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Abstract

We investigate the structure of fully non-linear P.D.E.’s in holomorphic
functions, with emphasis on the functorial generalisation of so called “ir-
regular” O.D.E.’s. Highlights are an implicit function theorem remov-
ing the perturbation conditions of Nash-Moser type, best possible exis-
tence results when the singularity of the linearised P.D.E. is at worst bi-
dimensional, and various, again optimal, corollaries on existence of centre
manifolds and conjugation to normal form of 3-dimensional vector fields.



Introduction

Resolution of singularities of vector fields is a very different problem from reso-
lution of singularities of varieties. A toy, but key, [Kol07] example in the latter
is an irreducible hypersurface singularity of degree d in characteristic zero. By
the preparation theorem we can write this locally as,

flay) =y +a(@y™ +... +a(z) =0

for a; some functions of some variables = (x1,...,x,) € X. This determines
y as an implicit function of x, and if we were to restrict our attention to local
uniformisation about a valuation v, of, say, rational rank 1, since this tends to
be the hard case, we could even expand y, and indeed x;,7 > 1 as a power series

inx=x. ie.
qeQ+

for coefficients in the residue field of the valuation and ¢ increasing. By in-
duction one may suppose that the corresponding series for the xz; occur with
bounded denominators, so, without any essential loss of generality, we may as
well say integers. The question of local uniformisation is wholly equivalent to
understanding y,, as an implicit function of x, where, y = y,n, + pm(x), and
pm(z) is the first m terms in the above power series. A modicum of thought,
cf. [CRS08], reveals that for m » 0,

0
— f(a,
is a unit so Hensel’s lemma (a.k.a. the implicit function theorem) applies to
conclude that the series in y also has bounded denominators.

Already at this level the situation for vector fields is much more subtle, since,
for a start, again rational rank 1 to fix ideas, a similar toy example does not
exist except in dimension 2. Nevertheless, one can gain some inkling for the
difficulty by supposing that y is an implicit function of x determined by an
O.D.E. of degree k,

k a
f(xayaDyv"'aD y):Oa D:xai
x
At which point, it should be plain that Hensel’s lemma will never apply since
the functional derivative in y will be a linear O.D.E.,

y+— folz)y + fi(x)Dy + ... + fx(z)D*y

and the best that one might hope for after the above substitutions y — y,,, is
that some of the f; become units. Nevertheless, even when this does happen, one
still may not be able to say anything meaningful since there may be resonances
amongst the f;(0), i.e. they may well fail to be linearly independent over Q, which
becomes a problem many times compounded as one makes examples closer to
the truth on replacing an O.D.E. by a P.D.E.; and forming systems of such.



There is also a mutual enrichment between the question of resolutions of
singularities for vector fields, or, indeed differential operators, and the question
of the very existence of solutions to singular P.D.E.’s which is not really present
at the level of resolution of varieties. Indeed, plainly, our original hypersurface
had a solution y as an implicit function of x over any algebraically closed field,
while even a system of » O.D.E.’s in r unknowns,

Zi=ai(z1,...,2r), zi=2z(),1<i<r

may well fail, already for » = 3, to have any solution if the a; are too singular,
[GML92]. Formally, however, this is easily decidable (by way of Jordan form)
as soon as we can resolve the vector filed,

At which point, we come across the most useful algebraic analogy in the form of
Artin’s large scale generalisation, of Hensel’s lemma which asserts that anything
defined in an algebraic way which has solutions formally, enjoys solutions in the
étale topology, or, equivalently the coarsest Grothendieck topology in which (the
usual easy version of) Hensel’s lemma holds, so, trivially, one has convergence
of the said solutions in the classical topology.

Naturally, therefore, one is lead to enquire as to whether there may be a
similar Grothendieck topology for P.D.E.’s. Already for 1st order O.D.E.’s, the
classical topology is insufficient, and even the linear case should only really be
considered understood when it corresponds to a linear system, i.e. a connection
V on a bundle F of rank r satisfying the Leibniz rule with respect to,

T— “regular” singularity,
D= dz

r+1_ 7

x “irregular” singularity, r € N

which in turn defines the system of O.D.E.’s,

V(f)=g g€k

subject, at least in the “irregular” case, to the non-degeneracy condition,

V(el) = Zaijej, Det(aij)(O) #0

J

In either case, functorially with respect to the ideas, we have a canonical singu-
larity (strictly log-canonical in rare cases of the former, [MPa] II1.i.2) whence
the regular/irregular terminology while appropriate when it was introduced,
[Del70], now risks creating a certain confusion since both cases are wholly natu-
ral, and neither may be improved in any way by blowing up. Plainly the first of
these analytically continues to the surface of the logarithm in an obvious way,
and is an example of what we will call logarithmically flat. On the other hand



one cannot necessarily do any better, so plainly exp : H — A defined on a half
plane H will have to be in our topology, as a neighbourhood of 0 even though
this fails to be in the image of the exponential. Equally, this is just a round
about way to state the obvious, whereas the so called “irregular” case is rather
more interesting. The classical example is Euler’s equation,

d
E—2»—FE=
ZdZ z

which has the formal solution,

[s's}
E(z) = Z nlz"t!
n=0

and, appearances notwithstanding, an analytic continuation to the surface of
the logarithm, ¢ = logz, where the above formula is actually the asymptotic
expansion in neighbourhoods |Im(¢)| < 3w, Re(¢) — —oo, after which, unlike
it’s flat counterpart, the two are unrelated, i.e. we find a Stokes’ phenomenon.
Nevertheless it has a related functorial description, i.e. E is the exponential, cf.
§1.2, in the convolution algebra H.(G,,we,) under the more or less canonical
identification, [K6t69], §27.4, of this group with germs of functions vanishing at
o0, about which, and perhaps a little confusingly, one should view the above z
as the local coordinate. As a result, [Eca85], all local existence results for such
systems in the “irregular” case are subordinate to the much richer theory of the
function F itself.

In either case, or, more accurately up to some issues of resonance among
eigenvalues in the log-flat case, the non-degeneracy condition on V guarantees
that the problem is formally un-obstructed, while adding sectors S — A, i.e.
restricting the argument of z, to the classical topology and viewing them as
neighbourhoods of 0 is more than sufficient to obtain solutions everywhere. At
which point, e.g. [Mal91] §IV, one can define an appropriate topus, and construct
a rich body of theory. At its most basic level this topus is a sub-category of
sheaves on the real blow up of the disc in the origin (whence a manifold with
boundary, and not unrelated to the twin facts that the essential of [MPa] is
the case of real manifold with boundary, [Pan06], while, slightly incorrectly,
many algebraic stacks may be thought of as cone manifolds) and, irrespectively
of any questions of patching and analytic continuation, one has solutions in a
neighbourhood of every point on the real blow up. This leads us to pose,
Principle Question Could it be that given an arbitrary singular analytic and
fully non-linear P.D.E. one first resolves (in a sense to be made precise, but for
the sake of argument imagine a best possible final situation stable under blowing
up) its singularities, and modulo some possibility of some wholly computable
formal obstruction on the resolution, finds solutions on a real blow up supported
in the total exceptional divisor ?

Plainly an affirmative answer to the question defines a Grothendieck topol-
ogy on which every formally un-obstructed P.D.E. becomes soluble, and, equally
plainly, there is no smaller extension of the classical topology that could work.



Unfortunately, as we shall see, I11.3.4 & IV.2.6, this is false, albeit not hope-
lessly so, whence, for the moment, let us take it as a guiding principle. Obviously,
in the first instance,

Sub-Question What about the linear case of the question ?

This sub-question should then be sub-divided according to what constitutes
resolution, and a demonstration of existence. Similarly,

Related Question What is the relation between the linear case and the non-
linear one ¢

The related question can at times be answered by the Nash-Moser implicit
function theorem, albeit [Zeh75] is better adapted to the analytic situation. It
is, however, slightly the wrong way to think of the problem. More precisely,
§1.2, an analytic fully non-linear partial differential operator between vector
bundles E and F is exactly the same thing as an analytic mapping between the
implied sheaves of Fréchet spaces in the topology of compact convergence. In
particular, linearisation has sense under the weaker hypothesis that this map
is simply differentiable, while the derivative itself is a continuous linear map
between sheaves of Fréchet spaces, which, in turn, 1.2.2, is the same thing as
being a linear differential operator. Here, as we will expand upon momentarily,
it should be emphasised this is not exactly Peetre’s theorem, [Pee60] & [Pee59],
since functorially with respect to the ideas, 1.2.1, one must respect the definition
of differential operator,[EGA], i.e. holomorphic differential operators can have
infinite order. It follows that the Nash-Moser conditions are not fully exploiting
the underlying geometry, and that the right condition is to seek an inverse
to the linearisation which itself is a map of sheaves. Unfortunately, it equally
follows, that in the strict sense this is impossible unless the operator has order 0,
a.k.a. a matrix of invertible functions. It is not, however, excluded that partial
sheafification of an inverse is possible, which, indeed is what one usually does in
practice, e.g. integration from a base point is well defined on many, but certainly
not all, open sets. The precise meaning of partial sheafication, and a related
technical condition of “Holder continuity” of the functional derivative are the
contents of 1.3.2(a)-(c). Furthermore sheaves of analytic functions are sheaves of
Fréchet spaces in a particularly simple way, i.e. inverse limits of Banach spaces
on larger and larger compacts, so,

Fact (1.3.5) There is an implicit function theorem for fully non-linear analytic
P.D.E.’s (more generally CY* maps between sheaves of Fréchet spaces of sec-
tions of holomorphic vector bundles) which is every bit as easy to use as the
implicit function theorem for Banach spaces. In particular, there are no pertur-
bation conditions of Nash-Moser type, and it is only ever necessary to invert (in
a way that partially sheafifies) the linearisation of the given P.D.E. of interest.

The precise statement is in §1.3, and is presented as above to emphasise its
salient features. Much of the set up is demonstrably optimal up to a universal
constant, I.1.4, which is an observation of independent interest. In practice the
conditions of the implicit function theorem imply that any finite combination of
integration and differentiation to construct an inverse will always work. Infinite
combinations are allowed too, but here one should read the small print. By way
of an example of the latter one has,



Example (1.4.4) Let f — P(f) be an analytic fully non-linear differential op-
erator of finite order with logarithmically flat singularities satisfying a Siegel
condition (e.g. defined over Q) then the equation in holomorphic functions,

P(f)=g

may be solved if and only if it is formally un-obstructed.

Of course in certain P.D.E.’s one can do better than a Siegel condition for
a fully analytic solution, but these are rather particular, and in general the
above may well be optimal. This point is discussed in more detail in 1.4.5, and
elaborated by way of the example L.5.

As should be clear from the preceeding remarks on linear systems, fully

analytic solutions of singular P.D.E.’s are a rarity, and what one should take
from the above discussion is that the related question is answered, and we are
reduced to the linear sub-question. As far as the sub-division of the same is
concerned the only relevant results in which the existence of an appropriate
bi-rational modification are known are resolution of vector field singularities
for surfaces, [Sei68], and 3-folds, [MPa], which imply various special cases such
as “irregular” 1st order O.D.E.’s where the aforesaid non-degeneracy fails, 2nd
order O.D.E.’s, and bi-dimensional first order P.D.E.’s, and leads us to,
Test Question Can we answer the question for 1st order linear P.D.E.’s on a
surface (and so, by the implicit function theorem any P.D.E. in any dimension
when the functional derivative has order at most —1 with at worst a surface
singularity).

Here some things are known, which, grosso modo, may be summarised as
conjugation of saturated plane fields to normal forms. Ignoring, momentarily,
some extremely subtle results such as [Eca%]7 although strictly speaking such
conjugations are solutions to P.D.E.’s they may, by way of power series expan-
sions, be reduced to the solution of O.D.E.’s. In particular, and, a priori rather
encouragingly, the question is known to be true in such cases, and, indeed, in a
highly structured way, [Eca85]. An evident lacuna here is the hypothesis of sat-
uration of the field, and correcting this, involves some work, e.g. 1.5.2 & IV.1.3.
Nevertheless, we are effectively dealing with a foliation, and so the linearised
P.D.E.’s in question may be described as follows: U is some bi-dimensional do-
main fibred by s over some base B with simply connected fibres embedded in
C,ie.

U —— BxC

sx§&
B

and we restrict our attention to the functorial generalisation of the so called
“irregular” case, whence there will never be any formal obstructions, and our
P.D.E. in functions on U looks rather easy, viz:

<ﬂ+;€>(f)=g



so, where is the difficulty 7 Well a moments reflection reveals the following,

(a) The implicit function theorem does a lot, but it doesn’t do miracles, so
we need a bound on the size of f in terms of g. This bound is allowed
to blow up on the boundary of the fibres Uy in C in accordance with the
conditions of the theorem, but not on a boundary point of Uy in [qu:, SO
any old rubbish will not work.

(b) Quite conceivably, fibre by fibre one can solve with appropriate bounds,
but this is not enough since the solution must vary holomorphically with
the base.

Our previous considerations on differential operators offer some further illumi-
nation, we have the power series,

< o\ ! Z’: on
]1 + ) “_» (_1)”7
o0& = o&n
while, quite generally, 1.2.2, the condition for a formal series,
Cn=r
n=0 af"
to be a differential operator on any open in C is that its Borel transform,
L
Z —> Z nle, 2"
n=0

is entire in z. In our current context, up to some irrelevant normalisation, this
amounts, not by coincidence, to the solution E(z) of Euler’s equation being
entire. Although this is false, it’s also remarkably close to being true, and one
might hope that there is a (sheaf) arrow,

_ o — o 0\ -
Diffg” — 27|+ %) ']
or, better, arrows, with similar properties, e.g. Stokes’ phenomenon, to,

C —C

l exp

C

and, whence, a universal way to invert 1 + %, which, being universal would,
obviously vary holomorphically from fibre to fibre. Such considerations are taken
from the first author’s limited understanding of [EcaSB], but try as he might,
he cannot implement the programme, and, worse, I1.1.5, I11.3.4, IV.2.6 suggest
that a wholly necessary condition is that in each fibre there are paths where



Re(¢) —» —. Consequently, for §II-IIT we have to undertake a case by case
analysis of the possibilities for s : U — B that are presented by resolution of
foliation singularities.

Amongst the dozen cases that must be considered essentially two distinct

types of behaviour emerge: the fibres U; have —oo in their limit and solutions do
indeed enjoy many similarities with the function E- albeit in IV.3 the behaviour
is much more complicated, e.g. one has “Stokes’ curves”, IV.3.5, as opposed to
“Stokes’ lines”, or the fibres U, are bounded, albeit, not uniformly in s. The
first case, I1.1.1, that we encounter has exactly this latter form, and the basic
technique for dealing with the aforesaid problems (a) & (b) in constructing
an inverse is taken from [Was85]. At first glance this may appear to be sad
rubbish. In reality, I1.1.5, it transpires to be a finely tuned instrument which
cannot really be improved as far as the linear equation is concerned, although for
nonlinear equations the implicit function theorem gives a very big improvement
I1.1.4. Subsequently, therefore, whenever we find that —oo is not in our fibre
we employ variations of increasing difficulty on the same theme. Sooner, I11.3,
rather than later, IV.2, we find that it fails to answer our question. More
precisely, associated to a plane canonical foliation singularity there are typically
two invariant branches, only one of which may, in general, be supposed to be the
exceptional divisor, and in our variations on a theme we find ourselves taking
logarithms in both. The construction, however, is not to blame, since such
additional logarithms are demonstrably necessary, 111.3.4, IV.2.6 so that, as
posed, the question is false, and strikingly so in the latter case, i.e. the question
cannot even be solved for the further logarithm in a full half plane. Let us
therefore make,
Summary The Test Question in the so called “irreqular” case is almost an-
swered in the affirmative in §II-II1I, but there are counterexamples. In fact, with
the exceptions of I1.1.1, & I1.3.1 every case where the fibres of s : U — B are
bounded is a candidate for such. It is possible, however, to answer affirmatively
a modified question in which we permit in solutions not only the logarithm of the
exceptional divisor but also that of other functions intrinsically associated to the
geometry of the singularity. On the domains of definition of such functions, the
implicit function theorem then solves a whole slew of fully non-linear P.D.E.’s
for free.

That new phenomenon should emerge in the “irregular” case of the test
question is, perhaps, not surprising since it effectively governs the major new
feature in the local dynamics of canonical foliation singularities in dimension
3. More precisely, the condition of being log-canonical is equivalent to each
singular point of the foliation enjoying a generator ¢ such that the associated

linear endomorphism,
m m

li W

is non-nilpotent. This, and the slightly stronger property of being canonical, is
a functorial property, and it is equivalent to the existence of a non-trivial formal
centre manifold in each point, i.e. the invariant formal subscheme defined by

the vanishing of the eigenfunctions of ¢ viewed as a linear endomorphism of



the completion of the local ring. One may, V.1, of course, engage in further
blowing up with a view to some further convenient, if not necessarily functo-
rial, improvement in the singularities. After which, the case where the centre
manifold has dimension 1 amounts either to an identity of the same with the
singular locus, and our calculations (which are not included) indicate behaviour
consistent with [EC&85]7 or an isolated singularity whose local dynamics, again
consistent with [Ec385], are much as one might intuit from a saddle node on
a surface. The fundamentally new case, however, occurs in the presence of a
2-dimensional centre manifold around a non-isolated singular locus, i.e. there
is, with multiplicity, only 1 eigenvalue. In particular, one has several notions of
formal, or, more accurately sub-schemes of the singular locus in which one can
complete. As such, even formally, [McQ)], §1.5, & post I1.2.2, the centre mani-
fold may fail to exist in completing along the union of 2 components close to a
point where the number of eigenvalues jumps from 1 to 2. Otherwise, around
central components where there is one eigenvalue at the generic point, it is well
defined after completion in the same, and we apply what we have learned to
address,

Central Question As suggested by the principle question, having performed
sufficient a priori blowing up, does every point in some real blow up supported
in the exceptional divisor admit a neighbourhood in which the centre manifold
converges.

This is the subject of §V, and it should be clear that 111.3.4 & IV.2.6 already

imply that it cannot be answered any better than the qualified way in which we
have responded to the test question for P.D.E.’s on surfaces, i.e.
Central Answer (V.3.3) As stated the central question is false. An invariant
manifold as tangent to the formal central surface as one pleases exists, however,
on taking further logarithms of invariant “divisors”, other than the exceptional
one. This can only happen at points where the induced foliation in the central
surface is singular and leaves the central components invariant. The word “di-
visor” has been placed in inverted commas, because while well defined formally
already they do not necessarily converge without first taking logarithms in the ex-
ceptional divisor. The singularities that may require such additional logarithms,
correspond to the P.D.FE.’s I11.3, II1.4, II1.5, IV.2, IV.3.6(c), and close to some
small nuisance region in IV.3, all of which is best possible.

The central difficulty in answering the central question post §II-III is, mod-
ulo suitable preparation which should always be done modulo large powers of
the ideal of the central components and not ideals at points, is the complica-
tion occasioned by invariant branches through the singularities in the induced
foliation in the formal surface. As indicated above these may have a purely
formal existence. They are, however, of dimension 1, so their existence, V.2.3,
respectively that of the related invariant divisor, V.2.5 has many similarities
with the centre manifold of a node on a surface, respectively its conjugation to
normal form. The further fact that the logarithms of the functions in question
are indeed invariant by the foliation, and intrinsic to its geometry, is tied to,
Final Question What can be said about existence domains for conjugation to
normal forms of the singularities around the formal central manifold.



Obviously logarithms about the exceptional divisor is the ideal. Obviously
the ideal will be false, and we’ll need further logarithms. We will also have an
essential preparation for addressing the principle question in dimension 3. Nor-
mal form should, of course, be understood by way of completion in the central
components, so, even this stage, VI.2.1, is not as trivial as one might think. The
basic extra difficulty, however, is one of preparation, i.e. typically achieving the
normal form modulo the square of the centre manifold, and this tends to involve
a certain loss of domain, basically the aperture of the sectors encountered in §I1-
III, equivalently where the centre manifold exists, will shrink. Indeed, the only
case where the loss of domain is more serious are when the formal invariants
occur in some highly improbable combinations. Such combinations need not be
a resonance as it is usually understood albeit it ought to be considered such,
and the “usual understanding” ought to be considered mistaken. There are,
in fact, two such combinations where the loss of domain is worse than a mere
loss of aperture, of which one is a “usual” resonance, VI.4.8, whereas the more
complicated one, IV.2.6(c), is not, and actually requires a further logarithm in
an invariant “divisor” which was not required in finding the central manifold.
A further, and extremely important, feature of these existence domains is their
structure at the generic points of the singular components. These naturally
separate into those which are invariant by the induced foliation in the formal
central manifold, and those which are everywhere transverse to it. The latter
exhibit all the good properties of, and are extremely similar to, the domains for
conjugation to normal form of a 2 dimensional saddle node. The latter, where
the normal form is,

0 p 0
z £ +x oy
behave exactly as our principle question anticipates, i.e. the existence domain
is a disc in y and z, while the exceptional divisor, x = 0, has its argument
constrained to a sector S. This sector, however, is small, i.e. 7/p — ¢, and
II.1.5(a)-(d), this is best possible whether for conjugation to normal form, or,
even the existence of the centre manifold. Whence, for example, there are many
invariant surfaces in such sectors asymptotic to the centre manifold, and the
actual dynamics in a neighbourhood of a point is potentially much much more
complicated than when the central component is transverse.
The author’s are, respectively, indebted to Jean Ecalle and Reinhard Schiifke
for a number of helpful discussions.

Notation Let A* be a punctured disc. The exponential affords a canonical
isomorphism,

a:m(A) —— Z(1) = Z27/—1

and, for v an oriented loop we define,

b= ),

v

which, inter alia, does not depend on the choice of the square root of —1.
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I Differential Operators

I.1 Canonical Norms

Ultimately, we will require norms on differential operators, so, in the first in-
stance vector fields. The following, cf. [Kob98], §3-§4 are standard,

I.1.1 Definition Let z € X, ¢ € Tx(z), X a smooth complex space, then the
Kobayashi, respectively Carathéodory, pseudo-metric is defined by,

o . 1 0 ,
||6||§ b(x) = H}f {E S (%) = R@}, respectively,

at 6
loly (x)=s1;p{D : fe (@)= D,

where for z a standard coordinate on the unit disc A, the infimum, respectively
supremum, is taken over pointed maps f : (A,0) — (X, z), respectively f :
(X,z) — (A)0).

From the point of view of local analysis the good definition should be that
of Carathéodory, but it appears to be rather difficult to obtain natural upper,
rather than lower, bounds in contradistinction to that of Kobayashi. Conse-
quently we shall avail ourselves of,

1.1.2 Triviality Let X be a smooth complex space, f a function, and 0 a vector
field, on X, respectively, then, for all x € X,

Cat Kob

or@ < Il xloly™ @ < Il ol ™ @)
where | f| x is the sup norm on X, possibly infinite, peu importe.

Proof. The first inequality is the definition of the Carathéodory norm up to a
conformal mapping, while the general inequality | [©% < | [¥°P follows from
the Schwarz lemma, in fact the easy undergraduate version. o

In so much as we will be doing local analysis, product domains will play
an important role. Consequently, even though much coarser bounds would be
sufficient, it’s convenient to recall,

I.1.3 Fact Let X x Y be any product of smooth complex spaces with &, 7 the
projections to X and Y respectively, then for x either Kob or Cat,

|y = masct&e[ Ime Iy -

Proof. This is a good illustration of how much more tricky Cat is than Kob.
Specifically, as ever Schwarz implies that in either case the right hand side is
bounded by the left. For Kob the converse is trivial, i.e. given discs, f : A —» X,
g:A — Y, the discs,

A— X xY : z— f(Az) x g(2)

12



or perhaps f(z) x g(Az), depending on which disc is bigger, for an appropriate
multiplier of modulus at most 1 gives the bound. One reduces the Cat case to
this case by way of a highly non-trivial theorem of Lempert [Lem82], that Cat
& Kob coincide on affinely convex domains. The discussion in [Kob98], §4.9.1,
is for a slightly different, viz. not necessarily inner, definition of Cat, so we’ll
quickly adapt/plagiarise it. More precisely, approximate a function f on X x Y
to A by tensors, Y. ; £*a; ® n*b;, and supposing without loss of generality that
a;, respectively b;, are bounded on X, respectively Y, for all i, put:

U={seC" : |si| <aify |s-by)] <1, yeY}
={teC" : |t1| < HbiHy’ |Q(x) -§| <1, zeY}

where ¢ - 7 =}, 0;7; is the standard dot product.

Now, supposing, as we may, that our function f and the approximating
tensor, T, vanish at the same point of interest x x y, we may decompose a
vector 0 at the same as 0x Ll 0y and apply Lempert’s theorem to conclude,

Cat Cat

Ca
170] 5 o[

(r xy) < max{” ai)«0x |, )w0v |y,

while the ubiquitous Schwarz lemma, in the guise of distance decreasing for Cat,
bounds the right hand side as required. o

Again, in the light of the use of product domains, the following complement
on the uniformisation theorem will be of some utility,

I.1.4 Fact Let Q € C be a proper simply connected sub-domain then,

Kob Cat 1

) < Jm ey

where d is the Euclidean distance from 02, and z a standard coordinate.

e

(p, o) H 0z ‘

o =lz,

Proof. The middle identity is the uniformisation theorem, and the right hand
inequality is trivial. We first prove the left hand equality for domains where
the uniformisation theorem extends C° up to the boundary, so let f : A — Q
be such a uniformisation, and appeal to translation invariance of the Euclidean
distance to suppose that p = 0. As such, for d the distance of 0 to 02,

- § ()

ceon

~togd| 7|

The afore-noted trivial inequality is the positivity of the integrand on the right.
To achieve an upper bound for the integral let p € (0,1) be some radius to be
chosen, then for ¢ a point on the disc of radius p,

o2l —10gp = 1= ) § 10010 g2 %

¢
cean
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The distance to the boundary of f(A,) is at most d, so there is some ¢ for which
the left hand side is bounded by — log p, and whence,

f ()% <23

cedn

Since p was arbitrary, the infimum of the right hand side for p € (0,1) will do,
i.e. p — 1, and the general case follows by way of an exhaustion (e.g. by sub-
discs via the uniformisation theorem) Q; — € which is continuous with respect
to either side of the inequality. o

This can be combined into some rather general estimates, according to an
inductive principle that we will apply repeatedly. To wit:

I1.1.5 Product Set up Let P = P; x--- x P, be a product of simply connected
proper subdomains of C, with ¢4, ..., d, a basis, or equivalently, an everywhere
invertible Op-linear endomorphism,

A:Tp—>Tp

so, for 0/0z; a standard field, d; = A(6/0z;). Punctually, this mapping admits
the operator norm |A|/(x), for Tp(z) normed in the Carathéodory metric, and
we denote by ||A| its supremum over P, possibly infinite, again, peu importe.
Subsequently we introduce a function,

dp(p) = mindist(p;, 0P;)

for p; the projections of p € P, and dist denoting the Euclidean distance. Finally,
for a = (a1,...,a,) € Z%, a multi-index, let |a| = a; + - -- + a,, and observe:

1.1.6 Fact Let things be as above, with f any function on P, then,

lal=1 4] le!

e

ay An < | |

o O W < aal et S 1

with || f|| the sup-norm of f over P, and |a| > 0.

Proof. By induction on |a|. The case |a] = 1 is immediate from the set up,

and the trivial direction of I1.1.4. Next let, (a1 + 1,as,...,a,) be a multi-
index of weight 1 beyond what we suppose known. For each 1 < i < n, let
d; = dist(p;, 0F;) and for t € (0,1) to be chosen, introduce the product domain

Q= HZ Qit, where,
Qit ={qe P : dist(q,0F;) > td;}
Then, infoeq, dp(q) = tdp(p) and dg, (p) = (1 —t)dp(p), so that, if d = dp(p),

. 122/, e
|010%f(p)| < m Al < ai!...ap! m /e
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lal

The right hand side is optimised for ¢t =
1+l

, while the supremum of (1 +
1/z)*, x>21lise. o

If we use the trickier part of 1.1.4 and profit from the product structure to
proceed one factor at a time, the we have a better formula, viz.

1.1.7 Remark Let things be as above, but with A the identity, then for some
absolute constant,

07 o f I < anlan! CEOLE - l0alE 15 )P

and ||_| the Carathéodory/Kobayashi norm.

Again, the non-intervention of the non-trivial direction of 1.1.4 in the proof
of 1.1.6, but rather the compatibility of the basis with the Euclidean distance
suggests that the truly practical metric to work with is neither that of Kobayashi
nor Carathéodory, but:

I.1.8 Definition/General Set Up Let 2 € C" be a not necessarily bounded
domain, and denote by dg : @ — R u {0} (or just d if there is no risk of
confusion) the Euclidean distance to the boundary in the norm |z| = max; |2],
then we say that Q is Cauchy hyperbolic if dg(z) # o0, Y € Q and metricise
the tangent space by,

0 |Cauchy 1
— T) =
H 0z ‘ Q da(x)
so that, trivially, H%Hgaud’y > |-£[&°P, but not conversely, e.g. product of a
disc with C. Furthermore, for &1, ..., d, a basis of the tangent space defined as

per 1.1.5 by a linear endomorphism, 0; = A(0/0z;), for 8/0z; the standard fields,
let | A||(x) be its pointwise norm in the Cauchy metric, and ||A|| the supremum
of the same over 2.

With this long winded set up out of the way we can directly appeal to 1.1.6
to conclude,

I.1.9 Further Remark Let things be as above then there is an absolute con-
stant C' such that for f any function on a Cauchy hyperbolic domain,

| clal| Allel

7 A <arl...ay!
0" 3 F) < -l S

1.2 Peetre’s Theorem

Recall that Peetre’s Theorem, [Pee59], [Pee60], asserts that any C-linear map
of locally free sheaves of differentiable functions is a finite order linear opera-
tor. Stated thus it is false for holomorphic functions. However, it is an actual
consequence of the theorem that C™ differential operators are of finite order, as
such with the right definition of differential operator it remains true. To further
investigate this let,

L: OX — OX
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be a C-linear map of the structure sheaf on whatever one’s favourite poison
X may be, e.g. stacks in the canonical site of analytic spaces in the maximal
generality. Irrespectively the structure of L is a local question, so we could say
X a polydisc, but let’s keep with the previous discussion and say a product
domain P. The sheaf Op is naturally a sheaf of Fréchet spaces for the topology
of convergence on compact subsets, and we insist that L is continuous for this
topology. Following [K&t69], §27.3, we embed P in a product of P = (P1)" of
projective spaces in the obvious way, and observe that for every ¢ € P, including
infinities,

n
(z1—t1) ' (2 —tn) L E F(HR‘ —{ti}, OP)
i=1
where, as ever, z; is a natural coordinate function on the i** copy of C. Unsur-
prisingly we put,
K(s7t) =T {(Zl — tl)_l e (Zn — tn)_l} .

