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Abstract

We investigate the structure of fully non-linear P.D.E.’s in holomorphic
functions, with emphasis on the functorial generalisation of so called “ir-
regular” O.D.E.’s. Highlights are an implicit function theorem remov-
ing the perturbation conditions of Nash-Moser type, best possible exis-
tence results when the singularity of the linearised P.D.E. is at worst bi-
dimensional, and various, again optimal, corollaries on existence of centre
manifolds and conjugation to normal form of 3-dimensional vector fields.
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Introduction

Resolution of singularities of vector fields is a very different problem from reso-
lution of singularities of varieties. A toy, but key, [Kol07] example in the latter
is an irreducible hypersurface singularity of degree d in characteristic zero. By
the preparation theorem we can write this locally as,

fpx, yq � yd � a1pxqyd�1 � . . .� adpxq � 0

for ai some functions of some variables x � px1, . . . , xnq P X. This determines
y as an implicit function of x, and if we were to restrict our attention to local
uniformisation about a valuation v, of, say, rational rank 1, since this tends to
be the hard case, we could even expand y, and indeed xi, i ¡ 1 as a power series
in x � x1. i.e.

y �
¸
qPQ�

cqx
q

for coefficients in the residue field of the valuation and q increasing. By in-
duction one may suppose that the corresponding series for the xi occur with
bounded denominators, so, without any essential loss of generality, we may as
well say integers. The question of local uniformisation is wholly equivalent to
understanding ym as an implicit function of x, where, y � ym � pmpxq, and
pmpxq is the first m terms in the above power series. A modicum of thought,
cf. [CRS08], reveals that for m " 0,

B
Bym fpx, ymq

is a unit so Hensel’s lemma (a.k.a. the implicit function theorem) applies to
conclude that the series in y also has bounded denominators.

Already at this level the situation for vector fields is much more subtle, since,
for a start, again rational rank 1 to fix ideas, a similar toy example does not
exist except in dimension 2. Nevertheless, one can gain some inkling for the
difficulty by supposing that y is an implicit function of x determined by an
O.D.E. of degree k,

fpx, y,Dy, . . . ,Dkyq � 0, D � x
B
Bx

At which point, it should be plain that Hensel’s lemma will never apply since
the functional derivative in y will be a linear O.D.E.,

y ÞÝÑ f0pxqy � f1pxqDy � . . .� fkpxqDky

and the best that one might hope for after the above substitutions y ÞÑ ym, is
that some of the fi become units. Nevertheless, even when this does happen, one
still may not be able to say anything meaningful since there may be resonances
amongst the fip0q, i.e. they may well fail to be linearly independent over Q, which
becomes a problem many times compounded as one makes examples closer to
the truth on replacing an O.D.E. by a P.D.E., and forming systems of such.
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There is also a mutual enrichment between the question of resolutions of
singularities for vector fields, or, indeed differential operators, and the question
of the very existence of solutions to singular P.D.E.’s which is not really present
at the level of resolution of varieties. Indeed, plainly, our original hypersurface
had a solution y as an implicit function of x over any algebraically closed field,
while even a system of r O.D.E.’s in r unknowns,

9zi � aipz1, . . . , zrq, zi � ziptq, 1 ¤ i ¤ r

may well fail, already for r � 3, to have any solution if the ai are too singular,
[GML92]. Formally, however, this is easily decidable (by way of Jordan form)
as soon as we can resolve the vector filed,

a1
B
Bz1 � . . .� an

B
Bzn

At which point, we come across the most useful algebraic analogy in the form of
Artin’s large scale generalisation, of Hensel’s lemma which asserts that anything
defined in an algebraic way which has solutions formally, enjoys solutions in the
étale topology, or, equivalently the coarsest Grothendieck topology in which (the
usual easy version of) Hensel’s lemma holds, so, trivially, one has convergence
of the said solutions in the classical topology.

Naturally, therefore, one is lead to enquire as to whether there may be a
similar Grothendieck topology for P.D.E.’s. Already for 1st order O.D.E.’s, the
classical topology is insufficient, and even the linear case should only really be
considered understood when it corresponds to a linear system, i.e. a connection
∇ on a bundle E of rank r satisfying the Leibniz rule with respect to,

D �

$'&'%
x
d

dx
“regular” singularity,

xr�1 d

dx
“irregular” singularity, r P N

which in turn defines the system of O.D.E.’s,

∇pfq � g, g P E

subject, at least in the “irregular” case, to the non-degeneracy condition,

∇peiq �
¸
j

aijej , Detpaijqp0q � 0

In either case, functorially with respect to the ideas, we have a canonical singu-
larity (strictly log-canonical in rare cases of the former, [MPa] III.i.2) whence
the regular/irregular terminology while appropriate when it was introduced,
[Del70], now risks creating a certain confusion since both cases are wholly natu-
ral, and neither may be improved in any way by blowing up. Plainly the first of
these analytically continues to the surface of the logarithm in an obvious way,
and is an example of what we will call logarithmically flat. On the other hand
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one cannot necessarily do any better, so plainly exp : H Ñ ∆ defined on a half
plane H will have to be in our topology, as a neighbourhood of 0 even though
this fails to be in the image of the exponential. Equally, this is just a round
about way to state the obvious, whereas the so called “irregular” case is rather
more interesting. The classical example is Euler’s equation,

E � z2 d

dz
E � z

which has the formal solution,

Epzq �
8̧

n�0

n!zn�1

and, appearances notwithstanding, an analytic continuation to the surface of
the logarithm, ζ � log z, where the above formula is actually the asymptotic
expansion in neighbourhoods | Impζq|   3π,Repζq Ñ �8, after which, unlike
it’s flat counterpart, the two are unrelated, i.e. we find a Stokes’ phenomenon.
Nevertheless it has a related functorial description, i.e. E is the exponential, cf.
§I.2, in the convolution algebra H1

cpGa, ωGaq under the more or less canonical
identification, [Köt69], §27.4, of this group with germs of functions vanishing at
8, about which, and perhaps a little confusingly, one should view the above z
as the local coordinate. As a result, [Éca85], all local existence results for such
systems in the “irregular” case are subordinate to the much richer theory of the
function E itself.

In either case, or, more accurately up to some issues of resonance among
eigenvalues in the log-flat case, the non-degeneracy condition on ∇ guarantees
that the problem is formally un-obstructed, while adding sectors S Ñ ∆, i.e.
restricting the argument of z, to the classical topology and viewing them as
neighbourhoods of 0 is more than sufficient to obtain solutions everywhere. At
which point, e.g. [Mal91] §IV, one can define an appropriate topus, and construct
a rich body of theory. At its most basic level this topus is a sub-category of
sheaves on the real blow up of the disc in the origin (whence a manifold with
boundary, and not unrelated to the twin facts that the essential of [MPa] is
the case of real manifold with boundary, [Pan06], while, slightly incorrectly,
many algebraic stacks may be thought of as cone manifolds) and, irrespectively
of any questions of patching and analytic continuation, one has solutions in a
neighbourhood of every point on the real blow up. This leads us to pose,
Principle Question Could it be that given an arbitrary singular analytic and
fully non-linear P.D.E. one first resolves (in a sense to be made precise, but for
the sake of argument imagine a best possible final situation stable under blowing
up) its singularities, and modulo some possibility of some wholly computable
formal obstruction on the resolution, finds solutions on a real blow up supported
in the total exceptional divisor ?

Plainly an affirmative answer to the question defines a Grothendieck topol-
ogy on which every formally un-obstructed P.D.E. becomes soluble, and, equally
plainly, there is no smaller extension of the classical topology that could work.
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Unfortunately, as we shall see, III.3.4 & IV.2.6, this is false, albeit not hope-
lessly so, whence, for the moment, let us take it as a guiding principle. Obviously,
in the first instance,
Sub-Question What about the linear case of the question ?

This sub-question should then be sub-divided according to what constitutes
resolution, and a demonstration of existence. Similarly,
Related Question What is the relation between the linear case and the non-
linear one ?

The related question can at times be answered by the Nash-Moser implicit
function theorem, albeit [Zeh75] is better adapted to the analytic situation. It
is, however, slightly the wrong way to think of the problem. More precisely,
§I.2, an analytic fully non-linear partial differential operator between vector
bundles E and F is exactly the same thing as an analytic mapping between the
implied sheaves of Fréchet spaces in the topology of compact convergence. In
particular, linearisation has sense under the weaker hypothesis that this map
is simply differentiable, while the derivative itself is a continuous linear map
between sheaves of Fréchet spaces, which, in turn, I.2.2, is the same thing as
being a linear differential operator. Here, as we will expand upon momentarily,
it should be emphasised this is not exactly Peetre’s theorem, [Pee60] & [Pee59],
since functorially with respect to the ideas, I.2.1, one must respect the definition
of differential operator,[EGA], i.e. holomorphic differential operators can have
infinite order. It follows that the Nash-Moser conditions are not fully exploiting
the underlying geometry, and that the right condition is to seek an inverse
to the linearisation which itself is a map of sheaves. Unfortunately, it equally
follows, that in the strict sense this is impossible unless the operator has order 0,
a.k.a. a matrix of invertible functions. It is not, however, excluded that partial
sheafification of an inverse is possible, which, indeed is what one usually does in
practice, e.g. integration from a base point is well defined on many, but certainly
not all, open sets. The precise meaning of partial sheafication, and a related
technical condition of “Holder continuity” of the functional derivative are the
contents of I.3.2(a)-(c). Furthermore sheaves of analytic functions are sheaves of
Fréchet spaces in a particularly simple way, i.e. inverse limits of Banach spaces
on larger and larger compacts, so,
Fact (I.3.5) There is an implicit function theorem for fully non-linear analytic
P.D.E.’s (more generally C1,α maps between sheaves of Fréchet spaces of sec-
tions of holomorphic vector bundles) which is every bit as easy to use as the
implicit function theorem for Banach spaces. In particular, there are no pertur-
bation conditions of Nash-Moser type, and it is only ever necessary to invert (in
a way that partially sheafifies) the linearisation of the given P.D.E. of interest.

The precise statement is in §I.3, and is presented as above to emphasise its
salient features. Much of the set up is demonstrably optimal up to a universal
constant, I.1.4, which is an observation of independent interest. In practice the
conditions of the implicit function theorem imply that any finite combination of
integration and differentiation to construct an inverse will always work. Infinite
combinations are allowed too, but here one should read the small print. By way
of an example of the latter one has,
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Example (I.4.4) Let f ÞÑ P pfq be an analytic fully non-linear differential op-
erator of finite order with logarithmically flat singularities satisfying a Siegel
condition (e.g. defined over Q̄) then the equation in holomorphic functions,

P pfq � g

may be solved if and only if it is formally un-obstructed.
Of course in certain P.D.E.’s one can do better than a Siegel condition for

a fully analytic solution, but these are rather particular, and in general the
above may well be optimal. This point is discussed in more detail in I.4.5, and
elaborated by way of the example I.5.

As should be clear from the preceeding remarks on linear systems, fully
analytic solutions of singular P.D.E.’s are a rarity, and what one should take
from the above discussion is that the related question is answered, and we are
reduced to the linear sub-question. As far as the sub-division of the same is
concerned the only relevant results in which the existence of an appropriate
bi-rational modification are known are resolution of vector field singularities
for surfaces, [Sei68], and 3-folds, [MPa], which imply various special cases such
as “irregular” 1st order O.D.E.’s where the aforesaid non-degeneracy fails, 2nd
order O.D.E.’s, and bi-dimensional first order P.D.E.’s, and leads us to,
Test Question Can we answer the question for 1st order linear P.D.E.’s on a
surface (and so, by the implicit function theorem any P.D.E. in any dimension
when the functional derivative has order at most �1 with at worst a surface
singularity).

Here some things are known, which, grosso modo, may be summarised as
conjugation of saturated plane fields to normal forms. Ignoring, momentarily,
some extremely subtle results such as [Éca94], although strictly speaking such
conjugations are solutions to P.D.E.’s they may, by way of power series expan-
sions, be reduced to the solution of O.D.E.’s. In particular, and, a priori rather
encouragingly, the question is known to be true in such cases, and, indeed, in a
highly structured way, [Éca85]. An evident lacuna here is the hypothesis of sat-
uration of the field, and correcting this, involves some work, e.g. I.5.2 & IV.1.3.
Nevertheless, we are effectively dealing with a foliation, and so the linearised
P.D.E.’s in question may be described as follows: U is some bi-dimensional do-
main fibred by s over some base B with simply connected fibres embedded in
C, i.e.

