invariant urve of R. By III..1 we may suppose that the former has at worst nodes, and

whene also the latter from our expliit knowledge, II.i.2, of the singularity. The moduli of suh

a hamp is the moduli of its normalisation, so, without loss of generality, R is an extremal ray

of P (f∗NY /X ) for f : L → Y some oordinate axis of the radial foliation R- all of whih are

smooth and embedded on a weighted projetive spae. By II.g.3 we know exatly what these

are, and in terms of II.i.2 & III.d.1 we may desribe them as follows: the loal monodromy at

the singularity, p, of the radial foliation is µa0
, and by hypothesis, III.d.7.(b).(i), there exists a

loal generator, ∂, of the ambient foliation on X whih is µa0
-invariant so that the eigenvetors

of Jordan deomposition of ∂ at p a�ord a µa0
equivariant deomposition,

(IV.25) NY /X ⊗ C(p) =
∐

1≤i≤l

Vi

for Vi the subspae generated by the eigenvetors of weight −βi for βi a omplete repetition free

list of the bi, amongst whih, II.h.6, −βl is largest. The deomposition (IV.25) then desribes

the singular lous of the speialised foliation exatly, i.e. it is a disjoint union

(IV.26) sing(F ) =
∐

1≤i≤l

P (Vi)× Bµa0

and the extremal ray in question is any invariant setion over L whih uts P (Vl), or, to be

more preise, uts P (Vl)×Bµa0
→֒P whih is the embedded omponent of the singular lous.

We an, therefore, apply III.d.7 to onlude that the extremal rays de�ne a sub-hamp Yl →֒P
together with a projetion

(IV.27) Yl → P (Vl)

whose �bres have universal over a weighted projetive hamp P(c0, c1, . . . , cr) for some weights

ci to be determined, radially foliated by R′
, say. Now, by (IV.26), (IV.27) has a setion so

P(c)×P (V1) is the universal over of Yl. We have, however, by II.g.3, F -invariant embeddings

Li → Yl lifting any oordinate axis fi : Li →֒ Y , and eah Li is simply onneted, so there

are R′
-invariant embeddings f ′

i : Li →֒ P(c) of every Li
∼−→ P(a0, aai), and whene P(c)

∼−→ Y .

Better still,

(IV.28) KR′ = KF |P(c)×P (V1)= KR |P(c)×P (V1) and KR′ ·f ′
i
Li = KR ·fi

Li by II.d.5

so P(c) → [P(c)/R′] is, unsurprisingly, the radial foliation Y → [Y /R] that we started with.

Consequently the map

(IV.29) Yl → Y × P (Vl)
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a�orded by the strutural projetion ρ and (IV.27) is an étale over. As suh (IV.29) exhibits

the former as a loally onstant gerbe over the latter. By expliit loal alulation, however,

f. (IV.26), (IV.29) is an isomorphism in a neighbourhood of the �bre over the singularity p,
so it's an isomorphism everywhere. We have, therefore, proved most of

IV..1. Fat. Suppose, as above, that Y ′
of IV.a.1 is simply onneted (whene isomorphi

to the produt of a polydis with a radially foliated weighted projetive spae) then there is a

�ltration of NY /X |Y ′
by invariant sub-bundles for the indued foliation,

O = Nl $ Nl−1 $ Nl−2 $ · · · $ N0 = NY /X

suh that if β1 > · · · > βl is a omplete repetition free list of the b1, . . . , bt of III.d.1, and qj,

1 ≤ j ≤ k the orresponding multipliities, then for a as per III.b.11, loally over Z :

Nj−1/Nj
∼−→ OY (−aβj)

⊕qj .

Proof. Yl of (IV.27) is, III.d.7, the image of a deformation spae of extremal rays, whih is

onstant on taking produts with a small polydis, whene this addition hanges nothing, and

for notational onveniene we'll ontinue to ignore it. In any ase, the embedding Yl →֒ P
a�ords a sub-bundle

(IV.30)

(

ρ∗H |Yl

)∨ →֒ NY /X

whih is the Nl−1th term in the above �ltration. Moreover there is a anonial isomorphism

(IV.31) NYl/P
∼−→ ρ∗

(

NY /X /Nl−1

)

⊗H

and so we onlude by indution. �

Unsurprisingly we ontinue to refer to this as the H-N �ltration, and observe

IV..2. Corollary. Let Y ′ →֒X ′
be simply onneted, then there is a non-anonial splitting

(IV.32) NY /X |Y ′
∼−→

∐

j

OY (−aβj)
⊕qj

and, better still, any setion over Y ′
of IY ,X /I2

Y /X ⊗ OY ′(−aβj) an be lifted to a (formal)

setion of IY ,X ⊗̂OX̂ ′(−aβj) over the ompletion X̂ ′
of X ′

in Y ′
.