By hypothesis, K varies holomorphically in the variable s. It is also analytic in
the variable ¢, since, supposing no t; infinite for convenience,

K(s,t+ 1) — K(s,t)

Ti

= L{ H (z5 =) (2 — ti) " (2 — (ti + Ti))_l}
J#
holds in F(H#i Pj\{t;} x P\A)7 for A a small disc around ¢; and ¢;+7;. Better

still, the function to which L is applied converges on compact subsets (7; — 0)
of [ i, P\{t:}, so:

gﬁj = L{(Zi —t) ][z - tj)fl}

Jj#i

Consequently K is an analytic function on P x P off the diagonals, A; = {s; =
t;}. Furthermore for any open U € P, of product type with each factor enjoying
a boundary a simple closed curve, and f € I'(U),

flz)= § f(®) (21 _tl),cfht (2, — tn)

YIX XY

Interchanging L with the contour integral is perfectly justified, e.g. op.cit. gives
a proof for L a linear functional, which is valid mutatis mutandis for any Banach,
whence any Fréchet space, and so,

(LF)(s) = 3€ K (s, tydt

Y1 X XY

Now change coordinates, viz.: 7; = (t; — s;)™!, so that we have a holomorphic
function on P x C", which, bearing in mind that K vanishes on each divisor at
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infinity, we may expand as a power series in T,

K(s,7) = (7’1 e Tn) Z ko (s)T®

where the sum is over multi-indices @ € Z%,, and is absolutely convergent for
any value of 7. Consequently,

ka(S) aa1+-~-+an

(Lf)(s) = zal arl...ap! 0s{t ... Osy” ()
which certainly merits the name of differential operator - the sum in question
is absolutely convergent, as it had to be, by 1.1.7, and functorially with respect
to the ideas this is the right definition.

To clarify this recall from[EGA], that on a scheme X, &% is functions on
the completion X x X in the diagonal viewed as an Ox-module by the way of
the first projection. As such, algebraically speaking,

2iff ¥ = Homo, (lin P, (’)X) = lim Z4ff ™

is the direct limit of finite order operators, equivalently K (s,t) should be poly-
nomial in the variable 7. In the analytic topology, however, one should make,

I.2.1 Definition For X one’s favourite poison (more general than stacks in the
standard topology doesn’t make sufficient sense, i.e. Ziff is undefined), Z¥
is the germ of functions in a neighbourhood of the diagonal of X x X viewed
as an Oy-module under the 1% projection. Consequently unlike its algebraic
counterpart it is not a Fréchet space (supposing that our scheme was over C)
but a nuclear DFS, separated in the natural direct limit of Banach spaces that
comes from its realisation as a germ - cf. [K6t69], §27.4, where the specifics are
about germs around compact subsets of the plane, but the discussion applies
verbatim in any dimension, whence the sheaf of differential operators,

2iff 3 = Homo, (93{0, ox)

is functorially a (nuclear) Fréchet space.

The necessary extension to sheaves of locally free Oy-modules, or even for
operators with values in a co-coherent sheaf, being a triviality, we may avoid
complicating our notation, and clarify our discussion by way of Borel/Laplace/Four-
ier transforms.

More precisely the algebra A of differential operators with constant coeffi-
cients in the standard fields 0/0z;, say @; for brevity, is a perfectly good com-
mutative algebra. It’s maximal ideals are derivations of exponentials evaluated
in zero, so that it’s Gelfand representation is:

G d,

A—TE" : D— 3€D(6Z1<l+~~+%<n) =S
1 n

Yo
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where the notations means, view D(#) as an operator in ¢, and take the contour
integral in ¢ around the origin on a product of loops, to get an entire function
of z. This is not, however, as one sees from the presence of factorials the entire
function that we are considering, but rather its image under the Borel transform
of a rather special type of element in the convolution algebra H}'(wer ), where
we identify G} with C" and make a certain confusion between functions and
functionals via the Haar measure (in a holomorphic sense) dzj - --dz,. This
leads, in the aforementioned (s, 7) coordinates, to an alternative formula,

K(s,7) = 4[ ef(%+"'+%)dal ... doy,

n
U€R+

, j@ L{eal(zl—s1>+~~+an<zn—sn>}( dzy  dz

z21—=51) (20— 5n)

Y1 X XYn

which is probably the opposite of help, since the equivalent,

K(s,7)=(11...70) jg L{ ﬁ(l—n(zi—si))_l} 2 dzn

=1 (21 — s1) (2n — 5n)

YIX XY

is clearer, where in either case the contour is a product of loops around the s;,
and we call this the Laplace transform, A, of the operator. Such considerations
do however help for the inverse map,

ﬂ . F(P X Cn, OPX@H(_Ol R On)) - F(Pv @Zﬁ;m)

K(s,7) —> jQK(s, Ly exp(2101 4+ + 2ndn)dzr -+ - dzn
zi
)

where the contour is taken around a product of loops at the origin in the z
variable, or at oo if one prefers the 7 variable. Irrespectively this is a Borel
(albeit depending on one’s prejudices Fourier-Laplace are perfectly legitimate
alternatives) transform of a function into a differential operator, and we may
summarise our discussion by the way of,

1.2.2 Fact For X one’s favourite poison (say smooth for convenience) a map
L : Oy — Oy is a C-linear map of Fréchet spaces iff it is an element of
[(X, 2iff y). Furthermore the Borel and Laplace transforms on any open
U — X isomorphic to a product domain in C" yield mutually inverse isomor-
phisms of Fréchet spaces,

~ 3
PUZif3") TP xC",Opyen(=01--=0,))
B

where the former has the topology of operator norms on compact sets, and the
latter sup-norms on compact sets.
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All of which is quite tidy modulo the choice of the isomorphism with a
product domain. Certainly by 1.1.6 the Borel transform is well defined after
the less demanding choice of a basis of T'(U, Tx), and at the price of shrinking
U, one could then define the Laplace transform. Such subterfuge is probably
un-necessary, albeit we ignore the question.

1.3 An Implicit Function Theorem

Again let X be one’s favourite poison, but,
P:FE—F

an arbitrary continuous map of sheaves of Fréchet spaces, for E, F' locally free
sheaves of O, -modules in the topology of convergence on compact sets. Conse-
quently for U — X open, and f € T'(U, E) we may apply 1.2.2 to conclude,

1.3.1 Triviality Suppose P :I'(U, E) — I'(U, F') is differentiable at f then,
P'(f)eT(U, 2iff y"(E. F))

S0, up to trivialisation of F and F', a matrix of differentiable operators.
Consequently it is ridiculous to imagine that we can invert, be it on the left
or the right, the derivative at the sheaf level. Indeed, again by 1.2.2, the inverse
would be a differential operator in the sense of 1.2.1, and the only such operators
appear to be invertible matrices of functions - for example this may easily be
reduced to Liouville’s theorem for operators with constant coefficients, albeit the
general case appears to be rather more fastidious. We can, however, reasonably
suppose that our inverse constitutes the resolution of a Cauchy problem in the
following sense:
I.3.2(a) Set up Let things be as above, and let § = (1,...,d,) € (Rugu{ow})”
be given, and put I = []5_, [0,6;], I* = []}_, (0,0;]. Suppose further that for
d € I, there are domains U(d) ¢ U such that for the partial ordering d < e
iff e; = d;, Vi, U(e) € U(d), and U(0) = U. Then we say that a family of
continuous linear operators:

Kq:T(U(d), F) — L(U(d), E)

solves a Cauchy problem if it is a right inverse for a differential operator D €
I'(U, 2iff ¥ (E, F)) such that for every § > d > e > 0 the diagram,

P(U(e), F) =22 T(U(e), F)

RESl lRES

LU (d), F) =22 U (d), F)

with vertical arrows the natural restrictions, commutes. Whence, there is some
partial sheafication for domains between U(§) and U, so, should there be no
possibility of confusion we’ll just write K (4), or even K.
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The basic example that one wants to have in mind is product domains as
per 1.1.5 where the U(d) are as per the proof of 1.1.6. The set up is, however,
far more general than this, and is really adapted to an arbitrary basis of fields
01, ..., 0, where one moves away from the boundary a distance d; along geodesic
discs in the i*? direction. Whence, in practice, it is unlikely that one can take
the p of 1.3.2(a) strictly bigger than the dimension of U, but this is irrelevant
to the structure of the estimates, so its harmless to take p arbitrary.

Let us further observe the generality implicit in 1.2.2. Suppose for example
that D has order 1, then one might imagine that K is an integral operator over
paths based at some point, or sub-variety, b. In good cases b (which can, by
the way, be taken at infinity where appropriate) won’t depend on J. In bad
cases, which will happen, we need to take b on the boundary, so we’ll have a
very limited freedom over the domains V for which K is under control, in fact,
only those between U(d) and U. Furthermore while K4(d) might be defined up
to the boundary of U(d), we don’t insist on this, so there’s space to differentiate
as well as integrate thanks to 1.1.6.

This said, manifestly our interest is to invert our given P : E — F on the
right around the section P(f). Translating on the left and right we may, more
conveniently, suppose f = P(f) = 0, and we add:

1.3.2(b) More Setting up We will suppose that the continuous map of sheaves
of Fréchet spaces, P, is not only differentiable at f, but that it is uniformly C'*<,
to wit, after translating to f = P(f) = 0:

There exits a,e > 0, and a function ¢ : RZ; — R, decreasing in its argu-
ments such that for all U(e) between U(9) and U, and sections, h, on the same
with Hh”U(g) < g,

[P = P (0)] ) < [Mlsy 0d =€)
where of course, we take supremum norms over the appropriate domains of
pointwise norms between Euclidean spaces, and e < d, i.e. ¢; < d;, Vi.

Again, let us observe the generality of our set up. For example take U € C",
p =mn, 01,...,0, the standard fields, with W the vector space of constant
coefficient operators in the same, but of bounded order. Consequently, for every
d; > 0 we can define,

U(d;) = {(z,2") + dist(z;,0U.:) > d;}
Ud)=U(d1))n---nU(dy,)
where 2% is the projection onto C"~! which omits the i*" factor, and dist is the
Euclidean distance in C. Consequently if z € U(d), and Ay, is the disc of radius

d; in the i*" direction, then z + A4, < U, which, inter alia, does not imply that
z4+ Ay, x -+ x Ay, < U, but, nevertheless:

1.3.3 Intermission Let things be as above, then for all multi-indices ¢ =
(a1,...,ay) and functions f on U,
ail- - ap!

mela‘ (a5

H@Tl e @Z"f”U(g) <
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Proof. As per 1.1.6, by induction on |a|, the case |a| = 1 being trivial since the
Kobayashi metric in the i*" direction is at most 1/d;. Now, for some suitable
t € (0,1) to be chosen, and (a1 + 1,as, ..., a,) an unknown multi-index:

ail-ap! elel
f”U tdy,da,..., dy) < dtiquldgz i n d%n (1 t|a\ ||f||U

1010%F s a) “flo

(1 —t)d
while again the supremum of (1 +1/2)", z > lise. o

Now suppose U sufficiently small that we may identify £ and F with trivial
bundles of rank r and s respectively, then a very large class of operators may
be defined as those of the form:

(Ph)(z) = (x, hy, 01" - &5 hy)

for & : U x A" x W" — C? analytic, A a disc of radius at least ¢, for € as per
1.3.2(b) and polynomial in W. As such for P mapping the origin to the origin,

PE_P/(O)Q = \I/(l',hj,a]h_j)

where ¥ enjoys all the properties of ® enunciated above, except that it is at
least quadratic in the h;. Whence an immediate application of 1.3.3 yields,

1.3.4 Remark/Triviality Suppose P is of the form discussed above then it is
uniformly C1* for some a € N, with ¢ at worst reciprocal polynomial in its
arguments.

It therefore remains to consider the shape of the right inverse K. Plainly
we’ll want K/ to be sufficiently small so as to apply our hypothesis of uniformly
CY*, and whence:

1+
[PER=h]y g < |5y, éd—e)

Having already, and wholly reasonably, hypothesised that K is linear we may
conclude our set up with:

1.3.2(c) End of Set up The solution K of the Cauchy problem will be sup-
posed to be not ludicrous, i.e. for K(§) a family of operators on domains U(d)
between U(§) and U it is required that there is a bound,

[ty gy < [l ¥(d = 2)

for ¢ : RY, > RY, decreasing in its arguments such that the logarithm of the
function, t — 0(td) = ¢(td)(td)*+*, t € Rsq is absolutely integrable at t = 0.
Plainly reciprocal polynomial bounds for ¢ of the type encountered for ¢ in 1.3.4
lead to a solution which isn’t ludicrous. Putting all of this together, we assert:
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1.3.5 Claim Let the set-up be as in 1.3.2(a)-(c), i.e. P is uniformly C** and
there is some ¢ > 0 such that K (d) solves a Cauchy problem for the derivative
of P in a way which isn’t ludicrous, and for convenience ¢ of 1.3.2(b) less than
1, then for g a section of F' over U the equation,

P(f)=g
has a solution on any U(d) between U(d) and U provided,

”9”U < Inax{l’@(d),u:;)}e

where )
O(d) — exp U log H(td)dt)
0
Better still, under such conditions the norm of f is no worse than,

p
o < {loly + 725} v@

140 elog(l+a)
for p = (Hg”U@(d) oZ ) . In particular, the equation has a solution on

U(9), and if this is all one is interested in one may dispense with the condition
of absolute integrability in 1.3.2(c) for all d other than J.

Proof. Write PK = 1 + @, then for any section h on any neighbourhood U(d)
between U(J) and U we have the estimate,

1+
[@Pl gy < 2]ty 00— ©)

provided d > e, and |h|y() < . Now consider, 0 = t,11 <t, < -+ <13 <
to = 1 where, for m < n:

znl (i—m + 1 _ znl (1+414)

~ (1 +a) (1+a)

and for any fixed § = d > 0, apply the basic estimate on @ successively on
U(t,d) C U(ti+1d) to obtain,

1
1- t(n+1)7m = 0_7

log Q"+ h ) < (1 + )™ log ], + Z (1+a)'log((t; — t;11)d)
1=0
=(14a)" log ||hH (1+a) Zn: oge(d— Zn: #)
v = e T+ a)

Since 6 was supposed decreasing in its arguments, the latter sum is bounded by

Sn/Un n 1
(1 +o¢)”J, log O(td)dt , sn =3 —
0 ;) (1+a)
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so that,

log [ Q1A gy < (1+a)™! {1og ], + (1;0‘) log e(@}

provided that ||h||y was taken sufficiently small, i.e. right hand side bounded by
loge for all n. Armed with this bound we can now iterate in the obvious way,
viz: we look for a fixed point of,

Tf=9-Qf

by the way of the iteration: f,+1 = Tf,, fo = 0. Thus, for d as above, and

n €N,

140 ) (1+a)™
[foer = Fally oy < {lolly ©(@) 5}

provided, as before, that ||g|y was taken sufficiently small, i.e.

o, < ma {1,060 45 <

under which conditions the sequence f,, is uniformly Cauchy on the domain
U(d), even up to the boundary for d > 0, and converge to a section f with a
supremum on the same at worst:

lto ) elog(l+a)

p = 2
Iflow <lsly + 755 o= (lsl 0@

From the point of view of practicality, and verification let us make,

1.3.6 Remarks The condition o > 0 is essential. The curious reader may
usefully follow through the proof in the case a = 0, and will see that with the
given partition tg,...,t,+1 as chosen, |@Q™h| blows up as a power of n!, which
is what should happen.
Furthermore, as indicated post 1.3.3, a form of # which will often occur in
practice is,
0(dy,...,d,) =C(dy---dy)™N

for some suitable constants C' and N. Consequently, ©(d) is of exactly the same
form, albeit for a possibly different constant C'. Whence to have a solution on
U(d), ||g||U must satisfy,

ol < =C(d:---dp)™

again for possibly different constants C' and N. To achieve this estimate may
require some preparation. For example, consider p = 1, U a product of polydiscs
of radius R, and U(d) a product of polydiscs of radius R—d, d < R, and suppose
furthermore that K is unchanged as we vary R to r (a, so to speak, good case
such as an integral operator based at the origin, or power series solutions). In
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this scenario, we may usefully imagine that g vanishes to a certain order M at
the origin, so that on U(R — r) we will have an estimate of the form,

CrM
Hg”U(Rfr) < (R —r)M ||gHU

for some other constants C and M. As such we’ll get a solution on U(R—r+d)
as soon as,

C

.,
d > ey

and since d < r there are limitations. Nevertheless, d = r/2, say, r sufficiently
small, and M > N will work fine.

I.4 An Example

While fully analytic solutions are quite far from what one may reasonably antic-
ipate for the general singular analytic PDE, they nevertheless provide a useful
example of how the conditions of the implicit function theorem apply in prac-
tice. To this end it is often both useful, and even necessary, to prepare the
situation somewhat by way of a polynomial approximation, and so we observe:

1.4.1 Triviality Let F' be a complete topological vector space, and P: E — F
a continuous map from another t.v.s. E such that:

(a) P sends 0 — 0 and is differentiable at the origin.
(b) The functional derivative at zero has a continuous right inverse K.

(c) There is a co-final system of open linear sub-spaces FP? of 0 € F, p € N,
such that for some o > 0 the operator, Q = PK — 1 : F — F satisfies
Q(FP) c FP™ for all p e N.

Then under these hypothesis, for g € F'!, the equation,
P(f)=g
has a solution f € FE.
Proof. As ever, we seek a fixed point of the operator:
Tf+=g9-Qf

by the way of the iteration scheme, f,+1 = T f,, fo = 0. Whence by hypothesis,
fl :gEFlaandv

for1 = fuo=(=D"Q"(f1 — fo) € Flene

Consequently, since the FP are linear, f, is Cauchy with some limit f,, and
f = K f, is the desired solution. o
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An obvious case to which we may directly apply this observation is to local
rings O complete in the m-adic topology of its maximal ideal, with dimy m/m? <
o0, where the residue field k is of any characteristic. In such situation a differ-
ential operator must necessarily be of finite order, so, say, for simplicity order 1
and polynomial in its derived arguments. Whence for P : O®" — O™ we may

write,
ZPI fi( pfq

for Pr(f) some vectors in formal functions, I some finite number of multi-
indices (ipq), 1 < ¢ < n, and J, some finite number of generators in Der(O).
Consequently the functional derivative in 0 is,

)p) = Z apo 0)p; +2qu(0)appq

p,q

and of course, we hypothesise that a continuous right inverse K exists. In
practice K will preserve the m-adic filtration, but let’s hypothesise that it’s
a little bit worse, e.g. K(mMO®") € mVN=P0®" for all N > (3. Observe
furthermore that,

foem = d,f, emV "t = (0,f,) e mN-DHI

for |I] the sum of the i,,’s, and (N — 3 —1)|I| = N+ 1forall N > 26 +3
provided |[I| > 2. The terms in 0 and 1 not inside the functional derivative
satisfy slightly better estimates (N > 26 + 1, and 20 + 2 respectively), whence
for @ = PK — 1, and N > 283 + 3, Q(mNO%") ¢ mN 109" Consequently
we have formal solutions of the equation P(f) = g as soon as g € m?#+30®m,
Whether or not we can do better, simply depends on the equation. It is, however,
a finite dimensional obstruction, accessible to finite dimensional linear algebra,
whose solution is a fortiori necessary for the existence of analytic solutions.
Consequently let us summarise this discussion by the way of,

I.4.2 Definition/Summary Let P be a differential operator between analytic
vector bundles of the shape envisaged in 1.3.4, then we say that the equation
P(f) = g is formally un-obstructed at a point where P sends 0 — 0, if after com-
pletion in the maximal ideal m there is a formal solution f. Furthermore under
the hypothesis that the functional derivative admits a right inverse satisfying
KmVF) € mN=PE 3> 0 for all N (and actually less stringent conditions
continue to work), this is true as soon as g € m?’*3F | at worst. As such, the
obstruction to the existence of formal solutions for an arbitrary g € F is a finite
problem in finite dimensional linear algebra, viz: existence of a fixed point of

T:F/m25+3—>F/m25+3 D fr—g—QFf.

Indeed when we have such a point, say fo, then we start the sequence oc-
curring in the proof of 1.4.1 at fy, and this gives, fi — fo € m??*3, so, we again
get formal solutions. Similarly, if the right inverse K is actually the completion
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of that envisaged in 1.3.5, then again we can start the proof at fy, or some even
higher iterate, so that f; — fo € m”" for N as big as we like. Consequently
the conditions of 1.3.5 for ||g| to be appropriately small can be weakened to a
smallness condition for f; — fy, which will be achievable, as explained in 1.3.6,
by the simple expedient of taking N sufficiently large and restricting to an
appropriately small neighbourhood.

With these preliminaries, we need a further definition before getting to an
application, viz:

I.4.3 Definition/Revision Let ¢ be a holomorphic vector field vanishing at a
point p. Then Leibniz’s rule yields a linear mapping

0 € End (m(p) )

m(p)?

and we say that ¢ is without resonance if for A1,..., A, the eigenvalues and
J = (j17"'7jn)€ZgO7 Z]k >00r.ji = _17jk 62207 k # 1, Z]k +]Z > 1, we
have:

JA=D kA # 0

We say further that the A satisfy the Siegel’s condition if,
|J-Al = ClII7Y

for |J] =Y. |jk| and constants C, N independent of .J.

Now let’s consider a scalar valued differential operator of finite order f +—
P(f), with the polynomial in the derived variables restriction of 1.3.4. While
the order is arbitrary, we’ll suppose its functional derivative has order at most
1, with —1 part not just any vector field, but one satisfying Siegel’s condition.
Under this condition it is known (in fact it can be proved by the implicit function
theorem, but more is known, so we’ll come back to this) that there are analytic
coordinates in which ¢ may be expressed as
where we suppose the ambient space smooth and of dimension n, and employ
the summation convention Consequently after multiplying P(f) by a unit, we
can suppose that the functional derivative is constant linear, viz:

P'(0)p = xp+0p
and we extend Siegel’s condition in the obvious way, i.e. for J € Z%, we require,
IXx+J-Al=ClJN

Consequently, P’(0) has a right inverse by power series, K, defined on all func-
tions if x # 0, or only on the maximal ideal m at the origin if y = 0. In either
case K preserves powers of the maximal ideal (8 = 0 in 1.4.2) and is equally
good for applying 1.3.5 and 1.4.1 at the same time. Consequently we assert,
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I.4.4 Claim Let f — P(f) be a finite order differential operator with the minor
caveats of 1.3.4, and suppose the functional derivative in 0 (as ever P(0) = 0)
is of 1%t order with both the said derivative and its —1 part satisfying Siegel’s
condition, then if the equation P(f) = ¢ is formally un-obstructed, it has an
analytic solution f on a sufficiently small neighbourhood of the origin.

Proof. If h = Y. hyz’ is the Taylor expansion of an arbitrary h, then

27
Kh= Z“x—l—JA

h € m, if x = 0. Whence, in the notations of 1.3, supposing our coordinates z;
defined on unit polydisc, A", for d > ¢,

N
n 1—ei
g <€ ([T32%) s

for NV as per the Siegel condition, and an appropriate constant C'. The shape
of ¢ is as per 1.3.4, ¢ is as above, so a little better than ¢ since the 1 — e; help,
but ultimately we cannot say that 6 is any better than the shape discussed in
[.3.6. As per op.cit. we simply take all the d;, resp. e; equal, i.e. reduce to the
case p = 1 in the notations of 1.3.2, and as envisaged in 1.3.6, and discussed in
1.4.2, start the recurrence in the implicit function theorem at some fy such that
fo=(1—Q)fo to a sufficiently large power of the maximal ideal, viz: nN + C,
for an appropriate C determined by the order of derivatives in P, e.g. 3 for order
1. o

One would suspect that in this generality the Siegel condition is best possible.
On the other hand it is known, [Brj71], that vector fields can be linearised under
a weaker Diophantine condition, which calls for:

I.4.5 Scholion (Linearisation of fields) This is almost 1.4.4, but actually the
vector valued version with a functional derivative A+, where A is some constant
matrix, and the non-linearity has no derivatives. In this case one can get a better
result by profiting from the 1—e; term that appeared (and was approximated by
1) in the proof of 1.4.4. To keep the notations of 1.3.2 one should therefore work
with the logarithm of the distance to the boundary, and introduce a function,

=2 -
Q

or A-@Q — \; as appropriate, t > 0, so that,
1K flla < bld—e) | fllace

for K a suitable right inverse. The function ¢ can be taken to be 1, so,

1

log ©(d) = J log b(td)dt

0
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and appropriate smallness is ©(d) no worse than (1 —e~%)" for some N. Ex-
actly what the relation between this condition and that of Brjuno may be is far
from clear, but it’s certainly better than Siegel’s. Unfortunately, however, the
linearisation of fields problem doesn’t immediately reduce to this equation, and
requires some preparation. More precisely one wants to find an automorphism
that conjugates a field D with appropriate eigenvalues into the standard field
0. To ensure that solving some PDE in functions yields an automorphism re-
quires (proceeding by way of an inductive statement on the dimension for the
said linearisation) preparation, e.g. finding a smooth invariant surface, and the
equation for doing this has derivatives in its non-linearity, i.e. in principle one is
in the situation of 1.4.4 rather than the very particular operator that we intro-
duced at the start of 1.4.5. Furthermore, even once one does this, the functional
derivative of the resulting conjugation equation is of the form A + ¢ for A a
matrix of functions, rather than a constant matrix. This has to be conjugated
to a constant matrix, and again, the equation for doing this (whose functional
derivative is of the form ¢ — [A(0),¢] + 0 in gl,,) has derivatives in the non-
linearity, so we still cannot profit from equations of the special form where we
can do better than Siegel.

Consequently, in brief: the implicit function theorem 1.3.6 yields linearisation
of fields under Siegel’s condition. It could do better if one could arrange a series
of steps that allow the linearisation via a series of equations of the special form
introduced above. A priori a series of such steps is not so clear, and perhaps,
this problem with its special symmetry is best studied directly.

1.5 Monomialisation

By way of a further example, or an example within an example, let us examine
a more general problem than 1.4.5, i.e. final forms for vector fields rather than
foliations. More precisely, in the presence of resolution of singularities, an ar-
bitrary field may eventually be resolved to one where the implied foliation has
canonical singularities , and, should the field be non-saturated, vanishing along
a simple normal crossing divisor. A particular instance is, therefore,

I.5.1 Set up (a) Let @ be a vector field at the origin in C™ of the form,
0
Pheee e E)\i i7)7 i €L
walt - ab ( ,- Tig P >0

Conditions for linearisation, holomorphic, or formal, have been discussed in
1.4.5, we’ll certainly, therefore, suppose that there are no resonances, so, the
discussion is the shape of the unit. To investigate it, let us consider attempting
to eliminate it by way of a coordinate change, & = efiz;, so we’d need to solve,

eipjfj ()\z + Dfl) = )\{U,il

where we apply the summation convention, D = Ai%%, and we harmlessly
suppose that u(0) = 1. An appropriated vector valued operator is, therefore,

L(f)i=ePli(Ni+Dfi) =\

28



which has functional derivative,

(Lf), =Dfi = Xi(p;f;)

Now the matrix A;p; has rank 1, whence n — 1 zero eigenvalues, all of which
admit a corresponding eigenvector. Under the no-resonance condition, there is
also a non-zero eigenvalue A;p;, and this matrix is diagonalisable. Consequently,
in notation of 1.4.3, we encounter obstructions to the invertibility of L as soon
asJ-A=P-A, P=(p1,...,pn). So certainly, J = P is an obstruction and we
suppose,

1.5.1 Set up (b) Suppose the only obstruction is at P, viz: notations as above
and as per 4.3, J-A=P-A=J=P.

The operator L preserves the maximal ideal, as does the obvious right inverse
K by power series provided it is defined, so we can conclude after a finite number
of iterations a la 1.4.1 that,

w=(1—vaz" - azbr) mod m/FI+1

for some v € C. After which the operator is no longer obstructed, so let’s aim
to solve,

P(f)i=N(u =1 —wal - caPry (N 4+ Df;) — Ni(1 + vabt - abn)
which respects the filtration by the maximal ideal, and has functional derivative,

(Lf)i =(1+wval"---22)Dfi — Ni(p; f;)

If we have Siegel or Bryuno’s conditions then we can find analytic functions
Y1, .-, Yn such that,

L 0
(1+wvalt - 2Pr)D = /\iyia—%

so we get a right inverse on m!PIT10®" K by power series, admitting bounds
of the shape considered in 1.4.4 under, say, Siegel’s condition, and Q = PK — 1
respects the filtration by the maximal ideal. Now we’re in the situation of
1.4.2, where starting the induction for finding a fixed point, f — \j(u™! —1 —
valt-oaPn) — (Qf); = Tf at Ty € mlPIH1O®" and the iterates stay in the
un-obstructed space, whence:

I.5.2 Summary /Fact /Example Suppose the set up 1.5.1(a)-(b), then there
is a formal change of coordinates bringing ¢ into the form:

PL, .. P
xy abn 0
Pn

O )\x—) vecC
1+wvalt-ahr \7 oy

Moreover, in the presence of Siegel’s condition this can even be done analytically.
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II Integrable Forms

II.1 Smooth Integral

We'll proceed to consider a series of more and more difficult cases, which serve
equally as a series of examples in the use of the implicit function theorem.
Consequently we begin with the easiest possible case of a functional derivative
of order 1 (as will be the case throughout this chapter) whose —1 part has a
smooth first integral, and an invariant divisor, i.e.

I1.1.1 Set Up Let x;, 1 < ¢ < n, y be standard coordinates in some polydisc
A" x A, and introduce fields D; = mz(ﬁ%, 0= ! -~-xﬁ"%, p; € N. Now
consider a differential operator f — P(f) of finite order with the proviso that
all the differentials that occur are monomials in D; and 0, and, as per 1.3.4, it
is polynomial in the same. Finally suppose that the operator sends 0 — 0 and

the functional derivative in 0 is,
D=P(0) : fr— (1+)(f)

Rather special cases of this may be found in the literature, essentially, (1 +
A (f) = a(f), for a function of f alone, c.f. [Was85]. However, for essentially
the same methodology, the implicit function theorem gives much more. To this
end fix sectors S; in the x;-variables such that the total width of the sector S,
image of: Sy x -+ x S, > 2§ -+ 2P € S has an aperture ¢ < 7, and consider
a domain in the y-variable of the form shown in figure I1.1.1

Figure I1.1.1
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where |a| = 1, and r > 0 are chosen such that for z € S,

min {Re (Q) D y€E Qs(T)} = Re (2)
x x
and this minimum is realised uniquely at a/z.

Plainly we are in the situation envisaged by 1.3.3, where the natural coordi-
nates are ) = yz; ' -+ 2,7, €% = x;, & belonging to some appropriate strips,
Re(¢;) < 0, Im(&;) € I;, which we continue to denote by S;. We therefore have
a domain 7 : U — Sp x --- x S, and Qg(r) has been chosen to ensure the
following properties:

11.1.2 Remarks For any x; € S;, there is a constant C' > 0, depending only on

r such that ax]?* .- 2, P» (which, by the way, is a holomorphic section of 7)
can be joined by a path v : [0,1] — U, in the fibre over z satisfying,

KDl < 02 Re (4(1)
where in an abus de langage, we identify the fibre with its conformal image under
nin C. Furthermore, this remains true with the same constant, under any scaling
Qgs(r) = M25(r), A € Rsp. Finally, and manifestly, U 2 A, x S; x -+ x Sy, for
A, a sufficiently small disc in the original coordinates.
Having thus introduced our domains we observe:

I1.1.3 Triviality The operator D restricted to I'(U) has a bounded right inverse
K satisfying,
|Kgl(p) < Clg],

for any p € U, and C' the constant appearing in I1.1.2.