U ÝÝÝÝÑ
s�ξ

B � C���s
B

and we restrict our attention to the functorial generalisation of the so called
“irregular” case, whence there will never be any formal obstructions, and our
P.D.E. in functions on U looks rather easy, viz:�

1� B
Bξ



pfq � g
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so, where is the difficulty ? Well a moments reflection reveals the following,

(a) The implicit function theorem does a lot, but it doesn’t do miracles, so
we need a bound on the size of f in terms of g. This bound is allowed
to blow up on the boundary of the fibres Us in C in accordance with the
conditions of the theorem, but not on a boundary point of Us in P1

C, so
any old rubbish will not work.

(b) Quite conceivably, fibre by fibre one can solve with appropriate bounds,
but this is not enough since the solution must vary holomorphically with
the base.

Our previous considerations on differential operators offer some further illumi-
nation, we have the power series,�

1� B
Bξ


�1

“ � ”
8̧

n�0

p�1qn B
n

Bξn

while, quite generally, I.2.2, the condition for a formal series,

8̧

n�0

cn
Bn
Bξn

to be a differential operator on any open in C is that its Borel transform,

z ÞÝÑ
8̧

n�0

n!cnzn

is entire in z. In our current context, up to some irrelevant normalisation, this
amounts, not by coincidence, to the solution Epzq of Euler’s equation being
entire. Although this is false, it’s also remarkably close to being true, and one
might hope that there is a (sheaf) arrow,

D iff �8
C ÝÑ D iff �8

C

��
1� B

Bξ
��1

�
or, better, arrows, with similar properties, e.g. Stokes’ phenomenon, to,

C ÝÝÝÝÑ
E

C���exp

C

and, whence, a universal way to invert 1 � B
Bξ , which, being universal would,

obviously vary holomorphically from fibre to fibre. Such considerations are taken
from the first author’s limited understanding of [Éca85], but try as he might,
he cannot implement the programme, and, worse, II.1.5, III.3.4, IV.2.6 suggest
that a wholly necessary condition is that in each fibre there are paths where
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Repξq Ñ �8. Consequently, for §II-III we have to undertake a case by case
analysis of the possibilities for s : U Ñ B that are presented by resolution of
foliation singularities.

Amongst the dozen cases that must be considered essentially two distinct
types of behaviour emerge: the fibres Us have �8 in their limit and solutions do
indeed enjoy many similarities with the function E- albeit in IV.3 the behaviour
is much more complicated, e.g. one has “Stokes’ curves”, IV.3.5, as opposed to
“Stokes’ lines”, or the fibres Us are bounded, albeit, not uniformly in s. The
first case, II.1.1, that we encounter has exactly this latter form, and the basic
technique for dealing with the aforesaid problems (a) & (b) in constructing
an inverse is taken from [Was85]. At first glance this may appear to be sad
rubbish. In reality, II.1.5, it transpires to be a finely tuned instrument which
cannot really be improved as far as the linear equation is concerned, although for
nonlinear equations the implicit function theorem gives a very big improvement
II.1.4. Subsequently, therefore, whenever we find that �8 is not in our fibre
we employ variations of increasing difficulty on the same theme. Sooner, III.3,
rather than later, IV.2, we find that it fails to answer our question. More
precisely, associated to a plane canonical foliation singularity there are typically
two invariant branches, only one of which may, in general, be supposed to be the
exceptional divisor, and in our variations on a theme we find ourselves taking
logarithms in both. The construction, however, is not to blame, since such
additional logarithms are demonstrably necessary, III.3.4, IV.2.6 so that, as
posed, the question is false, and strikingly so in the latter case, i.e. the question
cannot even be solved for the further logarithm in a full half plane. Let us
therefore make,
Summary The Test Question in the so called “irregular” case is almost an-
swered in the affirmative in §II-III, but there are counterexamples. In fact, with
the exceptions of II.1.1, & II.3.1 every case where the fibres of s : U Ñ B are
bounded is a candidate for such. It is possible, however, to answer affirmatively
a modified question in which we permit in solutions not only the logarithm of the
exceptional divisor but also that of other functions intrinsically associated to the
geometry of the singularity. On the domains of definition of such functions, the
implicit function theorem then solves a whole slew of fully non-linear P.D.E.’s
for free.

That new phenomenon should emerge in the “irregular” case of the test
question is, perhaps, not surprising since it effectively governs the major new
feature in the local dynamics of canonical foliation singularities in dimension
3. More precisely, the condition of being log-canonical is equivalent to each
singular point of the foliation enjoying a generator B such that the associated
linear endomorphism,

B :
m

m2
ÝÑ m

m2

is non-nilpotent. This, and the slightly stronger property of being canonical, is
a functorial property, and it is equivalent to the existence of a non-trivial formal
centre manifold in each point, i.e. the invariant formal subscheme defined by
the vanishing of the eigenfunctions of B viewed as a linear endomorphism of
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the completion of the local ring. One may, V.1, of course, engage in further
blowing up with a view to some further convenient, if not necessarily functo-
rial, improvement in the singularities. After which, the case where the centre
manifold has dimension 1 amounts either to an identity of the same with the
singular locus, and our calculations (which are not included) indicate behaviour
consistent with [Éca85], or an isolated singularity whose local dynamics, again
consistent with [Éca85], are much as one might intuit from a saddle node on
a surface. The fundamentally new case, however, occurs in the presence of a
2-dimensional centre manifold around a non-isolated singular locus, i.e. there
is, with multiplicity, only 1 eigenvalue. In particular, one has several notions of
formal, or, more accurately sub-schemes of the singular locus in which one can
complete. As such, even formally, [McQ], §1.5, & post II.2.2, the centre mani-
fold may fail to exist in completing along the union of 2 components close to a
point where the number of eigenvalues jumps from 1 to 2. Otherwise, around
central components where there is one eigenvalue at the generic point, it is well
defined after completion in the same, and we apply what we have learned to
address,
Central Question As suggested by the principle question, having performed
sufficient a priori blowing up, does every point in some real blow up supported
in the exceptional divisor admit a neighbourhood in which the centre manifold
converges.

This is the subject of §V, and it should be clear that III.3.4 & IV.2.6 already
imply that it cannot be answered any better than the qualified way in which we
have responded to the test question for P.D.E.’s on surfaces, i.e.
Central Answer (V.3.3) As stated the central question is false. An invariant
manifold as tangent to the formal central surface as one pleases exists, however,
on taking further logarithms of invariant “divisors”, other than the exceptional
one. This can only happen at points where the induced foliation in the central
surface is singular and leaves the central components invariant. The word “di-
visor” has been placed in inverted commas, because while well defined formally
already they do not necessarily converge without first taking logarithms in the ex-
ceptional divisor. The singularities that may require such additional logarithms,
correspond to the P.D.E.’s III.3, III.4, III.5, IV.2, IV.3.6(c), and close to some
small nuisance region in IV.3, all of which is best possible.

The central difficulty in answering the central question post §II-III is, mod-
ulo suitable preparation which should always be done modulo large powers of
the ideal of the central components and not ideals at points, is the complica-
tion occasioned by invariant branches through the singularities in the induced
foliation in the formal surface. As indicated above these may have a purely
formal existence. They are, however, of dimension 1, so their existence, V.2.3,
respectively that of the related invariant divisor, V.2.5 has many similarities
with the centre manifold of a node on a surface, respectively its conjugation to
normal form. The further fact that the logarithms of the functions in question
are indeed invariant by the foliation, and intrinsic to its geometry, is tied to,
Final Question What can be said about existence domains for conjugation to
normal forms of the singularities around the formal central manifold.
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Obviously logarithms about the exceptional divisor is the ideal. Obviously
the ideal will be false, and we’ll need further logarithms. We will also have an
essential preparation for addressing the principle question in dimension 3. Nor-
mal form should, of course, be understood by way of completion in the central
components, so, even this stage, VI.2.1, is not as trivial as one might think. The
basic extra difficulty, however, is one of preparation, i.e. typically achieving the
normal form modulo the square of the centre manifold, and this tends to involve
a certain loss of domain, basically the aperture of the sectors encountered in §II-
III, equivalently where the centre manifold exists, will shrink. Indeed, the only
case where the loss of domain is more serious are when the formal invariants
occur in some highly improbable combinations. Such combinations need not be
a resonance as it is usually understood albeit it ought to be considered such,
and the “usual understanding” ought to be considered mistaken. There are,
in fact, two such combinations where the loss of domain is worse than a mere
loss of aperture, of which one is a “usual” resonance, VI.4.8, whereas the more
complicated one, IV.2.6(c), is not, and actually requires a further logarithm in
an invariant “divisor” which was not required in finding the central manifold.
A further, and extremely important, feature of these existence domains is their
structure at the generic points of the singular components. These naturally
separate into those which are invariant by the induced foliation in the formal
central manifold, and those which are everywhere transverse to it. The latter
exhibit all the good properties of, and are extremely similar to, the domains for
conjugation to normal form of a 2 dimensional saddle node. The latter, where
the normal form is,

z
B
Bz � xp

B
By

behave exactly as our principle question anticipates, i.e. the existence domain
is a disc in y and z, while the exceptional divisor, x � 0, has its argument
constrained to a sector S. This sector, however, is small, i.e. π{p � ε, and
II.1.5(a)-(d), this is best possible whether for conjugation to normal form, or,
even the existence of the centre manifold. Whence, for example, there are many
invariant surfaces in such sectors asymptotic to the centre manifold, and the
actual dynamics in a neighbourhood of a point is potentially much much more
complicated than when the central component is transverse.

The author’s are, respectively, indebted to Jean Écalle and Reinhard Schäfke
for a number of helpful discussions.

Notation Let ∆� be a punctured disc. The exponential affords a canonical
isomorphism,

a : π1p∆�q �ÝÝÝÝÑ Zp1q � Z2π
?�1

and, for γ an oriented loop we define,¾
γ

:� 1
apγq

»
γ

which, inter alia, does not depend on the choice of the square root of �1.
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I Differential Operators

I.1 Canonical Norms

Ultimately, we will require norms on differential operators, so, in the first in-
stance vector fields. The following, cf. [Kob98], §3-§4 are standard,

I.1.1 Definition Let x P X, B P TXpxq, X a smooth complex space, then the
Kobayashi, respectively Carathéodory, pseudo-metric is defined by,��B��Kob

X
pxq � inf

f

! 1
R

: f�
� B
Bz

	
� RB

)
, respectively,��B��Cat

X
pxq � sup

f

!
D : f� pBq � D

B
Bz

)
,

where for z a standard coordinate on the unit disc ∆, the infimum, respectively
supremum, is taken over pointed maps f : p∆, 0q Ñ pX,xq, respectively f :
pX,xq Ñ p∆, 0q.

From the point of view of local analysis the good definition should be that
of Carathéodory, but it appears to be rather difficult to obtain natural upper,
rather than lower, bounds in contradistinction to that of Kobayashi. Conse-
quently we shall avail ourselves of,

I.1.2 Triviality Let X be a smooth complex space, f a function, and B a vector
field, on X, respectively, then, for all x P X,

|Bfpxq| ¤ ��f��
X

��B��Cat

X
pxq ¤ ��f��

X

��B��Kob

X
pxq

where }f}X is the sup norm on X, possibly infinite, peu importe.

Proof. The first inequality is the definition of the Carathéodory norm up to a
conformal mapping, while the general inequality } }Cat ¤ } }Kob follows from
the Schwarz lemma, in fact the easy undergraduate version. �

In so much as we will be doing local analysis, product domains will play
an important role. Consequently, even though much coarser bounds would be
sufficient, it’s convenient to recall,

I.1.3 Fact Let X � Y be any product of smooth complex spaces with ξ, η the
projections to X and Y respectively, then for � either Kob or Cat,�� ���

X�Y
� maxt��ξ� ���

X
,
��η� ���

Y
u.