Proof. The non-trivial ase, given IV..1, is when the �bres of Y → Z ′
have dimension 1. This

is, however, II.g.3, and otherwise it's immediate by IV..1 and I..3. �

The apparently arbitrary hoie of suh setions notwithstanding, hoose some, say

(IV.33) ξ := ξj : OX̂ ′(aβj)→ Î := IY ,X ⊗̂OX̂ ′ , 1 ≤ j ≤ t

and de�ne, f. (III.18), a �ltration on Î by way of:

(IV.34) F p
ξ Î :=

(

ξj1
1 · · · ξjt

t | b1j1 + · · · + btjt ≥ p
)

bj := aβj

i.e. the ideal generated by the images of the OX̂ ′(j1b1 + · · · jtbt) under (IV.33), and observe

IV..3.Claim. The �ltration (IV.34) is algebrai, i.e. shrinking as neessary, there is a �ltration

F pIY ,X |X ′
whose ompletion is (IV.34). Better still this is independent of the hoie (IV.33),

and F invariant.
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Proof. Plainly F p
ontains some power, say q, of Î , so the �rst part just amounts to the

oherene of F p/Îq
on the qth thikening of Y ′

. As to the �rst part of the better still: say ηj

is another hoie, then either this is the same as ξj, or there is a smallest p > 0 suh that

(IV.35) 0 6= ξj − ηj ∈
(

F p
ξ /F p+1

ξ

)

⊗ OY ′(−bj)
∼−→

∐

b1j1+···+btjt=p

OY ′(p− bj)

so p ≥ bj, whene ηj : OX̂ ′(bj) → F
bj

ξ , and we're done by symmetry. Similarly, suppose the

omposition

(IV.36) OX̂ ′(bj)
ξj−→ F bj Î → OX̂ ′ → KF

doesn't fator through KF ⊗ F bj Î, then there is a smallest bj > p ≥ 0 through whih it does

fator, so (IV.36) a�ords a non-zero OY ′
-linear map

(IV.37) OŶ ′(bj)→ KF ⊗
∐

b1j1+···+btjt=p

OY ′(p)
∼→

∐

b1j1+···+btjt=p

OY ′(p− a0)

whih is nonsense. �

Putting this all together we have therefore

IV..4. Fat/De�nition. Let Y →֒X be as in IV.a.1 then there is a F -invariant �ltration

(IV.38) · · · ⊂ F p · · · ⊂ F>0 = IY ,X ⊂ OX

suh that

(a) The restrition of (IV.38) to a small embedded analyti neighbourhood X ′
as de�ned

in IV.a.1 pulls bak to (IV.34) on the universal over of X ′
.

(b) For f : L̃ →֒ X → X the normalisation of an extremal ray with at worst nodes

embedded in its net ompletion, the pull bak of IV.38 is the �ltration de�ned by the

invariant divisors II.g.3.(2) ombined in the (obvious) way suggested by (IV.34).

Proof. The �ltration has already been de�ned on the universal over, say X ′′ → X ′
with

Galois group π1. As suh, it desends to X ′
provided (IV.34) admits a π1 ation, whih is

lear from the proof of IV..3 beause the H-N �ltration, IV..1, is π1-equivariant. Similarly:

to ompare the �ltrations on 2-small analyti open embeddings X ′
α →֒ X , X ′

β →֒ X we only

need to ompare them on any (faithfully �at) étale overing of X ′
α ∩X ′

β, so again this is just

IV..3 and the de�nition (IV.34) as is (b). �

IV.d. Existene of �ips. Let Y →֒ X be as in IV.a.1 then by (IV.38) there is a KF -invariant

smoothed weighted blow up, [MP13, I.iv.3℄, de�ned as in (III.19), to wit:

(IV.39)

X1 := Proj
(
∐

p F p
)

Vistoli overing←−−−−−−−−− X2, KF2
= KF |X2

weighted blowup





y
Everything F invariant

X
Before progressing let us make a larifying

IV.d.1. Remark. The implied weights in (IV.39) are not the aβj of IV.34 but b′i := bi/b where

bi are as per III.d.1 and b is their gd. Following (IV.13), however, we'll be taking the overing

(IV.40) X2
abth root of E2←−−−−−−−−−Xab, Yab :=

1

ab
· E2

and the totality, i.e. the horizontal in (IV.39) omposed with (IV.40), is, funtorially with

respet to the ideas the smoothed weighted blow up with weights abi where a is given by III.b.11
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and the bi by III.d.1. Consequently there's a ertain onveniene in doing both steps at one,

or, at least, referring, as we will, to their totality in terms of the unifying idea.