Proof. Given a bounded function g on U define, over a fibre z,

(Kg)(z,n) =e" Jn e’g(z, p) dp

Ota:l_pl _._I;I’n

and apply the properties of U enunciated in 11.1.2. o

The triviality of I1.1.3 not withstanding, there are a couple of rather com-
plicated issues lurking under the surface. In the first place K is defined using a
section of 7 : U — S7 x --+ x S, with values in the boundary, whence it does
not solve a Cauchy problem in the sense of 1.3.2(a), and the implicit function
theorem cannot be immediately applied. However the operator P was taken not
with arbitrary occurrences of derivatives in the y variable, but only in powers
of 0. Consequently if we consider the domain U(§) € C**!, as per 1.3.3, in the
& and 7 variables, with the (n + 1)!-entry in 1, we can take 8,11 > 0 and use
the base points ax;?' -z, P» — d,41. Of course this may fail to be in U as
it is actually defined, but we can remedy this by attaching a small disc around
ax{P' -z Pm in each fibre of radius 20,1, and by another abus de langage
we’ll continue to denote this domain by U (or possibly Ug, R the radius of the
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disc if there is a risk of confusion). In any case we now have a solution to a
Cauchy problem for all domains U(d) between U(d) and U with a worse con-
stant than I1.1.3, viz.: as before plus 1 plus e?%. Now we can apply the implicit
function theorem to obtain:

I1.1.4 Corollary Let f — P(f) be as per the set up II.1.1, Ug, R fixed > 6,41
as above, then for some absolute constant ¢ depending only on 4, o, r, R, whence,
in particular independent of shrinking the radii of the initial polydiscs in the x;
(and even y), the equation
P(f) =y
has a solution on Ug(9), for Hg”UR < €. In particular, if g on our original A™ x A
vanishes at the origin, then on a domain of the form S7 x --- x S}, x A’ for S;
of small radii but aperture as close to S; as we like, and A’ a sufficiently small
disc in gy, we have a solution.
Before progressing, let us observe,

I1.1.4 (bis) Remark One can, of course, for essentially no extra cost introduce
extra variables z, in some polydisc, together with fields %, 1 <k <m, and
more generally f — P(f) with monomials in the D;, 0, % and polynomial
in the same. The only thing that changes is that € is no longer absolute but
becomes eC(dy - - - d,, )Y, for some constants C' and N. Consequently one falls
into the situation envisaged in 1.3.6, and one should hypothesise again that ¢
vanishes at the origin, then shrink the radii in the z;,y (in practice the x; alone
would do, since there’s usually some analytic blow up that’s permitted) at a
suitably quick rate to compensate for the lack of smallness occasioned by the
new variables.

Beyond this, the matter of not being able to go beyond 7 in aperture is
an extreme misfortune, but unfortunately it appears to be best possible. To
consider the matter in more detail, let us suppose for convenience that p; = 1,
n = 1, and change coordinate x +— —x. In the first instance we consider the
formal solution of:

Now, if for simplicity we suppose that g = xh(y), then the Borel transform of

f is’
fley) = jgeng (iy> dz

~

where the contour is around a neighbourhood of w0, so that:

~

f(&y) =hy+8)
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Whence for h enjoying a natural boundary on say a disc, the domain of conver-
gence of f is rather small. As such,

I1.1.5 (a) Fact The equation Df = g can not in general be solved analytically
in both = and y, i.e. we certainly cannot replace a sector in I1.1.3 by a disc.

~

Proof. Otherwise f(£,y) is entire in £, and even of exponential growth. o

However the situation is even worse than this, since:

I1.1.5 (b) Nastier fact The equation Df = g can not in general be solved in
a domain of the form {|z — p| < |p|} x Ay, (so a bit smaller than a sector of
width 7) while satisfying the estimates:

n—1
f@y) = D) am@)z™ + Ru(z,y);  |R(z,y)| < C"nllz|”
m=0

for every n, where a,,(y); R(x,y) are analytic and C is some constant.

Proof. This is Watson’s theorem, or more accurately a strengthening thereof by
Alan Sokal, [Sok80], which says that under these conditions f(¢,y) has analytic
continuation to V' x A, where V' is a small neighbourhood of Ry p. o

Now, while it might be objected that such an asymptotic expansion will not
occur, this is by no means so. Indeed:

I1.1.5 (c) Worse still Let {2 be a domain of the form {|z —p| < |p|} x A, then
there is no bounded operator from the space of holomorphic functions on €2 in
the supremum norm which affords a right inverse to D.

Proof. Suppose otherwise, and let K be such an operator. Now put ¢ = z%,
and consider solving the equation,

Df=@-0)(f) =y

by the way of an expansion,

n—1
fa= D, (@"g)+2"R
m=0
Then we require to solve:
o"g
1-0)R, = —
(- R, =5

so by 1.1.6, on a suitably small disc in y, independent of n, the right hand side is
certainly of the form C"nl!||g|, for some norm taken on some slightly bigger disc
on which g is hypothetically defined. Consequently if K exists, we’ll contradict
I1.1.5(b) as soon as we know that the solutions f,, do not depend on n. This is,
however, the case since if f,, f,, are two different solutions so constructed, then
their difference satisfies

|f’n - f7n| < Cnm
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for some constant depending on m and n, while,
fn = fn = € Y Py ()

for Fy,n(x) analytic in {|z — p| < |p|}. Since this holds for all y in a disc,
| Frn ()] < Crape™ /1!

and the domain of z is large enough to imply that F,, is zero, c.f. [Mal91],
IX.4.5. o

I1.1.5 (d) Hopeless situation For a domain § of the form {|z—p| < |p[} x Ay,
or S x Ay a sector of aperture beyond 7, there is no adequate right inverse to
D to which the implicit function theorem can be applied.

Proof. The hypothesis of the theorem require that at the very worst there are
subdomains Q' < Q" < Q of the same form such that the right inverse is a
bounded map of Banach spaces,

T (Q") — Tor ()

of bounded holomorphic functions. A condition which is hardly unreasonable,
but impossible to fulfil by the way of the trivial change of the domain of defini-
tion of f,, in I1.1.5(c) from Q to Q. o

Regrettably, therefore, I1.1.3-4 is really best possible, and the solutions occur
in a region where they are highly non-unique because its aperture is too small.
Consequently if one were thinking of these domains as neighbourhoods of a real
blow up in the divisor = 0, then one has to abandon all hope of patching as
one moves along the divisor in the y-direction.

I1.2 Almost smooth

We continue our progression by small steps, and so consider a case not far from
the previous one, viz:

11.2.1 Set Up Again let x;, 1 < i < n, y be standard coordinates in some
polydisc, and introduce fields D; = xz% 0 = i ---x{’lny%, p; € N. Now
consider a differential operator f — P(f) of finite order with all derivatives
monomial in ¢ and the D;, and as per 1.3.4, polynomial in the same. Finally
suppose P sends 0 — 0 and the functional derivative is,

D =P(0) : f— (1+0)(f)

Here we can usefully exploit the freedom that the implicit function theorem
provides in the construction of a right inverse. Specifically let Sy,..., S, be any
sectors in z; such that the image S of 2" --- 2P~ does not contain the negative
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real axis, and g a bounded function analytic on S; x --- x S, x A for A a disc
in y. As such, instead of trying to solve,

Df =g

we can aim to solve,

Df =—-dg

which has the trivial marginal cost of obliging us to restrict to discs A(d) € A
of points in discs a distance d from the boundary on which,

”69Hslx...xsnxA(d) < d*1||9||slx...xsnm

Similarly writing —dg = 2" ---2P»h, it’s even true that

Hh”s1 )eoox S Ad) S d-! HQHSl XX Sy X A

and we can expand h in power series,

Sy hna)
k=1

with coefficients bounded by,

Hhk@)”sl XX Sy x A(d) < r_kd_l HgH,51 XX Sy XA

for r the radius of A. Consequently we must solve the equations,

(4 K) fe(z) = hyp(z)

for & = 2;"* - 2P~ belonging to an unbounded region contained +o of the
form shown in figure I1.2.1; which is trivially possible up to a constant C' de-
pending on the aperture of the sector, which gives a solution of the original
equation Df = g, by the way of an operator g — Kg satisfying,

(r—d)
HKgHslx»--xS"xA(d)sc 2 Hg”slx-»-xsnxa

So more generally for any § > 0 (on which K does not depend), and ¢ > d >
e = 0, we have a solution to a Cauchy problem in the sense of 1.3.2(a) which
satisfies,
(r—d)
”KgHSlxu-xSnxA(d) < Cm ”gHslx-uxSnxA(e)

and, better still, going away from the boundary of the S; only improve this
bound, whence:
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Im(¢)

Figure 11.2.1

I1.2.2 Fact Let f — P(f) be as per the set up I1.2.1, with U = Sy x- -+ xS, x A,
then for some constants C' and N, the equation,

P(f) =y
has a solution on U(d) provided,
lglly, < min{1,C(d: - dpy1)™}

Consequently for g on the original polydisc A™ x A, either vanishing on some
divisor z; = 0 (as will be the case in applications) or to sufficiently high order
in y (so that we can apply the considerations of 1.3.6) we find a solution in a
region of the form S{ x -+ x S/, x A’ with S} sectors of sufficiently small radii
but aperture as close to that of S; as we like, and A’ an appropriately small
disc in y.

Furthermore, the discussion of II.1.4(bis) applies mutatis mutandis on intro-
ducing further variables z;, 1 < k& < m, and fields ?ik Indeed it’s even true

under our immediate restriction that the image S of 81 x -+ x S, does not
contain z* - - - 2P negative real that one can replace the field @ by % provided,

and wholly necessarily, the functional derivative of P remains,

ay

+ij1"'$pn -

Unfortunately, but manifestly, we can not do better if we wish to insist on
full analyticity in y. In fact, this difficulty has notable geometric content. For
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example, consider the 3-dimensional vector field,

d=(2- Y i—mi
- 1—y/) 0z yé’y

Then under completion in x = 0, this field has a formal centre manifold. Under
completion in y = 0, however, this situation is much more subtle. If we seek a
centre manifold as a graph, z — ((z,y), then we see that we require to solve the
equation,
0 Yy

1+ay—)(C) = —2—

(1 +ay ay) =1,
which we know to be obstructed for x = —k~1, k € N, and writing x = —(¢t +
1/k)/k for t a local coordinate at —1/k, we see that the semi-simple part of the
Jordan form at (—k~1,0,0) has eigenvalues 1 and 1/k, and for some suitable
coordinates Z,Y normal to the singular locus the normal form is,

0 Y 0
=(z HY®) = + —(1+t)=—
0= (Z+ ar(t) )aZ+k( + )ay
and for ay(0) # 0, indeed it is 1 in the above example, the equation of the centre
manifold is
ap(t)Y* = Zt

which is a quotient singularity of order k. Consequently there does not exist a
centre manifold as a formal scheme in the completion along y = 0. Evidently
this is the same phenomenon that requires the exclusion of the axis in I1.2.2,
and the existence of an obstruction in this case was not unknown, cf. [vS79].
However, op.cit. is missing the point since the obstruction exists even formally,
cf. [McQ)], §1.5.

This said let us profit from II1.2.2 in order to suppose that our sectors S; are
such that the image £ of ' -+ - 2P lies in a sector S close to the negative real
axis, and put y = exp(n), for n in some half plane Re(n) < —R, so that our

equation becomes,
0
1 _- =
< +& aﬁ) (f) =g

Which we could content ourselves to solve in strips in the n-plane, but it costs
nothing to solve in a so called spiralling region, viz: a domain of the form shown
in the figure I1.2.2, where the lines not perpendicular to the real axis are chosen
so that their argument remains strictly between = and —7 on multiplication by
¢ as & varies in S. Consequently our problem is exactly as in II.1 where we’re
obliged to take our base point on the boundary, so again for the Euclidean
distance in /¢, by which we view the fibres of Qg(R) x S1 x --- x S, —
S1 % -+ xS, as embedded in C, we add a small disc of radius r around the base
point in each fibre to get a domain 7 : U, — S x --- x .S, in which we may
apply the implicit function theorem in the same way, to obtain:
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Im(n)

Re(n) = —R

Figure 11.2.2

I1.2.3 Fact Let f — P(f) be as per the set up 11.2.1, U, as above, r > §,11
(distance from the boundary in the /¢ variable) then for some absolute con-
stant ¢ depending only on 4, 0,7, R, and whence, in particular independent of
shrinking the radii of the original polydiscs whether in z; or y, the equation:

P(f)=g

has a solution in U,.(d), for ||gHU < &. In particular, if g on our original A™ x A

vanishes at the origin, then on a domain (5] x --- x S/, x Qg(R'))(0) for S x
-+ x S! of smaller radii but with image as close to the original aperture of S as
we like, and possibly R’ « R, we have a solution.
Furthermore as per I1.1.4(bis), or indeed I1.2.2, we can add extra variables
2

2k, 1 < k < m, and fields 37~ for next to no additional cost beyond shrinking

the above regions (5] x - - - x S/, x Qg(R’))(0) suitably in the radii of the sectors,
or, possibly R’. Unlike I1.2.2, however, ¢ cannot be replaced by % even if the
functional derivative remains unchanged.

I1.3 Singularly Integrable

The trickiest case to consider in this section brings together all our previous
difficulties, and some more, so we’ll restrict our attention to dimension 2, viz:
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11.3.1 Set Up Let z,y belong to some bi-disc A x A, and in the sense of 1.3.4,
as already provided for by example in II.1.1 and I1.1.2 let f — P(f) be a
differential operator polynomial in the fields xé and yeL As ever we suppose
0 +— 0, and we consider the situation in which the functional derivative in 0 is,
2Py )"
D=P(0) : f —> {(1 o)L+ (g)(qxjx —py;y)} (f)

where ¢ is a small function of x and y and p,q € N. By no means trivially the
functional derivative has this form for analytic coordinates x and y iff it has
such a form formally, c.f. [Brj71]. In any case we denote the —1 part by &, and
put s = xPy9.

We first consider the case ¢ = 0, so that in s, x coordinates our operator is,

0
D=1+s"2x—
ox

Consequently passing to z = ef, y = €, Re(¢) < —Ry, Re(n) < —Ry, with
X 3¢, Y 21 the said half spaces, s : U(= X xY) — B fibres over s as shown
in figure I1.3.1.

Im(¢)

U
| i Re(€)
1 R
og |s| 4 X —Rx
p p

Figure 11.3.1

As ever we propose to solve our equation D f = g, by the way of the integral
operator:
(K _ s [C dt
D) = | (0
pt
where pt is some suitable base point (more accurately section of the fibration
s) which must be chosen as a function of the argument of s. Consequently,
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in the first instance, let S 3 s be a sector of aperture strictly less than m/r
which does not contain a r** root of either the positive or negative real axis.
Under this hypothesis in the fibrewise variable p = £/s", U is a region enclosed
between two parallel straight lines with slope bounded strictly (as a function of
the aperture of S) away from purely imaginary. As such the base point at —o0
(i.e. Re(p) — —o0) is the good choice, and, for Us =[], Us,

|59l < CS) gy,

-1
for some constant - basically (7T/T —|S |) - where |S| is the aperture. Unfortu-

nately the definition of —o0 is not continuous as one passes through s” positive
or negative real. More precisely take S 3 s to be a sector around a r** root
of the positive or negative real axis of aperture strictly less than 7/r, and take
£ e X', n €Y' to be spiralling domains as encountered already in 11.2 then
the fibre of U’ = X’ x Y’ over S in p = £/s” takes the form shown in figure
I1.3.1(b), or alternatively, a similar figure on the right for s” close to negative

1 Ry
— {1 Y
- ( ogs +q ) Im(p)

ST‘

Figure 11.3.1(b)

real, where, depending on the point of view the aperture is sufficiently small to
allow for large spiralling, or the spiralling is small to permit large aperture. Ir-
respectively there is a constant C'(Ug) depending on these parameters, and even
independent of positive rescaling in p, such that throughout Ug = [ [, U}, if we
take as base point the unique point with Re(p) minimal in each fibre (which by
the way has holomorphic variation in s),

| K9], < CUs) 9]

Unlike the previous case, however, the said base point will change as we shrink
Ul be Euclidean distance as per 1.3.3 in the embedding in C? by the way of,

Us
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say, (p,n) coordinates, so as per II.1, the thing to do is put a small disc in p
around the base point. Regardless K is bounded, so for ¢ of I1.3.1 sufficiently
small,

(1 +eK)

is invertible, and we have our right inverse to D. Observe furthermore that the
mapping S! x 8! — S (z,w) — (2Pw?)" is continuous, so the domains on
which we have constructed the said inverse, and on which we apply the implicit
function theorem, contain open sectors about any values of arg(x) and arg(y),
ie.

I1.3.2 Corollary Let the operator f — P(f) be of the form found in the set up
11.3.1 then for any values of arg(z), arg(y) there are open sectors S, T around
the same such that for any sufficiently small holomorphic function on a bi-disc
(in fact the domains Ug, or Ug discussed above would suffice) the equation,

P(f)=g

has a solution in S x T. Further the definition of sufficiently small does not
depend on the radii of the sectors, so if g vanishes at the origin, we necessarily
have a solution on sectors of the same shape, but of smaller radii. Again, as per

Pl Pl
¢
=

I1.1.4(bis), this remains true if P is polynomial not just in x4, y({—y but even
in some further fields £7 1 < k < m, corresponding to additional variables zy,
and, of course, an un-changed functional derivative, and appropriately adjusted
definition of sufficiently small radii.

I1.4 Integrable and Transverse

By far the most trivial case that we’ll have to deal with is the example par
excellence that may be found in the literature, but we’ll require it uniformly in
parameters, viz:

I1.4.1 (a) Set up Let x € A, y € A™, be variables in discs, and f — P(f) an

operator polynomial in the fields xp“g%, % As ever, 0 — 0 and we suppose

that the functional derivative in 0 has the form

Dep P+l o
= P(0) : 1+¢e)1— —

O fr—{arean- T2
for € a small function of x and y.

As per I1.3 we first treat the case ¢ = 0. To this end take S to be any
sector of width 27 /p which under the conformal mapping £ = £~ branches on
the right, as in figure I1.4.1, where the branch bg has an argument bounded
strictly away from purely imaginary. Under such hypothesis we trivially have a
bounded right inverse to D (for ¢ = 0), given by,

3
(Ko)(€w) =< [ oty

Let us furthermore observe:
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Figure 11.4.1

I1.4.2 Fact These operators actually patch together on sectors of width < 37 /p
(interpreted on a branched cover if p = 1), again to bounded operators. At 37 /p,
however, they may explode and develop Stokes’ lines.

Proof. The sector depends on the branch, so, more correctly, let us call it S,
with Sy that branched around the real axis. For b in the right half plane, S
intersects Sp in a sector which contains rays along which Re(¢) — —co. On the
other hand if fi, fo are two bounded solutions of our linear equation, with h
their difference, then:

0
1+ —=)(h) =0
@+ 2w
whence efh is a function of y alone, while S, N Sy contains rays on which
Re(§) — —oo, and h is bounded, so this function is zero. o

We therefore have a bounded operator, again denoted K, defined on the
domain V' x A™ where V is the domain of aperture up to 37 obtained from
gluing the domains U®. Necessarily the operator,

(L +eK)

is invertible for e sufficiently small, so we deduce:

I1.4.3 Corollary Let f — P(f) be as per the set up 11.4.1(a), then every value
of the argument of x admits an open sector of aperture anything up to 37/p
such that if g is holomorphic on S x A™ then the equation,

P(f)=g
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Figure 11.4.2

has a solution on S’ x (A")", for S/, A’ strictly inside S and A respectively.
More precisely putting U = V x A", for V as above, and taking £ x y as an
embedding in C"*! with respect to which we compute the Euclidean distance,
then the condition for a solution f on U(d) to exist is,

||9HU < max {1,C (dody -~ dp)N}

for suitable constants C' and N, with dy the distance in the £ variable. In
particular if g (as it will in applications) vanishes along the divisor = 0 in the
original polydisc, then the lack of dependence of C and N on the radii, provides
a solution by the simple expedient of shrinking in the z-variable.

To which it might usefully be added,

11.4.4 Remark At least for n = 0 this is wholly classical. The solutions are
even Borel summable for a determination of the argument of z uniform in y
(something which is trivially possible if x is a meromorphic function on some
variety), and the solutions even patch for z in a fixed sector and y varying along
some divisor because the sectors are large, 7/p + ¢ would do, but we have even
more. The previous sections I1.1-3 should, however, make it clear that this is
very far from the general picture.
Being rather easy, it’s not difficult to extend to the general case:

I1.4.1 (b) Set Up As before but now with an exceptional divisor smooth non-
reduced in the transverse direction and invariant otherwise, i.e. a functional
derivative,

D=P0) : fro {(1 fon- ””p "jx} 0
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for h a function of y alone.

The only thing that changes is the definition of branched on the right, which
actually means within 7/2 of the argument of h under the conformal mapping
¢ = 27P. Under which conditions, and € = 0,

&/h
(K& = [ gt

—a0

works as before for —oo in an appropriate half space determined by the argument
of h. There is of course a game between the branch and h, i.e. if, as one should
expect from II.1, h varies through 7 or more, there are competing infinities,
similarly if ¢ varies too much then the argument of h cannot vary at all, and,
arguing as per 11.4.2, we see that the general condition is:

pl{aperture in £} + {aperture in h} < 37

Furthermore K is bounded, (1 + ¢K) is invertible for € sufficiently small, while
the base point at —oo is wholly fixed irrespectively of changes in the Euclidean
distance and whence,

I1.4.5 Corollary Suppose that the above h is a simple normal crossing divisor

yit - ysnoand let zq, ..., 2, be some further variables, with f — P(f), 0 — 0,
a differential operator polynomial in the fields x%, yz# and 2. Then for a
: s °7;

functional derivative as per I1.4.1(b) every value of the arguments of z and y;
admit open sectors S x [ [, S; satisfying the above condition on the aperture, so
that if U = S x [ [, S; x A™ then we have a solution to the equation

P(f)=g

on U(d) (logarithmic coordinates in the y; variables) provided H gHU is sufficiently
small. As ever the appropriate lack of dependence on the radii whether of S or
S;, implies that if g vanishes along either z or some y; in our original polydisc
Al+n+m then by the simple expedient of decreasing the radius, be it in z or
y;, we will obtain a solution.
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IIT Linearisable Singularities

III.1 Base at infinity

In the same spirit as the previous chapter we will progress from the easy to the
more difficult, and so begin with:

I11.1.1 Set Up Let (z,y) € A? belong to a bi-disc, and consider differential
operators f — P(f) polynomial in the fields zP (x% + )\y%), N L (with

oy
N = Re|)\|) with a functional derivative of the form

D=P(): f &1+@1 zp@/9+xya)}g)
= D fe - —lz4 =
p N\ dy 0y
where ¢ is a small function of x and y, p € N, and the constant A\ # 0 has
Re(A) = 0.

Plainly we restrict  to a sector S of width 27/p, such that the image of the
branch b under the conformal mapping x — £ = z 7P is to be found on the right,
i.e. Re(¢) = 0 and the argument bounded strictly away from purely imaginary.
We further introduce the first integral s = yz=* = y&?, and restrict our initial
attention to £ = 0, so that:

0
D=1+

Now consider the domain U® < C2, taken with (£, s) coordinates such that the
fibre over s (€ C if Re(A) > 0, or a disc otherwise) is as shown in figure III.1.1,
where the implied excluded area is what we will term a rhombus adapted to the
branch, and the size of the long axis R is,

maX{Cl|8|1/‘X7 Cy}

for some suitable constants Cq,Ca, a = Re (\/p) > 0, otherwise just take R =
Cs if @ = 0. Observe that this domain has the usual convenient properties, viz:

II1.1.2 Facts The domain U? satisfies,

(a) There is a sector S 3 z and a disc A € y, with each having appropriately
small radii and S of aperture 27 /p, such that S x A < U®. Conversely,
Ubc 8" x A, for §', A’ of appropriately large radii.

(b) For every s € B, the base of the fibration, there is a path v, : [0,1] — U?

from —oo (i.e. Re(§) — —w) such that,

is(6)] < C 5 Re (2(1)

for some suitable constant C, depending on the branch b.
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Ub /

Figure II1.1.1

Now in U? we can construct a right inverse to D in the usual way, viz:

¢
(Kg)(&,8)=e ¢ J, e’g(p,s)dp

which by I1.4.2 can be patched to an operator, again denoted K, on a domain
U of aperture up to 37/p formed by gluing the U®. Provided the branches b are
bounded away from purely imaginary, and U(d) is understood in the s variable
on one factor and a metric glued from the Euclidean distance in the & variable
on the other, there is a constant such that,

1By < € 9y

with U(d) as per 1.3.3. Now in so much as we’re avoiding the question of how
the fibres U, change if we move in from the boundary in the original z (better
log z) and y coordinates we’re obliged to take operators which are polynomial
in % and 6%, which is exactly the restriction that we have made in II1.1.1, albeit
with a bit more work, one could reasonably hope do to better. In any case the
perturbation in € poses no problem since,

DK =1+¢K

and K is uniformly bounded on the U(d), so the obvious infinite series works.
Whence to summarise,

II1.1.3 Fact Let f — P(f), 0 — 0 be an operator as per III.1.1 with U as
above, then the equation,

P(f)=g

46



has a solution on U(d) as soon as,
||9||U < C min{l, (did2)"}

for some constants C and N implied by I11.1.2(b), and the higher derivatives,
or powers of linear ones in P, but not on the radius of the sector in the original
x variable. Consequently if g vanishes along the divisor z = 0, then every value
of arg(z) is contained in an open sector S of width up to 37/p and of sufficiently
small radius, such that for some fixed (i.e. independent of z) sufficiently small
disc A 3 y, the equation has a solution on S x A. Furthermore as per I1.1.4(bis),
and similar, none of this is changed by the addition of further variables zj,

1 < k < m, with a polynomial operator in %, & and the %, provided the

o€ s 0z
functional derivative remains the same, so that for g vanishing on x = 0, we

again get solutions on $' x A, x A™ provided that the radius is sufficiently small
in x.
In so much as this has been an introductory case, we can usefully note,

I11.1.4 Remark Again this is very much the best possible scenario, with obvi-
ous similarities to §I1.4, and for exactly the same reason as 11.4.2, Stokes’ line
for K may appear at 37/p.

I11.2 Still at infinity

As noted in the previous case is as good as one might reasonably expect, being
even Borel summable and so forth. There remains a variant on the same, which
continues to preserve these salient features, viz:

I11.2.1 Set Up Let (z,y) € A? belong to a bi-disc, p,q € N, and f — P(f) be
a differential operator polynomial in the fields
0 0
PydQ — gr— _
ryto, X =4qx e by 2y
where 0 = x% + )\y% and A € C* is subject to the restrictions

p+agr#0, Re(p+g)) =0, Re(§+q) =0

and we suppose that P(0) = 0, and that it has functional derivative;

D=PO) : frolarar- Y olp
= : — —
' p+aA
for € a small function in x and y. Observe that under these restrictions A ¢ R
so these hypothesis hold for analytic coordinates z,y iff they hold for formal
coordinates.

As ever we start with e = 0, and we consider the function ¢ = (2Py?)~!, and
restrict ourselves to sectors S in £ which have aperture 2z, and branch, b, in the
half plane Re(¢) > 0 bounded strictly away from purely imaginary. Similarly,
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we suppose s = yz > is defined, and varies in a domain B with a well defined
argument up to 2w, or indeed we may well take its logarithm, e = s. In any
case, s¥/(P+aN is supposed defined and,

T = sfq/(p+q/\)§*1/(p+q/\) Dy = SP/(PJM]/\)&*)\/(PJW)\)

Now put @ = Re(A/(p+q))), 8 = Re(1/(p+¢))) and consider a domain U’ — B,
fibred in the s-variable of exactly the same shape as before in II1.1.1, but where
the axis R has length,

log R = max{;Re (— pj_gq)\) +C’1,$Re (p igq)\) +02,03}

for some suitable constants C,Cs, C3 and af # 0. Otherwise if a, respectively
0, is zero, which cannot, by the way, happen simultaneously, one simply omits
the term in «, respectively 3. The domain B of the variable o = log s, is all of
C for af # 0, and the half plane Re (U/(p + q)\)) < 0, for a = 0, respectively,
Re (d/(p+q))) > 0, for 3 = 0. Plainly the function s/ (P44} is to be understood
as exp(a/(p+qA)), which yields domains U? in C? as specified by the prescription
a la IIL1 on the fibres U2, and whence their features are very much akin to
1I1.1.2, viz:

I11.2.2 Facts For appropriate values of C7,Cs, Cs,

(a) The function (x,%) maps U® to our original bi-disc AZ.

(b) For all values of arg(z) and arg(y), modulo the prescription that arg(zPy?)
is not equal to that of the branch in &, there are open sectors X sz, Y 3y
of appropriately small radii on the same, and determinations of log x and
log y (any determination for a8 # 0, otherwise many but not all), together
with a map (£,7) : X x Y — U’ whose composition with (x,%) is the
identity.

(c) Forevery o € B, thereis apath ~, : [0,1] — U? from —oo, i.e. Re(v,(t)) —
—o0 as t — 0, to any point such that,

()] < C 2 Re (15(1)

for a constant C' depending on the branch.

Thus while we don’t formalise it, the most convenient way to think of this is that
for the various branches in £, the U® — A? define a Grothendieck topology which
by (b) is exactly the same as that corresponding to sectorial neighbourhoods.
In any case, we plainly get solutions on sectors as soon as we get solutions
on the U®(d), for d Euclidean distances in ¢ and ¢ and everything is as IIL.1, to
wit,
(1) K:gw et SEL eg(p,o)dp is a right inverse to D, uniformly bounded
(as d varies), for the sup-norm on U’(d), since the fibres U®(d), preserve
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the shape indicated in IIL.1, i.e. the implied constant in I11.2.2(c) is the
same for all U%(d), since only the length of the axis changes as we move
by the Euclidean distance in o.

(2) Arguing as in I1.4.2 we can glue to a bounded right inverse, again denoted
K, on a domain U of aperture up to 37 in £ containing all of the U
for b bounded away from purely imaginary. The resulting U(d) being
equivalently the gluing of the U®(d), or understood with respect to the
Euclidean distance in o on one factor, and a metric comparable to the
Euclidean distance in £ on the other.

(3) Fore # 0, DK =1+ ¢K, and by uniform boundedness on the U(d), we
can do this by power series in €.

(3) The field % is, of course, zPy?0, up to a constant, while % is x, in fact,

up to the same constant.