Proof. This is a good illustration of how much more tricky Cat is than Kob.
Specifically, as ever Schwarz implies that in either case the right hand side is
bounded by the left. For Kob the converse is trivial, i.e. given discs, f : ∆ Ñ X,
g : ∆ Ñ Y , the discs,

∆ ÝÑ X � Y : z Ñ fpλzq � gpzq

12



or perhaps fpzq � gpλzq, depending on which disc is bigger, for an appropriate
multiplier of modulus at most 1 gives the bound. One reduces the Cat case to
this case by way of a highly non-trivial theorem of Lempert [Lem82], that Cat
& Kob coincide on affinely convex domains. The discussion in [Kob98], §4.9.1,
is for a slightly different, viz. not necessarily inner, definition of Cat, so we’ll
quickly adapt/plagiarise it. More precisely, approximate a function f on X �Y
to ∆ by tensors,

°n
i�1 ξ

�ai b η�bi, and supposing without loss of generality that
ai, respectively bi, are bounded on X, respectively Y , for all i, put:

U � ts P Cn :
��si��   ��ai��X , ��s � bpyq��   1, y P Y u

V � tt P Cn :
��ti��   ��bi��Y , ��apxq � t��   1, x P Y u

where σ � τ � °
i σiτi is the standard dot product.

Now, supposing, as we may, that our function f and the approximating
tensor, T, vanish at the same point of interest x � y, we may decompose a
vector B at the same as BX > BY and apply Lempert’s theorem to conclude,��T�B��Cat

∆
px� yq ¤ max

i,j
t��paiq�BX��Cat

U
,
��pbjq�BY ��Cat

V
u

while the ubiquitous Schwarz lemma, in the guise of distance decreasing for Cat,
bounds the right hand side as required. �

Again, in the light of the use of product domains, the following complement
on the uniformisation theorem will be of some utility,

I.1.4 Fact Let Ω � C be a proper simply connected sub-domain then,

e�2

dpp, BΩq ¤
��� BBz ���Kob

Ω
ppq �

��� BBz ���Cat

Ω
ppq ¤ 1

dpp, BΩq
where d is the Euclidean distance from BΩ, and z a standard coordinate.

Proof. The middle identity is the uniformisation theorem, and the right hand
inequality is trivial. We first prove the left hand equality for domains where
the uniformisation theorem extends C0 up to the boundary, so let f : ∆ Ñ Ω
be such a uniformisation, and appeal to translation invariance of the Euclidean
distance to suppose that p � 0. As such, for d the distance of 0 to BΩ,

� log d
��� BBz ���Kob

Ω
p0q �

¾
ζPB∆

log
� |f |
d



dζ

ζ

The afore-noted trivial inequality is the positivity of the integrand on the right.
To achieve an upper bound for the integral let ρ P p0, 1q be some radius to be
chosen, then for q a point on the disc of radius ρ,

log
|f |
d
pqq � log ρ � p1� ρ2q

¾
ζPB∆

log
|f |
d
|ζ � q|�2 dζ

ζ

13



The distance to the boundary of fp∆ρq is at most d, so there is some q for which
the left hand side is bounded by � log ρ, and whence,¾

ζPB∆

log
� |f |
d



dζ

ζ
¤ p1� ρq
p1� ρq | log ρ|

Since ρ was arbitrary, the infimum of the right hand side for ρ P p0, 1q will do,
i.e. ρ Ñ 1, and the general case follows by way of an exhaustion (e.g. by sub-
discs via the uniformisation theorem) Ωt Ñ Ω which is continuous with respect
to either side of the inequality. �

This can be combined into some rather general estimates, according to an
inductive principle that we will apply repeatedly. To wit:

I.1.5 Product Set up Let P � P1�� � ��Pn be a product of simply connected
proper subdomains of C, with B1, . . . , Bn a basis, or equivalently, an everywhere
invertible OP -linear endomorphism,

A : TP ÝÑ TP

so, for B{Bzi a standard field, Bi � ApB{Bziq. Punctually, this mapping admits
the operator norm }A}pxq, for TP pxq normed in the Carathéodory metric, and
we denote by }A} its supremum over P , possibly infinite, again, peu importe.
Subsequently we introduce a function,

dP ppq � min
i

distppi, BPiq

for pi the projections of p P P , and dist denoting the Euclidean distance. Finally,
for a � pa1, . . . , anq P Zn¥0 a multi-index, let |a| � a1 � � � � � an, and observe:

I.1.6 Fact Let things be as above, with f any function on P , then,

|Ba1
1 . . . Ban

n fppq| ¤ a1! . . . an!
e|a|�1}A}|a|
dP ppq|a| }f}P

with }f} the sup-norm of f over P , and |a| ¡ 0.

Proof. By induction on |a|. The case |a| � 1 is immediate from the set up,
and the trivial direction of I.1.4. Next let, pa1 � 1, a2, . . . , anq be a multi-
index of weight 1 beyond what we suppose known. For each 1 ¤ i ¤ n, let
di � distppi, BPiq and for t P p0, 1q to be chosen, introduce the product domain
Qt �

±
iQit, where,

Qit � tq P Pi : distpq, BPiq ¥ tdiu

Then, infqPQt dP pqq ¥ tdP ppq and dQtppq ¥ p1� tqdP ppq, so that, if d � dP ppq,

|B1Bafppq| ¤ }Baf}Qt

p1� tqd }A} ¤ a1! . . . an!
e|a|�1}A}|a|�1

d|a|�1p1� tqt|a| }f}P
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The right hand side is optimised for t � |a|
1� |a| , while the supremum of p1 �

1{xqx, x ¥ 1 is e. �

If we use the trickier part of I.1.4 and profit from the product structure to
proceed one factor at a time, the we have a better formula, viz.

I.1.7 Remark Let things be as above, but with A the identity, then for some
absolute constant,

|Ba1
1 . . . Ban

n fppq| ¤ a1! . . . an! C |a|}B1}a1
P1
. . . }Bn}an

Pn
}f}P

and } } the Carathéodory/Kobayashi norm.
Again, the non-intervention of the non-trivial direction of I.1.4 in the proof

of I.1.6, but rather the compatibility of the basis with the Euclidean distance
suggests that the truly practical metric to work with is neither that of Kobayashi
nor Carathéodory, but:

I.1.8 Definition/General Set Up Let Ω � Cn be a not necessarily bounded
domain, and denote by dΩ : Ω Ñ R Y t8u (or just d if there is no risk of
confusion) the Euclidean distance to the boundary in the norm }z} � maxi |zi|,
then we say that Ω is Cauchy hyperbolic if dΩpxq � 8, @x P Ω and metricise
the tangent space by, ��� BBz ���Cauchy

Ω
pxq � 1

dΩpxq
so that, trivially, } BBz }Cauchy

Ω ¥ } BBz }Kob
Ω , but not conversely, e.g. product of a

disc with C. Furthermore, for B1, . . . , Bn a basis of the tangent space defined as
per I.1.5 by a linear endomorphism, Bi � ApB{Bziq, for B{Bzi the standard fields,
let }A}pxq be its pointwise norm in the Cauchy metric, and }A} the supremum
of the same over Ω.

With this long winded set up out of the way we can directly appeal to I.1.6
to conclude,

I.1.9 Further Remark Let things be as above then there is an absolute con-
stant C such that for f any function on a Cauchy hyperbolic domain,

|Ba1
1 . . . Ban

n fppq| ¤ a1! . . . an!
C |a|}A}|a|
dP ppq|a| }f}Ω

I.2 Peetre’s Theorem

Recall that Peetre’s Theorem, [Pee59], [Pee60], asserts that any C-linear map
of locally free sheaves of differentiable functions is a finite order linear opera-
tor. Stated thus it is false for holomorphic functions. However, it is an actual
consequence of the theorem that C8 differential operators are of finite order, as
such with the right definition of differential operator it remains true. To further
investigate this let,

L : OX ÝÑ OX
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be a C-linear map of the structure sheaf on whatever one’s favourite poison
X may be, e.g. stacks in the canonical site of analytic spaces in the maximal
generality. Irrespectively the structure of L is a local question, so we could say
X a polydisc, but let’s keep with the previous discussion and say a product
domain P . The sheaf OP is naturally a sheaf of Fréchet spaces for the topology
of convergence on compact subsets, and we insist that L is continuous for this
topology. Following [Köt69], §27.3, we embed P in a product of P � pP1qn of
projective spaces in the obvious way, and observe that for every t P P, including
infinities,

pz1 � t1q�1 . . . pzn � tnq�1 P Γ
� n¹
i�1

Pi � ttiu,OP
	

where, as ever, zi is a natural coordinate function on the ith copy of C. Unsur-
prisingly we put,

Kps, tq � L
 pz1 � t1q�1 . . . pzn � tnq�1

(
.

By hypothesis, K varies holomorphically in the variable s. It is also analytic in
the variable t, since, supposing no ti infinite for convenience,

Kps, t� τiq �Kps, tq
τi

� L
!¹
j�i

pzj � tjq�1pzi � tiq�1pzi � pti � τiqq�1
)

holds in Γ
�±

j�i Pjzttju�P z∆
	
, for ∆ a small disc around ti and ti�τi. Better

still, the function to which L is applied converges on compact subsets pτi Ñ 0q
of

±n
i�1 Pizttiu, so:

BK
Bti � L

!
pzi � tiq�2

¹
j�i

pzj � tjq�1
)

Consequently K is an analytic function on P � P off the diagonals, ∆i � tsi �
tiu. Furthermore for any open U � P , of product type with each factor enjoying
a boundary a simple closed curve, and f P ΓpUq,

fpzq �
¾

γ1�����γn

fptq dt

pz1 � t1q . . . pzn � tnq

Interchanging L with the contour integral is perfectly justified, e.g. op.cit. gives
a proof for L a linear functional, which is valid mutatis mutandis for any Banach,
whence any Fréchet space, and so,

pLfqpsq �
¾

γ1�����γn

fptqKps, tqdt

Now change coordinates, viz.: τi � pti � siq�1, so that we have a holomorphic
function on P �Cn, which, bearing in mind that K vanishes on each divisor at
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infinity, we may expand as a power series in τ ,

Kps, τq � �
τ1 � � � τn

�¸
a

kapsqτa

where the sum is over multi-indices a P Zn¥0, and is absolutely convergent for
any value of τ . Consequently,

pLfqpsq �
¸
a

kapsq
a1! . . . an!

Ba1�����an

Bsa1
1 . . . Bsan

n
fpsq

which certainly merits the name of differential operator - the sum in question
is absolutely convergent, as it had to be, by I.1.7, and functorially with respect
to the ideas this is the right definition.

To clarify this recall from[EGA], that on a scheme X, P8
X is functions on

the completion X �X in the diagonal viewed as an OX -module by the way of
the first projection. As such, algebraically speaking,

D iff �8
X � HomOX

�
limÐÝPn

X ,OX
	
� limÝÑD iff p�nq

X

is the direct limit of finite order operators, equivalently Kps, tq should be poly-
nomial in the variable τ . In the analytic topology, however, one should make,

I.2.1 Definition For X one’s favourite poison (more general than stacks in the
standard topology doesn’t make sufficient sense, i.e. D iff is undefined), P8

X

is the germ of functions in a neighbourhood of the diagonal of X � X viewed
as an OX -module under the 1st projection. Consequently unlike its algebraic
counterpart it is not a Fréchet space (supposing that our scheme was over C)
but a nuclear DFS, separated in the natural direct limit of Banach spaces that
comes from its realisation as a germ - cf. [Köt69], §27.4, where the specifics are
about germs around compact subsets of the plane, but the discussion applies
verbatim in any dimension, whence the sheaf of differential operators,

D iff �8
X � HomOX

�
P8
X ,OX

	
is functorially a (nuclear) Fréchet space.

The necessary extension to sheaves of locally free OX -modules, or even for
operators with values in a co-coherent sheaf, being a triviality, we may avoid
complicating our notation, and clarify our discussion by way of Borel/Laplace/Four-
ier transforms.