This said the exeptional divisor E2 on X2 is desribed by

IV.d.2.Claim. The weighted projetive bundle E2 → Y enjoys the following triviality property:

for Y ′ →֒ Y as per IV.a.1 (Z ′ →֒ Z0 understood su�iently small) and Y ′′ → Y ′
its �nite

universal over

(IV.41) E2 | Y ′′ ∼−→ Y ′′ × P(b′1, . . . , b
′
t)

Moreover the indued foliation (understood either logarithmially, I.b.2, or, equivalently, with-

out saturation if the �bres Y → Z0 have dimension 1) has anonial bundle the restrition of

KF and singular lous the �bre over the unique onneted omponent Z of sing(F ) ontained
in Y .

Proof. The pth fator of the graded algebra assoiated to (IV.34) is OY ′′(p) tensored with the

pth fator of the trivial graded algebra freely generated by generators of weights bi, 1 ≤ i ≤ t,
f. (IV.35) & (IV.37), whih has the same Proj as that whih is freely generated after anelling

the ommon fators, IV.d.1, whene (IV.41). As to the moreover: the exeptional divisor of

a (weighted) blow up in an invariant entre is always smooth in the foliation diretion, so we

only have to ompute what happens over the singular lous whih we an do expliitly using

IV..4 by way of its relation, II.g.3.(3), with the Jordan deomposition, and appropriate loal

oordinates, f. (II.124). �

Now, irrespetively of whether E2 is extremal in X2, the one theorem applies to E2 in it's

indued foliation, while extremal rays in Y with at worst nodes lift (f. the preamble to the

proof of IV..1 ) to the same in E2 by II.g.3. As suh III.d.7 applies to E2 in se (i.e. as the

lous of its own extremal ray) to imply

IV.d.3. Fat/De�nition. The hamp E2 is a bundle of foliated varieties (whose �bres have

universal overs radial foliations on a P(a0, aa1, . . . , aan)) over an orbifold Z0 whih (for good

measure) is itself a bundle, IV.d.2, of P(b′1, . . . , b
′
t)'s over the orbifold struture on the singular

lous of Y . Consequently for Xab as in (IV.40) there is a ontration ρ : Xab → X0 of Yab

to a loally onstant gerbe over Z0 suh that the indued foliation X0 → [X0/F0] is smooth

and everywhere transverse to the lous where ρ is not an isomorphism. The bi-rational map

ρ : X → X0 will, irrespetively of whether the moduli of X0 is projetive, be referred to as a

�ip, and the more preise data

(IV.42)

Xab
Blow down, ρ+, with weights aai−−−−−−−−−−−−−−−−−−−−→

(IV.13)

X0

Blow up, ρ−, with weights





y

abj , (IV.39) &(IV.40)

X− := X

of a weighted blow up followed by a weighted blow down as a �ap.

Proof. As observed the struture of E2 is implied by III.d.7 given the struture, IV.d.2, of the

singular lous. This is, however, the sum total of what we need to dedue the existene of

the ontration ρ from IV.a.4, i.e. the ondition that Yab is overed by extremal rays of the

ambient spae is neessary for the projetivity of the moduli of the ontration, but not for its

existene as an algebrai spae. �

To examine the projetivity of this onstrution let us suppose in addition to IV.a.1,
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IV.d.4. Set Up. Fix an extremal ray R and suppose that every −1/d F urve equivalent to R
belongs to a onneted smooth embedded sub-hamp, Yp →֒ X , of the form IV.a.1, and all

suh sub-hamps are disjoint, equivalently none of the following our

(a) For some smooth onneted omponent Z → sing(F ) there are 2 suh sub-hamps (for

the same R) meeting in Z , II.h.9.

(b) For some smooth onneted omponent Z → sing(F ), and, again, the same R,

III.d.7.(b).(ii) ours.

() There is a representative of R avoiding the singular lous.

Observe that the riteria for the projetivity of the �ip is partiularly simple, i.e.

IV.d.5. Claim. In the ontext of (IV.42), the following are equivalent

(a) The moduli of the �ipped hamp X+ is projetive.

(b) The one N̄E1(X+) does not ontain a line.

() The −1/d F urve ontrated by ρ+ is extremal.

Proof. Plainly (a) implies (b), and (IV.22) always holds- same argument as end of the proof

of IV.b.4- whene, onversely, IV.b.3, (b) implies (a), while (b) i� () is the general duality

onsiderations of (IV.23). �

The same applies, a little more generally, if one �ips several sub-hamps in X at the same

time, provided, as is our ontext, IV.d.4, the hamps being �ipped are all disjoint, whih we'll

employ without further omment in

IV.d.6. Claim. The �ip, (IV.42), of any of the Yp has projetive moduli.