A

< and
Zj

¢

(4) Nothing changes on adding in new variables z;, 1 < j < m, fields

; s 12 @ @
going to operators polynomial in € 700 and 72

Thus to summarise,
I11.2.3 Fact Let f — P(f) be asinII1.2.1, or even as above with extra variables

z; provided the functional derivative is conserved, then for U as above (or
U x A™ should there be extra variables) the equation

P(f)=g

has a solution on U(d) provided ||gHU is sufficiently small, with smallness un-
derstood as per I11.1.3. In particular if g vanishes on either the divisor x = 0 or
y = 0, then for every value of arg(x), arg(y) there are open sectors X,Y about
the same of sufficiently small radii such that we have a solution on X x Y x A™
for some smallish disc in the additional variables.

Again let us note,

II1.2.4 Remark Again this is very much a good case in the spirit of 11.4.4,
i.e. despite the singular nature of ¢ we still haven’t encountered any of the less
desirable phenomenon detailed in II.1.5, notwithstanding the apparently more
straightforward set up II.1.1.

ITI.3 The Bad Case

We now proceed to the case that will bring together all the difficulties to date,
and add new phenomenon so far not encountered. To begin with let us introduce,

I11.3.1 (a) Set Up Let (z,y) € A% and let d be a vector field singular at the
origin, such that for m the maximal ideal of the same,

0 :m/m? — m/m?
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is semi-simple with ratio of eigenvalues, A € C* enjoying Re(\) < 0. As such the
coordinates x,y are chosen such that the divisor x = 0 and y = 0 are invariant
by @ (this can always be done analytically) and,

0= x% + )\c(w,y)y&%
and c(z,y) = 1 (mod m?).

The fact that ¢ cannot necessarily be linearised is, somewhat surprisingly,
neither here nor there. All of the bad phenomenon already occur in the fully
analytic setting where A = —1, and zy is a first integral. Nevertheless we avail
ourselves of Ecalle’s spiralling normalisation:

II1.3.1 (b) Revision (cf. [Eca94]) For €87 = z a priori logx in a left half
plane, there are constants C' and N such that on a domain of the form:

{lz|logz|N < C; |y| < C}

the field ¢ may be conjugated to a linear one. In particular for S a sector of
width 27 in  and A a disc in y, of respectively sufficiently small radii we have
coordinates z,y on S x A such that,

0 0
0=x + A\y=
ox y oy

with y = a(x, Yoid) Yold, (T, Yoia) — (Z,¥); Yoia the original coordinate, invertible
in S x A, and taking arguments in y,q is the same thing as taking arguments
in y.

In light of this discussion, and indeed the generality that will be subsequently
necessary, we therefore introduce,

IT1.3.1 (c) Final Set Up Let (z,y) be coordinates in a domain S x A, with
S a sector of aperture 27/p in z, and y varying in a disc A. Denote by ¢ the
field x% — pyy%7 Re(v) > 0, pe N, and let f+— P(f), 0 — 0, be a differential
operator polynomial in 2P¢d and y% with the functional derivative of the form:

D=P(0): f+— {(1 +e)l— gja} (f)

for € a small function in z and y.

Plainly we first consider € = 0, put £ = 2~ for z in a sector of aperture 27/p
such that £ branches on the right, i.e. Re(§) > 0, along a slit bounded away
from strictly imaginary. We shall subsequently see that a solution analytic in
y, even if we were in the stronger hypothesis of 111.3.1(a) is simply impossible,
so we don’t waste time, and introduce logarithms, eX = &, ¥ = y, for X,
Y in appropriate right, respectively left, half planes. A convenient variable is
o= %Y — X; it’s domain is, a priori, either all of C, for v ¢ R, or a left half
plane for v € R. Now consider the function Y /v, which has domain a left half
plane rotated through 1/v, and intersect this rotated half plane with the half
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plane Re(Y /v) < 0 so that the exponential takes values in the disc. Within the
disc take a domain Q,(r) of the type encountered in II.1, as shown in figure
II1.3.1, for some appropriate |a| = 1, and r sufficiently small, to be specified

Im ( exp %)

Figure I11.3.1

so that rotating through a fixed sector of aperture < 7 keeps some other pa,
for |p| = 1, p to be specified, as the unique point in the domain with minimal
Re(pa).

Now, take the pre-image, w, (r) of this domain under the exponential in the
intersection of the two half planes that constitute the domain of Y /v (or just
one half plane if v € R). Next take the image of w,(a) x H, H domain of X,
under (Y /v, X) — (0, X), limit o to a strip, i.e. Im(o) € I for some interval I
of width less than 7, and make an appropriate choice of «, so that as o varies
in the strip, e"?« is the unique point in the image U; of this domain under
id x exp in the fibre of a where Re(§) has its minimum, and this is strictly
bounded away (i.e. r sufficiently small) from the other corners of the rhombus
Q(r) where a minimum might occur. Unsurprisingly, the domains Uy have all
the properties that we require, viz:

IT1.3.2 Fact Supposing the sector S of II1.3.1(c) satisfies the branching on the

right condition for &, take z = £~Y?, and y = £”e?¥ for an appropriate deter-
mination of the arguments in £ (a.k.a. strip in X),

(a) (x,y) maps Ur to our original domain S x A in z and y.

(b) For any J c [ sufficiently small (where sufficiently small depends only on
v), (z,y) on Uy is Schlict, and Uy is covered by finitely many U}.
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(¢) Varying I we can cover, with finitely many I, a region containing S’ x
AN\{0}, for S’ = S and A’ < A of sufficiently small radii, and, S” x {0} is
in the closure of every Uj.

(d) The points p(c) = e~ “a in the fibres Us, are a holomorphic section of
the fibration in o, and every point £ € Uy, any o, can be joined by a
path v, : [0,1] = U4, 7(0) = p(0), to p(c) such that,

o] < C 2 Re (15(1)

for C some suitable constant depending on I, or more accurately its width
alone.

This gives therefore a domain U; € C? with fibres over o as shown in figure
I11.3.2, with o varying in a strip so that p(o) not only stays on the left, but

e

Figure 1I1.3.2

the lines emanating from it are bounded away from purely imaginary. For
convenience, we change the domain of the original x variable a little so that the
inner boundary is a rhombus adapted to the branch, and in each fibre add a
disc, & la ITI.1, around p(o) of radius x > 0, and call the resulting domain Uy .
All of the properties (1)-(4) enunciated prior to I11.2.3 remain valid, with the
obvious change to the integral operator from the base point at 0o to p(o), and
%, 2> being 2P0 and y(f—y up to some constants, so that:

IT1.3.3 Fact Suppose in addition to our set up I11.3.1(c) the resulting sector in
& = z7P branches on the right, and that in the presence of further variables,
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the functional derivative is conserved, then for Uy as above (or Uy x A™ should
there be extra variables) the equation

P(f)=g

has a solution in Ur(d) provided ||gHU is sufficiently small. The smallness con-
dition can be guaranteed by the simple expedient of shrinking the radius of the
sector in the z-variable provided g satisfies a condition of type

|96, xa <O

on sectors in x of radius 7, and o > 0, C' anything.

Bearing in mind that this is conceivably rather far from what one might
expect in terms of an intuition that comes from good cases such as I1.4.1 and
I1.2.1-2, let us prolong this investigation by way of,

II1.3.4 Scholion Again, although not formalised, the best way to consider the
Uy — S x A are as a Grothendieck topology, which is the natural one for
solutions, as we will see shortly. The kind of spiralling sectors U, J sufficiently
small, being open in the classical topology, whence, solutions on such sectors
really spiral for v ¢ R. Of course, one could take sectors in z and y alone if
v € R, but this seems rather pointless. Indeed, for the applications envisaged
in [McQ)] sectors in y are actually worse, and moreover the divisor y = 0 has,
in general, no algebraic description if the field ¢ arose whether by resolution
of singularities on a projective surface, or a formal surface inside an ambient
projective variety. Consequently, there’s no sane sense in which sectors in  and
y should be considered a better topology than the U;. One can, of course, as per
post 11.4.1(b), fiddle with the construction somewhat, i.e. if |\S| is the aperture
in &, and |I| the width in o, do anything with,

IS + 1] < 37

albeit say |I| < 7 to be on the safe side. Thus, |S|, || are never simultaneously
big enough to be able to conclude to the uniqueness of solutions, and attempt
patching to a wider aperture. Furthermore full analyticity in y is simply impos-
sible. Indeed, suppose otherwise, and consider the equation,

(n—%pa)m —g

which is hypothesised to have a solution f analytic in S x A, whenever g is. As
such, if g, (€), k € N U {0} are the Taylor coefficients in y* of g, then those of f,
say fr(£), must satisfy,

<1+k£/>fk+;£fk=gk

Now, consider values of £ in a sector S, of small aperture, around the negative
real axis, then on S bounded solutions of this equation are unique. Consequently
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for £ € S,
3
fule) =g ee [ s

— L

which indeed doesn’t depend on the branch £ — &Y, since different choices
cancel. Restricting our attention to & = —s, s € R.( sufficiently large, we can
write this as

0 N kv

fe(=s) = ,[ et (1 + ;) gr(—s—t)dt

0
Plainly we wish to impose that the solutions f are bounded on S x A, so we
can interchange limits as s — oo, restrict our attention to g = cj, constant,

and conclude,
lim fi(—s) =cp (kv +1)

S
subsequencing in s if necessary. This is, however, manifestly absurd, since the
left hand side is bounded by C* for some constant C. Consequently for g
analytic on A, a function of y, with ¢, decreasing not too rapidly, there are
no bounded solutions f analytic on S x A’, no matter how small A’, so taking

finite iterates such as,
N

P
> (=)
n=0 p

yields many other functions without solutions, but which according to our ha-
bitual condition of sufficient smallness, are as small as we like. Manifestly the
problem is akin to II.1.5(a), but much worse, since even meromorphic in y be-
haves very badly, e.g. if g = (1—%) ™!, then there is a “ resurgent ” type solution,
say v = 1 for simplicity,

L —t

f(z,y) =J >

—dt
o 1—y(l—tar)

however here a path from 0 to o0 must be chosen, and this path must avoid
(y — 1)y tx~P, from which the necessity of restricting not just the argument of
x but also that of yaP.

I11.4 Intermission

Before proceeding to the evident extension of I11.3 to a divisor supported along
x =0 and y = 0, let us first address the case Qf a purely real eigenvalue, since
this will require the spiralling linearisation of Ecalle as per I11.3.1(b), so say:

I11.4.1 Set Up Let (x,y) € A% be coordinates in a polydisc,  as per I111.3.1(a),
but with A € R<g. Further let f — P(f), 0 — 0, be a differential operator
polynomial in the fields,

0 0
p,q — _
2Py?0, x 95 TP,
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(p, q € N) enjoying a functional derivative of the form,

D= P0): frs {(1 beyl— p:q/\xpyqé} )

for € a small function of x and y.
Multiplying, as necessary P by a unit, we begin with £ = 0, and,

Py — P4 g g
2Pyld = xPy (xaz—i-)\yay)

for a domain of the type indicated in I11.3.1(b). Consequently, we already have
a logarithm X of z, and we further take one Y of y, defined by y = ¥, YV
belonging to a left half plane. Exactly one of p/A+ g, respectively p+ Ag may be
negative, and for consistency with II1.3 we suppose that it is the former. Slightly
more conveniently, therefore we put —v = A/(p + Aq), v € R>¢, and take as an
invariant function o = (1+qv)/p (Y — AX), with domain of definition a left half
plane. Thus for & = (2Py9)~!, branched on the right, as ever strictly bounded
away from purely imaginary, and ( its logarithm, our operator becomes,

0
D=1+ —
+ 26
in 0, & coordinates, with,
1 qv
X=—|-+—])¢(—qo, Y =v(+po
p p

Now take Y /v to belong to some appropriate w,(r), o, r to be chosen, as per
I11.3.1(c). Furthermore for suitable constants Cy,Cy to be chosen define R(o)

by,

log R(o) = max{ 1 Re(o) + C1, C’g}

p
14qv
Finally confine o to a strip, Im(o) € I, according to which «,r will be chosen,
and for convenience suppose Re(o) < Cj3, sufficiently negative. This allows us
to define a U; < €? in &, o variables by way of,

§€e P wa(r) N Eg(s)

where Ep(y, cf. TI1.3.2, is the exterior of a rhombus adapted to the branch.
Consequently the fibres of U; have the form shown in figure 1I1.4.1, so that,
modulo the augmentation of R(c) with o, nothing has changed from II1.3.2,
and actually it’s quite a bit better. The important points being that we have a
holomorphic section p(c) = ae™P?/¥, and that as o € I varies, the inner (which
is in fact fixed) and outer sides of the appropriate rhombi remain bounded away
from purely imaginary. As such the U posses the salient features to which we
have become accustomed, viz:
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a/efpo/z/

7 Re(¢)

Figure I11.4.1

I11.4.2 Fact Choose an appropriate branch ¢ of the logarithm of £, and put
z=eX,y=e¥ for X,Y functions of ¢ and ¢ as above, then,

(a)
(b)

(z,y) maps Us to our original domain A x A.

For any values of arg(z), arg(y), there are open sectors S 3 arg(x), T 3
arg(y) of sufficiently small radii such that for an appropriate choice of T
and the branch b, we have a map S x T' — U; whose composition with
(z,y) is the identity.

The holomorphic section p(c) = ae P?/* can be joined to any other point
of the fibre Uy, by a path 7, : [0,1] — U, satisfying

Kol < C 2 Re (15(1)

for C' a constant depending only on the width of I, provided Re(o) is
sufficiently negative.

Now, we have (1)-(4) as per III.1 or II1.2 after adjoining in each fibre a disc of
some fixed radius k, and of course, modulo the usual caveats, adjoining further
variables z1, ..., z,, in some polydisc A™, so to summarise,

ITI1.4.3 Fact Let things be as in II1.4.1, then for U; (more correctly Uy ) as
above (or Uy, x A™ in the presence of further variables), the equation,

P(f)=g
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has a solution in U;(d) provided || gHU is sufficiently small. The smallness con-
dition may be guaranteed by the simple expedient of shrinking the radii in x or
y sufficiently provided g vanishes on x = 0 or y = 0. In particular every value
of arg(z), arg(y) admit, under this condition, open sectors S,T of sufficiently
small radii such that we have a solution in S x T x (A")™, and A" a smaller disc
in the additional variables.

To conclude, let us note:

I11.4.4 Remark Availing ourselves of Ecalle’s spiralling linearisation, we can
equally dispense, in the above notations, with the case A = —p/q. Indeed the
only substantive change that one should make in this case is to the actual set
up II.3.1, and replace the field qx% — py% occurring there by 0, so that after
dividing P by a unit (in the domain of the linearisation as above), one may
proceed exactly as in §I1.3.

IT1.5 Worst Case

Actually to what extent this remaining case is really worse than II1.3 is a matter
of debate. It is, however, certainly the most fastidious, whence the separate
treatment of a real eigenvalue in II1.4, so as to lighten the complication and
allow us to reduce to,

I11.5.1 Set Up Let (z,y) € A% be coordinates in a polydisc, and f — P(f),
0 — 0, be a differential operator polynomial in the fields,

0 0 0 0
D,,4q — — _ -
xPy?0, (0 e +Ayay), X=aras g

A¢ R, p,qge N, Re(p/A + q) <0, and functional derivative of the form,

D= P0): frs {(1 +e)l— p:q/\xpyqé} )

for € a small function of x and y.

As before we first treat ¢ = 0, pass to logarithmic coordinates eX = z,
e¥ =y, both in appropriate left half planes, and take &, ¢, o, v as post 111.4.1,
observing, however, that the a priori domain of o is all of C , and Re(v) > 0,
v ¢ R. As such a better invariant function is 7 = po/v, and it is this variable
whose imaginary part should be constrained to some interval I, according to
which «, r are chosen by the prescription Y /v € w,(r), otherwise, the definition
of Uy is, modulo Re(7) « 0 (depending on I), exactly as before in §I11.4. The
properties I11.4.2(a) & (c) remain valid, while (b) gets replaced by the Schlictness
of Uy — A? for J c I of sufficiently small width, but now with a further bound
on arg(§), together with the finite covering considerations of II1.3.2(b)-(c), i.e.

II1.5.2 Fact Define (x,y) as in I11.4, then,

(a) (z,y) maps Ur to A2, our original domain.
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(b) For J c I sufficiently small, and arg(£) confined, or better Im(¢) in a
sufficiently small interval K, the restriction of (x,y) to U;(K) is Schlict,
and Uy is covered by finitely many such U;(K).

(¢) Varying I we may cover some smaller bi-disc (A' )2 punctured in zy = 0,
by finitely many Uy, which in turn have in their closure (in fact naturally
extend) to every point of the real blow up in x = 0, followed by the same
iny=0.

(d) The holomorphic section p(7) = ™"« can be joined to any other point of
the fibre Uy~ by a path ~; : [0,1] — Ur ; satisfying,

. 0
”'YT (t)” <C ot Re (’YT (t))
for C' a constant depending only on I, provided Re(r) is sufficiently neg-
ative.

The conditions (1)-(4) of 111.1/2 after adjoining in each fibre a disc around the
base point of radius k carry through verbatim, and we let A™ be a polydisc in
any additional variables we may wish to add provided the functional derivative
is unchanged, and whence,

IT1.5.3 Fact Let the set up be as IIL.5.1 then for Uy, as above (or for that
matter Uy ,, x A™ in the presence of further variables), the equation,

P(f)=g

has a solution in U;(d) provided H g|| o 1s sufficiently small, where this smallness
condition is guaranteed by the simple expedient of shrinking radii if g vanishes
on z =0 or y = 0. In particular on the finite covering U;(K) of a sufficiently
small punctured bi-disc by A™, envisaged in II1.5.2(b)-(c), we have solutions to
our equation.

As such, it only remains to close this chapter by way of,

I11.5.4 Remark Of course it could be that there are, in this case, solutions in
open sectors S x T in arg(x), arg(y) as encountered in II1.4.3, since, plainly, this
is a different question to that addressed in III.3.4. On the other hand III.3.4
is consistent with, and identical to, all the phenomena encountered in II.1.5
and various subsequent manifestations of the same, that the “right” variables in
which one should take arguments are fibrewise, and on the base of the fibration.
Consequently, such an improvement would be rather surprising.
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IV  Saddle-Nodes

IV.1 Normal Forms

As has been said, in addressing the difficulties of nodes, we will be applying the
implicit function theorem towards the limit of what is possible. Consequently
we must be precise about the form of the operator to be investigated, beginning
with:

IV.1.1 Set Up Let D be a germ of a vector field on a bi-disc A x A, such
that the induced foliation, defined by the vector field 9, has a saddle node
at the origin, and D vanishes to order p along the strong branch. More or
less consistently x = 0 will be the equation for the strong branch, while y,
another coordinate, will vary from being tangent to the weak branch, whence
genuinely analytic, or the weak branch itself, so possibly formal, or analytic if
x is restricted to a sector. In any case, we always take D so that, D = aP0.

While normal forms for p = 0, and conjugation to them in sectors have been
studied extensively, c.f. [MR82], [Eca92], this doesn’t provide that much of a
shortcut to the p # 0 case, so we may as well just do things from scratch. The
formal situations is as follows:

IV.1.2 Fact There are formal coordinates z,y in which D may be written as:

0 xr-&-l 0
xP {R(-T)yay + 71 Ry ax}

where r € N, R(x) has degree at most r, R(0) # 0, and v € C.

Proof. The weak branch, y = 0, exists formally, and the restriction of D to it is
a 1-dimensional vector field vanishing to some order, p + r + 1, by definition of
r, at the origin. Changing = as necessary we may suppose,
aPtrtl 9
y=0 " 1 4 partP oz

Similarly, % is a function which on restriction to y = 0, is of the form P x unit,
which by a change of y coordinate we may suppose is a polynomial R(x) of degree
< r. This suffices to identify the formal invariants, and even as preparation to
apply 1.4.1. However, to avoid repetition in treating the analytic case we further
simplify the behaviour of Dz by studying it mod %2, and from a little linear
algebra it emerges that the previous expression for D:ULFO is actually, after a
suitable coordinate change valid mod y2. Consequently we may suppose that
our field has the form,

0 x" 0
D =a? { (R(I) + ya(xay))y@ + (m +y? b(l‘,y))l‘ax}

and we seek a formal conjugation of this to the normal form IV.1.2 in &, 7 of
the form,

p=eme oy =ey
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for some formal functions f and g. This amounts to solving the following system
of PDE’s:

T LT 2
2 e—pfnzﬁ _ grertn +
13 1+ ]/ef(TJFP)WngJFP

o pin’? <(9f + 2f077> — e20m b(efnzg7 e9n) = 0
n
! {e—pfrfa: _ R(efnzf)} + e—PI? <g(97;7 + (?g) g a(efnzg7 eg”n) -0

where the terms on the extreme left are formal functions, not just meromor-
phic. Re-arranging in the obvious way, there is a vector valued operator P(f, g)
sending 0 — 0 for which we require to solve the equations,

P(f,9) = [Z]

Now the functional derivative of P has the form,
P(0): f] A+10 [f]
P || ro)|!
where A is a matrix of functions such that,
2 0
40 =70 5 ]

The operator A(0)+10, operates on i/ as (2+7)R(0), or (1+5)R(0), according
to the row, up to a topologically nilpotent operator N. Whence the same is true
for A+ 10, so A + 17 has a right inverse, and we conclude by 1.4.1. o

Now if this seems a little heavy handed as an approach to the formal normal
form, it’s because it will, fortunately, be applicable mutatis mutandis analyti-
cally. In the first place, we can, and will suppose without warning that we start
with a situation as close to IV.1.2 as we please in the m-adic topology, for m the
maximal ideal at the origin. On the other hand the weak branch may not exist
analytically. It does, however, exist on domains of the form S x A for S a sector
in the x variable of width up to 3w/r “patched from sectors branched on the
right” (e.g. apply I1.4.3 with n = 1), and again we may suppose the asymptotics
with respect to the formal solution in IV.1.2 as good as we like. Now, since we
don’t really care about a full asymptotic expansion we can suppose,

0

_ pHr+1 Y
'D|y=07 zeS x o

This can be done for a coordinate = € S, as close to, z(1 +vzPT" log 2)~! as we
like, z extending to an analytic coordinate in the whole disc. Or, more precisely,

2=z (142" (logz + f(2)))
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for f(z) bounded up to the boundary of S, so z is Schlict. Again, we also
prepare the y variable so that,

9y

- = 2P R(x)
yx y=0, xeS

This can be done via a change of coordinates,

(z,y) —> (m, y eg(ac))

g(z) = O(Jz|Y), for N as big as we like, so, once more, it’s Schlict. Finally there
is the preparation,

Da:|mes = 2P (mod y?)

where by construction we already have,

Dx

s z" +ya(r) (mod y*)

and a(x) = O(|z|"V). Obviously we seek a new variable X in the form X =
(1 + f(z)y), and this amounts to solving the linear equation:

R(x)f + JfTH% —z"(p+7r)f =—a(x)

Now this is trivially possible, c.f. 11.4.1(a) et sequel, on a sector of width 37 /r,
but there is a conflict between the branching here and that for producing the
weak branch. More precisely, the latter is done by patching solutions in sectors
of width 27 /r such that the conformal mapping x + z” has a branch within 7/2
(be it above or below) R(0), while the former must be branched, again above
or below, within /2 of —R(0), so at the end of the day we can only actually
do both equations for sectors of width 27/r — e, and the branch of the resulting
conformal mapping x — z" is “on the left”, i.e. within 7/2 of —R(0). This
concludes the preparation, and again we seek a change of coordinates of the
form,
o= efnz’g’ y = €9

which conjugate our vector field to that of IV.1.2 with ¥ = 0. The resulting
system of PDE’s being exactly the same as in the proof of op.cit. So dividing
through by R(£) the functional derivative is a small bounded perturbation of,

()
Ton T RE© )0 1

under a change of coordinates of the form,

E— (T4l 4 + e élogé)

¢ sufficiently small to guarantee that it’s Schlict, the —1 part of this formula
becomes,

oL e
Ton T R(0) o€
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and we make the evident change of coordinates,

R(0) 1
¢= g ST (;C)
so that the functional derivative becomes, on dividing through by 7,
NI
r|0 1 0¢

where s € C, and, without loss of generality, Re({) > log|s|. This admits a
bounded right inverse,

e

Ko f(C.m) = exp(BC) Lvexp(_Bz)i(z’ mdz [ = [ﬂ

and, rather evidently, B is the matrix occurring on the previous line. Notice,
in particular, the branching is correct, i.e. our previous restrictions imposed £"
within 7/2 of —R(0), which amounts to ¢ being branched in Re(¢) < 0, so one
chooses the boundary in the original = variable so that the leaves have the shape
shown in figure IV.1.2, or some appropriate variation thereof for the branch b.

Im(¢)

Re(¢)

log |s|
Figure IV.1.2

Consequently,
fI(O)KO =1 + EKO
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for € as small as we like a function, whence P’(0) has a bounded right inverse
K. Plainly we arrange that the a,b occurring in the proof of IV.1.2 are in as
large a power of m as we a priori please - actually 1 would be enough if they
were divisible by z, which could always be arranged via blowing up, otherwise
we must take care at the y boundary and proceed as in 1.3.6. As such shrinking
the radii in x and y as appropriate we arrive to,

IV.1.3 Fact Let D be as in the set up IV.1.1, then there is a Schlict mapping
(&,n) = (z,y) from a domain of the form S¢ x A,, A, a disc, S¢ a sector of
width 27/r — & with £ — &" branching within 7/2 of —R(0) which conjugates
D to the field,

e {R(f)n; n g”ljg}

Proof. Tt remains to prove that the mapping constructed above is Schlict. To
this end, apply the conformal mapping ¢ : £ — £~". Then the derivatives in (
and n of f and g are bounded on sub-domains a finite Euclidean distance from
the boundary, so for z({,n) our mapping,

z=id+nB((,n)

with the derivatives of B bounded as indicated, so at the price of a small shrink-
ing of radii and aperture, the mapping is Schlict. o
To which we may usefully add,

IV.1.4 Remark Since we're dealing with fields, not foliations, even for p = 0,
the factor R(§) cannot be removed, nor can it’s degree be decreased.

IV.2 Bounded Sectors

We can begin to solve some PDE’s whose functional derivatives are nodes, i.e.

IV.2.1 Set Up Let (x,y) € A? be coordinates in a bi-disc, and f — P(f) a
differential operator polynomial in the fields

2

for D, ¢ as per IV.1.1, and with functional derivative in 0,

2w

p+r
As the name bounded sectors suggests we don’t really need the full detail of
IV.1.3 since we’ll be constructing bounded right inverses. Nevertheless we’ll
use it since it will allow us to treat with an uniform notation the bounded and
unbounded cases. Consequently, let us immediately restrict to S x A a domain
as per op.cit. in which we may write,

D = 2?0,

P0): f—> (11—

0 %
0= R(m)yafy + era—x

63



Take —z(z) to be a primitive of ="+ R(z) in the obvious way, i.e. avoid adding
in any constants, having determined a branch of logz, which is holomorphic
in S. This leads to a first integral s = yexp(z) where the domain of s is
potentially all of C. Plainly z is unbounded, and as ever it’s convenient to work
in neighbourhoods of o0, so ¢ = 1/xz, and, of course,

IV.2.2 Triviality Denoting, equally, by S the corresponding sector in ¢ of
width up to 27/r the mapping ¢ — z({) is conformal onto neighbourhoods of
infinity branched on the left, and of a slightly smaller aperture.

In terms of the mapping s : S x A — C the fibres are rather easy to describe,
viz: Re(z) = log|s|, for y in the disc of radius 1. The appropriate variable,
however, against which we should attempt to integrate is & = (P*", where we
only have conformality on sectors of width 27/(p+7), or 27/(1+p/r) in z space,
and p is arbitrary. Consequently for p > 3r there are necessarily sectors where
the fibres are bounded, and —o0 cannot be used as a base point. By IV.2.2 we
can, for |¢| » 0 and slightly shrinking the aperture reasonably confuse sectors in
¢,z and £. The most convenient confusion is to take sectors, ¥, in the z variable,
so, implicitly, never bigger than 27/(1 4+ p/r). Nevertheless the variable ¢ is the
governing variable, so ¥ really means one of the connected components of ¢ ~13.
There are also certain critical values ¢ of the argument where there is need for
caution, viz:

IV.2.3 Caveat The values of the argument of £ where say a half line ( € R ¢
has Re(cP™") = 0, i.e. &(c) purely imaginary, will require caution. Plainly
these occur at intervals of 7/(p + r), and away from them any other ray R.~ is
asymptotic (|¢| » 0, depending on the distance between + and the £ imaginary
direction) to a straight line in £ space bounded away from purely imaginary.
Things are fastidious enough without worrying about the optimal size of
sectors, so we’ll content ourselves with neighbourhoods thereof, beginning with;

IV.2.4 (a) Easy case The ray through (o, has Re(¢P™") — +w as it goes to
infinity, and Re (2(¢)) < 0.

Take some small sector Y around this direction which doesn’t cross a &-
imaginary direction. Furthermore choose a straight line Im(z/v) = 0, so that
for X in the projection of ¥ onto S! in the ¢ plane, Re (/\pR(O)/ﬁ) is never zero.
This latter condition means: the level curves Im(z/v) = const, are uniformly
asymptotic to straight lines in the &-plane for |(] » 0, as ¢ varies in 3. Plainly
if the aperture of X is sufficiently small, there are many such v. Now define
the domain of {, Z say, by it’s manifestation in the z-plane, as shown in figure
IV.2.4, where we further refine the choice of v so that Re&(p) < Re&(q), e.g.
argument of (y. Now take 7 in the left half plane H to be the logarithm of vy,
and o the logarithm of s, then the domain of o is H + Z = H + p. This give a
fibring, o : £ — H + p with fibres,

Lo ={z€Z : Re(z) > Re(o)}

On any £, the harmonic function Re(§) has it’s minimum on the boundary. On
the other hand, Re(§) — w as z € Z goes to infinity along any fixed argument,
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Im(2)

Im(z/v) = R

Figure IV.2.4

while by construction the derivative of Re(£) is never zero on any ray bounding
Y (|¢| » 0), so for Re(o) « 0, the minimum occurs at p, and strictly so. Whence,

V={o: Re(§)|

;. has a strict minimum at p }

is open and non-empty. It’s also closed since if 0,, = 0 € H + p, p is at worst a
not necessarily strict minimum. However p may be joined to any point in £, by
a path that follows Im(z/v) = const, followed by a straight line in the z plane
with constant argument, along which the derivative of Re(€) is piecewise never
zero, and since Re(¢) — +oo along lines of constant argument, it’s actually
piecewise increasing. Consequently V is H + p, p is the good choice of base
point, and for v the path described above,

|dv*¢] < C dRe(y*€)

for C' depending on the aperture and R in the definition of Z. Consequently
after adjoining a small Euclidean disc in the £ space around p we have a right
inverse to P’(0), viz:

3
Kg(&,0) = 6_51[ elg(t,o)dt

p

a priori after base changing our original fibration in s by the logarithm o, but
manifestly periodic in o, whence a right inverse in the domain of the s variable.
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IV.2.4 (b) Trickier Case The ray (y has Re((P*") — —o0 as it goes to infinity,
and Re (2({o)) < 0.