More precisely the algebra A of differential operators with constant coeffi-
cients in the standard fields B{Bzi, say Bi for brevity, is a perfectly good com-
mutative algebra. It’s maximal ideals are derivations of exponentials evaluated
in zero, so that it’s Gelfand representation is:

A ÝÑ ΓpCnq : D ÞÝÑ
¾
γ0

Dpez1ζ1�����znζnqdζ1
ζ1

. . .
dζn
ζn
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where the notations means, view Dp�q as an operator in ζ, and take the contour
integral in ζ around the origin on a product of loops, to get an entire function
of z. This is not, however, as one sees from the presence of factorials the entire
function that we are considering, but rather its image under the Borel transform
of a rather special type of element in the convolution algebra Hn

c pωGn
a
q, where

we identify Gna with Cn and make a certain confusion between functions and
functionals via the Haar measure (in a holomorphic sense) dz1 � � � dzn. This
leads, in the aforementioned ps, τq coordinates, to an alternative formula,

Kps, τq �
»

σPRn
�

e
�
�

σ1
τ1
�����σn

τn

	
dσ1 . . . dσn

�
¾

γ1�����γn

L
!
eσ1pz1�s1q�����σnpzn�snq

) dz1
pz1 � s1q . . .

dzn
pzn � snq

which is probably the opposite of help, since the equivalent,

Kps, τq � �
τ1 . . . τn

� ¾
γ1�����γn

L
! n¹
i�1

p1� τipzi � siqq�1
) dz1
pz1 � s1q . . .

dzn
pzn � snq

is clearer, where in either case the contour is a product of loops around the si,
and we call this the Laplace transform, λ, of the operator. Such considerations
do however help for the inverse map,

β : Γ
�
P � Cn,OP�Cnp�01 � � � � 0nq

� ÝÑ ΓpP,D iff �8
P q

Kps, τq ÞÝÑ
¾
γ

Kps, 1
zi
q exppz1B1 � � � � � znBnqdz1 � � � dzn

where the contour is taken around a product of loops at the origin in the z
variable, or at 8 if one prefers the τ variable. Irrespectively this is a Borel
(albeit depending on one’s prejudices Fourier-Laplace are perfectly legitimate
alternatives) transform of a function into a differential operator, and we may
summarise our discussion by the way of,

I.2.2 Fact For X one’s favourite poison (say smooth for convenience) a map
L : OX Ñ OX is a C-linear map of Fréchet spaces iff it is an element of
ΓpX ,D iff �8

X q. Furthermore the Borel and Laplace transforms on any open
U Ñ X isomorphic to a product domain in Cn yield mutually inverse isomor-
phisms of Fréchet spaces,

Γ
�
U,D iff �8

X
�

Γ
�
P � Cn,OP�Cnp�01 � � � � 0nq

�λ

β

where the former has the topology of operator norms on compact sets, and the
latter sup-norms on compact sets.
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All of which is quite tidy modulo the choice of the isomorphism with a
product domain. Certainly by I.1.6 the Borel transform is well defined after
the less demanding choice of a basis of ΓpU, TX q, and at the price of shrinking
U , one could then define the Laplace transform. Such subterfuge is probably
un-necessary, albeit we ignore the question.

I.3 An Implicit Function Theorem

Again let X be one’s favourite poison, but,

P : E ÝÑ F

an arbitrary continuous map of sheaves of Fréchet spaces, for E,F locally free
sheaves of Ox-modules in the topology of convergence on compact sets. Conse-
quently for U Ñ X open, and f P ΓpU,Eq we may apply I.2.2 to conclude,

I.3.1 Triviality Suppose P : ΓpU,Eq Ñ ΓpU,F q is differentiable at f then,

P 1pfq P Γ
�
U,D iff �8

X pE,F q�
so, up to trivialisation of E and F , a matrix of differentiable operators.

Consequently it is ridiculous to imagine that we can invert, be it on the left
or the right, the derivative at the sheaf level. Indeed, again by I.2.2, the inverse
would be a differential operator in the sense of I.2.1, and the only such operators
appear to be invertible matrices of functions - for example this may easily be
reduced to Liouville’s theorem for operators with constant coefficients, albeit the
general case appears to be rather more fastidious. We can, however, reasonably
suppose that our inverse constitutes the resolution of a Cauchy problem in the
following sense:

I.3.2(a) Set up Let things be as above, and let δ � pδ1, . . . , δpq P
�
R¡0Yt8u

�p
be given, and put I � ±p

i�1 r0, δis, I� �
±p
i�1 p0, δis. Suppose further that for

d P I, there are domains Updq � U such that for the partial ordering d ¤ e
iff ei ¥ di, @i, Upeq � Updq, and Up0q � U . Then we say that a family of
continuous linear operators:

Kd : ΓpUpdq, F q ÝÑ ΓpUpdq, Eq
solves a Cauchy problem if it is a right inverse for a differential operator D P
Γ
�
U,D iff �8

X pE,F q� such that for every δ ¥ d ¥ e ¥ 0 the diagram,

ΓpUpeq, F q KepδqÝÝÝÝÑ ΓpUpeq, F q
RES

��� ���RES

ΓpUpdq, F q KdpδqÝÝÝÝÑ ΓpUpdq, F q
with vertical arrows the natural restrictions, commutes. Whence, there is some
partial sheafication for domains between Upδq and U , so, should there be no
possibility of confusion we’ll just write Kpδq, or even K.
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The basic example that one wants to have in mind is product domains as
per I.1.5 where the Updq are as per the proof of I.1.6. The set up is, however,
far more general than this, and is really adapted to an arbitrary basis of fields
B1, . . . , Bn where one moves away from the boundary a distance di along geodesic
discs in the ith direction. Whence, in practice, it is unlikely that one can take
the p of I.3.2(a) strictly bigger than the dimension of U , but this is irrelevant
to the structure of the estimates, so its harmless to take p arbitrary.

Let us further observe the generality implicit in I.2.2. Suppose for example
that D has order 1, then one might imagine that K is an integral operator over
paths based at some point, or sub-variety, b. In good cases b (which can, by
the way, be taken at infinity where appropriate) won’t depend on δ. In bad
cases, which will happen, we need to take b on the boundary, so we’ll have a
very limited freedom over the domains V for which K is under control, in fact,
only those between Upδq and U . Furthermore while Kdpδq might be defined up
to the boundary of Updq, we don’t insist on this, so there’s space to differentiate
as well as integrate thanks to I.1.6.

This said, manifestly our interest is to invert our given P : E Ñ F on the
right around the section P pfq. Translating on the left and right we may, more
conveniently, suppose f � P pfq � 0, and we add:

I.3.2(b) More Setting up We will suppose that the continuous map of sheaves
of Fréchet spaces, P, is not only differentiable at f , but that it is uniformly C1,α,
to wit, after translating to f � P pfq � 0:

There exits α, ε ¡ 0, and a function φ : Rp¡0 Ñ R
p
¡1 decreasing in its argu-

ments such that for all Upeq between Upδq and U , and sections, h, on the same
with }h}Upeq   ε, ��Ph� P 1p0qh��

Updq
¤ ��h��1�α

Upeq
φpd� eq

where of course, we take supremum norms over the appropriate domains of
pointwise norms between Euclidean spaces, and e   d, i.e. ei   di, @i.

Again, let us observe the generality of our set up. For example take U � Cn,
p � n, B1, . . . , Bn the standard fields, with W the vector space of constant
coefficient operators in the same, but of bounded order. Consequently, for every
di ¡ 0 we can define,

Updiq �
 pzi, ziq : distpzi, BUziq ¡ di

(
Updq � Upd1q X � � � X Updnq

where zi is the projection onto Cn�1 which omits the ith factor, and dist is the
Euclidean distance in C. Consequently if z P Updq, and ∆di is the disc of radius
di in the ith direction, then z �∆di � U , which, inter alia, does not imply that
z �∆d1 � � � � �∆dn � U , but, nevertheless:

I.3.3 Intermission Let things be as above, then for all multi-indices a �
pa1, . . . , anq and functions f on U ,��Ba1

1 . . . Ban
n f

��
Updq

¤ a1! � � � an!
da1
1 � � � dan

n
e|a| }f}U
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Proof. As per I.1.6, by induction on |a|, the case |a| � 1 being trivial since the
Kobayashi metric in the ith direction is at most 1{di. Now, for some suitable
t P p0, 1q to be chosen, and pa1 � 1, a2, . . . , anq an unknown multi-index:

��B1Baf��Updq ¤ 1
p1� tqd1

��Baf��
Uptd1,d2,...,dnq

¤ a1! � � � an!
da1�1
1 da2

2 � � � dan
n

e|a|

p1� tqt|a|
��f��

U

while again the supremum of p1� 1{xqx, x ¥ 1 is e. �

Now suppose U sufficiently small that we may identify E and F with trivial
bundles of rank r and s respectively, then a very large class of operators may
be defined as those of the form:

pPhqpxq � Φpx, hj , Bi11 � � � Binn hjq

for Φ : U �∆r �W r Ñ Cs analytic, ∆ a disc of radius at least ε, for ε as per
I.3.2(b) and polynomial in W . As such for P mapping the origin to the origin,

Ph� P 1p0qh � Ψpx, hj , BIhjq

where Ψ enjoys all the properties of Φ enunciated above, except that it is at
least quadratic in the hj . Whence an immediate application of I.3.3 yields,

I.3.4 Remark/Triviality Suppose P is of the form discussed above then it is
uniformly C1,α for some α P N, with φ at worst reciprocal polynomial in its
arguments.

It therefore remains to consider the shape of the right inverse K. Plainly
we’ll want Kh to be sufficiently small so as to apply our hypothesis of uniformly
C1,α, and whence: ��PKh� h

��
Updq

¤ ��Kh��1�α
Upeq

φpd� eq

Having already, and wholly reasonably, hypothesised that K is linear we may
conclude our set up with:

I.3.2(c) End of Set up The solution K of the Cauchy problem will be sup-
posed to be not ludicrous, i.e. for Kpδq a family of operators on domains Updq
between Upδq and U it is required that there is a bound,��Kh��

Updq
¤ ��h��

Upeq
ψpd� eq

for ψ : Rp¡0 Ñ R
p
¡1 decreasing in its arguments such that the logarithm of the

function, t ÞÑ θptdq � φptdqψptdq1�α, t P R¡0 is absolutely integrable at t � 0.
Plainly reciprocal polynomial bounds for ψ of the type encountered for φ in I.3.4
lead to a solution which isn’t ludicrous. Putting all of this together, we assert:
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I.3.5 Claim Let the set-up be as in I.3.2(a)-(c), i.e. P is uniformly C1,α and
there is some δ ¡ 0 such that Kpδq solves a Cauchy problem for the derivative
of P in a way which isn’t ludicrous, and for convenience ε of I.3.2(b) less than
1, then for g a section of F over U the equation,

P pfq � g

has a solution on any Updq between Upδq and U provided,��g��
U
  max

!
1,Θpdq� p1�αq

α2

)
ε

where

Θpdq � exp
�» 1

0

log θptdqdt



Better still, under such conditions the norm of f is no worse than,��f��
Updq

¤
"��g��

U
� ρ

1� ρ

*
ψpdq

for ρ �
���g��

U
Θpdq 1�α

α2

	e logp1�αq

. In particular, the equation has a solution on
Upδq, and if this is all one is interested in one may dispense with the condition
of absolute integrability in I.3.2(c) for all d other than δ.

Proof. Write PK � 1�Q, then for any section h on any neighbourhood Updq
between Upδq and U we have the estimate,��Qh��

Updq
¤ ��h��1�α

Upeq
θpd� eq

provided d ¥ e, and }h}Upeq   ε. Now consider, 0 � tn�1   tn   � � �   t1  
t0 � 1 where, for m ¤ n:

1� tpn�1q�m � 1
σn

ņ

i�m

pi�m� 1q
p1� αqi , σn �

ņ

i�0

p1� iq
p1� αqi

and for any fixed δ ¥ d ¡ 0, apply the basic estimate on Q successively on
Uptidq � Upti�1dq to obtain,

log
��Qn�1h

��
Updq

¤ p1� αqn�1 log
��h��

U
�

ņ

i�0

p1� αqi log θ
�pti � ti�1qd

�
� p1� αqn�1 log

��h��
U
� p1� αqn

ņ

i�0

1
p1� αqn�i log θ

�
d

1
σn

ņ

j�n�i

1
p1� αqj

	
Since θ was supposed decreasing in its arguments, the latter sum is bounded by

σnp1� αqn
» sn{σn

0

log θptdqdt , sn �
ņ

j�0

1
p1� αqj
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so that,

log
��Qn�1h

��
Updq

¤ p1� αqn�1

"
log

��h��
U
� p1� αq

α2
log Θpdq

*
provided that }h}U was taken sufficiently small, i.e. right hand side bounded by
log ε for all n. Armed with this bound we can now iterate in the obvious way,
viz: we look for a fixed point of,

Tf � g �Qf

by the way of the iteration: fn�1 � Tfn, f0 � 0. Thus, for d as above, and
n P N, ��fn�1 � fn

��
Updq

¤
!��g��

U
Θpdq 1�α

α2

)p1�αqn
provided, as before, that }g}U was taken sufficiently small, i.e.��g��

U
  max

!
1,Θpdq� p1�αq

α2

)
ε

under which conditions the sequence fn is uniformly Cauchy on the domain
Updq, even up to the boundary for d ¡ 0, and converge to a section f with a
supremum on the same at worst:

��f��
Updq

¤ ��g��
U
� ρ

1� ρ
, ρ �

���g��
U

Θpdq 1�α

α2

	e logp1�αq

�

From the point of view of practicality, and verification let us make,

I.3.6 Remarks The condition α ¡ 0 is essential. The curious reader may
usefully follow through the proof in the case α � 0, and will see that with the
given partition t0, . . . , tn�1 as chosen, }Qnh} blows up as a power of n!, which
is what should happen.