Proof. Sine the horizontal arrows in (IV.42) are (étale loally) weighted blow downs it will

su�e to do everything at one, whih is all we need anyway. As suh, onsider the totality, at

the level of the moduli, of the �aps (IV.42) performed in all of the Yp, i.e.

(IV.43)

X(R) −−−−→
ρ+

X+

ρ−





y

X−

with Ep
the exeptional divisors; Cp

− urves in the same ontrated by ρ−; and Cp
+ →֒ Ep

a

KF -negative invariant urve ontrated by ρ+. Fix p, then by the one theorem, II.d.1, there

are �nitely many extremal rays represented by (multiples of) KF -negative invariant urves, Ri,

and a (pseudo) e�etive lass Zp on whih KF is non-negative suh that on X(R)

(IV.44) Cp
+ =

∑

i

Ri + Zp

Now, by onstrution, (IV.12), (ρ−)∗(C
p
+) is parallel to R, so (ρ−)∗(Zp) is too. However, ρ−

is unrami�ed in the foliation diretion, so (ρ−)∗(Zp) = 0. Consequently, by the projetivity of

X−, Zp is a sum

(IV.45)

∑

q

cq
−Cq

−, cq
− ≥ 0

On the other hand all the Ri lie over R, so by our hypothesis IV.d.4 and (IV.12) every Ri is

parallel to some Cq
+ for some q. Thus we equally have

(IV.46)

∑

Ri =
∑

q

cq
+Cq

+, cq
+ ≥ 0
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Combining all of (IV.44)-(IV.46) we have therefore

(IV.47) Cp
+ =

∑

q

(

cq
+Cq

+ + cq
−Cq

−

)

, every Cq
+ extremal by (IV.46),

while all the divisors Eq are disjoint and stritly negative on both Cq
+, Cq

−, so the only index

that an our on the right of (IV.47) is p. Consequently, Cp
+ is extremal and we're done by

IV.d.5. �

IV.e. Exeptional �ips and termination. The �rst ase to be onsidered is

IV.e.1. Set Up. Y →֒ X is an extremal sub-hamp satisfying III.d.7.(b).(ii), with Z →֒ Y
the unique (smooth) onneted omponent of sing(F ) ontained in it.

Now observe that by the uniity and loal uniformity, III.d.3, of Jordan deomposition there is

a well de�ned (smoothed) weighted blow up supported in Z whose weights in the notation of

III.d.1 are

(IV.48) yi, resp. xi, has weight ai, resp. bi, where ai = bi and r = t.

and whose e�et is desribed by

IV.e.2. Claim. Let X1 → X be the smoothed weighted blow up de�ned by (IV.48) with E1

its exeptional divisor and Y1 the proper transform of Y then

(a) The singular lous of F1 over Z is the intersetion of E1 and Y1. It is smooth onneted,

and, for good measure, a P(a1, . . . , ar)-bundle over the µ2 overing of Z de�ned in

III.d.7.(b).(ii).

(b) The embedded sub-hamp Y1 →֒ X1 is the lous of (not just a onneted omponent

of) an extremal ray R1 satisfying III.d.7.(b).(i).

() The exeptional divisor E1 is overed by KF -nil invariant paraboli hamps.

Proof. To alulate the singular lous we use the Jordan oordinates of III.d.1, so, [MP13,

I.iv.3℄, on, say the y1 6= 0 hart we have loal oordinates ηi, ξj de�ned by

(IV.49) y1 = ηa1

1 , y2 = η2η
a2

1 , · · · , yr = ηrη
ar
1 , x1 = ξ1η

b1
1 , · · · , xr = ξrη

br
1

whih gives that étale loally there are 2 smooth omponent of the singular lous in the �bre of

E1 over Z , whih in turn are the intersetion of Y1 and E1. Plainly (paragraph prior to (III.45))

the loal system de�ned by these omponents is the same as the µ2 over Z +− → Z , so the

singular lous is onneted, and the good measure part is lear. As to (b) this is just an easy

variation on (IV.44)-(IV.45). Spei�ally suppose the proper transform, L1, of an invariant

urve isn't extremal then op. it. and E1 · L1 > 0 imply the absurd. Finally () follows from

the expliit oordinates (IV.49) and the fat that the anonial, KF1
is just KF |X1

. �

We an, therefore, ombine this with (IV.42) to make

IV.e.3. Fat/De�nition. By an exeptional �ip (or, better, �ap) is to be understood, for

Y →֒ X as in IV.e.1, the diagram

(IV.50)

Xab
ρ+−−−−→

(IV.42)

X+

�ip of Y1 in IV.e.2





y
ρ−of(IV.42)

X− = X1 ←֓ E1

Weighted blow up





yIV.e.2

X
Better still
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(a) The moduli of X+ is projetive.