Again take the domain Z 3 ( to be defined via its manifestation in z space,
viz: a small sector around ¢y cut by a line Im(z/v) = R to be specified. Now
restrict 7 = logy to a spiralling neighbourhood, viz: n € N, where N is a cone
in the left half plane contained in 3 and the cone p + C' whose intersection
with ¥ defined Z. Then rather conveniently the domain of 0 = logs is also
Z. This leads to a fibration ¢ : £L — Z with fibres as shown in figure IV.2.4.
Now we can take the cone N as close to parallel to one of the bounding rays

o a(o) Im(z)

L,=7Zn(c—N)

Re(z)

Im(z/v) =R

Figure IV.2.4

for ¥ as we please, so for Re(o) very large, min Re(§) in £, will be attained at
o. Whence in the first instance, if W < Z is the open where Rea(o) < Rep,
Reb(o) < Req - notation as in the figure IV.2.4 - then the open subset V' of W
where Re(§) has a strict minimum at o (for all of £,) is closed and non-empty
since the derivative of Re(o) is non-zero on all of the lines bounding £,. As
such this even remains true in W, and ¢ continues to be the strict minimum on
a neighbourhood of W, so a connectedness argument again yields that o is the
strict minimum for Re(¢) for all o € Z. Consequently o is our candidate for a
base point with holomorphic variation and we consider the operator:

¢
Kg(¢,o)=e*¢ f e'g(t,o)dt
£(o)

For any o the maximum of (K ¢)(&, o) is attained on the boundary. Any point on
the boundary of £, may, however, be reached from ¢ by a path in the boundary
along which Re(§) is not only increasing (exactly how depends on the “sign” of
the derivative on Im(z/v) = R between p and ¢) but for R » 0 is as close to a
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piecewise linear path in the £ space bounded away from strictly imaginary as
we please. As such by the usual procedure of adding a small Euclidean disc of
fixed radius in £ space around £(o) we have a right inverse for P’/(0) to which
we may apply the implicit function theorem. Whence there remains to discuss,

IV.2.4 (c) Need for caution case The ray through (, is asymptotically
purely imaginary, Re (2(¢p)) < 0.

We again take X to be a small sector around (g, cut by a line Im(z/v) = R
to be chosen, so that the domain Z of { is as before. Without loss of generality
we may suppose that ¥ is bounded by rays A_, Ay on which Re(&) goes to —oo,
respectively +00 and the argument of ( increases from A_ to A, - otherwise
change the choice of the root of —1. Now denote by € the increment from A_
to a general point in ¥, and ¢ the increment to the £-imaginary value. Then

the condition that the level curves Im (z/ (R(O))\C)) = constant are bounded

away from strictly imaginary in the ¢-plane is: (p +7)A— + pf bounded strictly
away from 7/2 mod 7Z. The &-imaginary value however occurs at (p + )¢, so
this can be achieved provided Ay is strictly within (r/p) ¢ of the &-imaginary
value. Consequently we take v between A_ and A, but very close to A_ so that
Im(z/v) = constant is bounded away from strictly imaginary throughout X,
all of this being understood for || sufficiently large. Similarly again we restrict
n = logy to a cone N, but with bounding rays p_, 4 between v and A_ and
ultimately as close to A_ as we please.

The shape of the leaves is, therefore, as per IV.2.4(b), with all boundary
lines bounded away from purely imaginary, Z continuing to be the domain of o,
and with the further proviso that Re(¢) is negative on the A_ boundary, positive
on the A, boundary, and for appropriate choices of u_, p+, the set where Re(&)
has a strict minimum on £, at ¢ is non-empty. Consequently a slightly easier
version of the previous connectedness argument applies to conclude that Re(&)
always has a strict minimum at ¢ as o varies through Z, and the right inverse
K to P’(0) is given by the same formula. We may, therefore, summarise our
conclusions in the usual way, viz:

IV.2.5 Fact Let f — P(f) be as in IV.2.1, or even with extra variables z; pro-
vided the functional derivative is conserved and the operator is also polynomial
in the (f;/]_ , then for any value 6 of the argument of = such that Re (R(0)e"?) <0
there is an open sector S around z, and a cone N centred on 0 in the domain of
logy (supposed, without loss of generality a left half plane) such that for A™ a

domain for the extra variables, the equation

P(f)=g

has a solution in U(d), U = S x N x A™, provided |g|v is sufficiently small.
In the cases IV.2.4(b)-(c), i.e. Re(z"*P) < 0, N is a proper sub-cone of H and
the sufficiently smallness condition is guaranteed as soon as g vanishes at the
origin by the simple expedient of shrinking the radii. In case IV.2.4(a), where
we can take N = H, and actually obtain analytic solutions in y, we can allow
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the operator to be polynomial in %, but g should vanish to a sufficiently high
order (determined by P) at the origin to permit us to reason as per 1.3.6.

It will transpire that for many values of z, essentially those admitting a

sector of width 27/(p + r) which extends into Re(z) > 0 we can do better than
this. In general, however, full analyticity in y is not possible, which we’ll discuss
by way of,
IV.2.6 Scholion The appearance of logy, and whence spiralling rather than
full neighbourhoods of y is not a result of stupidity but rather of an intrinsic
problem that the latter is impossible. The discussion I11.3.4 adapts itself easily
to this case. For convenience we’ll suppose p even, and r = 1, although this is
extremely far from being necessary. Putting R(0) = 1, we assert,

IV.2.6 (bis) Claim There are no fully analytic solutions in y in any open
neighbourhood of the negative real axis of the equation

@-D)H=1=,

Proof. Suppose otherwise, and let >/ fi.(z)y"* be the Taylor expansion of f,
then the fr must satisfy,

fi (1 — kaP) — asp"’Q% =1
ox

Changing to ¢ = 1/z, so ¢ and z planes coincide, this becomes,

fk(C”—k)Jr%:C”

If this equation has a solution in Ry, then it’s unique, more correctly the
bounded solution is unique, so:

¢
fr(0) :f eQ@r()—=Qu(Oyp gt
where Q1(¢) = 557 (¢ — k(p + 1)), so that,
¢
[ =1+ ke*Qk(C)J eQr®) gt

Now consider the critical value of Qx(¢) at v, = —kY? and the behaviour on
(vk — 1,7%), which is of the form
L1+1/p
PRV o)
p+1

so rather comfortably for k > 0,

Ll+t1/p

Qk(<)|('yk71ﬁk) > m

(1—¢)
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whence no matter the value of ¢, eventually f;(¢) admits a lower bound of the
form,

1 kl+1/p
|f(Q)] = fx(¢) = exp (2 H1/19>

for k » 0, which is impossible. o

Obviously one can make much more brutal examples, but just as in I11.3.4
even meromorphicity doesn’t improve the situation, and we can even look at
the solution of “resurgent type”, viz.

o _ p+1\ 1/ (p+1) -1
J {1_yam<_(1 ﬂp+1ﬁ; ) +1)} ot
0

so there is a problem as soon as,

p+1
(1 +z (logy + n))
(p+ 1)art!

t=1-—

for logy a fixed branch of the logarithm and n € Z(1), which constitutes a
barrier to giving any sense to this formula without imposing further restrictions
in logy.

IV.3 Unbounded Sectors

We retain the set up, definitions, and notations of IV.2, but pass to consider
values where Re (z(C)) > 0. Consequently ¢ belongs to some sector to be
specified and a convenient shape of the domain Z of ¢ will be of the form shown
in figure IV.3. As such the domain of s is C. The parameter R is to be specified,
and we observe,

IV.3.1 Triviality For R » 0, all level curves (Re(z) = const)nZ are uniformly
asymptotic to straight lines bounded away from purely imaginary in the £-plane
provided for ¢ € ¥ of module 1, (? # +R(0)/|R(0)|. The values of the argument
of ¢ for which this occurs will be referred to as critical.

We will be able to take —co as a base point, whence for consistent definitions
of —oo we will be able to patch a la 11.4.2 from small to large aperture, so in
the first instance we won’t worry about this too much. Consequently let the
argument of (y be given and suppose that it’s not critical, then,

IV.3.2 Very Easy Case Re((?*") —» —oo along the ray through (.

In this case all rays in Z, for ¥ sufficiently small are uniformly asymptotic
to straight lines in the £-space bounded away from purely imaginary. Whence
they provide paths v in the {-space from —o0 to any point satisfying,

|dy*E] < C dRe(v*€)
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Re(z)

Re(z) = R

Figure IV.3

whence, as ever, a suitable right inverse for P’(0) is provided by,

3
(Kg)(E.5) = ¢ J el g(t, $)dt

[o'e]

Otherwise in the limit, the ray through (y has non-negative argument. Now
suppose (o is between two critical arguments which continue to lie in Re (2(¢)) =
0, then we have two possibilities for how to put a sector ¥ around (p which has
rays (_ with Re(¢?*") — —oo, and one of them must be possible, i.e.

IV.3.2 (b) Another Easy Case Not in IV.3.2(a) and ¢y is between two critical
values c_,cq of the argument, Re(z(cy)) = 0, then there is an open sector
3 3 (p not containing critical values of the argument, with bounding rays o_, o4
uniformly asymptotic in the £-space to straight lines, on the latter Re(¢) — 400,
and on the former to —oo.

So here we can go from —oo to any point by first travelling along o_ then
straight down a level curve Re(z) = constant . For R » 0, Re(§) < 0 on
o_, positive on 0., and we are away from critical, so this path is uniformly
asymptotic to a path in the &-space consisting of straight lines bounded away
from purely imaginary and increasing Re(¢), i.e. integration from —oo works
again.

Now suppose, z((p) is between exactly one critical point and the imaginary
axis in the z-plane. If the critical point itself has Re(cPt") — —oo, then we’ll
be able to find ¥ exactly as in IV.3.2(b). Otherwise the situation is as follows,

c? = R(0), "™ =X Re(\) =0, R(0)" =+-1
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where c is the critical argument, and the z-imaginary axis j, which, if say we
look in the upper half plane of z, may be written j = ce®, § > 0, so:

i = )\6”07 jp+r — )\ei(p-&-r)(‘) — ieip@

and § < 7/p by hypothesis. Consequently we again encounter rays bounded
strictly away from purely imaginary in the £-plane, asymptotic to straight lines
and Re(¢) — —oo, whence;

IV.3.2 (c) Still Easy Case Not cases (a) or (b), Re (2(¢o)) > 0, (o not crit-
ical, then there is a sector ¥ < {Re(z) > 0} with exactly the same properties
encountered in IV.3.2(b).

It therefore remains to treat the critical points, and the z-imaginary points.
In this respect, observe that there are no critical points with ¢?*" purely imag-
inary, Re(R(0)c") > 0. So, away from the imaginary axis, we have,

IV.3.2 (d) Last Easy Case Not (a)-(c), whence ¢y critical, but Re(¢}*") —
—o0, then we can take our sector exactly as IV.3.2(a) with the same paths.

Whence there remains to treat the case Re(c?™”) > 0. Irrespectively of
the position of ¢, by the calculation preceding IV.3.2(c) we can find sectors
Y4, ¥ < {Re(z) > 0} starting at ¢, the former being above and the latter
below, which eventually contains rays with Re(¢?*") — —oo. Plainly, however,
it is impossible to use —o0 as a base point without permitting paths which are
somewhere tangent to imaginary in the £-plane. We must, therefore, be rather
carefull beginning with an analysis of the critical condition, which is really only
an approximation to the truth, viz:

dRe(€) dRe(z) = 4n(p + 1) [¢[20~Y Tm ( PR Q) ) dd°|¢]2.

Now consider ¢ = tce’® of argument close to that of ¢, and in an abuse of nota-
tion, put R(1/¢) = R(0)R(1/¢) so that we have R(0) = 1 and we're examining
the vanishing of the real analytic function

Im {eips R <le—i5> }
tc

In the degenerate case that R(1/¢) has zero imaginary part on the ray through
¢, this goes like € (14 O(1/t)), so for t » 0, it only vanishes on £ = 0. Otherwise
there is 1 < k < r, and a real analytic unit u(r, €) such that the function may
be written, after multiplication by a suitable unit as,

1 1

et —ul—,¢
- tk (t )

where we permit the fixed ambiguity + so that u takes values in R~ - the am-

biguity, of course, being fixed since the (e, t) space is connected. Thus in terms

of the coordinate 7 = ¢! at oo, there is a real analytic change of coordinate
T — p taking positive to positive, such that the equation becomes,

e+ p
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Whence it has exactly one solution, and we summarise this by way of,

IV.3.3 Fact Fort » 0, there is a real analytic function ¢ ~— cb(t) € S!, such that
tb(t)c is the unique point in the (-plane where the level curves Re(€) = const,
Re(z) = const have a tangent on || = t in any open sector around ¢ which does
not contain any other critical points. The function b(t) satisfies the estimate
b(t) =14+ O(1/1).

In a slight abuse of notation, therefore, we replace our sectors ¥,,X_
by domains with the same respective bounding rays in the z-plane on which
Re(¢) — oo, but replace the common boundary R.c by the image of ¢b(t) in
z-plane, while continuing to use the same symbols ¥, ,¥_, albeit Z{’HEb_ if
there is risk of confusion. The derivative of Re(¢) along this common boundary
may be conveniently calculated in the ( plane, and it is, unsurprisingly, asymp-
totic to a straight line in & space bounded away from purely imaginary with
Re(¢) — +o0. Consequently in the £ plane our domain has the form shown
in figure IV.3.3; in which the salient features are that Re({) increases along

Im(€)
£(5)

Figure IV.3.3

the boundary which has a unique imaginary tangent at b(s), for b the implicit
function of s defined by IV.3.3, and, of course, |£| » 0.

Now define domains L, L_ by way of a definition of their fibres over s € C,
viz: rather than taking the lower, respectively upper, boundary to be the curve
b, one takes from b(s) a straight line of fixed gradient in the z-plane very close to
the tangent to the ray through ¢, but slightly below, or above, as appropriate.
Whence the fibres L, s conserve the salient features of Z’;’S observed above.
If one is not too greedy in the choice of the ray bounding L, on which Re(§)
goes to —ao, the level curves parallel to the straight line that we have added
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are uniformly asymptotic to straight lines in £-space bounded away from purely
imaginary. Observe furthermore that the L, s are unchanged under rotations in
the y-variable, whence if ds is the Euclidean distance in y there is a well defined
domain L, 4, with exactly the same properties which corresponds to the effect
of shrinking the domain of definition of y to a disc of radius dy less. With this
in mind, we intend to employ the implicit function theorem on the domains,

Us(dy, dg) = Ly(dy, d3) A Ly q,

with Ly(d1,ds) © C? in (s, 2) coordinates as per pre 1.3.3, and do the function,

ds
—log (1 — Y)

for Y the radius of the disc in y, so that for es < da,

~ L do —e do —e
S 92 2 G2 2

Consequently for a suitable constant C' determined by the straight line to which
the curve b is uniformly asymptotic, any n € N, and any function g,

Yn

||ang||U* @ < nlC" (2 —e)" ||9HU*(2)

Let us employ this to invert the operator 1 — D = 1 — 2P0 as follows: Observe
that D™ is an operator of the form,

Zn: Cimé-fi(n) 6i
1=1

where i(n) = pn, whence,

Y'I’L

jorr " ]

9 vy < On
The constant C,, depending only on ¢ and n. Now for n sufficiently large to be

chosen, put
n—1
Tg = Z D'g
i=0
and,
R ¢
Roes)=e <[ enrge.s
—0
where for paths we come in along the ray with Re(§) — —oo, then in the {-plane

go parallel to the real axis, and if necessary (and evidently around b it is) go
straight down the imaginary axis. This operation admits a bound,

1 n n yn dt
Roll, ) < U0l + 207 Dl 0 |

tnp/(p+r)
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so for n large enough, i.e.np >p+r, K =T+ K yields a right inverse to P’(0)
satisfying the bound,

Y’n
6k, < On s ol o
for some constant C,, depending only on ¢ and n. The domains U, (d) are a little
complicated but they do contain a L, s for ¢ a bit bigger than d, and |¢| » 0
provided the lower, respectively upper, boundary line is take sufficiently close
to parallel to the boundary b, so, in fact an open neighbourhood of %% for some
slightly smaller disc. Let us summarise all this by way of,

IV.3.4 Fact Let f — P(f) be not just an operator as IV.2.1 but actually
polynomial in ¢ and

e

cy?

it is also polynomial in the the =, provided that the functional derivative is
J

conserved, then for any value of the argument of z such that Re (R(0)a?/|zP|) >
0 and not critical with Re (#*"/[zP*"|) > 0 there is an open sector S around
x, and a smaller (in fact any strictly smaller than the original) disc A 3y such
that for A™ a domain for the extra variables the equation

P(f)=g

has a solution in U(d), U = S x A x A™, provided ||gHU is sufficiently small.
As per 1.3.6 the sufficient smallness condition can be guaranteed by the simple
expedient of shrinking radii, provided g vanishes to a sufficiently high order at
the origin determined by P. In the case that the argument is critical, say c,
there are open neighbourhoods S (c¢), S_(c) of the domains ¥, ¥_ in the leaf
space as discussed above in which all the above remains true on Sy(c) x A™.
The domains S (c) have the same tangent space at the origin as sectors with
a ray on ¢, and the other above or below as appropriate, but one of them may
very well fail to contain even a closed sector containing c.
To which let us adjoin,

and even possibly with extra variables z; in which

IV.3.5 Remark The curve of critical points is a fairly serious obstruction. Lo-
cally at b(s) in £ space we have a situation like in figure IV.3.5, where in a
poor approximation we take b to be R, ¢, i.e. the Euclidean distance in £ space
from b to this line can grow polynomially and c,,c_ are rays above and below
intersecting the boundary curve in b, and b_. Irrespectively the Euclidean dis-
tance between b, and b not only grows polynomially, but on the face of it any
attempt to find a right inverse to 1 + % which is bounded at b, and b_ appears
doomed to failure due to the change in the derivative of Re(§) at b, which seems
to preclude any estimate for |d7| in terms of d Re(7y) along any path.

There remains to discuss the purely imaginary cases; to this end, as pre
IV.3.2(c) denote by j a solution of R(0)j" = =i, then we have the following
possibilities,

IV.3.6 (a) Easy Imaginary Case Re(j71") < 0, exactly as per 1V.3.2(a),
any small sector around j does, and ultimately conclude IV.3.4 with a sector
around j.
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Im(¢)

Figure IV.3.5

IV.3.6 (b) Still Easy Imaginary Case Re(j7*") > 0. Here by the observa-
tions pre-ceding IV.3.2(c) the nearest critical point ¢ in the Re(z) > 0 plane has
Re(cPT™) — —o0, so we can find a sector & la IV.3.2(b)/(c) all but € of which is
in the Re(z) > 0 plane, and conclude IV.3.4 with a sector around j.

So now we have the rare, but not impossible, j#*" = +i, i.e. imaginary
z going to imaginary &, at least asymptotically, and it is necessarily a critical
value. Around j there are regions in Re(z) < 0 and Re(z) > 0 and we have
further sub-distinctions,

IV.3.6 (c) “Bounded” Case For arguments k close to j, and Re(R(0)k") < 0,
Re(kP*") < 0. Here IV.2.4(c) is valid verbatim, i.e. we can find a sector S around
j, and a cone in the logarithm of y, and we have a conclusion as per IV.2.5. We
could have attempted this fully analytically using the boundary curve b, and
4400 in one of the components, but it’s not worth the trouble.

IV.3.6 (d) “Unbounded” Case As IV.3.6(c) but Re(kP*") > 0. One can
just do this from —oo, even with a bounded right inverse K, viz: as paths one
can come in along the ray which goes to —o0, and then horizontally straight
across in the ¢-plane, since the bounding curves Re(z) = o are always to the
right of the ray. Whence the conclusion is as per IV.3.4 with an actual sector
around j.

IV.4 Last Case

There remains to discuss the possibility defined by,

IV.4.1 Set Up Let (z,y) € A? be coordinates in a bi-disc such that x = 0,
respectively, y = 0, is the strong, respectively weak branch of a node with
saturated generator ¢ and r as per IV.2.1. Let ¢ € N, p € Z>o be given and
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f— P(f) a differential operator sending 0 — 0 polynomial in the fields,

0 0
pP,,q9 I _
2Py?0, (qxax pyay)

with functional derivative of the form
(L+¢)—-D

where ¢ is a function vanishing at the origin, and the —1 part D is a field of the
form (unit) x 2Py?0, where the unit is chosen so that D(aPy?) = (xpyq)Q. Up
to a homothety in y anything of which the —1 part of the functional derivative
is parallel to a node while vanishing to order p, respectively ¢, along the strong,
respectively weak, branch, and nowhere else, has exactly this form, after scaling
by a unit.

Now proceed exactly as before, restricting to a sector S x A, introduce the
normal form for ¢ and the functions ¢, 2(¢), s as before. A slightly more conve-
nient rescaling is to only rotate in the y variable so that D(zPy?) = \(zPy9)?,
X € R+ fixed, so that we can shrink |y| as we please. Whence if ¢ = (2Py9) 1,
then in £, s coordinates the functional derivative is

(1+€)+/\6%

and we first treat the case € = 0. Now observe that, s? = £ Lexp (E(()) where
Z(¢) = 2(¢) + plog ¢ and by construction z(¢) has the form,

@gr (14 e+ + e log()
Whence there is no practical difference between Z(¢) and z((), i.e.  — Z(¢) is
still a conformal mapping in neighbourhoods of oo on sectors of aperture up to
27 /r. Now for a suitably large R consider the regions Im(Z) > R, respectively
Im(Z) € —R. The conjugacy which brings us into the normal form IV.1.3 in
the Z-plane is branched within 7/2 of —1, so whichever of these half planes we
wish to study we may suppose that the branch is in the other. Consequently
let’s say we’re in the upper half plane HE, and with no-branching there in.
Choose a branch of the logarithm 7 of £ in a strip domain 7" with Im(n) < 0,
branched on the right (i.e. Re(§) > 0), and suppose further that &(7T) is a
rotated rhombus adapted to the branch, cf. figure II1.1.1, around which, either
on the left or right, one can go from the point Re(£) minimum to any other with
Re(&) strictly increasing, i.e. adjust the left boundary of T a little.

With these prescriptions, the domain of the logarithm o of s? is precisely
H}, and we have a fibring 0 : Lr — H;; of the total space by the leaves of 0,
so, fibres: (¢ +T) n Hj;. Observe that, LR|H§+2 2 Lgiox, so it will suffice to

solve our equation on the domains Lr = LR| gt - This is rather convenient
R+2m
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Figure IV.4.1

since (£,0) embeds L in C2 with fibre over ¢ exactly the complement of our
rhombus adapted to the branch. Whence,

en € dt
(Ko (€)= M [ e P(t.)]
o o
is a left inverse for € = 0 which is absolutely bounded irrespective of any shrink-
ing in & or y. While this can be analytically continued to the surface of the
logarithm of s, it can not be done in a bounded way. We are, however, exactly
in the situation of 11.4.2, so, again we can glue the Ly as the branch varies to
obtain a domain U ;?“ of aperture up to 37 in the £ variable, together with a
bounded right inverse on the same, which we continue to denote by Kj.
The situation is marginally more complicated in the right half planes Re(Z) =
R. Taking T to be a strip domain implies that the domain of the logarithm ¢ of
57 is all of C. This gives a fibring o : Ar — C of the leaf space of ¢ with fibres:
{Re(Z) > R} n (0 + T), so viewed under the conformal mapping &,

(L) = [l Z "7 Re(o) <R €4
R (S Re(o) > R, £ ¢

Supposing, after appropriate homothety that the domain of £ is the unit disc
minus the branch b. A priori, this cannot quite be done even for a branch on the
real axis, due to the imaginary tangent on the boundary, and the augmentation
of this problem as Re(o) increases. This is, however, little different from the
problem already encountered in II1.1.1, and we may simply adopt the expedient
of defining a domain V} € Ay fibre by fibre, in such a way that the excluded
region in the plane of £ is always a rhombus adapted to the branch, and, of
course VI% 2 ARyc, for some constant depending on the branch. The difference,
of course, between our current situation and say III.1.1 is that such surgery
has no relation to our base point, which is always —oo, so that in V} we have
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an absolutely bounded right inverse (¢ = 0) irrespective of any homotheties or
shrinking given by,

3
(Kog) (6,0) = ¢ ¢ f eyt o)t

and again these patch to a bounded right inverse, again denoted Ky, on a domain
Vg of aperture up to, but never equal to, 37.

As such, if we took the branching in Z to be along the negative real axis, then
we have right inverses K; in domains U E, Ug, and Vg, with a minor lack of
symmetry between the first two depending on whether the strip domain T' 3 7 is
in the upper or lower half plane. Irrespectively, they glue to a region U which
certainly contains,

{z . |Im(3)| > R+ 37, Re(3) > R + c} X {mg(g) log(€) € T}

for C' a constant depending on how close we push the imaginary width of T'
to 3m. Plainly the regions U;g and Up do not meet, but where either of these
meets Vi we find that the difference, E, say, between the operators we have
constructed on them is a bounded operator such that

<11+;§> (E)=0

so e¢ F takes values in the base of the fibration and is bounded by,

inf R E|
§ELs

A priori, perhaps not every leaf in the intersection has paths on which Re(¢) —
—o0, but many do, e.g. |Im(o)| > R + 3w, and the base of the intersection is
connected, so, in fact £ = 0. Whence the K patch to a right inverse in all of
Ug. We can then take care of the perturbation in the usual way, i.e.

PI(O)KO =1+ EKO

with everything bounded irrespective of any shrinking in = or y, so, after such
¢ is sufficiently small and the right hand side becomes invertible.

At this point, however, we have an unfortunate last minute complication vis-
a-vis the behaviour around z € Rg. Outwith the good fortune that our normal
form is analytic in the original bi-disc, which would, indeed be very fortunate
since it’s true with probability zero, we necessarily have a branch in the left half
plane of Z, so we’ll content ourselves to investigate a domain for Z of the form:

Z% m, =1{%Z ¢ Re(?) < —Rg,Im(2) > —Ri}

or the reflection in the real axis, Zp g, thereof. Taking our strip 7" in the
lower, respectively upper, half plane, we again have the convenience that the

8



domains of ¢ and Z coincide. Whence the leaf space for ¢ expresses itself as
a fibring o : Ly p, — Zf g, with fibres, (o0 +T) n Z} x . Observe that

Ry Ro |ZR1‘R2_27r L% Ry 2n» S0 it will suffice to work on the sub-domains,

ME],RQ = LEI,R2 |Z1>§1,R2—21r
Under the conformal mapping &, the fibres become annuli with a fixed inner
circle, and outer circle exp(—Re(o) — Ry) cut along the branch b. Whence,
in fact, this descends to an actual fibring over the punctured disc (of radius
exp(—R1)) with coordinate s, i.e. MJ 5 is the base change of this to the
surface of the logarithm. Nevertheless this is something that we know, since we
first encountered it in II.1 even without the inner circle, that this is something
we can’t do.

Consequently we have to accept the solution of the form already explained
in §III.3. More precisely, for a given value 1 of the argument of s?, replace
the right boundary of Z;’%h R, Dy the pre-image under the exponential of an
appropriately large rhombus adapted to the argument of s?, to form a domain
Z;Z’ Ry

Again LT%1,R2|ZR,R2 2 Ly, g, for B > Ry, so there’s no loss of generality
in supposing that the domain of ¢ is some ZE Ry B> Ra, strictly to the left
of Z;Z’ Rr,» and our leaf space, again restricting to Ry — 27, may be taken, after
descent, to be a fibring, s? : L;/"J_’RQ_% — A* over a punctured disc with fibres
the rhombus multiplied, whence stretched and rotated, by s~ ¢. This therefore
gives a domain like that post I11.3.2 with a holomorphic base point, p(s), where
Re(€) is minimal for aperture up to m around s. The desired right inverse is

therefore,
S

(Kog) (5.6) =€ [ 'yl
p(s)
which is absolutely bounded by the various angles, wholly independent of any
scaling, so, modulo adjoining a small Euclidean disc in ¢ around the base point,
and taking the usual power series to deal with the 1 + & term, we have a right
inverse K to P’(0) which comfortably satisfies the conditions of the implicit
function theorem, albeit at the price of arguments in s, as already encountered
in III1.3. Whence it’s here that the polynomiality in the fields IV.4.1is really
required - otherwise one could do much better. In any case, we have,

IV.4.2 Fact Let f — P(f) be a differential operator of the form IV.4.1, even
with extra variables z;, 1 < j < m, with polynomiality in the 6’;, and even

polynomial in m%,y% if we're away from Z € R.g, provided, as ever, that
the functional derivative is conserved. Then there is a domain Ug as described
above (so, modulo conditions on the radius better than an open sector excluding
the values of x for which R(0)2"/|z"| € R<o in the = variable and of argument
up to 37 in 2Py?) such that on U x A™ the equation,

P(f)=g
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has a solution in Ug((d)) provided |g|lu, is sufficiently small. The smallness
criteria can simply be guaranteed by vanishing of g at the origin, and diminishing
the original radii in = and y, possibly at the price of loosing a little aperture
in S, and of course, very small shrinking of the extra domain A™. Otherwise,
i.e. R(0)z"/|z"| € R<o, we can take a domain U* (precise form as above) which
contains closed connected sectors above, * = 4, respectively below, * = —, «
and the other boundary the ray through x, for which every value of the argument
of zPy? admits an open sector S of aperture up to 7, such that on replacing Ur
by U™ all of the above conclusions continue to hold.
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V 3-D Centre Manifolds

V.1 Algebraic Reductions

V.1.1 Set Up (Characteristic 0) Let ¢ be a germ of a singular vector field
around a point, where germ may be understood as being in any of Zariski, étale
or analytic topologies, according to the pleasure of the reader. Denoting the
maximal ideal of the point by m we further suppose:

(a) The induced linear map

m m
0:— — —
m?2 m?2

is non-nilpotent with one non-zero eigenvalue, counted with multiplicity, which,
for convenience, we’ll suppose to be 1.

(b) @ is non-zero in co-dimension one.

Although the discussion will always be local, we wish to make further sim-
plification by way of blowing up, so we’ll think of this as a foliation X — [X/F]
(equivalently, a rank one saturated sub-sheaf of the ambient, and always smooth,
tangent sheaf) with singularity as prescribed above. The given singularity is
canonical in the sense of [MPb], so, a fortiori has the following property

(c) For any sequence of blow ups in smooth invariant centres,
T X=X,—Xp 14— — X — X=X

i.e. the centre of X; — X; 1 is invariant by the induced foliation on X; 1, 7*0
is everywhere defined and continues to satisfy (b), equivalently generates the
induced foliation on X.

(d) For any point T of the induced singular locus of the induced foliation on
X , the corresponding linearisation of 7*¢ on the Zariski tangent space at T is
non-nilpotent.