Furthermore, as indicated post I.3.3, a form of θ which will often occur in
practice is,

θpd1, . . . , dpq � Cpd1 � � � dpq�N

for some suitable constants C and N . Consequently, Θpdq is of exactly the same
form, albeit for a possibly different constant C. Whence to have a solution on
Updq, ��g��

U
must satisfy, ��g��

U
  εCpd1 � � � dpqN

again for possibly different constants C and N . To achieve this estimate may
require some preparation. For example, consider p � 1, U a product of polydiscs
of radius R, and Updq a product of polydiscs of radius R�d, d   R, and suppose
furthermore that K is unchanged as we vary R to r (a, so to speak, good case
such as an integral operator based at the origin, or power series solutions). In
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this scenario, we may usefully imagine that g vanishes to a certain order M at
the origin, so that on UpR� rq we will have an estimate of the form,

��g��
UpR�rq

¤ CrM

pR� rqM
��g��

U

for some other constants C and M . As such we’ll get a solution on UpR�r�dq
as soon as,

dN ¡ C

ε

rM

pR� rqM
��g��

U

and since d   r there are limitations. Nevertheless, d � r{2, say, r sufficiently
small, and M ¡ N will work fine.

I.4 An Example

While fully analytic solutions are quite far from what one may reasonably antic-
ipate for the general singular analytic PDE, they nevertheless provide a useful
example of how the conditions of the implicit function theorem apply in prac-
tice. To this end it is often both useful, and even necessary, to prepare the
situation somewhat by way of a polynomial approximation, and so we observe:

I.4.1 Triviality Let F be a complete topological vector space, and P : E Ñ F
a continuous map from another t.v.s. E such that:

(a) P sends 0 ÞÑ 0 and is differentiable at the origin.

(b) The functional derivative at zero has a continuous right inverse K.

(c) There is a co-final system of open linear sub-spaces F p of 0 P F , p P N,
such that for some α ¡ 0 the operator, Q � PK � 1 : F Ñ F satisfies
QpF pq � F p�α for all p P N.

Then under these hypothesis, for g P F 1, the equation,

P pfq � g

has a solution f P E.

Proof. As ever, we seek a fixed point of the operator:

Tf � g �Qf

by the way of the iteration scheme, fn�1 � Tfn, f0 � 0. Whence by hypothesis,
f1 � g P F 1, and,

fn�1 � fn � p�1qnQnpf1 � f0q P F 1�nα

Consequently, since the F p are linear, fn is Cauchy with some limit f8, and
f � Kf8 is the desired solution. �
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An obvious case to which we may directly apply this observation is to local
rings O complete in the m-adic topology of its maximal ideal, with dimk m{m2  
8, where the residue field k is of any characteristic. In such situation a differ-
ential operator must necessarily be of finite order, so, say, for simplicity order 1
and polynomial in its derived arguments. Whence for P : O`n Ñ O`m we may
write,

P pfjq �
¸
I

PIpfjq pBpfqqI

for PIpfq some vectors in formal functions, I some finite number of multi-
indices pipqq, 1 ¤ q ¤ n, and Bp some finite number of generators in DerpOq.
Consequently the functional derivative in 0 is,

P 1p0qpρq �
ņ

j�1

BP0

Bfj p0qρj �
¸
p,q

Ppqp0qBpρq

and of course, we hypothesise that a continuous right inverse K exists. In
practice K will preserve the m-adic filtration, but let’s hypothesise that it’s
a little bit worse, e.g. KpmNO`mq � mN�βO`n, for all N ¥ β. Observe
furthermore that,

fq P mN ùñ Bpfq P mN�1 ùñ pBpfqqI P mpN�1q|I|

for |I| the sum of the ipq’s, and pN � β � 1q|I| ¥ N � 1 for all N ¥ 2β � 3
provided |I| ¥ 2. The terms in 0 and 1 not inside the functional derivative
satisfy slightly better estimates (N ¥ 2β � 1, and 2β � 2 respectively), whence
for Q � PK � 1, and N ¥ 2β � 3, QpmNO`nq � mN�1O`n. Consequently
we have formal solutions of the equation P pfq � g as soon as g P m2β�3O`m.
Whether or not we can do better, simply depends on the equation. It is, however,
a finite dimensional obstruction, accessible to finite dimensional linear algebra,
whose solution is a fortiori necessary for the existence of analytic solutions.
Consequently let us summarise this discussion by the way of,

I.4.2 Definition/Summary Let P be a differential operator between analytic
vector bundles of the shape envisaged in I.3.4, then we say that the equation
P pfq � g is formally un-obstructed at a point where P sends 0 ÞÑ 0, if after com-
pletion in the maximal ideal m there is a formal solution f . Furthermore under
the hypothesis that the functional derivative admits a right inverse satisfying
KpmNF q � mN�βE, β ¡ 0 for all N (and actually less stringent conditions
continue to work), this is true as soon as g P m2β�3F , at worst. As such, the
obstruction to the existence of formal solutions for an arbitrary g P F is a finite
problem in finite dimensional linear algebra, viz: existence of a fixed point of

T : F {m2β�3 ÝÑ F {m2β�3 : f ÞÝÑ g �Qf.

Indeed when we have such a point, say f0, then we start the sequence oc-
curring in the proof of I.4.1 at f0, and this gives, f1 � f0 P m2β�3, so, we again
get formal solutions. Similarly, if the right inverse K is actually the completion
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of that envisaged in I.3.5, then again we can start the proof at f0, or some even
higher iterate, so that f1 � f0 P mN for N as big as we like. Consequently
the conditions of I.3.5 for }g} to be appropriately small can be weakened to a
smallness condition for f1 � f0, which will be achievable, as explained in I.3.6,
by the simple expedient of taking N sufficiently large and restricting to an
appropriately small neighbourhood.

With these preliminaries, we need a further definition before getting to an
application, viz:

I.4.3 Definition/Revision Let B be a holomorphic vector field vanishing at a
point p. Then Leibniz’s rule yields a linear mapping

B P End
�

mppq
mppq2



and we say that B is without resonance if for λ1, . . . , λn the eigenvalues and
J � pj1, . . . , jnq P Zn¥0,

°
jk ¡ 0 or ji � �1, jk P Z¥0, k � i,

°
jk � ji ¡ 1, we

have:
J � Λ �

¸
jkλk � 0

We say further that the Λ satisfy the Siegel’s condition if,

|J � Λ| ¥ C |J |�N

for |J | � ° |jk| and constants C,N independent of J .
Now let’s consider a scalar valued differential operator of finite order f ÞÑ

P pfq, with the polynomial in the derived variables restriction of I.3.4. While
the order is arbitrary, we’ll suppose its functional derivative has order at most
1, with �1 part not just any vector field, but one satisfying Siegel’s condition.
Under this condition it is known (in fact it can be proved by the implicit function
theorem, but more is known, so we’ll come back to this) that there are analytic
coordinates in which B may be expressed as

B � λixi
B
Bxi

where we suppose the ambient space smooth and of dimension n, and employ
the summation convention Consequently after multiplying P pfq by a unit, we
can suppose that the functional derivative is constant linear, viz:

P 1p0qρ � χρ� Bρ
and we extend Siegel’s condition in the obvious way, i.e. for J P Zn¥0 we require,

|χ� J � Λ| ¥ C |J |�N

Consequently, P 1p0q has a right inverse by power series, K, defined on all func-
tions if χ � 0, or only on the maximal ideal m at the origin if χ � 0. In either
case K preserves powers of the maximal ideal (β � 0 in I.4.2) and is equally
good for applying I.3.5 and I.4.1 at the same time. Consequently we assert,
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I.4.4 Claim Let f ÞÑ P pfq be a finite order differential operator with the minor
caveats of I.3.4, and suppose the functional derivative in 0 (as ever P p0q � 0)
is of 1st order with both the said derivative and its �1 part satisfying Siegel’s
condition, then if the equation P pfq � g is formally un-obstructed, it has an
analytic solution f on a sufficiently small neighbourhood of the origin.

Proof. If h � °
hJx

J is the Taylor expansion of an arbitrary h, then

Kh �
¸ hJ

pχ� J � Λq x
J

h P m, if χ � 0. Whence, in the notations of I.3, supposing our coordinates xi
defined on unit polydisc, ∆n, for d ¡ e,

��Kh��
∆npdq

¤ C

�
n¹
i�1

1� ei
di � ei

�N ��h}∆npeq

for N as per the Siegel condition, and an appropriate constant C. The shape
of φ is as per I.3.4, ψ is as above, so a little better than φ since the 1� ei help,
but ultimately we cannot say that θ is any better than the shape discussed in
I.3.6. As per op.cit. we simply take all the di, resp. ei equal, i.e. reduce to the
case p � 1 in the notations of I.3.2, and as envisaged in I.3.6, and discussed in
I.4.2, start the recurrence in the implicit function theorem at some f0 such that
f0 � p1�Qqf0 to a sufficiently large power of the maximal ideal, viz: nN �C,
for an appropriate C determined by the order of derivatives in P , e.g. 3 for order
1. �

One would suspect that in this generality the Siegel condition is best possible.
On the other hand it is known, [Brj71], that vector fields can be linearised under
a weaker Diophantine condition, which calls for:

I.4.5 Scholion (Linearisation of fields) This is almost I.4.4, but actually the
vector valued version with a functional derivativeA�B, whereA is some constant
matrix, and the non-linearity has no derivatives. In this case one can get a better
result by profiting from the 1�ei term that appeared (and was approximated by
1) in the proof of I.4.4. To keep the notations of I.3.2 one should therefore work
with the logarithm of the distance to the boundary, and introduce a function,

bptq �
¸
Q

e�t |Q|pΛ �Qq�1

or Λ �Q� λi as appropriate, t ¡ 0, so that,��Kf}∆pdq ¤ bpd� eq ��f}∆peq
for K a suitable right inverse. The function φ can be taken to be 1, so,

log Θpdq �
» 1

0

log bptdqdt
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and appropriate smallness is Θpdq no worse than p1 � e�dqN for some N . Ex-
actly what the relation between this condition and that of Brjuno may be is far
from clear, but it’s certainly better than Siegel’s. Unfortunately, however, the
linearisation of fields problem doesn’t immediately reduce to this equation, and
requires some preparation. More precisely one wants to find an automorphism
that conjugates a field D with appropriate eigenvalues into the standard field
B. To ensure that solving some PDE in functions yields an automorphism re-
quires (proceeding by way of an inductive statement on the dimension for the
said linearisation) preparation, e.g. finding a smooth invariant surface, and the
equation for doing this has derivatives in its non-linearity, i.e. in principle one is
in the situation of I.4.4 rather than the very particular operator that we intro-
duced at the start of I.4.5. Furthermore, even once one does this, the functional
derivative of the resulting conjugation equation is of the form A � B for A a
matrix of functions, rather than a constant matrix. This has to be conjugated
to a constant matrix, and again, the equation for doing this (whose functional
derivative is of the form q ÞÑ rAp0q, qs � B in gln) has derivatives in the non-
linearity, so we still cannot profit from equations of the special form where we
can do better than Siegel.

Consequently, in brief: the implicit function theorem I.3.6 yields linearisation
of fields under Siegel’s condition. It could do better if one could arrange a series
of steps that allow the linearisation via a series of equations of the special form
introduced above. A priori a series of such steps is not so clear, and perhaps,
this problem with its special symmetry is best studied directly.