(b) The image E+ of E1 is overed by invariant paraboli hamps (in fat it's a bundle of

suh over a P(ai)× P(bj)-bundle over Z +−
) none of whih meet the singular lous, so

the generi �bre of X+ → [X+/F+] is a smooth paraboli hamp.

Proof. Part (a) follows from IV.d.5 and IV.e.2.(b), while E+ is ontained in the smooth lous

of F+ by IV.d.3 whene (b) by IV.e.2.() and II.d.5.(). �

Similarly if IV.d.4.(a) ours or slightly more generally

IV.e.4. Claim. If there are 2 extremal (not neessarily for the same ray) hamp meeting in

the same omponent of sing(F ) then the generi �bre of X → [X /F ] is a paraboli hamp.

Moreover if both varieties arise from the same extremal ray, i.e. IV.d.4.(a), then the �ip (IV.42)

does not have projetive moduli, and there are invariant paraboli hamp in (the original X )

whih do not meet sing(F ) and are parallel to the given extremal rays, i.e. IV.d.4.() also

holds.

Proof. Choose one, say Y ′
, of the extremal varieties, �ip it, and irrespetively of whether the

moduli is projetive IV.d.3 and II.d.5.() still apply. Furthermore, if both rays are extremal

then as in the proof of IV.e.2 the proper transform, R1, of an invariant urve in the other, say,

Y ′′
, is an extremal ray. Plainly, however, the invariant urves, L, in the �bre over Y ′

have the

form R1 +C− where C− is ontrated by ρ−, while the exeptional divisor, E1, of ρ− is negative

on L, and positive on R1, whene it's negative on C−, so C− is e�etive; L isn't extremal, and

the moduli of X+ isn't projetive. On the other hand (ρ−)∗R1 is an invariant paraboli hamp

missing sing(F+), so it an be moved o� the �ipped lous to some R+. As suh the proper

transform R̃+ (in Xab of (IV.42)) is a linear ombination of L and R, so (ρ−)∗(R̃+) is parallel
to the original extremal ray. �

Given the well de�ned way in whih it ours, the loss of projetivity in IV.e.4 is very far from

deadly. Nevertheless there are several obvious reasons for avoiding it so we make

IV.e.5. Fat/De�nition. By a very exeptional �ip (or, better, �ap) is to be understood, for

Y ′ →֒ X and Y ′′ →֒ X a pair of extremal varieties meeting in the same omponent of the

singular lous, IV.d.4, of F and parallel to the same extremal ray, IV.e.4, the diagram (IV.50)

with the further proviso

(IV.51) The arrow ρ−, resp. ρ+, is the weighted blow up, resp. down, in both Y ′
and Y ′′

.

The moduli of the resulting hamp X+ is projetive, while the resulting foliation F+ is smooth

and everywhere transverse to the lous where ρ+ is not an isomorphism for exatly the same

reasons that the orresponding statements hold for the exeptional �ips of IV.e.3.

Now �ipping, be it exeptional or otherwise, manifestly terminates for the simple reason that

the number of onneted omponents of the singular lous dereases by at least 1 with the �ip

of any extremal ray, and so in inreasing order of di�ulty we have,

IV.e.6. Proposition/Summary. Let X → [X /F ] be a foliated hamp whih is not a foliation

in paraboli hamps and whih enjoys the following further properties

(IV.52) smooth; projetive moduli; log anonial, resp. anonial, foliation singularities

then there is a sequene of ontrations and �ips in the sense of IV.a.4 and IV.d.3 (or alterna-

tively just �aps (IV.13) & (IV.42) ),

(IV.53)

X = X0 X1 · · · · · · Xn = Xmin




y
−−99K





y
−−99K −−99K





y

[X /F ] = [X0/F0] [X1/F1] [Xn/Fn] = [Xmin/Fmin]
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suh that eah Xi → [Xi/Fi] enjoys all the (respetive) properties (IV.52), and KFmin
is nef.

Proof. The hypothesis that the foliation isn't in paraboli hamps implies, IV.e.3.(b) & IV.e.4,

that we must, at every stage, be in the situation of (IV.d.4), i.e. III.d.7.(b).(i). Consequently

we eventually run out of omponents of the singular lous through whih a −1/d F-urve an

pass, and we terminate with KF nef. by the one theorem, II.d.1. �

The alternative to whih is

IV.e.7. Proposition/Summary. Let everything be as in IV.e.6 with the exeption of the hy-

pothesis �not a foliation in paraboli hamps� whih we replae by �no model has nef. (foliated)

anonial bundle� then after a sequene of ontrations and �ips in the sense of IV.a.4, resp.