With this rather laborious introduction out of the way, observe that in the
completion O of the local ring in the maximal ideal, the Jordan decomposition
may, in formal coordinates x,y, z be written as,

0

0=0s+0n, Os=2z4,
0z

0 0 0
on = a(x,y)=— +b(x,y)=— + c(x,y)z—
N = a(z,y) o + b y)ay ()25
Our goal, in a sense to be made precise is “the convergence of z”, and before
we can do this it will be necessary to simplify the situation by way of blowing-
up. By way of illustration, consider the case where our original singularity
is isolated, and denote by 7w : X — X the blowing up in this point with F

the exceptional divisor. Off the proper transform S of the formal invariant
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hypersurface S : (z = 0), the induced foliation is smooth except at one point, p,
say (= [0,0,1] for E 5 P? in homogeneous x,¥, z coordinates). As it happens
at p there are 3 non-zero eigenvalues, (1, —1, —1), but there is a better functorial
property that occurs. More precisely, we are supposing that our original foliation
F has the form:

0 —— Qe SN Kp-Iz —— 0

where the aforesaid saturation condition defines the left and right hand sides
of this sequence, albeit there are more functorial ways to make the definition
which justify the notation, and in the present discussion Iz = (z,a,b). On X,
however, there is an exact sequence,

0 —— Q%)f?/}_](logE) — ng(logE) —— Ky -Iyy —— 0
Again the left and right hand terms being defined by the saturation requirement
but here for T5(—log E). In any case, off S the ideal Iy has no support, and
we formalise this as follows:

V.1.2 Definition Let X — [X/F] be a foliation with canonical singularities,
and, as per V.1.1(c),

W:)z':Xn—>Xn,1—>---—>X1—>X0=X

a sequence of blow ups in invariant centres lying over the foliation singular
locus in X, with E the total exceptional divisor. Then the locus of non-log flat
points is the sub-scheme defined by Iy, where Iy is the ideal in the short exact
sequence,

Any point not in the support of this ideal will be referred to as log-flat.
To clarify this definition, let us offer,

V.1.3 Remarks: (a) Suppose more generally X — [X/F] is a foliated Deligne-
Mumford stack with X smooth, or even just foliated Gorenstein with canonical
singularities, and otherwise arbitrary. Then it follows from [BM97] that the
singular locus Z of F can be monomialised by a sequence of invariant blow ups
for the action of F. A priori this may not be same as the sense of V.1.1(c) since
the pull-back of T'r (= K }) along a blow up need not be saturated. However, the
singularities are canonical, so, in fact, there is no such problem. Consequently,
whenever the singularities are canonical there are sequences such as that of
V.1.2 which are as global as one could probably wish (i.e. with respect to étale
patching) and yield an exceptional divisor E on X which is both invariant, and
contains the induced singular locus.

(b) Log flatness is conserved by invariant blowing up. Actually it’s also con-
served by the only other operation that is guaranteed to preserve the canonicity
of the singular locus, viz: blow up in an everywhere transverse centre, but this
is less relevant.
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(c) Our ultimate goal is to understand “centre manifolds”, i.e. the a priori
purely formal sub-scheme defined by the vanishing of all the eigenvectors with
non-zero eigenvalue in the Jordan decomposition at a point. By hypothesis,
log-flat points have an invariant algebraic (i.e. component of the exceptional
divisor) through them with non-zero eigenvalue. Whence in such a study, the
dimension has been reduced by one in the strongest possible way as soon as
log-flatness occurs.

Returning to our initial example of an isolated singularity in dimension 3,
we conclude that we can safely ignore everything that occurs outside S. In
the case where a,b € m?, the trace of S (necessarily E n S by the way) is a
connected component of the singular locus, Z, say, by abuse of notation and S
is a formal sub-scheme of the completion of X in Z. In a bad case where a € m,
but b € m?, the foliation on S is smooth except at one point ¢, say, and the
ambient foliation still has an isolated singularity of the type being discussed.
Most of the time the situation on X will already be that of the previous good
case, but in very bad cases we may have to blow up once more, this time in ¢,
to obtain the good case. Regardless, we see that the isolated situation quickly
reduces to a non-isolated singularity which we summarise by way of,

V.1.4 Triviality Suppose our singularity is as per V.1.1, but isolated, then
there is a sequence of blow ups in singular points (of length at most 3) such
that every point of the induced foliation X — [X/F] is either,

(a) Log-flat.

(b) A singularity of type V.1.1 with a non-isolated (in fact isomorphic to P!)
singular locus, which is also the non-log flat locus.

The above possibility V.1.4(b) is actually a somewhat special case of the general
situation since we must distinguish between components of the singular locus
according to the number of eigenvalues at their generic point. In the general
non-isolated case at hand we may write,

O = i)™ - )™ (ala) 5 + Do)y ) + ez

in the completion of the local ring, with f; irreducible and «, 8 (possibly units)
relatively prime and all the f; vanishing at our point 0 under consideration. In
particular all the components of the singular locus are L.C.I., and we distinguish:

V.1.5 Definition (dimension 3) A central component C' of the singular locus is
a non-isolated one where the generic (whence everywhere if the singularities are
canonical, and/or in the germ sense) number of non-zero eigenvalues counted
with multiplicity is 1.

Let I be the ideal of the union of the central components. This is L.C.I, so
0 descends to a linear map,
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of the (locally free) co-normal bundle, which is rank 1-everywhere, so the kernel
and co-kernel are locally free O/I-modules of rank 1. The latter is naturally the
kernel of 1 — 0, i.e. even if we were global rather than local, Tr(0) ® 0¥ defines a
no-where vanishing section of O(Kx)/I, which can thus be identified with O/I
by the same so that locally the map is,

fb—»rﬁr({a)modﬂ

In any case, linear algebra gives,

V.1.6 Triviality In the completion Xof Xinl (and whence globally if that
were the context) there is a smooth formal hypersurface S such that for any
point ¢ € C, the completion S, of S at ¢ is cut out by the unique eigenvector of
the Jordan decomposition of ¢ at ¢ which has non-zero eigenvalue and defines
a smooth formal sub-scheme of the completion X, of X in ¢, i.e. the centre
manifold is a well defined formal sub-scheme of X.

Again, let us clarify what is going on,

V.1.7 Remark As we’ve seen in I1.2, and again let us emphasise [McQ] §1.5
as a source of further details, this is false at non-central components, i.e. even
for something with Jordan decomposition at a point,

0 0
Z Ep + Ty oy
one can make examples, even algebraic ones, where the failure to converge in
the completion of z = y = 0 is as bad as one likes. This is the phenomenon of
the beast. Nevertheless V.1.6 defines a larger object than that given by Jordan
decomposition and it is this object that is to be understood as the formal central
sub-variety, so, by definition, it’s trace is the union of the central components.

This said any blow up in any point in any central component, is log-flat
everywhere off the proper transform of S. Inside S such operations make the
induced vector field improve in the usual way, i.e. after a finite number of steps
the induced foliation in S will have canonical singularities and not just the cen-
tral, but also the non-central components form a simple normal crossing divisor
in S. At this point we may blow-up in the central components themselves to
obtain that every central component of the proper transform S of S is the i in-
tersection of a component of the exceptional divisor with S. In particular S
is even a formal sub-scheme of the completion of X in these divisors. Plainly,
this entire discussion is étale local, i.e. globalises, and is applicable globally,
were that the context, to any connected component of the singular locus where
the singularities are of the form V.1.1. Globally, if the singularities are canon-
ical on a non-isolated connected component, the only other possibility is that
generically there are 2 eigenvalues. Where the number of eigenvectors (with
multiplicity) goes to one, we have already smoothed such components, and else-
where they’re already smooth for co-dimension reasons. Consequently we can
blow-up in these too. Now, while S is not a formal sub-scheme around such
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a component, it does determine a formal sub-scheme in the completion of the
fibre in the exceptional divisor afforded by this operation, with trace the point
where the proper transform of the neighbouring central component meets the
divisor. Away from this point everything is log-flat, which is a Zariski open
condition, so around this fibre an explicit calculation via Jordan decomposition
implies that Zariski locally, all non log-flat points lie on the proper transform
of the central components. Whence, we have achieved:

V.1.8 Fact Let X — [X/F] be as in V.1.1, then there is a sequence of blow
ups, R
. X=X,—X,1— - — X1 —Xg=X

in smooth centres of the induced singular locus such that the proper transform
S of the formal central sub-variety satisfies,

(a) Off the trace of S (equivalently the induced central components), X —
[X/F] is log-flat.

(b) Every component of the singular locus meeting S (including the non-
central ones) is the intersection of a component of the exceptional divisor
with S, which is still simple normal crossing in S.

(¢) The induced foliation in S has canonical, and even for convenience re-
duced, i.e. no eigenvalue in Q, singularities.

Furthermore if X were an étale neighbourhood of a foliated Deligne-Mumford
stack X — [X/F] with canonical singularities, then all of this can be done
globally, i.e. the sequence 7 is as above but globally, and our particular instance
is the restriction to X of the same. This straightforward, if lengthy discussion,
may be brought to a close by way of observing:

V.1.9 Corollary Let things be as per V.1.1, and for 7 of the form V.1.8, and in-
deed even augmented by further blow ups in the induced singular loci contained
in central components, we can étale or analytically locally (according to the
context) achieve after completion in the central components of our bi-rational
modification a formal generator of the induced foliation of the form,

0 0 0
P,4q €
bty {alo g + o) |

where x = 0 is always the local equation of an exceptional divisor, p € N, and
q€ Z=q. If ¢ > 0 then y = 0 is also to be understood as an exceptional divisor,
and € = 1, or 0 according as this is the case; which may or may not define a
central component depending on whether we're at a beast or not, and the field
0 which multiplies zPy? is saturated with canonical singularities everywhere
(following standard usage smooth is allowed). Notice the completion is in the
ideal (z,zy™*), with * = 1 if 2 = y = 0 is central and 0 otherwise, so the entire
singular locus may be covered by finitely many opens where this holds, should it
be compact, or always in the étale “type fini” setting, if that were our context.
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Proof. By V.1.6 the centre manifold is already a well defined formal sub-scheme
of the singular locus encountered in X, so a fortiori after the above completion.
As such, let V be a formal affine in the completion in the ideal I defined in V.1.9,
then shrinking V' as necessary we may suppose that we have a local equation
z =0 for S and a formal generator ¢ such that é’( ) ==z

We distinguish the case y non-central, so that I may be written (z,z) and
the asserted form in x and y is certainly true modulo z. Convergence in the
topology of completion in z = 0 is stronger than that in Oy (strictly speaking
I'(Oy) but this is cumbersome), so we proceed modulo z*, starting at k = 1, we
may suppose the assertion holds modulo z*, with a,b the functions encountered
modulo z. If, say, ¢ = 0, we attempt a substitution z > X (1+&£2"), y — Y +nzF,
&, n functions of z,y. Then, modulo zF+! we find,

—k (8% — Xpa(X,Y)) =27k (% — zPa (a:,y)) + zP{pa + x€a, + nay}
— 2P6(€) — k¢
(oY = XP(X,Y)) = =70y = aPb(w, ) ) + 2" {p€b + &b + b}
— x"6(n) — kn

So there is a purely linear equation to solve in OV|(z:0) of the form

f] [f] k [mlé’x — aPa(x, y)]

k + N z

[77 n dy — xPb(z, y)

and N is topologically nilpotent since x is and d(z) € (x). The other cases
are similar, i.e. y non-central but € > 0, as above but use the substitution

Y = y(1+2*n), which again is the substitution to use in the central case, where
one appeals to the nilpotency of zy. o

V.2 Analytic Preparations

From V.1.9 the reader may safely infer, or jump to, the form of the PDE that
we must solve to find the centre manifold. At first glance, one might think that
everything has been done, and this is true when, in the notations of V.1.9, ¢ > 0.
Otherwise there is a lacuna because the polynomiality of the operator in the
fields as hypothesised in II1.3.1(c), and IV.1.1 is not satisfied a priori because
we are missing an invariant hypersurface,i.e. the “y = 0” plane, which inter
alia, is really necessary to afford sufficient space to apply the implicit function
theorem in these cases.

The first step to remedying the said lacuna is to find what corresponds to
the “y = 0” plane intersected with the formal centre manifold. We have two
cases to consider, viz:

V.2.1 Set Up Suppose we're in the situation V.1.8 then we require to find an
invariant surface “y = 0”, so, a priori the curve “y = z = 0” in the cases where
the Jordan form in the complete local ring for a formal generator of the foliation
may be written as,
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P
(a) Linear Case: Zi °

0 0
p +m(x%+)\ya—y),pe N, v, A € C, Re(A) < 0.

(b) Linear Case bis: As above but A € Qg, so the Jordan form is more
complicated, but it’s precise form of no actual importance, which would
not be the case if A € Q~g.

0 r+1 0
a: ), notation as per IV.2.2.

0
. _ D -
(C) Nodal Case: z +x (R(x)yay + 1 VTP O

0z

Now observe that in all of these cases the following preparations may be achieved
modulo the maximal ideal m at the point to any order k without prejudicing
the convergence, viz.:

oz

x

0z =2z (mF), Oy = \ePu(z,y)y (mb), = 2P u(z,y) (mF)

where r = 0 in the linear cases, and A = R(0) in the nodal case, with u,v € 1+m.
Blowing up in a point we improve to a ¢ > 0 situation except around the proper
transform of the formal curve in question. We may, however, now multiply by
a unit so that, x7'0x = zP*". Changing the notation accordingly with m the
maximal ideal in the blow up, we may now suppose:

0r = o+ 0z = u(z,y)z (m*), dy = AaPu(z,y)y (m")

and, again, u,v € 1 +m, but A possibly different, i.e. Agjg — 1 in the linear cases.
Blowing this up, again in the point, we may further suppose that u,v € 1 + ()
and the congruences hold modulo z* (actually z*~! so we change notation
appropriately). Now we look for our curve in the form z — (x,7n(zx),{(x))
which amounts to solving the ODE,

Pty (@) = XaPo(e, ) + 2*alz, 0, )

2P () = ula, )¢ + 2Pb(x, 1, ¢)

where k is as large as we like, and a, b are convergent functions. In particular
we can divide the first equation by zP, and we find a functional derivative,

A gt 0
=070 ] [l

where A is a matrix of functions in x, and we change k as we please. Now let’s
consider the case A = 0, and look for a right inverse of the form,

K, 0
0 Ky
We have 2 cases to consider. The first, » = 0, is rather easy. The construction

of Ky is as per 1.4 with total aperture 37/p, and branching on the right as
described in I1.4.2. We can’t do better than this, so there’s no point in fussing
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over the analyticity of K;. Consequently we immediately pass to the surface of
the logarithm, say = = ef, Re(¢) « 0, and ¢ is a strip of width 37, so that:

3
(K1) (€) = —*¢ J e Mg(t)dt

—C

is a bounded right inverse since Re(A) < 0. Now shrinking the disc in = as ap-
propriate and applying the usual power series for bounded perturbations with a
bounded right inverse, yields a bounded right inverse for the functional deriva-
tive.

The case r > 0 is much more fastidious. We have to respect the conditions
of the implicit function theorem, actually here it’s just the contraction mapping
principle, and the combinatorics are sufficiently fastidious that we won’t even
bother trying to get the best possible, i.e.

V.2.2 Digression on Branching For any value of the argument of ( = 1/x
there is an open sector about the same such that we can construct K, K5 as
bounded integral operators by integrating from the point where Re(A("), respec-
tively Re(¢P*") has a minimum, thus possibly, but by no means necessarily, —oo.
To avoid any inconvenience when restricting the radius of x as the inner bound-
ary for the domain of ¢, rather than a piece of circle take a suitable straight line
Re(p¢) = constant such that d Re(p¢)d Re(A("), respectively d Re(p¢)d Re(¢P*™)
are uniformly bounded below by ¢ |¢|"*?, co|¢|P+" T for suitable constants g, ca
and all ¢ in the sector.
Let us therefore summarise our conclusions,

V.2.3 Fact For z restricted to a sector S of width 37/p in the linear cases and
otherwise as per V.2.2 in the nodal case, with branching in the former case
as per I1.4.2, there is a smooth invariant curve z — (z,n(x),((x)), z € S, as
tangent to the normal form given by y = z = 0 as we please, i.e. look for a
solution n = x¢1, { = x¢¢ for any e but with k& » e so as not to change any of
the above.

Effecting the change of coordinates y — y — n(z), z — z — {(z) we therefore
still have for any k we wish,

0z = uz + b, Ay = A\aPoy + 2Fa

for a, b now functions on S x A2, Now however (y, z) is an invariant ideal, so it
must contain a,b. Let us therefore write,

0z = Uz + 2By, 0Oy = \aPVy + aFaz
for % = u(z,y) + 2¥c(x, 2), ¥ = v(x,y) + 2%d(z, y), and some functions a, 3 of

all the variables. Now let’s look for an invariant hypersurface § = 0 in the form
y =19+ zf(x, z). This amounts to solving the PDE:

f{ﬁ(x,zf,z) + xkﬁ(x,zf,z)f} + 0f = \ePU(x, 2f) f + aFa(z, 2f, 2)
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where 0 is the operator,
fr— (i(z, 2f, 2) + 2°B(x, 2 f, 2) ) 2fo + 2P+ 4L,

so that the relevant functional derivative of the appropriate operator f +— P(f)
sending 0 + 0 is,
P(0) : f »H{ﬁ(x,o,z)z% + $p+r+l%

— 2z fa,(x,0,2)

} + f{a(%o, 2) — AP, 0)}

and we have to achieve P(f) = 2¥a(z,0,2). Nevertheless we have the inconve-
nience that the node in the above functional derivative is not in normal form,
albeit, 7i(x,0, z) = u(z,0) + z¥c(x, 2), so the situation is not too bad. Dividing
through P(f) by @(x,0,0), and making an appropriate Schlict mapping in x, we
already achieve the preparatory steps encountered in the proof of IV.2.3. Here
the situation is in a sense easier, and we only have to conjugate the variable z,
which we attempt to do in the same way. When r = 0, the situation is exactly
as per op.cit., and the argument in z drops from 37/p to 27/p, since the ap-
propriate infinity is, again, the negative of that encountered in the construction
of Ky prior to V.2.2. In the situation r > 0, we’ve made no attempt to do
anything except keep a small open sector about our direction of interest. If in
the notation pre IV.2.3, in the variable ¢ = 2~ (P+7) | this sector contains 40,
nothing changes. Otherwise the only way this doesn’t happen is if our sector
is wholly in Re(¢) < 0, in which case we take a domain of the form shown in
figure V.2.3, for s a first integral. Such a leaf is bounded, but we’re interested

' Im(¢)

Re(¢)

Re(() =logls| ~ Re(¢) = —R

Figure V.2.3

in the minimum value of Re(—() to find our base point, so anything on the
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line Re(—¢) = —R will do, or better move the line a little off vertical so that
the minimum is unique. Essentially this is similar to something like IV.2.4(a),
since the problem with bounded leaves is when the base point is on the mobile
(function of s) as opposed to the fixed boundary.

Consequently we obtain new coordinates (z, z), still on S x A, but now S
has aperture 27/p if r = 0, such that the functional derivative has the form,

P0)f = (:cp+7'+1g—£ + zg—‘z) + f+e(x,z2)f
where as ever e(x,z) goes to zero as * — 0, which, by coincidence, up to
€ is exactly the same operator that we had to deal with in constructing the
conjugation. Again this operator has a bounded right inverse independent of
the radius in z, so the habitual power series gives a bounded right inverse to
P'(0) even after adjoining small discs about the base point if necessary when
r > 0, and whence we deduce:

V.2.4 Quick Note on Branching For r > 0, since we're limiting our ambition
to an open sector around every direction nothing changes from V.2.3. For r = 0,
the conformal mapping x — 2~ ") must be branched within +7/2 of —1, and
we have a sector of width 27 /p.

V.2.5 Fact In the linear and nodal cases envisaged by V.2.1, every value of
the argument of z is contained in an open sector S of some small radius (the

prescription being given by V.2.4) such that on S, x A?y .y we can find an

invariant hypersurface which is as tangent as we please (i.e. as per V.2.3, do
y=9y+aczf, for k> e » 0, to get whatever one wants modulo powers of (z) in
the initial convergent coordinates) to the invariant formal hypersurface denoted
by the same letter in the formal normal forms V.2.1(a)-(c).

V.3 Solving the PDE

Plainly most the the work has been done in §II-IV and it remains only to check
that the equation of the centre manifold is of a type encountered therein. There
are some subtleties as suggested in V.2, so we put ourselves in the situation of
V.1.8, and apply V.1.9 according to cases of ascending difficulty.

To begin with, suppose we are in the situation of only one central component
and apply V.1.9 by way of multiplication by a unit to obtain a convergent gener-
ator ¢ of the foliation on a polydisc or even étale open such that for (convergent)
coordinates x,y, z:

ox

% watey) (19, Y

k k
0z =z (I7), — =a"b(z,y) (I")
where k € N is some large integer to be chosen, I = (z,x), and a, b are possibly
truncated versions of their manifestations in V.1.9 since the latter were functions
after completion in . Now blow up in the central component z = x = 0, then
the congruences for 710z, y~°dy become congruences modulo (z)*. Whence,
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replacing V.1.8 by a blow up in the central component (which in no way changes
§), multiplying through by the unit u = (1 — 6m/x) 71, and changing k to k — 1,
a to ua etc., we may suppose,

ox 0
&’z:z—i-xkv, ~ = 2Pa + 2Fa, y—zj = 2Pb+ 2*p3

for a, b functions of z and y, and «, 3,7 functions of z,y, z. Now let’s look for
the centre manifold in the form of a graph Z = z — f(z,y), which yields the
PDE,

P(f) = —.’Ek’y(fﬂ,y70)
where f +— P(f) is the operator:

f+a"(v(@,y, f) = (z,,0)) — 2" (alz,y) + 2" Pz, y, f))zfe
—aP (b(Qj? y) + xk_pﬁ(xa Y, f))yefy

This has functional derivative,

P0) : fr— (1+ aky, (z, y,0)) f — 2" (a(z,y) + zFPa(x,y, 0))xfz
—aP (b(x’ y) + xkipﬁ(xv Y, O))ysfy

So take —D to be the vector field that corresponds to the part of the functional
derivative of order —1, then, modulo the order zero terms (i.e. functions of f),

P(f) = =Df —a*|a(a,y. f) = a(@,y.0) [af. — 2| Bz, ) = B3, 0) |v°S,

In all of the set ups encountered in §II-IV there is announced a basis of deriva-
tions in which the operator should be polynomial. Here it’s actually linear, but
regardless, this basis always contains D and the module "T(— log z, — logy),
for some fixed n (basically p, but maybe not in III.1 and IV.3), and T the mod-
ule of derivations in x and y, provided we’re not in the situation of I11.3.1(c) or
IV.2.1, where things are more delicate, and the discussion is postponed. Whence
taking k£ » 0, we have in all other cases where ¢ = 0, no problem in satisfying
the condition enunciated in the various set ups, plainly at which point we can no
longer work étale locally and we restrict to the analytic topology to satisfy the
equation on neighbourhoods governed by the type of the singularity of D, which
are everywhere canonical around x = 0, and even reduced, where appropriate
to eliminate one case. Better still if we look for a solution Z = z — z° f(z,y),
for any 0 « e « k, the functional derivative’s —1 part is unchanged on dividing
through by z¢, and the formula for the —1 part of P(f) is as above except that
a, O are evaluated at x°f. So, we can achieve any approximation to the formal
central manifold in the completion of the central components that we please.
We now pass to the case where z = y = 0 is a central component, so
necessarily ¢ > 0. Our preparation by way of V.1.9 is wholly analogous, the
displayed formulae at the first step being exactly the same up to fixing ¢ = 1,
replacing P by 2Py?, and taking I to be the ideal (z, zy). One resolves this ideal
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in 2-steps, viz: first blow up one central component then the other, the order
being irrelevant, and S remains unchanged. Continuing, as before, to denote
an approximate local equation for it by z = 0, multiplying through by the unit
(1-0x/x— (?y/y)_l7 and so forth, we may thus assume that we have a prepared
form:

0z = z + (zy)*v, %x = 2Pyla + (zy) " % = 2Py’ + (xy)*

for a, b functions of x and y, and «, 3,y functions of z,y, z. Whence, if as before
—D is the —1 part of the functional derivative, the difference between this and
the appropriate operator P(f) in order —1 is given by,

P(f) = =Df—(y)*|a(a.y, H)=ala,y. 0) [ofo—(ay)* | .y, £)=B(z,9.0)|uS,

The basis of polynomial terms occurring in §II-IV where this discussion applies
all contain the module of derivations (xPy4)NT(—logz, —logy), for some N,
in fact N = 1 except for the bad case around the negative real axis in IV.4.
Consequently we can do all of these cases and by an appropriately large choice
of k » e » 0, even find the centre manifold in the form z' = z — (2y)¢f(z,y), for
any e.

It therefore remains to apply V.2.5 in order to deal with the problem cases
of type I11.3.1(c) or IV.2.1. Here ¢ = € = 0, and the difficulty is stable whether
under blowing up in points or central components. Furthermore, completing
in a maximal ideal then blowing up, as opposed to blowing up and completing
in the exceptional divisor is the same operation where we have a problem, so
we can make our preparation either according to V.2, or as we’ve done initially
here, i.e. both the current preparations modulo (z)* and those of V.2 are valid
simultaneously. We then make a coordinate change implied by V.2.3 and V.2.5
of the form y +— y + 2¥ f(x,2), z = 2 + 2¥g(z), for f,g functions on S x A, or
S’ respectively, with S, S’ as per V.2.5 and V.2.3. Consequently on S x A? we
arrive to,

@ = 2Pb+ "3

0z = 2z + aFr, %E = zPa + 2o,
For a,b,a, 3,7 as before except that the domain of = is now restricted to S.
This yields the polynomiality in the operator required by I11.3.1(c) or IV.2.1
for exactly the same reason as already encountered above, but at the price
of restricting the domain of x. Worse still the operator in question is rather
sensitive to coordinate changes, and this operation really changes the —1 part,
D, of the functional derivative, albeit only modulo ¥, nevertheless its domain
of definition need not be a bi-disc in («,y), but is only a priori S; x Ay, so that
II1.3.3 and IV.2.5 cannot be applied as stated.
Fortunately the right inverses constructed in these cases are all bounded, and
rather robust, so §II1.3 and §IV.2 can still be applied provided we can achieve
the conjugations implied by II1.3.1(b) and IV.1.3.
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The latter we have already seen in solving the equation that afforded V.2.5.
Indeed in IV.2, we construct a bounded right inverse, whence the same for a
small bounded perturbation, so we only need to conjugate the foliation (not
the field as per IV.1) to normal form, so the computation is exactly the same
as V.2, even if the particular node is different the principle is the unchanged,
i.e. nodes may be conjugated to normal form in any open sector provided one
starts from a position where the form along the strong branch is a sufficiently
high order of approximation to the normal form. Here, of course, one can start
from an arbitrarily good approximation, and whether in IV.2 or V.2 we never
attempted to obtain more than an open sector in x, while the domain of y
remains a disc whether in V.2 or in the conjugation currently envisaged, so IV.2
can be applied mutatis mutandis to solve the requisite PDE and again with an
arbitrary order of tangency to the formal solution modulo powers of (). If one
wishes to calculate the optimal aperture where this can be achieved one should
be cautious because of the problem already encountered in V.2.2, which is twice
compounded (i.e. notations as per op.cit., we subsequently have to construct
K, K with branching in the opposite direction to K, K5 found therein) via
V.2.4 and the above, and then one still has to apply IV.2.

This leaves us to prove an analogue of I11.3.1(b), but under weaker hypoth-
esis. Again the situation is one where a bounded right inverse was achieved, so
we only need to bring the foliation into normal form, whence the following will
do,

V.3.1 Lemma Let ¢ be a vector field on a sector S (in practice of width 27 /p)
times a disc A with coordinates z € S, y € A such that,

0 0
0= T +y(A+ xg(a:,y))a—y

with Re(A) < 0 and g holomorphic and bounded on S x A, then there exists a
Schlict mapping (z,Y): S x A — S x A (modulo appropriate shrinking of radii
and loss of epsilon in aperture) conjugating the field to:

0 0

Proof. We first prepare the situation modulo y, i.e. for Y = e/(*)y attempt to
solve Y10Y = X (mody). This amounts to the ODE,
f'(@) = —g(2,0)

which can even be solved with sup,cgq |f|/|] < |g], so this is very comfortably
Schlict. Whence without loss of generality, y|g, so, in a minor confusion of
notation we replace g(x,y) by yg(x,y). Now consider a normal form,

0 0

and look for a Schlict mapping, (z,Y) — (a?,y(x, Y)) to our given field in the
form, y = Ye¥/(®Y) Whence we have to solve the PDE,

M +Df =e¥Fag(z,ve¥?)
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which can even be done by the contraction mapping principle. Alternatively
written as P(f) = zg(x,Y") for a suitable operator P, the functional derivative
is,

P'(0) i f = Af+Df + faY (g(x,Y) +gy(x,Y))

and P(f) — P'(0)f is an order 0 operator, i.e. one can take ¢ a constant in
1.3.2(b). Irrespectively, in the first instance we need a right inverse for,

Lf=AXf+Df
and to avoid confusion put A = —v, where Re(v) > 0. We pass to logarithmic
coordinates e~¢/¥ =z, " =y, 0 = 1 — £, and divide through by ), to obtain
of
ML =f+ =
=i+

in o, £ coordinates. Now the domain of 7 is a left half plane Re(n) < —R, while
that of £, T say, is a right half strip rotated through v. Consequently for an
appropriate choice of strip/determination of logx or even |z| sufficiently small,
the domain of ¢ and 7 coincide. Viewing our original S x A as a fibring over
the domain of o, the fibres are, therefore,

Ly = (0 +T) nDom(n)

leading to a domain in £ space, over which we must integrate, of the form shown
in figure V.3.1. Unsurprisingly therefore, notation as per the diagram,

Im(¢)

R — Re(o)

Figure V.3.1

3
(Kog) (€) = ¢ f g€, o) de
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works fine, and P'(0)Ko = 1 + ¢, € a small function divisible by z and Y. So
shrinking the radius in = alone is wholly adequate to provide a right inverse to
P’(0). This solves the PDE by the implicit function theorem, and the resulting
mapping, as per IV.1.3, is comfortably Schlict on admitting a small loss of radius
and aperture in x. o

Evidently this has a certain nuisance, which we observe by way of,

V.3.2 Warning If, notations of the proof of V.3.1, one looks for f = z"F,
some n € N, then the leading part of the functional derivative will change to,

(n+A)1+D

Consequently if we take n too big, we fall into a fairly inconvenient situation
where we’d have to take base points on the line —R—Re(c) = Re(§), which tends
to result in some messy restriction in log y, or worse o. Plainly, however, we’re
okay provided that n < —Re(A). It’s also true that from a valuation theory
perspective the problem is, supposed non-algebraic for simplicity of exposition,
the discrete valuation v obtained by taking the order of vanishing at the origin
on the formal curve y = z = 0. In particular blowing up here, A — A\ — 1, and
one can follow v, and blow up ad nauseum to have Re()\) as negative as one
wishes. In such a sense one can achieve arbitrary good approximations to the
formal central manifold around the central components, but only on a model
that depends on the approximation which is desired.
This said we can therefore summarise our conclusions by way of,

V.3.3 Fact Suppose the central components are compact, or start from a germ
a la V.1.1. Then following a bi-rational modification of the form V.1.8, possi-
bly augmented by further blowing up in points to accommodate the problems
associated with singularities of the type described in V.2.1, the trace (i.e. the
central components) of the formal central manifold can be covered by finitely
many open sets, isomorphic to either discs or a neighbourhood of a plane node.
In the former case take y to be a coordinate on a disc, in the latter x,y plane
coordinates and xy = 0 the node, and similarly xy = 0 the singular locus even
if we’re in a neighbourhood where central and non-central components meet.
In any case there is always a further coordinate x whose zero locus is an ex-
ceptional divisor intersecting the central sub-scheme in a central component.
This yields a bi-disc A? 3 (z,y). Denote by I the ideal of the reduced scheme
structure of the singular locus, and by V.1.9, let z be a third coordinate which
is an approximation to some fixed order e of the central sub-scheme z = 0 in the
formal I-adic completion. Then, modulo the precision V.3.2, there is a finite
covering {Uy} of either AZ\V (I), or possibly only A%\(zy = 0), in the situation
of V.2.1 with y = 0 understood as the curve encountered in V.2.3 (so really,
S x A\(zy = 0)) and finitely many sectors S in z) - the exact form of the cover-
ing being determined by the formal type of the induced foliation in the formal
central manifold, and being detailed on a case by case base in §II-IV - such that
on each Uy, there is a bounded holomorphic function x(x,y) such that the zero
locus of z — (i (x,y) is invariant and agrees with zZ = 0 to some prescribed order
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determined by the approximation z, and indeed goes to infinity as the quality
of the approximation z goes to infinity. Plainly, modulo the above caveat that
occurs for singularities of the form V.2.1, an open neighbourhood of the singular
locus punctured in the said locus admits a finite covering where such invariant
hypersurfaces may be found. In this sense the formal central sub-scheme may
be said to “converge” in dimension 3.
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VI Normal Forms

VI.1 Scalar vs. Vector

So far we’ve largely concentrated on obtaining right inverses to scalar rather
than vector equations. The general relation between these is a whole can of
worms that it’s preferable to avoid, so let’s confine ourselves to some useful
facts as we will employ them, albeit we can certainly permit a wholly general,

VI.1.1 Set Up Let U € C™ be a domain , with U(d) as encountered in 1.3.2(a),
and P : E — E a uniformly C1®, a > 0, operator on an analytic vector bundle
in the sense of 1.3.2(b). Suppose further that there is a vector field D on U, and
a linear endomorphism A € F(U, Hom(FE, E)) such that,

P'(0)=D1+A

and that E|; is trivial, so that A may be identified with a r x r matrix, for r
the rank of F.