I.5 Monomialisation

By way of a further example, or an example within an example, let us examine
a more general problem than I.4.5, i.e. final forms for vector fields rather than
foliations. More precisely, in the presence of resolution of singularities, an ar-
bitrary field may eventually be resolved to one where the implied foliation has
canonical singularities , and, should the field be non-saturated, vanishing along
a simple normal crossing divisor. A particular instance is, therefore,

I.5.1 Set up (a) Let B be a vector field at the origin in Cn of the form,

uxp11 � � �xpn
n

�¸
i

λixi
B
Bxi

	
, pi P Z¥0

Conditions for linearisation, holomorphic, or formal, have been discussed in
I.4.5, we’ll certainly, therefore, suppose that there are no resonances, so, the
discussion is the shape of the unit. To investigate it, let us consider attempting
to eliminate it by way of a coordinate change, ξi � efixi, so we’d need to solve,

e�pjfj
�
λi �Dfi

� � λiu
�1

where we apply the summation convention, D � λixi
B
Bxi

, and we harmlessly
suppose that up0q � 1. An appropriated vector valued operator is, therefore,

Lpfqi � e�pjfj
�
λi �Dfi

�� λi
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which has functional derivative,�
Lf

�
i
� Dfi � λi

�
pjfj

�
Now the matrix λipj has rank 1, whence n � 1 zero eigenvalues, all of which
admit a corresponding eigenvector. Under the no-resonance condition, there is
also a non-zero eigenvalue λjpj , and this matrix is diagonalisable. Consequently,
in notation of I.4.3, we encounter obstructions to the invertibility of L as soon
as J �Λ � P �Λ, P � pp1, . . . , pnq. So certainly, J � P is an obstruction and we
suppose,

I.5.1 Set up (b) Suppose the only obstruction is at P , viz: notations as above
and as per I.4.3, J � Λ � P � Λ ñ J � P .

The operator L preserves the maximal ideal, as does the obvious right inverse
K by power series provided it is defined, so we can conclude after a finite number
of iterations à la I.4.1 that,

u � p1� νxp11 � � �xpn
n q mod m|P |�1

for some ν P C. After which the operator is no longer obstructed, so let’s aim
to solve,

P pfqi � λipu�1 � 1� νxp11 � � �xpn
n qpλi �Dfiq � λip1� νxp11 � � �xpn

n q

which respects the filtration by the maximal ideal, and has functional derivative,�
Lf

�
i
� p1� νxp11 � � �xpn

n qDfi � λippjfjq

If we have Siegel or Bryuno’s conditions then we can find analytic functions
y1, . . . , yn such that,

p1� νxp11 � � �xpn
n qD � λiyi

B
Byi

so we get a right inverse on m|P |�1O`n, K, by power series, admitting bounds
of the shape considered in I.4.4 under, say, Siegel’s condition, and Q � PK � 1
respects the filtration by the maximal ideal. Now we’re in the situation of
I.4.2, where starting the induction for finding a fixed point, f ÞÑ λipu�1 � 1 �
νxp11 � � �xpn

n q � pQfqi � Tf at T0 P m|P |�1O`n, and the iterates stay in the
un-obstructed space, whence:

I.5.2 Summary/Fact/Example Suppose the set up I.5.1(a)-(b), then there
is a formal change of coordinates bringing B into the form:

xp11 � � �xpn
n

1� νxp11 � � �xpn
n

�
λixi

B
Bxi

	
, ν P C

Moreover, in the presence of Siegel’s condition this can even be done analytically.
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II Integrable Forms

II.1 Smooth Integral

We’ll proceed to consider a series of more and more difficult cases, which serve
equally as a series of examples in the use of the implicit function theorem.
Consequently we begin with the easiest possible case of a functional derivative
of order 1 (as will be the case throughout this chapter) whose �1 part has a
smooth first integral, and an invariant divisor, i.e.

II.1.1 Set Up Let xi, 1 ¤ i ¤ n, y be standard coordinates in some polydisc
∆n � ∆, and introduce fields Di � xi

B
Bxi

, B � xp11 � � �xpn
n

B
By , pi P N. Now

consider a differential operator f ÞÑ P pfq of finite order with the proviso that
all the differentials that occur are monomials in Di and B, and, as per I.3.4, it
is polynomial in the same. Finally suppose that the operator sends 0 ÞÑ 0 and
the functional derivative in 0 is,

D � P 1p0q : f ÞÝÑ p1� Bqpfq

Rather special cases of this may be found in the literature, essentially, p1�
Bqpfq � apfq, for a function of f alone, c.f. [Was85]. However, for essentially
the same methodology, the implicit function theorem gives much more. To this
end fix sectors Si in the xi-variables such that the total width of the sector S,
image of: S1 � � � � � Sn ÞÑ xp11 � � �xpn

n P S has an aperture σ   π, and consider
a domain in the y-variable of the form shown in figure II.1.1

Impyq

ΩSprq

Repyq

α

r

δ � π�σ
2

Figure II.1.1
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where |α| � 1, and r ¡ 0 are chosen such that for x P S,

min
!
Re

�y
x

	
: y P ΩSprq

)
� Re

�α
x

	
and this minimum is realised uniquely at α{x.

Plainly we are in the situation envisaged by I.3.3, where the natural coordi-
nates are η � yx�p11 � � �x�pn

n , eξi � xi, ξi belonging to some appropriate strips,
Repξiq   0, Impξiq P Ii, which we continue to denote by Si. We therefore have
a domain π : U Ñ S1 � � � � � Sn, and ΩSprq has been chosen to ensure the
following properties:

II.1.2 Remarks For any xi P Si, there is a constant C ¡ 0, depending only on
r such that αx�p11 � � �x�pn

n (which, by the way, is a holomorphic section of π)
can be joined by a path γ : r0, 1s Ñ Ux in the fibre over x satisfying,

} 9γptq} ¤ C
B
Bt Re

�
γptq�

where in an abus de langage, we identify the fibre with its conformal image under
η in C. Furthermore, this remains true with the same constant, under any scaling
ΩSprq Ñ λΩSprq, λ P R¡0. Finally, and manifestly, U � ∆y �S1 � � � � �Sn, for
∆y a sufficiently small disc in the original coordinates.

Having thus introduced our domains we observe:

II.1.3 Triviality The operatorD restricted to ΓpUq has a bounded right inverse
K satisfying,

|Kg|ppq ¤ C
��g��

U

for any p P U , and C the constant appearing in II.1.2.

Proof. Given a bounded function g on U define, over a fibre x,

pKgqpx, ηq � e�η
» η
αx

�p1
1 ���x�pn

n

eρgpx, ρq dρ

and apply the properties of U enunciated in II.1.2. �

The triviality of II.1.3 not withstanding, there are a couple of rather com-
plicated issues lurking under the surface. In the first place K is defined using a
section of π : U Ñ S1 � � � � � Sn with values in the boundary, whence it does
not solve a Cauchy problem in the sense of I.3.2(a), and the implicit function
theorem cannot be immediately applied. However the operator P was taken not
with arbitrary occurrences of derivatives in the y variable, but only in powers
of B. Consequently if we consider the domain Upδq P Cn�1, as per I.3.3, in the
ξi and η variables, with the pn� 1qth-entry in η, we can take δn�1 ¡ 0 and use
the base points αx�p11 � � �x�pn

n � δn�1. Of course this may fail to be in U as
it is actually defined, but we can remedy this by attaching a small disc around
αx�p11 � � �x�pn

n in each fibre of radius 2δn�1, and by another abus de langage
we’ll continue to denote this domain by U (or possibly UR, R the radius of the
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disc if there is a risk of confusion). In any case we now have a solution to a
Cauchy problem for all domains Updq between Upδq and U with a worse con-
stant than II.1.3, viz.: as before plus 1 plus e2R. Now we can apply the implicit
function theorem to obtain:

II.1.4 Corollary Let f ÞÑ P pfq be as per the set up II.1.1, UR, R fixed ¡ δn�1

as above, then for some absolute constant ε depending only on δ, σ, r, R, whence,
in particular independent of shrinking the radii of the initial polydiscs in the xi
(and even y), the equation

P pfq � g

has a solution on URpδq, for
��g��

UR
  ε. In particular, if g on our original ∆n�∆

vanishes at the origin, then on a domain of the form S11 � � � � � S1n �∆1 for S1i
of small radii but aperture as close to Si as we like, and ∆1 a sufficiently small
disc in y, we have a solution.

Before progressing, let us observe,

II.1.4 (bis) Remark One can, of course, for essentially no extra cost introduce
extra variables zk in some polydisc, together with fields B

Bzk
, 1 ¤ k ¤ m, and

more generally f ÞÑ P pfq with monomials in the Di, B, B
Bzk

and polynomial
in the same. The only thing that changes is that ε is no longer absolute but
becomes εCpd1 � � � dmqN , for some constants C and N . Consequently one falls
into the situation envisaged in I.3.6, and one should hypothesise again that g
vanishes at the origin, then shrink the radii in the xi, y (in practice the xi alone
would do, since there’s usually some analytic blow up that’s permitted) at a
suitably quick rate to compensate for the lack of smallness occasioned by the
new variables.

Beyond this, the matter of not being able to go beyond π in aperture is
an extreme misfortune, but unfortunately it appears to be best possible. To
consider the matter in more detail, let us suppose for convenience that p1 � 1,
n � 1, and change coordinate x ÞÑ �x. In the first instance we consider the
formal solution of: �

1� x
B
By



pfq � g

in the completion of O in the ideal x � 0, viz:

f �
8̧

n�0

xn
Bng
Byn

Now, if for simplicity we suppose that g � xhpyq, then the Borel transform of
f is, pfpξ, yq � ¾

γ

eξzf

�
1
z
, y



dz

where the contour is around a neighbourhood of 8, so that:

pfpξ, yq � hpy � ξq
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Whence for h enjoying a natural boundary on say a disc, the domain of conver-
gence of pf is rather small. As such,

II.1.5 (a) Fact The equation Df � g can not in general be solved analytically
in both x and y, i.e. we certainly cannot replace a sector in II.1.3 by a disc.

Proof. Otherwise pfpξ, yq is entire in ξ, and even of exponential growth. �

However the situation is even worse than this, since:

II.1.5 (b) Nastier fact The equation Df � g can not in general be solved in
a domain of the form t|x � ρ|   |ρ|u � ∆y (so a bit smaller than a sector of
width π) while satisfying the estimates:

fpx, yq �
n�1̧

m�0

ampyqxm �Rmpx, yq; |Rpx, yq| ¤ Cnn!|x|n

for every n, where ampyq; Rpx, yq are analytic and C is some constant.

Proof. This is Watson’s theorem, or more accurately a strengthening thereof by
Alan Sokal, [Sok80], which says that under these conditions pfpξ, yq has analytic
continuation to V �∆y where V is a small neighbourhood of R�ρ. �

Now, while it might be objected that such an asymptotic expansion will not
occur, this is by no means so. Indeed:

II.1.5 (c) Worse still Let Ω be a domain of the form t|x�ρ|   |ρ|u�∆y then
there is no bounded operator from the space of holomorphic functions on Ω in
the supremum norm which affords a right inverse to D.

Proof. Suppose otherwise, and let K be such an operator. Now put B � x B
By ,

and consider solving the equation,

Df � p1� Bqpfq � g

by the way of an expansion,

fn �
n�1̧

m�0

pBmgq � xnRn

Then we require to solve:

p1� BqRn � Bng
Byn

so by I.1.6, on a suitably small disc in y, independent of n, the right hand side is
certainly of the form Cnn!}g}, for some norm taken on some slightly bigger disc
on which g is hypothetically defined. Consequently if K exists, we’ll contradict
II.1.5(b) as soon as we know that the solutions fn do not depend on n. This is,
however, the case since if fn, fm are two different solutions so constructed, then
their difference satisfies

|fn � fm| ¤ Cmn
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for some constant depending on m and n, while,

fm � fn � e�y{xFmnpxq

for Fmnpxq analytic in t|x� ρ|   |ρ|u. Since this holds for all y in a disc,

|Fmnpxq| ¤ Cmne
�c{|x|

and the domain of x is large enough to imply that Fmn is zero, c.f. [Mal91],
IX.4.5. �

II.1.5 (d) Hopeless situation For a domain Ω of the form t|x�ρ|   |ρ|u�∆y,
or S �∆y a sector of aperture beyond π, there is no adequate right inverse to
D to which the implicit function theorem can be applied.

Proof. The hypothesis of the theorem require that at the very worst there are
subdomains Ω1 � Ω2 � Ω of the same form such that the right inverse is a
bounded map of Banach spaces,

Γ8pΩ2q ÝÑ Γ8pΩ1q

of bounded holomorphic functions. A condition which is hardly unreasonable,
but impossible to fulfil by the way of the trivial change of the domain of defini-
tion of fn in II.1.5(c) from Ω to Ω1. �

Regrettably, therefore, II.1.3-4 is really best possible, and the solutions occur
in a region where they are highly non-unique because its aperture is too small.
Consequently if one were thinking of these domains as neighbourhoods of a real
blow up in the divisor x � 0, then one has to abandon all hope of patching as
one moves along the divisor in the y-direction.