IV.d.3, as desribed in (IV.53) all of (IV.52) ontinues to hold (i.e. we're still exluding the

exeptional ases IV.e.3 and IV.e.5) and exatly one of the following happens

(a) Xn → [Xn/Fn] is a Mori �bre spae, i.e. the lous of a single extremal ray is all of Xn

and the foliation is a bundle of foliated varieties where the universal over of a �bre is

the radial (supposed saturated in dimension 1) foliation on a weighted projetive spae

whose dimension is 1 i� the foliation singularities are anonial.

(b) At least one of IV.d.4.(a) or (b) ours at every onneted omponent of the singular

lous. In partiular, therefore, all of the foliation singularities are anonial.

Proof. If we exlude (b), then the only other thing that an happen is that the lous of an

extremal ray is everything with the hamp itself desribed by III.d.7.(b).(i), i.e. (a), while the

various fats about anonial vs. log-anonial singularities are just the de�nitions. �

This leaves us to elaborate the �nal ase

IV.e.8. Proposition/Summary. Should ase (b) of IV.d.3 our then, without loss of gener-

ality, there are no ourrenes of either ontrations, IV.a.4, or the �ips of IV.d.3, and should

there be any exeptional �ips we ontinue by

(IV.54)

(

Xn → [Xn/Fn]
)

99K

(

Xn+1 → [Xn+1/Fn+1]
)

wherein all possible exeptional �ips IV.e.3 are performed at one with all of (IV.52) being

preserved. If we're still not done, i.e. Fn+1 isn't smooth, then IV.d.4.(a) ours, and we have

the following hoies for

(

Xn+1 → [Xn+1/Fn+1]
)

99K
(

Xn+2 → [Xn+1/Fn+2]
)

,

(a) For eah omponent of the singular lous of Fn+1 hoose an extremal sub-hamps and

�ip it aording to IV.d.3. This will neessarily result in the loss of projetivity, IV.e.4,

but otherwise the list (IV.52) is onserved.

(b) Perform at the same time all possible very exeptional �ips, IV.e.5, and thus preserve

the list (IV.52) in its entirety.

In either ase Xn+2 → [Xn+2/Fn+2] is a bundle of 1-dimensional paraboli hamps whih is

identially its own Mori �bre spae.

Proof. All exeptional or very exeptional �ips an only our at smooth onneted omponents

of the singular lous so the extremal sub-hamps that they determine annot interset (exept,

of ourse, in a very exeptional �ip wherein Y ′ ∪Y ′′
of IV.e.5 should be thought of as a single

entity) so, without loss of generality, all these operations an be ombined into one. Better still

both the extremal hamp, Y , of an exeptional �ip, IV.e.3, or Y ′ ∪ Y ′′
in the ase of a very

exeptional �ip IV.e.5 are the only invariant sub-hamps meeting their respetive omponents

of the singular lous, whene the two exeptional ases ommute with ontrations, IV.a.4,

and (non-exeptional) �ips IV.d.3, so there's no loss of generality in supposing that all suh

operations have already been exhausted. �
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IV.f. Logarithmi remarks. In order to referene it we spell out our

IV.f.1. Set Up. By hypothesis D →֒X will be a divisor, no generi point of whih is invariant,

in a onneted smooth proper hamp, and X \D → [X \D/F ] a foliation with log-anonial

singularities.

As suh, by I.b.10, D is smooth and everywhere transverse to F . In partiular, therefore, for

every e ∈ Z>1, the extration ǫ : X e →X of a eth root, I.a.9, of D is smooth, and the indued

foliation X e → [X e/F e] has, I.b.15, log-anonial singularities whih, I.b.13, are terminal

around the pre-image of D . Furthermore we assert,

IV.f.2. Claim. Let everything be as above with f : C →X a map from a (smooth irreduible)

urve suh that (KF + D) ·f C < 0 then f does not fator through D . In partiular, therefore,

there is a lifting f e : C e →X e
and KFe ·fe C e < 0.

Proof. The tangeny between D and F always yields a setion of OD(KF + D), whih by

hypothesis is trivial, i.e. in a highly degenerate ase of II.d.3 the trae is a onstant setion

overD , so f ertainly annot fator through it. As suh there is ertainly a lifting f e : C e →X e
,

while

(IV.55) KFe ·fe C e ≤ (KFe + De) ·fe C e = (KF + D) ·f C < 0

where ǫ∗D = eDe
, and De

is smooth. �

It ertainly therefore follows that if KFe
is nef. then KF + D is nef., but, plausibly in running

the minimal model programme for X e → [X e/F e] we ould loose the hypothesis of IV.f.1.

Observe, however, that the operations of �ipping and extrating roots ommute, i.e.