Plainly in such a situation we have good possibilities to reduce to scalar

equations. The precise values of the scalars may be important so let us formalise
this by way of,
VI.1.2 Definition Let x € C (in practice non-zero), and D as per VI.1.1, then
the spectral problem at  is said to admit a polynomial solution if, as per 1.3.2(c),
there are a family of right inverses K(d) for domains U(d) between U(J) and
U to x + D such that, for U(¢) < U(d) < U(e) < U, there are constants C,,
n = 0, independent of d and e for which,

16 gy < il [ T e

1:1

In the particular case that n = 0, consistent with the previous usage, we say
that K is bounded.

The bounded case is particularly simple, and was already encountered in the
proof of IV.1.3. We formalise it as follows:

VI 1 3 Triviality Let U( ) be as per 1.3.3 for P a polynomial operator in the

simple, modulo a bmall perturbatlon €, and that the solution to the spectral
problem for each eigenvalue y is bounded. Then, provided ¢ is sufficiently small
(|e]| max, Cy, in the notation of V.1.2) the Cauchy problem for P’(0) has a
non-ludicrous solution in the sense of 1.3.2(c), in fact even of polynomial type
as encountered in 1.3.6.

Proof. By hypothesis, A is diagonal with eigenvalues x1,..., X, and for each
eigenspace there is a right inverse K; to the operator x;1 + D which is bounded.
Whence the diagonal operator K, consisting of K; on each eigenspace affords,

PI(O)KO =1+ €K0

so provided ¢ is sufficiently small, the usual power series may be applied. o
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The situation is potentially much more subtle for unbounded solutions of
the spectral problem but we’'ve already hinted at how to do it in 1.4.5, which
we now make explicit, viz:

VI.1.4 Claim Let things be initially be as per VI.1.3 but now suppose that
A is semi-simple, modulo a small perturbation . Suppose further that the
spectral problems not just for the ;, but also the differences x; — x;, including
1 = j, admit a polynomial solution, and, in the sense of 1.3.6, ¢ decreases at
a sufficiently rapid polynomial rate in comparison with that for the totality
of the x; — x; spectral problems. Then potentially for a different U which
has been shrunk accordingly, and on which the x; spectral problems are still
polynomial, the Cauchy problem for P’(0) has a non-ludicrous solution in the
sense of 1.3.2(c), and even of polynomial type in the sense of 1.3.6.

Proof. Let x be the diagonal matrix with entries x;. A conjugation of the
operator D1 + x by an invertible matrix of functions @ yields the operator,

D1+ (Q7H(DQ) + Q7'xQ)

so for @Q = exp(q), q € gl,.(Oy), we want to solve,

exp(—q)D exp(q) +exp(—q)xexp(q) —x =¢

which has a functional derivative,

D+ [q,x]

and, of course, ¢ — [g, x] is a semi-simple endomorphism of gl,. with eigenval-
ues x; — X;- By hypothesis, therefore, the implied operator in ¢ satisfies the
conditions of the implicit function theorem, and we have a solution as soon as
¢ is sufficiently small. Of course, this may be difficult to guarantee if we’re not
in the situation envisaged in 1.3.6, or similar, at which point we may have to
shrink the domain U to guarantee a solution. At this point, however we have
found a matrix of functions, such that the implied change of basis puts P’(0) in
the form,
D1+ x

S0, again, by hypothesis, we conclude. o

While this is a perfect sufficient lemma for a situation such as 1.4.5, the
condition that the spectral problem in zero, i.e. Xx; = X;, admits a solution is
not practical, so we make,

VI.1.5 Remark Let us put ourselves in the situation of VI.1.4 but suppose
now that A is semi-simple with distinct eigenvalues x;, and only the spectral
problems for x; — x;, ¢ # j, admit a polynomial solution. Under these hypothe-
sis, with the same hypothesis on €, we can, on an appropriately smaller domain,
effect a change of basis by a matrix of functions such that P’(0) has the form,

D+ A
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where A is semi-simple, but the eigenvalues are now functions ¥; which up to a
small perturbation are the x;. In practice we’re only concerned about situations
similar to IV.3, where the implied difficulty is already overcome by way of the
normal form IV.1.3, or, to a much lesser extent, I1.2, since, where we used power
series there, which was by no means essential, the normal form was trivial to
obtain.

V1.2 Quasi-formal preparation

We blow up sufficiently as per V.1.8 and consider the analytic space X (or stack,
albeit this can be largely eschewed) around the singular components, which we
complete in the central components, in the sense implied by V.1.9, to form a
formal analytic space (or stack) X,.,. As such the formal affines have rings of
functions of the form,

. Ox

4 (2, zPya)"

n b
notations as per V.1.9 with Ox holomorphic functions. This permits some
simplification over the general formulae of op.cit. at the price of a moderately
long list and a couple of caveats, viz:

VI1.2.1 List Possibly after blowing up of )A(an, every geometric point has at
worst an analytic neighbourhood (i.e. often étale is possible if our context were
algebraic) with coordinates x,y, z, conventions as per V.1.9 on which we find
a generator of the induced foliation which enjoys one of the following normal
forms,

0 0
R
(a) zaz—i-m 3y peN.
p+1
(b) zi z 0 peN, veC{yl.

1 v(y)zP oz’

0 aPHlys 0

<C> Z&-FW%, p,qe[]\l, VEC{y}
(@) 22 +a” €N
Z@Z T y@ y P
0 Py 0 0
(e) Z&‘i‘w(ma‘i‘)\yaﬁy), p€N7q€Z>O,V€C,A¢Q,
0 0 {IIT+1 0
— p e s v < '
() Z(?z + (R(‘”)yay + 1+)\x1’+rax)’ p,reN,degR<r, NeC
J Pyl 0 x” 0 0
® 5 *1 +y7(R(x) + Azrtr) (y@ Y1 oo (qxa*x —py(yy)),
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where p,q,7 € N, degR < r — 1 and \,v € C. The above normal form (g)
cannot, in general, be obtained in a neighbourhood of )A(an, but only in the
weaker completion at a point, or, equivalently after blowing up, in the divisor
x = 0. Nevertheless the remaining cases, even though some reduce to (g), can be
obtained in neighbourhoods of X an, and are all for a negative rational eigenvalue
—k/l, with k,[ relatively prime integers, viz:

4 z'y! (z*y')" 9 0
h) z— lr— — ky—
®) %5 1 + wiyd (R(akyl) + A(zhyl)n+r) {( x Y=-)

(z*y)" J J )}’

1+ v(ary)r Vi ar Yoy

where xPy? = (z'y7)(xFy')" with at least one of i, j € Z¢, less than k, respec-
tively I, (i,7) # 0, n € Zsg, 7 € N, \,v € C, with convention on (p,q) as per
V.1.9, and otherwise R of degree at most r — 1.

: i k, I\n k, 1 i_ i (T/klll)r i
(®) r + (@) {R(I Y )(lxaa: kyay) + 1+ V(;U’fyl)"”gjax)}’

for n,r e N, degR <r, R(0) #0, veC.

N 0 xiyl (xFyhym 0 0
W) “oz 1 + xiyd v(xkyt) (lx&r B ky@y)’

for v a formal function, and the multiplier of (z*y")" understood to be 1 if
(i,7) = 0. Otherwise, prescriptions on ¢, j,n are exactly as per (h).

VI.2.1 (bis) Proofs of cases (a)-(g) This is occasionally a bit more tricky
than one might think, since by V.1.9 one is only reduced to finding a normal
form for a plane field in an object which itself is only a formal analytic space
with trace the central components, i.e. it is not the completion of an analytic
space, so certain formulae that one might think of applying are not a priori
justifiable.

In the first instance consider (a). By hypothesis we are in a neighbourhood
of a point, 0 say, in the trace together with a formal field on the formal centre
manifold of the form,

2P0 = xp{u(x, y)é% + xa(m,y)a%}
where u is a unit, so without loss of generality «(0) = 1, and the formal function
x = 0 defines the trace. In particular by the definition of Xan, the restriction
of @ to the trace is convergent. Consequently restricting the neighbourhood of
0 and changing coordinates appropriately we may suppose that « = 1(mod x),
for some convergent function y on the trace. Now consider a change of variables
¢ = efx, for which 0¢ = 0. This amounts to solving,

af = —a(m, y)
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To do this choose a mapping from functions on the trace Oa, say, to Og |,
so we can write O = Oa[[z]]. Whence we can expand in Taylor series and

o

integrate term by term to obtain a continuous right inverse Ky, say, to B and

whence if u(z,y) = 1 + xb(x, y) then,
0Ky = 1(1 + zb(z,y))

which is a topologically nilpotent perturbation of the identity so ¢ has a right
inverse, and we can suppose dz = 0. Finally, therefore, we look for n = e9y such
that dn = zP, which amounts to the equation,

eg(l +ygz) =u"!

Now we can apply 1.4.1. The functional derivative is,
g
P) : g—gt+y=—
0) s g—g+y 2

which has continuous right inverse by power series in x, followed by term by
term power series expansion in y, which, inter alia, respects the filtration by
the ideals (z™), n € N, so PK — 1 is nilpotent, and the fact that we’'ve already
achieved our solution mod x, guarantees the conditions of 1.4.1.

The case (b) is much simpler. Here by hypothesis we start with a plane field
of the form,

2P0 = xpﬂ{u(x,y)% + a(x,y)a—ay}

with u a unit. Here if 0 denotes the division by u, the formula,
re nA
~ ™o
J=>,=)"=y
= n!

is convergent in O)?au, even étale locally if that were our context, so without
loss of generality dy = 0. Consequently functions of y are now like constants,
and proceeding inductively we obtain the asserted form, and again even étale
locally if that where the context, i.e. v(y) in the strict Henselisation of the trace.

Now the argument of (a), respectively (b), applies mutatis mutandis to es-
tablish (c) after completion in y = 0, respectively = 0. Of itself, however, this
does not establish (c), since the topology here is convergence modulo powers
of xy. This latter assertion is true, but since we’re prepared to blow up ad
nauseum, we can eschew the tedium of actually checking it by observing that,
after blowing up, completion in x and y, separately, becomes completion in the
singular locus. This subterfuge introduces new cases of type (a), but we know
how to do that, together with one case of type (c), and another singular one
that we’ll come to directly. It also introduces a multiplier in the field in z and
y, but in a straightforward way that is easily eliminated.
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The same blowing up considerations, in combination with the ubiquitous
case (a), imply that it suffices to verify cases with ¢ = 0 in the completion at
a point, and those with pq # 0 in, without loss of generality, the completion in
x = 0 should some symmetry be present. Consequently (d) is easy, and (e) is
reduced to the Jordan form V.2.1 for ¢ = 0.

Applying the same considerations to (e) for ¢ # 0, we may suppose that
we have our normal form to any order in x and try to conjugate to the desired
one in a way that converges modulo powers of y. Arguing as per op.cit. with
0 = £0/0€ + A\yd/dy, then after a linear change of coordinates the functional
derivative becomes,

FIN

0 —(p+aqN)

Our preparations assure that this is un-obstructed mod y, after which we can
expand in powers y” of y, and the situation remains un-obstructed for each n
since A ¢ Q, so that we obtain the desired solution by 1.4.1.

This brings us to nodes, (f) having already been done in IV.1.2. To do
(g), which is only true mod completion in & = 0, we know that after blowing
up it is equivalent to completion in a point, so we’ll avail ourselves of such a
simplification. Whence, by hypothesis, we have a formal plane field,

D = zPy?0

with ¢ the generator of a node, pg # 0, and x = 0, respectively y = 0, the

strong, respectively weak, branch. Looking at ¢ mod y, after scaling in z and y
we may suppose,

0 0

0= u(z)y— +v(z)z" ' =

@z, + vl

For u, v formal units with u(0) = 1, v(0) = ¢, so in an obvious abuse of notation

say, 0 = dg mod y, for

) 0 - 0 o\ . .
Oy = u(x)ya—y + z"v(x) (qx% —pya—y) = u(x)Dy + 2"v(x) Dy
where now u(0) = v(0) = 1. In particular, we can write 0 = Jy + 01 for

01 € yTz(—logz, —logy), for which a convenient basis is, evidently, yDq,yDs>.
Now such fields have formally convergent exponentials, so consider attempting
to conjugate xPy?dy to D by such, i.e. attempt to solve,

exp(E)xPy?0y exp(—E) — aPy10y = xPy?0;

where we view the left hand side as a formal operator 0 — 0, with functional
derivative,

E — [E, 2Py%0s]

which in terms of our basis D1, Dy amounts to,

aDy — aPy?(gado — do(a)D1), bDy —> —aPy?0o(b) D2 + baPy?[Da, do]
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and a, b formal functions in the ideal (y), which up to a topologically nilpotent
operator amounts to,

b
aDy — 2Py (qa — yi)Dl, bDy —> —:Upqua—Dg
9y 9y

which, expanding in powers of y, is invertible except on y? mod y7*!. Now
observe that we can make an a priori coordinate change z — ef(®)z, y > e9(*)y
such that u = 1 and v = (1 + vaz")~!, for some v € C. Furthermore, we may
successfully perform a conjugation of ¢ into dyg modulo 9.

For a = yla(x) and b = y96(z) our functional derivative modulo y9+*
simplifies to,

‘s

'
ylaD; — zPy? { (pa — xag)yi'Dy + 4 o qug}

1+ va” 1+ var

1+V r

q D D
ﬂ 9 > Y { qﬁ-i— 1+ var

(9= = 1222 ) b

so we can get everything except terms of the form R(z)y?D;, degR < r — 1,
and zPT"y?D;. Consequently we organise things by way of surjectivity in Do,
so that the missing terms take the form of a multiplier of dy, while as already
observed modulo y™, for n > ¢ there are no further obstructions, whence the
normal form (g).

The remaining cases may be reduced to this one. Indeed, say the eigenvalue
of the implied linear part is —k/I, for k, [ relatively prime positive integers. Then
the implied divisor may be written as x'y’ (zFy")" for i,j,n € Zq with i < k
and/or j < . Furthermore whether in the completion in a point or around a
branch, one can achieve an expression for the formal plane field in the form,

o o 0 0
iy (J;kyl)n {l(l + a(gﬂyj’xkyl))xa—x — k(l + b(a'y?, zFy )) 0y}

for some formal functions a,b vanishing at the origin. Now there are various
cases to consider, viz:

VI.2.1 (bis) Case (h) The couple (i, j) # 0 and the descended plane foliation
in X = 2Fy!, Y = 2%/ is singular, then we have the normal form,

'y’ (zhyh)" 0 0
oL —kyl
1+ 2tyd (R(zkyl) + A(aky!)n+r) {( T ox yﬁy)

(xFyhyr .0 0
1+ v(zkyl)r (e ¥ ox y&y)}

for some 7 € N, A\,v € C and R a polynomial of degree at most r — 1.
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VI.2.1 (bis) Case (j) As above but the descended plane foliation is smooth,
then we have the normal form,

xiyj(xkyl)n i_ i
1+ zigd v(akyl) (l“" P ay)

for some formal function v. In particular, the difference between (h) and (j) is
according to whether the foliation has a formal first integral or not.
VI.2.1 (bis) Case (i) The couple (i,j) is zero but n # 0. In this case we

descend to a plane field in X = z*y!, Y = y and if the implied foliation in X
and Y is singular then we have a normal form,

0 0 (xFyh)r 0
k, I\n k, 1 _
(@"y) {R(m y )(m@x ky(?y) * 14 Z/(xk’yl)"”m(?x)}

for r € N, R a polynomial of degree at most r € N, R(0) # 0 and v € C.

VI.2.1 (bis) Case (j') As above but the descended foliation is smooth and we
obtain the normal form,

(zFqyhym (lxa% - k:yé%)

Finally, it remains to make the same distinctions in the case n =0, i.e.

VI.2.1 (bis) Case (h’) The couple (3, j) is non-zero but n = 0, so, in particular
by way of cases already considered only that of ¢ = j = 0. As such we descend to
a plane field in X = 2¥y!, ¥ = z and obtain, whenever the descended foliation
is singular, a normal form,

P {( 0 0 )+ (xFyhyr 0 }

A PO Py 2
1+ 2P R(z*kyt) T ox y(?y 1+ V(xkyl)”“"”yé’y

for some v € C, and R a polynomial of degree at most r € N.

VI.2.1 (bis) Case (j”) As above but for the descended foliation being smooth,
so that we have a normal form,

aP 0 0
1+ v(zky!)zp (lx% B ky&Ty)

for some formal function v, and, plainly, VI.2.1(bis) (j), (j’), (;”) may be distin-
guished from VI.2.1(bis) (h), (h’), (i) by the fact that they admit a formal first
integral.

It is in addition rather convenient to have on hand further conjugations of
these normal forms that bring us closer to one of the formulae employed in
SITI-TV, to wit,
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VI.2.2 Fact (€) The normal form of VI1.2.1(e) under the change of coordinates,
or better spiralling change of coordinates,

z _ Y

X = ))1/(P+>\Q) ’

)) M (p+Aq)

(1 — varydlog(xPy? (1 — varydlog(xPy?

becomes the pure monomial form,

0 0 0
- ryaf x_ e
o+ XY (XaX +)\Yay)
A suitable conjugation of VI.2.1(f) has already been achieved in IV.1.3, while
the case of VI.2.1(g) is more subtle, viz:

V1.2.2 Fact (g) For z in a sector up to 27/r (actually somewhat better as we’ll
see in the course of the proof) and y (or better logy) in a spiralling domain as
per figure I1.2.2; there is a conjugation  — X (z,y), y — Y (z,y) under which
the normal form VI.2.1(g) becomes the monomial form;

0 0 0 0
2 Lxrya (v 2 X’"( x- Y—)
“5 (ay+ 149x pay>
Proof. Suppose in the first instance ¢ > 1 and v = 0. Then for any n € N,
n < q, we can attempt to find the conjugation from the given normal form in x
and y to that in X and Y by way of,
z— XefV" yr— Ye'"

7

This amounts to solving a coupled system of PDE’s with a functional derivative

()i tlle fOII“7

where D is the field Y/0Y + X" (qX@/@X - pY&’/@Y), and A is a matrix of

the form
+e

where as ever € is a matrix in small functions. Whence up to ¢, diagonal with
eigenvalues f — nf, (pf + qg) — (n — q)(pf + qg). In an attempt to preserve
the notation of §IV, we can pass to & = (XPY9) ™! s = ¢ lexp (X*T/r), SO
that for a certain domain fibred as s : L — B, and embedded by (s, 2(X)) in
B x C, for z2(X)=X""/r,
0

1%,
where, to re-iterate, the above appearance of z is a regrettable notational confu-
sion, i.e. its a function of X alone and has nothing to do with the ambient 3-fold.
In any case for Z = 2(X) — (p/r) log z(X), the fibres of L for o the logarithm of
s are described by

D =

Z(X) € 0 — g - Domain(log )
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The difference between Z and z is, as per §IV.4, of little importance. What is
important, however, is that in the z-plane we must integrate both from right
to left (eigenvalue of f), and left to right (eigenvalue of pf + gg). The former
poses no problem and is essentially, exactly the situation encountered in IV.1.3,
the latter presents the difficulty in the full domain of the logarithm of a purely
imaginary boundary on the left. Consequently, we restrict the domain of log Y’
as per figure 11.2.2, which results in a domain in Z(X) space as shown in figure
VI.2.2. The constant R is of course to be chosen, and the lines meeting Im(Z) =

Im(?)

Re(Z)

Figure V1.2.2

R simply reflect the sector up to 27/r that we're aiming for, so anything not
purely imaginary will do, and evidently a similar diagram for Im(2) = —R to
cover everything. At which point there’s no problem constructing a bounded
right inverse for the functional derivative modulo the usual caveats, viz: add a
Euclidean disc about the (pf + gg) base point o in every fibre according to the
conditions of the implicit function theorem and use the usual power series to
get the case of ¢ # 0.

Consequently we have achieved our conjugation for logy in a spiralling do-
main and z" in a sector up to 27. In particular the restrictions on ¢ and v are
seen to be groundless. The latter as per IV.1.3, and the former since Y really
means, exp(nlogY’) for n < ¢, which has perfect sense even for ¢ = 1 provided
we drop the condition that n is an integer, albeit it must be taken positive to
ensure that the solution of the PDE leads to a Schlict mapping. o

The case (h) is very much a combination of (e) and (g), i.e.

VI1.2.2 Fact (h) Conventions on z,y as per V.1.9, then for one of = or y be-
longing to a spiralling domain and the other in a disc or a half plane a la figure
I1.2.2, if pg # 0, or x in such a domain and y in a disc if ¢ = 0, the normal form
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(h) may be conjugated via x — X (x,y), y — Y(x,y) to the monomial form

0 % 0
— + XPY I X— — kY —
"5 T < X ay>
Proof. Despite its complication we can always assume that the normal form is
at least as good as,

0 0 0
Z% + zPyd {Zx(l + xkyla(x, y)) P ky(l + zkylb(x, y)) (?y}
Now for M = X"Y™" any monomial with u < k, v < [, we can attempt to look
for the conjugation in the form,

z— XefM y— YeIM

7

This leads to a partial differential operator in f, g with functional derivative,

= {0 )=l -2 [

for D the field IX0/0X —kY 3/dY, and x = (DM)/M. For € = 0, the matrix in
question has eigenvalues x, x — (Ip — kq), which in the case of (h) are distinct.
Consequently we must invert the scalar operators,

w+D

for pu the eigenvalues. Now observe if ¢ = 0, then just as in V.3.1, we can take
x < 0, eg. M =Y in op.cit., so both eigenvalues are negative. Otherwise
according to the sign of Ip — kg, one chooses M so that both eigenvalues have
the same sign.

A priori the logarithms, e¢ = X, €” = Y, lie in left half planes, and for
o = k& + In, again in a left half plane, we have a fibring of the domain U of
interest, by way of o over B with fibres in, say, &,

. o 1 .
Domain(&) n {E — EDomam(n)}

Now if ¢ = 0, one is always integrating from right to left, so leaving 7 in a half
plane, and taking € is a spiralling domain works - the resulting integral operator
being periodic in 7. For ¢ # 0, this still works if both eigenvalues are negative,
and again things descend to a disc. Otherwise if both eigenvalues are positive
then one must take o as the base point, and integrate from left to right in &
space, whence loosing, potentially periodicity in 7. As ever the usual conditions
of adding a Euclidean disc around base point in the fibres should be applied,
while one treats the perturbation by the habitual power series. o

The previous proof only used that Ip — kg # 0, so it immediately applies to
VI1.2.1(j) for the couple (i,5) # 0, and otherwise VI.2.1(j) is already monomial.
Consequently, there only remains to treat,
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VI.2.2 Fact (i) Provided k/l # —1 (a condition that can always be achieved
by blowing-up, or taking a square root in x or y) for  belonging to a spiralling
domain and y in a disc, there is a conjugation x — X (x,y), y — Y(x,y) of the
normal form VI.2.1(i) to the monomial form,

0 0X oYy

Proof. We keep the initial notations of the proof of VI.2.2(h), but for M, N
monomials in X,Y to be chosen, and look for the conjugation in the form

z% + (X*PYH)" (zxa — kYa>

I XeMS y — YeNo=kMD/I

Consequently we have to solve the coupled system of PDE’s,

(%) f+Df =M (N9 - 1) 4 XFyle(HDNog |

(%\7) g+ Dg=—lkN'X*Y!(a —b)e™™9
As such if we choose M # N, with M|N and N|X’le7 but not equal to it,
the functional derivative is a bounded perturbation of the left hand side of the
above. In particular, if, without any serious loss of generality [ > 2, then M =Y
and N = Y? is a good choice, resulting for the same reason as VI1.2.2(h), in a
solution on the type of domain described. o

VI.3 Integrable Cases

It is convenient to import the distinctions of §IT and §III-IV into a division of
cases for the existence of normal forms, particularly for the ubiquitous V.2.1(a)
which is rather different. To this end consider,

VI.3.1 (a) Set up We have a holomorphic foliation in 2 + n 4+ m variables,

ZyYs Ty s Ty b1y« by With normal form, up to a formal unit:
0
z— +Ip1...xpn7
0z ! " oy
We prepare as follows: let ¢ be an actual convergent generator, and, of course,
blow up in central components so that all congruences modulo (z,a}" - - - ab»)

or powers thereof, become congruences modulo 2 --- 2P around the formal
centre manifold. Whence solving for the centre manifold a la V.3, and dividing
through by a unit congruent to 1 modulo as large a power of ' - - zP» as we

please, we have

V1.3.2 (a) Reduction We may suppose that on a domain S x - - - x S, x A2+m,
i.e. sectors S; in x; of width 0; with p16; + - - - + p,0, < 7 that our foliation has
a generator of the form

— a P1 Dn a L a . a
é’—zg—i-xl b {aa—y—l—blxla—xi +cj67j}
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where a = 1, b;,¢; = 0 modulo z and any power of z7* ---zP" we please, and
the summation convention is employed.

Proof. Divisibility by the monomial " - - - 2P» of the relevant terms is a conse-
quence of blowing up as already encountered in V.3 et sequel. Consequently it
remains only to simplify the field modulo z, which one does in the usual way,
i.e.if D is a field with Dy = 1 then,

f N Z (_nl')nynﬁnf
n=0 :

defines an invariant function, and this converges by I.1.6 on S1 x - - - x S,, x A™+1,
since the x; are invariant. One can then obtain an appropriate change of variable
in y by way of a path integral. o

Now consider conjugating to the normal form in ¢, 7,§;, 7; variables by way
of a conjugation,

2 (0 Yy n+Cf, wo GeY b e T+ Chy

This amounts to solving the system of PDE’s,

° CPrgk . o
F4of = gQ(e : _1) +£Eecpk9ka7 gi+0g; = gfeCpkgkﬂh h;+0h; = gg}eCpkgk,yj
where ¢ is the normal form, &£ = &P a=14za, b, =20, ¢;j = zv;. Up

to a bounded perturbation, this system has a functional derivative
1+0

understood in O™*"*1 One might be tempted to invert this by way of an
expansion in power series in (, but, unfortunately, the trick of putting a Eu-
clidean disc in the appropriate variable (here ;7' ---¢ P»n) around the base
point to guarantee a sheaf like inverse as per 1.3.2(a) doesn’t work, so it’s bet-
ter to just accommodate the extra variable in the fibration. More precisely if
Y = &P £&7Pny, then over and above the fibring functions encountered in
II.1 we have a further function,  exp(—Y), so, say, 0 = Z —Y for exp(Z) = ¢
and Z in a left half plane. Consequently we have a fibration s : L — B, with
fibre over (o,&, ) exactly,

Legnn(—o+H)

where L¢ 7y is the fibre encountered in II.1, and H the domain of Z. Manifestly
this leads to no change in the key features enunciated in I1.1.2-3, and we may
safely add a Euclidean disc in Y around the base point in each fibre to guarantee
the conditions I.3.2 of the implicit function theorem, taking into account, as ever,
the bounded perturbation by way of the usual power series. Consequently, we
obtain,
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VI.3.3 (a) Fact Let things be as per VI.3.1(a) then for a domain as per
VI1.3.2(a) there is a generator 0 of the foliation conjugate to the normal form,

The remaining cases are very similar. Due to its close proximity to the above,
we’ll turn our immediate attention to,

VI1.3.1 (b) Set Up Everything as per VI1.3.1(a), but suppose that the normal
form is,

where now, implicitly, y = 0 is the equation of an invariant, even algebraic
hypersurface, albeit just as V.1.8 the component defined by z = y = 0 would
not be central.