II.2 Almost smooth

We continue our progression by small steps, and so consider a case not far from
the previous one, viz:

II.2.1 Set Up Again let xi, 1 ¤ i ¤ n, y be standard coordinates in some
polydisc, and introduce fields Di � xi

B
Bxi

B � xp11 � � �xpn
n y B

By , pi P N. Now
consider a differential operator f ÞÑ P pfq of finite order with all derivatives
monomial in B and the Di, and as per I.3.4, polynomial in the same. Finally
suppose P sends 0 ÞÑ 0 and the functional derivative is,

D � P 1p0q : f ÞÝÑ p1� Bqpfq

Here we can usefully exploit the freedom that the implicit function theorem
provides in the construction of a right inverse. Specifically let S1, . . . , Sn be any
sectors in xi such that the image S of xp11 � � �xpn

n does not contain the negative
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real axis, and g a bounded function analytic on S1 � � � � � Sn �∆ for ∆ a disc
in y. As such, instead of trying to solve,

Df � g

we can aim to solve,
Df � �Bg

which has the trivial marginal cost of obliging us to restrict to discs ∆pdq � ∆
of points in discs a distance d from the boundary on which,��Bg��

S1�����Sn�∆pdq
¤ d�1

��g��
S1�����Sn�∆

Similarly writing �Bg � xp11 � � �xpn
n h, it’s even true that��h��

S1�����Sn�∆pdq
¤ d�1

��g��
S1�����Sn�∆

and we can expand h in power series,

8̧

k�1

ykhkpxq

with coefficients bounded by,��hkpxq��S1�����Sn�∆pdq
¤ r�kd�1

��g��
S1�����Sn�∆

for r the radius of ∆. Consequently we must solve the equations,

pξ � kqfkpxq � hkpxq

for ξ � x�p11 � � �x�pn
n belonging to an unbounded region contained �8 of the

form shown in figure II.2.1; which is trivially possible up to a constant C de-
pending on the aperture of the sector, which gives a solution of the original
equation Df � g, by the way of an operator g ÞÑ Kg satisfying,

��Kg��
S1�����Sn�∆pdq

¤ C
pr � dq
d2

��g��
S1�����Sn�∆

So more generally for any δ ¡ 0 (on which K does not depend), and δ ¥ d ¡
e ¥ 0, we have a solution to a Cauchy problem in the sense of I.3.2(a) which
satisfies, ��Kg��

S1�����Sn�∆pdq
¤ C

pr � dq
pd� eq2

��g��
S1�����Sn�∆peq

and, better still, going away from the boundary of the Si only improve this
bound, whence:
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Impξq

Repξq

Figure II.2.1

II.2.2 Fact Let f ÞÑ P pfq be as per the set up II.2.1, with U � S1�� � ��Sn�∆,
then for some constants C and N , the equation,

P pfq � g

has a solution on Updq provided,��g��
U
¤ min

 
1, Cpd1 � � � dn�1qN

(
Consequently for g on the original polydisc ∆n �∆, either vanishing on some
divisor xi � 0 (as will be the case in applications) or to sufficiently high order
in y (so that we can apply the considerations of I.3.6) we find a solution in a
region of the form S11 � � � � � S1n �∆1 with S1i sectors of sufficiently small radii
but aperture as close to that of Si as we like, and ∆1 an appropriately small
disc in y.

Furthermore, the discussion of II.1.4(bis) applies mutatis mutandis on intro-
ducing further variables zk, 1 ¤ k ¤ m, and fields B

Bzk
. Indeed it’s even true

under our immediate restriction that the image S of S1 � � � � � Sn does not
contain xp11 � � �xpn

n negative real that one can replace the field B by B
By provided,

and wholly necessarily, the functional derivative of P remains,

f ÞÝÑ f � xp11 � � �xpn
n y

B
By f

Unfortunately, but manifestly, we can not do better if we wish to insist on
full analyticity in y. In fact, this difficulty has notable geometric content. For
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example, consider the 3-dimensional vector field,

B �
�
z � y

1� y


 B
Bz � xy

B
By

Then under completion in x � 0, this field has a formal centre manifold. Under
completion in y � 0, however, this situation is much more subtle. If we seek a
centre manifold as a graph, z� ζpx, yq, then we see that we require to solve the
equation, �

1� xy
B
By

�pζq � y

1� y

which we know to be obstructed for x � �k�1, k P N, and writing x � �pt �
1{kq{k for t a local coordinate at �1{k, we see that the semi-simple part of the
Jordan form at p�k�1, 0, 0q has eigenvalues 1 and 1{k, and for some suitable
coordinates Z, Y normal to the singular locus the normal form is,

B � �
Z � akptqY k

� B
BZ � Y

k
p1� tq BBY

and for akp0q � 0, indeed it is 1 in the above example, the equation of the centre
manifold is

akptqY k � Zt

which is a quotient singularity of order k. Consequently there does not exist a
centre manifold as a formal scheme in the completion along y � 0. Evidently
this is the same phenomenon that requires the exclusion of the axis in II.2.2,
and the existence of an obstruction in this case was not unknown, cf. [vS79].
However, op.cit. is missing the point since the obstruction exists even formally,
cf. [McQ], §1.5.

This said let us profit from II.2.2 in order to suppose that our sectors Si are
such that the image ξ of xp11 � � �xpn

n lies in a sector S close to the negative real
axis, and put y � exppηq, for η in some half plane Repηq   �R, so that our
equation becomes, �

1� ξ
B
Bη



pfq � g

Which we could content ourselves to solve in strips in the η-plane, but it costs
nothing to solve in a so called spiralling region, viz: a domain of the form shown
in the figure II.2.2, where the lines not perpendicular to the real axis are chosen
so that their argument remains strictly between π and �π on multiplication by
ξ as ξ varies in S. Consequently our problem is exactly as in II.1 where we’re
obliged to take our base point on the boundary, so again for the Euclidean
distance in η{ξ, by which we view the fibres of ΩSpRq � S1 � � � � � Sn Ñ
S1�� � ��Sn as embedded in C, we add a small disc of radius r around the base
point in each fibre to get a domain π : Ur Ñ S1 � � � � � Sn in which we may
apply the implicit function theorem in the same way, to obtain:
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ΩSpRq Q η Repηq

Impηq

Figure II.2.2

II.2.3 Fact Let f ÞÑ P pfq be as per the set up II.2.1, Ur as above, r ¡ δn�1

(distance from the boundary in the η{ξ variable) then for some absolute con-
stant ε depending only on δ, σ, r, R, and whence, in particular independent of
shrinking the radii of the original polydiscs whether in xi or y, the equation:

P pfq � g

has a solution in Urpδq, for
��g��

Ur
  ε. In particular, if g on our original ∆n�∆

vanishes at the origin, then on a domain
�
S11 � � � � � S1n � ΩSpR1q

�pδq for S11 �
� � ��S1n of smaller radii but with image as close to the original aperture of S as
we like, and possibly R1 ! R, we have a solution.

Furthermore as per II.1.4(bis), or indeed II.2.2, we can add extra variables
zk, 1 ¤ k ¤ m, and fields B

Bzk
for next to no additional cost beyond shrinking

the above regions
�
S11�� � ��S1n�ΩSpR1q

�pδq suitably in the radii of the sectors,
or, possibly R1. Unlike II.2.2, however, B cannot be replaced by B

By even if the
functional derivative remains unchanged.

II.3 Singularly Integrable

The trickiest case to consider in this section brings together all our previous
difficulties, and some more, so we’ll restrict our attention to dimension 2, viz:
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II.3.1 Set Up Let x, y belong to some bi-disc ∆�∆, and in the sense of I.3.4,
as already provided for by example in II.1.1 and II.1.2 let f ÞÑ P pfq be a
differential operator polynomial in the fields x B

Bx and y B
By . As ever we suppose

0 ÞÑ 0, and we consider the situation in which the functional derivative in 0 is,

D � P 1p0q : f ÞÝÑ
"
p1� εq1� pxpyqqr

q

�
qx

B
Bx � py

B
By

	*
pfq

where ε is a small function of x and y and p, q P N. By no means trivially the
functional derivative has this form for analytic coordinates x and y iff it has
such a form formally, c.f. [Brj71]. In any case we denote the �1 part by B, and
put s � xpyq.

We first consider the case ε � 0, so that in s, x coordinates our operator is,

D � 1� srx
B
Bx

Consequently passing to x � eξ, y � eη, Repξq   �RX , Repηq   �RY , with
X Q ξ, Y Q η the said half spaces, s : Up� X � Y q Ñ B fibres over s as shown
in figure II.3.1.

log |s|

p
� q

RY

p

US

�RX

Impξq

Repξq

Figure II.3.1

As ever we propose to solve our equation Df � g, by the way of the integral
operator:

pKgqps, ξq � e�ξ{s
r

» ξ
pt

et{s
r

gps, tqdt
sr

where pt is some suitable base point (more accurately section of the fibration
s) which must be chosen as a function of the argument of s. Consequently,
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in the first instance, let S Q s be a sector of aperture strictly less than π{r
which does not contain a rth root of either the positive or negative real axis.
Under this hypothesis in the fibrewise variable ρ � ξ{sr, Us is a region enclosed
between two parallel straight lines with slope bounded strictly (as a function of
the aperture of S) away from purely imaginary. As such the base point at �8
(i.e. Repρq Ñ �8) is the good choice, and, for US �

²
s Us,��Kg��

US
¤ CpSq ��g��

US

for some constant - basically
�
π{r�|S|

	�1

- where |S| is the aperture. Unfortu-
nately the definition of �8 is not continuous as one passes through sr positive
or negative real. More precisely take S Q s to be a sector around a rth root
of the positive or negative real axis of aperture strictly less than π{r, and take
ξ P X 1, η P Y 1 to be spiralling domains as encountered already in II.2 then
the fibre of U 1 � X 1 � Y 1 over S in ρ � ξ{sr takes the form shown in figure
II.3.1(b), or alternatively, a similar figure on the right for sr close to negative

RX

sr

1

sr

�
log s� q

RY

p




U 1
s

Impρq

Repρq

Figure II.3.1(b)

real, where, depending on the point of view the aperture is sufficiently small to
allow for large spiralling, or the spiralling is small to permit large aperture. Ir-
respectively there is a constant CpU 1

Sq depending on these parameters, and even
independent of positive rescaling in ρ, such that throughout U 1

S �
²
s U

1
s, if we

take as base point the unique point with Repρq minimal in each fibre (which by
the way has holomorphic variation in s),��Kg��

U 1
S

¤ CpU 1
Sq

��g��
U 1

S

Unlike the previous case, however, the said base point will change as we shrink
U 1
S be Euclidean distance as per I.3.3 in the embedding in C2 by the way of,
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say, pρ, ηq coordinates, so as per II.1, the thing to do is put a small disc in ρ
around the base point. Regardless K is bounded, so for ε of II.3.1 sufficiently
small,

p1� εKq
is invertible, and we have our right inverse to D. Observe furthermore that the
mapping S1 � S1 Ñ S1: pz, wq ÞÑ pzpwqqr is continuous, so the domains on
which we have constructed the said inverse, and on which we apply the implicit
function theorem, contain open sectors about any values of argpxq and argpyq,
i.e.

II.3.2 Corollary Let the operator f ÞÑ P pfq be of the form found in the set up
II.3.1 then for any values of argpxq, argpyq there are open sectors S, T around
the same such that for any sufficiently small holomorphic function on a bi-disc
(in fact the domains US , or U 1

S discussed above would suffice) the equation,

P pfq � g

has a solution in S � T . Further the definition of sufficiently small does not
depend on the radii of the sectors, so if g vanishes at the origin, we necessarily
have a solution on sectors of the same shape, but of smaller radii. Again, as per
II.1.4(bis), this remains true if P is polynomial not just in x B

Bx , y B
By but even

in some further fields B
Bzk

, 1 ¤ k ¤ m, corresponding to additional variables zk,
and, of course, an un-changed functional derivative, and appropriately adjusted
definition of sufficiently small radii.