IV.f.3. Fat. For any any ontration, resp. �ip,

(IV.56)

(

X e → [X e/F e]
)

99K

(

X e
+ → [X e

+/F e
+]

)

in the sense of IV.a.4, resp. IV.d.3, there is a ontration, resp. �ip,

(IV.57)

(

X → [X /F ]
)

99K

(

X+ → [X+/F+]
)

suh that the proper transform, D+ →֒X+ satis�es IV.f.1, and X e
+ →X+ is the extration of

an eth root of D+.

Proof. That a ontration, resp. �ip, of X e → [X e/F e] determines the same of X → [X /F ]
is immediate from IV.f.2 and the de�nitions if X has projetive moduli. However, even without

this, it still follows sine projetivity is only used, f. III.d.2, to ensure that the ontrated,

resp. �ipped, sub-hamp Y meets a unique omponent of sing(F ) through whih eah of the

−1/d F urves whih over Y must pass. Irrespetively, what we need to do in the �rst instane

is to prove that there is a map,

(IV.58) X e
+ →X+

To this end observe, exatly as in the �nal steps of the proof, (IV.19) et seq., of IV.a.4, the ex-

pression of other side of (IV.58) as a loally onstant gerbe over an orbifold, I.a.6, is determined

in o-dimension 2, so, without loss of generality, there is no generi stabiliser. Furthermore, �ips

are atually �aps, so by the uniity of ontration both sides of (IV.58) have the same moduli

X+, and whene they equally fator through the same Vistoli overing hamp X v
+ , I.a.2. Now,

to go from any smooth hamp to the Vistoli overing hamp of its moduli one kills, [Vis89, 2.8℄,

pseudo re�etions. A pseudo re�etion, however, of a foliated hamp stabilises exatly one of

an invariant divisor or a generially transverse divisor, so we have further fatorisations suh

as

(IV.59)

X e
+

kill transverse−−−−−−−−→
re�etions

X i
+

kill invariant−−−−−−−−→
re�etions

X v
+
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and similarly for X+ →X v
+ . Now let x be a geometri point of the proper transform De

+ →֒ X e
+

of D ; Gx its stabiliser; and U → X e
+ an étale neighbourhood then there is a non-trivial

normal sub-group, Sx, generated by pseudo-re�etions �xing smooth branhes of De
+, while

X e
+ → [X e

+/F e
+] is smooth at x by our hypothesis IV.f.1 and IV.a.4. As suh by I.b.13 and

(the non-subtle) part of I.b.6, the indued foliation, G , on V := U/Sx is also smooth. Equally

U → V is rami�ed uniquely in the image, ∆, of D , to order e so, there is a fatorisation

(IV.60) U → V e → V

through an eth root of ∆ in whih the �rst map is almost étale, so by op. it. V e
in the indued

foliation G e
is log-terminal. Consequently, V → [V/F ] with the orbifold boundary (1− 1/e)∆

is also log-terminal, whene by I.b.14 ∆ is smooth and everywhere transverse to G , and so De
+

is too. This is, however, equivalent to: Sx is a yli normal sub-group of Gx and the restrition

of the harater, χx : Gx → Gm a�orded by De
+ to Sx is an isomorphism, so every sub-group

of Sx is normal. The monodromy of every generi point of De
+ is, moreover, of the form

(IV.61) 0→ µe → µee′ → µe′ → 0

where e′ is the order of the orresponding stabiliser in the original X . Consequently, the µe in

(IV.60) a�ord a well de�ned normal sub-group sheme of the stabiliser S → De
+ whih just as

in (IV.59) an be killed to yield a fatorisation

(IV.62)

X e
+

kill re�etions−−−−−−−−→
in µe

X j
+

kill all further−−−−−−−−→
re�etions

X v
+

in whih the image in X j
+ of De

+ is smooth everywhere transverse to the foliation, and the

�rst map in (IV.62) is just the extration of an eth root. By de�nition, however, X j
+ and X+

oinide in o-dimension 1, and sine they're both smooth they're equal by purity and I.a.4. �

Next observe that we equally have a log one theorem, i.e.

IV.f.4. Fat. Let X \D → [X D/F ] be a logarithmi foliated normal hamp with both KF

and D Cartier; log-anonial singularities in dimension 1 and projetive moduli, then there are

ountably many F -invariant paraboli, hamp Li, with, 0 < −(KF · + D) ·Li ≤ 2 suh that,

(IV.63) NE (X )R = NE(X )KF+D≥0 +
∑

i

R+ Li

where NE (X )KF+D≥0 is the sub-one of the losed one of urves on whih KF + D is non-

negative. Better still the R+ Li are loally disrete, and if R ⊂ NE (X )R is an extremal ray in

the half spae NEKF+D<0 then it is of the form R+ Li.