Now we can certainly achieve a similar reduction as previously, viz:

V1.3.2 (b) Reduction Denote by X the monomial 21" - -- 227, and S a domain
of the form |X| < r, Im(1/X) > 0 if Re(X) > 0. Then on S x A?*™ we can
find a generator of the foliation of the form,

0

N SIS S
0=z—+af xh {ayay—l—blxzaxi—i-c]atj}

0z
for a,b;, c; as per VI.3.2(a). Similarly for S = S; x--- x S,, a product of sectors
resulting in a small sector about the positive real axis in 1/X and Qg(R) the

spiralling sector in the logarithm of y, as per I1.2, we can obtain the same but
on Qg(R) x S x Attm,

Proof. Modulo notation (i.e. £ = X 1) and changing from negative to posi-
tive real axis to reflect the normalisation implicit in the normal form, the first
assertion follows from I1.2.2 with the same proof as VI.3.2. The second asser-
tion is more subtle. Observe that the co-normal sheaf /12, for I the ideal of
the singular locus is a free O/I-module of rank two. Furthermore for appro-
priate (convergent) coordinates and J = (0z,0y), J ® O/I is also a free rank
two O/I-module - the assertion may be checked after completion, since it is
independent of the same - so by inspection in the completion, and Nakayama’s
Lemma, J = I. Consequently one can achieve a priori, the preparation 0z = z
mod I?, in fact even mod I", but never fully in the completion, cf. post 11.2.2.
In particular after finding the centre manifold, and taking exp(Y) =y, Y in a
left half plane, we may suppose that on the centre manifold our field has the
form, 5 5 5
X{(Laiy + bleaixl + Cj%j}

with @ a unit, and b;,c; vanishing at —oo, in fact belonging to the pull-back
under the exponential of the ideal (y). At this point the formula of VI.3.2(a)
rendering the directions in x; and t; fully invariant now converges, albeit at the
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price of a decrease in the angle of the cone, cf. figure I1.2.2, defining the domain
Qs(R). o

Plainly we attempt the same king of conjugation as before, adopting the
same variables, but with y = /7. As such we obtain the system of PDE’s,

eSPLIk
§

where still, @ = 1+ za, and modulo evaluating «, 3;,7; at (e$/n, e$9%ix;, 7;+Ch;)
rather than (n + (f, e%%iz;, 7; + Ch;) the same system of PDE’s. A priori VI.1.5
does not apply. This may be remedied as follows, for Im(1/X) bounded away
from zero there is no difficulty solving modulo arbitrarily large powers of (.
Consequently to obtain the distinct eigenvalue condition of op.cit. one should
solve to a suitable large power of (, i.e. n + m + 1, change basis to f, hj,
92y -3 Gn, P191 + - - - Pngn = G, and weight the conjugation appropriately,

f+of = ff( —1) +HELEP I, gi+0g; = ELEPRIN By, hy+Ohy = ELePRoky;

m+1+41i m+n+1
TG, X e

ysesfn, 1o+ MRy, x e e
In the particular case of immediate interest in dimension 3, this amounts to
2~ 102 being 0 mod 22, and taking z — ¢ 9¢. After such a change one can then
construct a fully analytic inverse to P’(0) by expanding as power series in y®z°
by way of the exact the same estimates of §I1.2 provided Im(1/X) is bounded
away from zero. Otherwise we must divide by cases. In the first place we have
sectors &; € S;, such that &P --- &P is close to a positive real. As per case
(a) take Z to be a logarithm of ¢, and Y = &P --- & Prlogn, 0 = Z — Y, so
that we have a fibration over (o, &, 7) with fibre,

L(gﬂ.) N (—J+H)

the fibre L(¢ ;) being exactly as in figure I1.2.2, bearing in mind the change of
normalisation, i.e. X close to positive real, so to find the centre manifold we
integrate from right to left, whereas to obtain the conjugation we must go from
left to right. This latter operation may be done in a bounded way with —co as
base point so VI.1.3 applies. Similarly for &; in sectors S; such that X is close to
negative real, the domain of Y is the negative of that in figure I1.2.2 intersected
with a translation of a left half plane, so, again, we can integrate from the apex
of the cone and VI.1.3 applies. Consequently we achieve,

VI.3.3 (b) Fact Let S be one of the connected components of the set defined
by Im (277" -+ z;P") > e, |z;| sufficiently small with formal normal form as
per VI.3.1(b) then on a domain of the form S x A2T™ i.e. full analyticity in
the other variables, we can achieve a conjugation so that the foliation admits a
generator of the form,

z— +alt e abry—

Oz 1 n yay

Otherwise for S; 3 x; sectors of appropriately small radii, such that z;** - - -z, P»
is close to positive real (sectorially), respectively (sectorially) negative real, and
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y belonging to the domain Qg(R) we can achieve an identical conjugation but
on the domain S x Qg(R) x AlT™,

Obviously, as per I1.2 and the discussion of the beast, this is the best possible
and, in a sense it’s already implicit in V.3.1 that it is possible. Notice, however:

VI1.3.4 Remark It’s tempting to suggest that the restriction to z; in a sector
S; such that 2" - - - 2B~ is close to positive or negative real could be replaced by
a single condition involving only 2" - - - zP». This may be true, but it wouldn’t
follow from the implicit function theorem, which requires bounds on the deriva-
tions x;0/0x; which arise from the aforesaid restriction z; € S;.

Again for want of a better place for it, let us treat the generalisation of
classical nodes, viz:

VI.3.1 (c¢) Set Up We have a holomorphic foliation in 2 + n 4+ m variables
Zy XYLy e ooy Ynstly .., by With normal form, up to a formal unit,

xp+1

Y A L
“oz * 1+ V(y,t)xpyl In" ox

in the topology of completion in (z,zPTlyf .- ydn), p € N, ¢; € Z>0, v(y,t)

convergent, and for g; # 0, the hypersurface y; = 0 is supposed to define
an invariant hypersurface which arises from blowing up, and defines a central
component z = y; = 0 inside the formal centre manifold.

As ever we perform appropriate simplification, possibly after further blowing
up, modulo z, viz:

VI.3.2 (¢) Reduction Let S be a domain in z,y such that 7P is within 37
of the argument of y{* ---y4» (so —1 if all ¢; = 0) then on S x AM™ we may
suppose that we have a generator of our foliation of the form,

a? o af 0 0 0
LT By — 4+ by — .
Z&z + 1T y(y,t):rpyl Yn {awax + 0y Fm + ¢ (%j}

and a, b;, ¢; as per VL.3.2(a).

Proof. This is very much the same as the reduction VI.3.2, with the minor
caveat that one should make a sufficiently good formal approximation to avoid
any loss of domain in the x,y variables. o

Proceeding, therefore, as before we attempt to conjugate to the normal form
in ¢, &, m;, 7; variables by way of,

2w eSE Yy Sy, t e T 4 Chy

which in turn results in the system of PDE’s,

rpa¢t ¢ epfCtargrd »
f+or =Yg {1+Vepf<§p(l+1/£ )—1+ag},
B &rpdepfCtargrd 3 £ppdepfCrargrd
909 = e Po O = e
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for n? = ni* .- n2». Consequently up to a bounded perturbation, the functional
derivative is, 5
P+l _—
1+4+¢ P
for 1 the identity on the trivial bundle of rank m +n + 1. As such the only real
issue here, viz: loss of domain from £~P within 37 of argument of +7¢ to 27 of
the argument of —n? has already been encountered in IV.1.3. Unlike cases (a)
and (b) we have actually conserved the normalisations of 11.4. Consequently if
X is the monomial {775~ ¢ (having conjugated to v = 0), with Z the logarithm
of z belonging to a left half plane, we have an invariant function o = Z + X.
Whence we have a fibring in o, 7, 7 coordinates with fibres,

Lz 0 (‘7 - H)

with the leaf L, ;) as per I1.4.1(b). In terms of the variable X, we now, as
per IV.1.3, have to integrate from +c0, as opposed to —oo for finding the centre
manifold. This is, however, done in a bounded way so VI.1.3 applies, and we
obtain,

VI.3.3 (¢) Fact Let S,S51,...,S, be sectors in = and y; (supposing ¢; # 0,
otherwise this may be omitted) such that z=? is within 27 of the argument of
yi' -+ - yd» with normal form as per VI.3.3(a). Then for sufficiently small radii in
x and/or y; we can achieve a conjugation on the domain S x Sy x - - - x S, x AlT™

such that on the same, foliation admits a generator of the form,

+ zP g1 q
z2— S ——r— e 711:7
oz 1+ V(y,t)mpyl I on

VI.4 Singular Cases

The singular cases in the list VI.2.1 permit a certain unity of treatment, albeit,
conventions as per V.1.9, modulo a need for care about the difference between
q = 0 versus q > 0. Nevertheless let us establish some notation by way of,

VI1.4.1 Set Up As ever we're studying a holomorphic foliation around the pos-
sibly purely formal centre manifold, and we’ll suppose that we're at a point
where the induced foliation is singular so that we have a normal form in X,,
notation as per VI.2 with caveat for VI.2.1(g),

0 0 0
P, q
Zﬁz + 2Py {A(m,y)zax + B(:c,y)yay}

Plainly we wish to achieve,

V1.4.2 Proposed Reduction For a suitable domain U in (z,y) to be specified
and a disc A in z we have on U x A a generator of the foliation of the form,

0 0 0
P,,9
a5 +aty {a(x,y,Z)fvax + b(wyy,Z)yay}
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where a = A + za, b = B + 20, a, 8 holomorphic on U x A.

Again a certain amount of caution will have to be exhibited here, particularly
in light of V.2.3/5. Nevertheless, for a normal form in (, £, 7 coordinates we will
therefore look for a conjugation in the form,

2+ (, x»—»eCff’ yn—»ecgn
Consequently we will have to solve the coupled system,

f+of =
Ppac-l (ez>Cf+qC_qA(eCf§7 Sy — A(€, 77)) v ePpa(ell e, eS9n, ¢)erst et
g+dg =
ePpac—t (epCerquB(eCfg’ e“In) — B(fﬂl)) + gpnqﬂ(eCf& es9n, OepCerqu

In most cases we’ll be able to employ VI.1.3, but for nodes with ¢ = 0 we’ll
have to look to VI.1.5 and make further preparation - in fact in the z-variable
modulo 22.

Now let us implement this plan according to the various degrees of difficulty
that are implicit therein, so starting from VI.2.1(e) with ¢ > 0. As such we have
a domain U, according to the various cases considered in §III, in z and y on
which we have found the centre manifold, and this can be done up to as large a
power of zPy? as we please. In particular restricting to the centre manifold we
may suppose that we have a plane field in the domain U of the form,

xPyd xPyd
T 14wapyd T 14 vapy?

{x(l + (mpyq)ka)a% + )\y(l + (xpyq)kﬁ)a—ay}

with k£ € N as large as we please and «, § bounded functions on U. We aim to
conjugate this to a normal form,

gt L ere i i
1+ pran T 14+ vEPNe {565 + A"an}

over U, by way of a transformation,
z—s S E" ¢ y —> eIE "y

for some sufficiently large n to be chosen. This amounts to solving a coupled
system of PDE’s which up to a bounded perturbation has functional derivative,

" +—§>>>\\) o n(p + ;g) - Aq] [ﬂ +D [_ﬂ

where the matrix in question enjoys eigenvalues n(p + ¢A), (n — 1)(p + ¢\). In
order to try to maintain notation compatible with §III, let eX = z, e¥ = y define
logarithms of X and Y, 0 = AX —Y (or possibly X — Y /\) a first integral and
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T = —(pX + qY). As such by VI.1.3 on dividing through by p + ¢\, we require
to solve in (o, 7) coordinates scalar equations of the form,

(n - i) (F) =G
or

for n € N. Unsurprisingly in the situation of III.2, 7 lies in a strip like domain
unbounded in Re(r) — o0, which is exactly what one requires for an infinite
base point. In case of §I11.4-5, the fibres in ¢ are bounded, but the pre-images
of the base points envisaged are also those where Re(7) is maximum, and since
the variation of the imaginary part of 7 is bounded one can simply take paths
which have constant imaginary part followed by an appropriate displacement in
the purely imaginary direction. Consequently in these cases we can obtain the
proposed reduction VI.4.2.

There remains, therefore, to achieve such a reduction for ¢ = 0. Plainly
this requires in the first instance finding an invariant hypersurface y = 0. For
Re(A) < 0 this has already been done in V.2.5. For Re(\) > 0, we first look
for the corresponding invariant curve inside the centre manifold, starting, as
ever, from a sufficiently good approximation modulo powers of (). Plainly
we look for the said curve in the form of a graph § = y — f(z), with § = 0
invariant. This results in an ODE with functional derivative, up to a small
bounded perturbation,

froaf-all
oz
which is, a priori, a little problematic, but for any suitably large e we can replace
f by z°f, so the derivative becomes:

0
f0-af -2

Consequently for Re(A —e) < 0, we have the right inverse by way of integrating
from —oco in the strip like region which is the domain of the logarithm. At which
point we can argue exactly as in V.2.5, to find the hypersurface § = 0 albeit
with a loss of domain from a sector of width 37/p to 27/p. In any case, all of
this can be achieved modulo arbitrary powers of the ideal (z), so we have an
identical preliminary reduction as in the case of ¢ > 0, and the entire argument
goes through as before to obtain VI.4.2 with the only caveat being that of the
reduction of the domain as per V.2.4 in the case corresponding to ITI.1.1.

The reduction achieved we can, modulo having ran out of letters, move
relatively swiftly to a conclusion. To actually solve the equation we employ
the conjugation VI.2.2(e), or more correctly followed by a homothety in X,Y
(notations as per op.cit.) so as to multiply our plane field by (p + ¢gA\)~!. As
such the main protagonists of §I1I were the variables = = (XPY9)~! and some
invariant function s according to which we fibred the domain U, via s, over B,
with U embedding in C? by way of = x s, and our linearised equation was of
the form:

(1+€)+6%
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for € a small function, and the left to right integration of §III for finding the
centre manifold having been preserved. Consequeptly under the conjugation
implied by VI.2.2(e) in (,Z, s coordinates the field ¢ becomes

0 0

ac o=

So now we fibre the domain U = U x A over E, where the latter is the domain
of s and t = £ exp(Z). As such, by VI.1.3 we must solve the scalar equation,

in a bounded way, where the fibre of U over (s,t) is,
Us n (logt — H)

where the left half plane H is a domain of the logarithm Z of (. As far as
the good cases I11.1/2 are concerned this poses no additional problem to those
encountered in V.2.3, i.e. the loss of domain from 37 in = to 2w, which is
consistent with finding the hypersurface y = 0 in case ¢ = 0, and involves no
further loss of domain.

As far as the case of bounded leaves occurring in I11.3-5 is concerned, the
situation is similar, but obviously more unpleasant. Specifically the fibres of
U — B are necessarily branched on the right in =, in order to find the centre
manifold, and, unlike the good cases I11.1-2 there is no way to change this. We
can, however, take a branch which is very close to purely imaginary. Thus,
although we now have to integrate from right to left in the leaves, rather than
left to right, we still can do everything that we were able to do before except
for a small sector around an imaginary axis. There being two of these, we still
succeed in covering everything, and so obtain,

V1.4.3 Fact Suppose for irrational A, the foliation admits in a neighbourhood
of X an a formal generator of the form,

0 2Py 0 0
‘a2t W(%? * Ay@)

Then for U a domain, according to the cases as documented in §III.1-5, in (z, y)
with the above small loss in cases §I11.3-5, and that of 3w to 27 in §III.1-2,
on a small disc A in z, there is a conjugation in U x A of the generator of
the foliation to the normal form. In particular, when we have to take further
arguments in a variable such as = *y or similar, as per §II1.3-5, these may be
supposed arguments of an invariant function.

Now let us turn our attention to nodes as encountered in VI.2.1(f). The
necessary work to be done is that to achieve VI.4.2. For the case of bounded
sectors as encountered in IV.2, everything has already been done in §V.2-3. For
unbounded sectors we proceed much as in the good cases implicit in VI.4.3.
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Whence in the first place we restrict to the central subvariety and seek the weak
branch of the node therein by way of a graph y = § + f(z), ¥ = 0 the desired
branch. At the risk of a certain notational confusion, this amounts to solving
in a domain U in (x,y) where the central manifold exists (so basically a disc in
y by a sector modulo the precision on critical points in IV.2) an ODE in z with
a functional derivative up to a bounded perturbation of the form,

of

f'—’f'f‘g

where z is the conformal variable encountered in §IV.2-IV.3. Since we're in
the hypothesis of IV.3, Re(z) > 0, there’s only really an issue for z purely
imaginary. There are cases IV.3.6(a),(b),(d) where one has a full sector in the
imaginary direction so one can take as base point, Re(z) — —oo. Otherwise one
is in IV.3.6(c), which should, and further to will be thus supposed, be treated
as the other bounded cases in IV.2. Notice also that when we are around a
ray with Re(z) > 0 in a domain that does not admit an intersection with cases
IV.3.6(a),(b),(d) that one has to take a finite base point in the z-plane, and the
possibilities for the weak branch are highly non-unique. Consequently it is best
to construct the right inverse to 1 4+ d/dz on domains which are maximal for
the existence of the ambient centre manifold in 3-space. As ever the solutions
in §IV.3 (excepting IV.3.6(c)) patch whenever they have a common intersection
where Re(zP™") < 0. The exact position, however, of the critical points with
Re(cP*™) > 0 is an absolute obstruction, so this is far from being as simple as a
27 versus 37 discussion.

Evidently we now wish to argue as in V.2.5, which will inevitably involve
some loss of domain, but the situation is not too bad since;

VI.4.4 Claim In all of the cases covered by IV.3 (excepting IV.3.6(c)), the
centre manifold in ambient 3-space may be supposed to exist on a domain V'
in z and discs in y, 2, so V x A2 such that V contains open sectors V,,V_ on
which the rays enjoy Re(z~(*")) — 400, respectively Re(z~ (")) - —co.

Proof. The assertion about —oo is actually the content of the various cases
considered in IV.3. The right inverses to the functional derivative can be patched
when they have a component of Re(z~(P*7)) < 0 in common, so one gets the
equivalent statement for Re(x’(p”)) going to 4o by going through the exact
same set of cases replacing —oo by +00. o

One also has a more precise statement involving critical points, but for the
moment this is unimportant since V.2.5 involves a bounded right inverse, and
it’s only relevant that we can integrate from 4o0. As such, as per VI.4.3 we've
already changed the direction of integration from right to left in this preparation
alone.

The full preparation to normal form on the centre manifold is exactly as per
IV.1.3 - understanding z as the conformal variable z in the sense of IV.2-1V.3.
In the particular case of immediate discussion around IV.3 one even has 40 as
a base point, so there is absolutely no change. Finally to apply VI.1.5 we must
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achieve a preparation in x7'0z modulo 22, where here z = 0 is once again the
centre manifold in 3-space. Attempting the preparation by way of = — ef?x,
this amounts to solving the linear equation,

p+r .

where 0 is the normal form restricted to the centre manifold, and 2~ 'dz =
P (1+AzP7) = +2P23. Now one should be a little cautious since the critical
lines appearing in IV.3 are somewhat intrinsic to the field in question but rather
susceptible to change on multiplication by a unit - equal to 1 modulo zP*7+!
would be okay, but this is not our situation. Consequently one should observe
that if K is a right inverse to (1 + 3) then,

f _ T % { (1 + )\l.err) :Cpﬂ}

(1 + )\xp+7') xrp+r

solves the equation. For this to have sense § must be a priori divisible by =", but
this can certainly be achieved by starting from a sufficiently good approximation.

Here and elsewhere the construction of the right inverse to (1+3) largely just
involves changing plus signs to minus signs in IV.2/IV.3, and being attentive
to the loss of domain. One should, however be cautious, in cases IV.3.6(c) and
(d). The latter isn’t too bad since it just involves a loss of analyticity at it
becomes of the former type when the signs change. The former is, however,
really quite bad. More precisely, it doesn’t seem to be possible to make analytic
solutions, i.e. arguments in x only, in an open neighbourhood of the imaginary
axis. Unlike bounded domains around negative real arguments the conformal
variable z of IV.2, there is not a symmetry between inverting 1 + ¢ and 1 — 0,
and the base point for the former implied by using the cone construction of IV.2
for the latter is not holomorphic. This can be remedied by constraining the
invariant variable o of IV.2 to any strip bounded by the ray of IV.3.6(c) in the
plane Re(z) < 0, and any other parallel to it. A priori the implied base point
for an integral operator to invert 1 + ¢ is still not holomorphic, but since ¢ is in
a strip, this is within finite Euclidean distance in the z-plane of a holomorphic
function h(o). Again notation as per op.cit., this does not imply finite Euclidean
distance in the £-plane, so one should change the leaf L, by the simple expedient
of adjusting the polygon to have a vertex at h(c) with edges through the same
the straight lines between o and h(c) and say a parallel to the ray that was the
other edge through the nearby non holomorphic vertex. This leads to a slightly
less tidy domain in o, coordinates (and of course extended by an open disc
in the &-plane around the base point to apply the implicit function theorem),
but & la II1.3.2 and III.5.2 all points are still covered. Otherwise the loss of
domain in governed by the usual branching considerations of 27 versus 37 in
the analytic sectors together with the position of the critical points in the sense
of IV.3.1. With this in mind we can therefore not only safely apply VI.1.5 but
argue exactly as prior to VI.4.3 to obtain,
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V1.4.5 Fact Suppose in Xan the foliation admits on a neighbourhood a formal
generator of the form

0 0 0
7+ (RO, + T 50)
Then for U a domain in z,y as per IV.2/IV.3, with the above caveats in cases
IV.3.6(c)-(d) on U x A there is a conjugation of a convergent generator to the
same. In particular the extra restriction occurring in IV.3.6(c) in the invariant
variable o explained above is in-fact with respect to an invariant variable for
the foliation on the ambient 3-fold.

This brings us to VI.2.1(g), i.e. a node with ¢ > 0, so at least we don’t have
to worry about finding the invariant hypersurface y = 0. Furthermore even
though VI.2.1(g) cannot be achieved in X,,, but only in the weaker topology of
completion in x = 0 or a point, V.1.9 is sufficient to imply that after blowing up
we may suppose ' dz and y~!dy are divisible by xPy9, for the ambient foliated
3-fold. By IV.4, VI.1.3 will prove to be applicable provided we can achieve
the reduction VI.4.2. Essentially, this is done as per the proof of VI.2.1(g)
modulo appropriate changes. In the first place, one simply cannot argue as per
op.cit. because exponentials may not converge. Nevertheless if D = £Pn90 is the
normal form in &, 7 coordinates one can proceed to seek a conjugation modulo
y*, k < ¢, modulo 39, and eventually modulo y9! for the field restricted to the
centre manifold. Consequently it is certainly necessary to begin from a situation
which is prepared modulo a large power of (z). In any case, proceeding by way
of successive powers of y, one finds a system of ODE’s in z with functional
derivatives up to a bounded perturbation of the form,

q—k 0 _ r+1i
[O —k] @ oz

where the derivative can actually be taken as d/6z in, obvious risk of notational
confusion, z(x) as per IV.2/IV.3. For k < ¢ there is an obvious risk of competing
signs. To minimise the implied loss of domain, observe that since the centre
manifold converges in X,,, so modulo powers of zPy? after blowing up, we can
carry out this step a priori before finding the centre manifold on domains of the
form shown in figure VI.4.5, and negatives thereof for some suitable large R, z(x)
as IV.2/TIV.3, and all lines bounded strictly away from imaginary. Furthermore
provided our preparation modulo powers of (z) is sufficiently good, we can also
similarly carry out the preparation modulo 9.

The monomial form VI.2.2(g), which as per V1.4.5 is what we employ to
actually solve the equation, casts a little more light on IV.4. In the persistent
confusion of notation between the conjugated coordinates and the conformal
mappings of IV.2-IV.4 we have, in the notation of the latter, ((X) = X!,
z2(X) = X~ 7/r, and after a homothety 0§ = —1, £ = X PY 7. Whence in the
notation of op.cit., s = £ 7! exp(2(X)), which is rather convenient. Irrespectively
we proceed exactly as for VI.4.3. According to the domains encountered in
IV.4.2 together with the fact that we must change from integrating from the
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Im(z(z))

Figure VI.4.5

left right orientation of IV.4.2 (which again has been conserved) for finding
the centre manifold, to going from right to left. As such we suffer the usual
loss from 37 to 27 in (zpyq)fl in the good regions, i.e. domain of z(x) the
larger connected component of VI.4.5, or its negative, on exclusion of a strip
of width 2R about the negative real axis, while the problematic region around
the negative real axis (in the conformal variable z(X) ) is no worse than before
albeit it’s a good idea to change the rightmost boundary to one that is not
purely imaginary so that we can shrink it and apply the standard perturbation
argument in a uniform way. Ultimately, therefore, we obtain:

VI1.4.6 Fact Suppose whether in the completion of ),(\'an in a point, or better
the divisor z = 0, we have the normal form,

25+ ey (i—i- v (mi— i))
0z l—i—yq(R(x)—i-)\mP”) y&y 14 var Ealp py(?y

r € N, R polynomial of degree r — 1, \,v € C, then for a domain U in z,y, as
per IV.4 with the above further prescriptions, on a domain U x A we have a
conjugation of a convergent generator to the said normal form. In particular
when we’re obliged in IV.4 to restrict the argument of the variable s? for the
conformal variable z(X) close to negative real, the variable s defining such
restricted domain may be supposed to be an invariant function for the ambient
foliation in 3-space.

In light of VI.2.2(h), the case VI.2.1(h) follows with exactly the same proofs
as V1.4.3 since, as already occurs whether in the proof of VI.2.2(h) or V1.4.3, the
only important thing is that p + g\ # 0, which is what distinguishes VI.2.1(h)
from VI.2.1(i) or (j), which we therefore make explicit note of by way of,
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V1.4.7 Fact Exactly as V1.4.3 but for a rational eigenvalue A provided p+ g\ #
0, which corresponds to the normal form VI.2.1(h) or (j) for the couple (i, j) # 0,
understood by way of any finite truncation of the series v.

This leaves us with the highly resonant cases VI.2.1 (i)/(j) to do. The
strategy is basically as per VI.2.2(i), in order to obtain the reduction VI.4.2.
Let us spell this out in order to see that there is a difference between the normal
form and simply conjugating to a monomial form. More precisely let us write
the normal form of the plane field as,

0= (X*Y)"D = (x*v)"{a(x VxZ — kv 2y v Y)Xi}

) ’ 0X oY ’ 0X
On the other hand, restricting our field ¢ to the centre manifold we have for
(z,y) in some domain U as prescribed in §I1.3 an expression for @ of the form,

(@) { e + @) (15 = ks ) + (o) + Gy 5)a )

for p some integer as large as we please, and «, 3 bounded functions on U. Now
let us argue as in VI.2.2(i) but with some change between z and y, i.e. for
monomials M, N in X, Y to be chosen, let us look for a conjugation in the form,

Ng—IMf

kM
!, z— Xe

y—Ye
So that we require to solve the system of PDE’s,
D(Mf) = —e""9a(x,y) + a(X,Y),  D(Nf)=e"V9b(x,y) —b(X,Y)

where d(z,y) = a(z,y) + (zFy)a, and similarly for b. Now in the particular
cases at hand, a and b are functions of X*Y"* alone whence,

a(z,y) = a(e™™IX YY) + (XFYY) ernNia(z, y)

and similarly for b. Consequently the right hand sides of the above equations
are both divisible by the monomial N, provided N divides (X ’“Yl)p, and of

course we suppose that M |N but is not equal to it. Furthermore the function b
is always divisible by X*Y!, so our functional derivative has the shape,

= et = ] o[

Consequently we have up to the usual un-troublesome bounded perturbation a
reduction by way of VI.1.3 to solving scalar equations,

(n+D)(F) =G
say even for the same u, e.g. M = (X’“Yl)'o_2Y7 N = (Xle)p_lY. To solve

the equation we employ the conjugation VI.2.2(i) if our context is VI.2.1(i),
and otherwise do nothing. Irrespectively we have to proceed according to the
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proof of VI.2.2(i) and allow spiralling in the variable X. As per V.2.1 we can
eschew worrying about base points remaining in the domain, since there is only
one derivative in the system of PDE’s, and apply the usual power series to take
care of the bounded perturbation €. This achieves the preparation VI.4.2 to
an arbitrary order of approximation with respect to powers of the ideal (x*y!),
with a loss of domain exactly as per VI.2.2(i).

Unfortunately this loss of domain has a price, since in the notations of §I1.3
the unbounded domain Ug now consists of the same left hand boundary, but
a right boundary as per figure I1.2.2. Consequently when we come to employ
the strategy of pre VI.4.3 to achieve the actual conjugation on the 3-fold to
the normal form we can suffer further loss of domain. Indeed just as the other
integrable cases in §VI.3, the orientation is reversed from the notation of §II, i.e.
one integrates from right to left to achieve the centre manifold, and, in fact, with
the above choices of M and N also for the preparation VI.4.2. Consequently
in the equation for the normal form one is integrating from left to right. This
implies a problem of holomorphicity of base points unless we also spiral in the
y-variable, with both spiralling in x and y occurring in cones in the logarithm of
the same which must be adapted to s belonging to a strip domain. We have two
cases to consider. In the first place, notation as per I1.3, we take s in a sector
S of aperture up to 7/r so that s” is bounded away from purely imaginary.
This places us in exactly the situation of I11.3.1(b), with large spiralling in x
and y if S is of small aperture around the real axis, and small spiralling if S is
close to full. In either case, we have a holomorphic section as a base point, and
everything is as per op. cit. Otherwise S is again a sector of aperture up to
7/r in s but this time bounded away from negative real. For large spiralling the

Im(p)
a(s)

Re(p)

Figure VI.4.7

minimum of Re(p) will, according to the imaginary part of s”, be at either a(s)
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or b(s), for all s € S. In neither case, however, is a(s) or b(s) holomorphic. If we
re-scale by s, i.e. view 11.3.1(b) in the & plane, there are holomorphic sections
a(s), respectively B(s), close by. More precisely a(s), respectively 3(s), is at a
finite (as a function of the spiralling) Euclidean distance from a(s), respectively
b(s), in the & plane. Unfortunately this distance gets magnified by s~ in the
variable that counts, i.e. p, so we need to make some changes to use either «
or 3 as a base point. This has some similarity with the extreme possibilities
about imaginary critical points encountered in VI.4.5. Irrespectively, we simply
modify the domain U’ of I1.3 fibre by fibre to obtain a sub-domain V in which
Re(p) has a minimum at «, respectively 3, as required, which in turn is joined
by straight lines to the holomorphic sections employed in the previous case. By
construction, at the price of some loss in radius in 2 and/or y, and in either
variable a small decrease in the spiralling, i.e. the aperture around the real axis
in the domain of the logarithm, V' contains, therefore, a domain which is much
the same as U’. Fortunately, we don’t need more of a polynomiality condition
on the relevant differential operator than that in II1.2.1, so we can apply the
implicit function theorem directly in V having constructed a bounded right
inverse in the usual way, i.e. put a disc of fixed Euclidean distance in each fibre
around our base point, and integrate from it to get a bounded right inverse with
power series to deal with any perturbations exactly as per II1.2. Whence, to
conclude:

V1.4.8 Fact Suppose that in the completion of )A(an we have either of the normal
forms,

i k, I\n k, 1l i_ i (xkyl)r i
Fn + (z%y") {R(Jc y)(lmaz ky@y) + 1+V(x’“yl)”+’“x6:v)}

for n,r e N, deg R <r, R(0) #0, v e C, or,

6+ (xFyh)m ( 0 6)

5 T T ) B Mg,

with everything as above, except v which is now a formal function of a single
variable. Then for s = 2%y in a sector S of aperture 7/n bounded away from
one of real or purely imaginary we have a subdomain U of the product of
hyperplanes defined by log x, respectively logy such that U maps to S, with
spiralling neighbourhoods of x and y as large as we like for S bounded away
from real, or, exactly as per I1.3, for spiralling adapted to S for S bounded
away from purely imaginary, such that for z varying in a disc A we can find
a conjugation of a convergent generator ¢ of the foliation on A x U to the
appropriate normal form, and this can be done with an arbitrary large degree
of polynomial approximation modulo z¥y!.
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