Proof. By I.b.14, IV.f.2 is independent of any smoothness hypothesis, so, II.d.1, we have a one

theorem for KFe
. On the other hand, if R ⊂ NE (X )R is an extremal ray in the half spae

NEKF+D<0 then it's an extremal ray in the half spae NEKFe<0 for all e ≫ 0, whene by

II.d.1 there is an invariant paraboli hamp f : L → X with KFe ·f L ≥ −2 parallel to it.

In partiular, therefore, the extremal rays in this half spae are loally disrete. Similarly if

ρ is the dimension of Néron-Severi, with α ∈ NE1(X ), then there are a sequene of lasses

αe ∈ NE (X )KFe≥0, and generators Rei of extremal rays, 0 ≤ i ≤ ne ≤ ρ, in the half spae

NEKFe<0 suh that

(IV.64) α = αe +

ne
∑

i=1

Rei

Subsequening in e as neessary, we may suppose n = ne is independent of n, and all of αe,

Rei onverge. Plainly, however, the αe onverge to a lass in the half spae KFe ≥ 0, whih,
equally is either true of a given Rei, or it belongs to a half spae KF +D + ǫH < 0- H is ample,

ǫ > 0- in whih, as noted, extremal rays are disrete, so R+Rei is independent of e. �
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Whih an be ombined with IV.f.3 to yield

IV.f.5. Proposition/Summary. Let X \D → [X \D/F ] be as in IV.f.1 with projetive mod-

uli, and non-empty boundary D ; X 2 → [X 2/F 2] the square root of D ; X 2
final → [X 2

final/F
2
final]

the result of a maximal sequene of ontrations and �ips in the sense of IV.a.4, resp. IV.d.3,

as desribed in (IV.53) (i.e. we exlude the exeptional ases IV.e.3 and IV.e.5) then there

is is a foliated logarithmi hamp Xfinal\Dfinal → [Xfinal\Dfinal/Ffinal] satisfying IV.f.1 with

projetive moduli, and non-empty boundary of whih X 2
final →Xfinal is the square root of Dfinal,

and exatly one of the following happens

(a) KF2
final

, so, IV.f.2, a fortiori KFfinal
+ Dfinal, is nef.

(b) The foliation X 2
final → [X 2

final/F
2
final] is a bundle of foliated varieties where the universal

over of a �bre is the radial foliation on a weighted projetive spae of dimension at least

2. As suh the same is true of Xfinal\Dfinal → [Xfinal\Dfinal/Ffinal]; D is the hyperplane

at in�nity, i.e. up to hange of weighted projetive oordinates x0 = 0 on the universal

over in the notation of I.d.2; and KFfinal
+ Dfinal is torsion.

() Idem as item (b) exept that the �bres of the bundle are weighted projetive spae of

dimension one, and the implied Mori �bre spae is exatly the foliation Xfinal\Dfinal →
[Xfinal\Dfinal/Ffinal], i.e. on eah paraboli �bre KFfinal

+ Dfinal is negative.

Proof. By II.d.5 the struture of a KF + D negative invariant hamp f : L → X is rather

partiular, i.e. either it misses D ompletely, or it misses the singular lous ompletely, and uts

D in one point. If, however, IV.e.7.(b) were to our for X 2 → [X 2/F 2], then the foliation is

in paraboli hamp; the generi hamp must meet D ; but none of the smooth invariant hamp

in the exeptional �ipped lous- E+ in IV.e.3.(b)- an meet D beause an extremal subvariety

satisfying IV.e.1 must meet the singularities. Consequently by IV.f.2, IV.f.3 and IV.e.6 it

remains to show that IV.e.7.(a) implies IV.f.5 (b) or (), but this is lear sine by I.d.2.(a) and

I..3 the only divisors everywhere transverse to the radial foliation are, in the notation of op.

it., de�ned by a weighted homogeneous funtion, F , of weight a0 suh that

∂F
∂x0
6= 0. �

Finally, let us onlude with

IV.f.6. Remark. While it's true, I.22, that the only part of a divisor whih is relevant to minimal

model theory are the omponents whose generi points are transverse to the foliation, it may

well be ase that one starts with a divisor D = D ′ + D ′′
where, say, D ′

satis�es IV.f.1, D ′′

is invariant, and whether D , or just D ′′
is simple normal rossing, and, for whatever reason,

one wants to have a similar situation on Xfinal after running the minimal model programme

IV.f.5. Now, ertainly, hypothesis suh as D ′′
simple normal rossing are nothing to do with

the de�nitions of log-anonial singularities, so there's no reason for them to be onserved by

IV.f.5. On the other hand, simple normal rossings whether of D or D ′′
an, by [BM97℄ and the

de�nition of log-anonial singularities, be restored by invariant blowing up without prejudie

to the KF + D nefness onlusion of IV.f.5.(a) or the smooth �bration in paraboli hamp

statement IV.f.5.(b).
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