II.4 Integrable and Transverse

By far the most trivial case that we’ll have to deal with is the example par
excellence that may be found in the literature, but we’ll require it uniformly in
parameters, viz:

II.4.1 (a) Set up Let x P ∆, y P ∆n, be variables in discs, and f ÞÑ P pfq an
operator polynomial in the fields xp�1 B

Bx , B
By . As ever, 0 ÞÑ 0 and we suppose

that the functional derivative in 0 has the form

D � P 1p0q : f ÞÝÑ
"
p1� εq1� xp�1

p

B
Bx

*
pfq

for ε a small function of x and y.
As per II.3 we first treat the case ε � 0. To this end take S to be any

sector of width 2π{p which under the conformal mapping ξ � x�p branches on
the right, as in figure II.4.1, where the branch bS has an argument bounded
strictly away from purely imaginary. Under such hypothesis we trivially have a
bounded right inverse to D (for ε � 0), given by,

�
Kg

�pξ, yq � e�ξ
» ξ
�8

etgpt, yq dt

Let us furthermore observe:
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bS

ξpSq

Repξq

Impξq

Figure II.4.1

II.4.2 Fact These operators actually patch together on sectors of width   3π{p
(interpreted on a branched cover if p � 1), again to bounded operators. At 3π{p,
however, they may explode and develop Stokes’ lines.

Proof. The sector depends on the branch, so, more correctly, let us call it Sb,
with S0 that branched around the real axis. For b in the right half plane, Sb
intersects S0 in a sector which contains rays along which Repξq Ñ �8. On the
other hand if f1, f2 are two bounded solutions of our linear equation, with h
their difference, then: �

1� B
Bξ

�phq � 0

whence eξh is a function of y alone, while Sb X S0 contains rays on which
Repξq Ñ �8, and h is bounded, so this function is zero. �

We therefore have a bounded operator, again denoted K, defined on the
domain V � ∆n, where V is the domain of aperture up to 3π obtained from
gluing the domains U b. Necessarily the operator,

p1� εKq
is invertible for ε sufficiently small, so we deduce:

II.4.3 Corollary Let f ÞÑ P pfq be as per the set up II.4.1(a), then every value
of the argument of x admits an open sector of aperture anything up to 3π{p
such that if g is holomorphic on S �∆n then the equation,

P pfq � g
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Figure II.4.2

has a solution on S1 � p∆1qn, for S1, ∆1 strictly inside S and ∆ respectively.
More precisely putting U � V � ∆n, for V as above, and taking ξ � y as an
embedding in Cn�1 with respect to which we compute the Euclidean distance,
then the condition for a solution f on Updq to exist is,��g��

U
¤ max

 
1, C pd0d1 � � � dnqN

(
for suitable constants C and N , with d0 the distance in the ξ variable. In
particular if g (as it will in applications) vanishes along the divisor x � 0 in the
original polydisc, then the lack of dependence of C and N on the radii, provides
a solution by the simple expedient of shrinking in the x-variable.

To which it might usefully be added,

II.4.4 Remark At least for n � 0 this is wholly classical. The solutions are
even Borel summable for a determination of the argument of x uniform in y
(something which is trivially possible if x is a meromorphic function on some
variety), and the solutions even patch for x in a fixed sector and y varying along
some divisor because the sectors are large, π{p� ε would do, but we have even
more. The previous sections II.1-3 should, however, make it clear that this is
very far from the general picture.

Being rather easy, it’s not difficult to extend to the general case:

II.4.1 (b) Set Up As before but now with an exceptional divisor smooth non-
reduced in the transverse direction and invariant otherwise, i.e. a functional
derivative,

D � P 1p0q : f ÞÝÑ
"
p1� εq1� xp�1h

p

B
Bx

*
pfq
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for h a function of y alone.
The only thing that changes is the definition of branched on the right, which

actually means within π{2 of the argument of h under the conformal mapping
ξ � x�p. Under which conditions, and ε � 0,

pKgqpξ, yq � e�ξ{h
» ξ{h
�8

gpt, yqet{h dt
h

works as before for �8 in an appropriate half space determined by the argument
of h. There is of course a game between the branch and h, i.e. if, as one should
expect from II.1, h varies through π or more, there are competing infinities,
similarly if ξ varies too much then the argument of h cannot vary at all, and,
arguing as per II.4.2, we see that the general condition is:

ptaperture in ξu � taperture in hu   3π

Furthermore K is bounded, p1� εKq is invertible for ε sufficiently small, while
the base point at �8 is wholly fixed irrespectively of changes in the Euclidean
distance and whence,

II.4.5 Corollary Suppose that the above h is a simple normal crossing divisor
ya1
1 � � � yan

n , and let z1, . . . , zm be some further variables, with f ÞÑ P pfq, 0 ÞÑ 0,
a differential operator polynomial in the fields x B

Bx , yi B
Byi

and B
Bzj

. Then for a
functional derivative as per II.4.1(b) every value of the arguments of x and yi
admit open sectors S�±

i Si satisfying the above condition on the aperture, so
that if U � S �±

i Si �∆m then we have a solution to the equation

P pfq � g

on Updq (logarithmic coordinates in the yi variables) provided
��g��

U
is sufficiently

small. As ever the appropriate lack of dependence on the radii whether of S or
Si, implies that if g vanishes along either x or some yi in our original polydisc
∆1�n�m, then by the simple expedient of decreasing the radius, be it in x or
yi, we will obtain a solution.
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III Linearisable Singularities

III.1 Base at infinity

In the same spirit as the previous chapter we will progress from the easy to the
more difficult, and so begin with:

III.1.1 Set Up Let px, yq P ∆2 belong to a bi-disc, and consider differential

operators f ÞÑ P pfq polynomial in the fields xp
�
x B
Bx � λy B

By

	
, xN B

By (with
N ¥ Re |λ|) with a functional derivative of the form

D � P 1p0q : f ÞÑ
"
p1� εq1� xp

p

�
x
B
By � λy

B
By

	*
pfq

where ε is a small function of x and y, p P N, and the constant λ � 0 has
Repλq ¥ 0.

Plainly we restrict x to a sector S of width 2π{p, such that the image of the
branch b under the conformal mapping x ÞÑ ξ � x�p is to be found on the right,
i.e. Repξq ¥ 0 and the argument bounded strictly away from purely imaginary.
We further introduce the first integral s � yx�λ � yξλ{p, and restrict our initial
attention to ε � 0, so that:

D � 1� B
Bξ

Now consider the domain U b � C2, taken with pξ, sq coordinates such that the
fibre over s (P C if Repλq ¡ 0, or a disc otherwise) is as shown in figure III.1.1,
where the implied excluded area is what we will term a rhombus adapted to the
branch, and the size of the long axis R is,

maxtC1|s|1{α, C2u

for some suitable constants C1, C2, α � Re pλ{pq ¡ 0, otherwise just take R �
C2 if α � 0. Observe that this domain has the usual convenient properties, viz:

III.1.2 Facts The domain U b satisfies,

(a) There is a sector S Q x and a disc ∆ P y, with each having appropriately
small radii and S of aperture 2π{p, such that S � ∆ � U b. Conversely,
U b � S1 �∆1, for S1, ∆1 of appropriately large radii.

(b) For every s P B, the base of the fibration, there is a path γs : r0, 1s Ñ U bs
from �8 (i.e. Repξq Ñ �8) such that,

} 9γsptq} ¤ C
B
Bt Re

�
γsptq

�
for some suitable constant C, depending on the branch b.
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Figure III.1.1

Now in U b we can construct a right inverse to D in the usual way, viz:

pKgqpξ, sq � e�ξ
» ξ
�8

eρgpρ, sqdρ

which by II.4.2 can be patched to an operator, again denoted K, on a domain
U of aperture up to 3π{p formed by gluing the U b. Provided the branches b are
bounded away from purely imaginary, and Updq is understood in the s variable
on one factor and a metric glued from the Euclidean distance in the ξ variable
on the other, there is a constant such that,��Kg��

Updq
¤ C

��g��
Updq

with Updq as per I.3.3. Now in so much as we’re avoiding the question of how
the fibres Us change if we move in from the boundary in the original x (better
log x) and y coordinates we’re obliged to take operators which are polynomial
in B

Bξ and B
Bs , which is exactly the restriction that we have made in II.1.1, albeit

with a bit more work, one could reasonably hope do to better. In any case the
perturbation in ε poses no problem since,

DK � 1� εK

and K is uniformly bounded on the Updq, so the obvious infinite series works.
Whence to summarise,

III.1.3 Fact Let f ÞÑ P pfq, 0 ÞÑ 0 be an operator as per III.1.1 with U as
above, then the equation,

P pfq � g
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has a solution on Updq as soon as,��g��
U
¤ C mint1, pd1d2qNu

for some constants C and N implied by III.1.2(b), and the higher derivatives,
or powers of linear ones in P , but not on the radius of the sector in the original
x variable. Consequently if g vanishes along the divisor x � 0, then every value
of argpxq is contained in an open sector S of width up to 3π{p and of sufficiently
small radius, such that for some fixed (i.e. independent of x) sufficiently small
disc ∆ Q y, the equation has a solution on S�∆. Furthermore as per II.1.4(bis),
and similar, none of this is changed by the addition of further variables zk,
1 ¤ k ¤ m, with a polynomial operator in B

Bξ ,
B
Bs and the B

Bzi
, provided the

functional derivative remains the same, so that for g vanishing on x � 0, we
again get solutions on S�∆y�∆m provided that the radius is sufficiently small
in x.

In so much as this has been an introductory case, we can usefully note,

III.1.4 Remark Again this is very much the best possible scenario, with obvi-
ous similarities to §II.4, and for exactly the same reason as II.4.2, Stokes’ line
for K may appear at 3π{p.

III.2 Still at infinity

As noted in the previous case is as good as one might reasonably expect, being
even Borel summable and so forth. There remains a variant on the same, which
continues to preserve these salient features, viz:

III.2.1 Set Up Let px, yq P ∆2 belong to a bi-disc, p, q P N, and f ÞÑ P pfq be
a differential operator polynomial in the fields

xpyqB, χ � qx
B
Bx � py

B
By

where B � x B
Bx � λy B

By and λ P C� is subject to the restrictions

p� qλ � 0, Re pp� qλq ¥ 0, Re
� p
λ
� q

	
¥ 0

and we suppose that P p0q � 0, and that it has functional derivative;

D � P 1p0q : f ÞÝÑ
"
p1� εq1� xpyq

p� qλ
B
*
pfq

for ε a small function in x and y. Observe that under these restrictions λ R R 0

so these hypothesis hold for analytic coordinates x, y iff they hold for formal
coordinates.

As ever we start with ε � 0, and we consider the function ξ � pxpyqq�1, and
restrict ourselves to sectors S in ξ which have aperture 2π, and branch, b, in the
half plane Repξq ¡ 0 bounded strictly away from purely imaginary. Similarly,
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we suppose s � yx�λ is defined, and varies in a domain B with a well defined
argument up to 2π, or indeed we may well take its logarithm, eσ � s. In any
case, s1{pp�qλq is supposed defined and,

x � s�q{pp�qλqξ�1{pp�qλq ; y � sp{pp�qλqξ�λ{pp�qλq

Now put α � Repλ{pp�qλqq, β � Rep1{pp�qλqq and consider a domain U b Ñ B,
fibred in the s-variable of exactly the same shape as before in III.1.1, but where
the axis R has length,

logR � max
"

1
β

Re
�
� qσ

p� qλ

	
� C1,

1
α

Re
� pσ

p� qλ

	
� C2, C3

*
for some suitable constants C1, C2, C3 and αβ � 0. Otherwise if α, respectively
β, is zero, which cannot, by the way, happen simultaneously, one simply omits
the term in α, respectively β. The domain B of the variable σ � log s, is all of
C for αβ � 0, and the half plane Re

�
σ{pp � qλq�   0, for α � 0, respectively,

Re
�
σ{pp�qλq� ¡ 0, for β � 0. Plainly the function s1{pp�qλq is to be understood

as exppσ{pp�qλqq, which yields domains U b in C2 as specified by the prescription
à la III.1 on the fibres U bσ, and whence their features are very much akin to
III.1.2, viz:

III.2.2 Facts For appropriate values of C1, C2, C3,

(a) The function px, yq maps U b to our original bi-disc ∆2.

(b) For all values of argpxq and argpyq, modulo the prescription that argpxpyqq
is not equal to that of the branch in ξ, there are open sectors X Q x, Y Q y
of appropriately small radii on the same, and determinations of log x and
log y (any determination for αβ � 0, otherwise many but not all), together
with a map pξ, ηq : X � Y Ñ U b whose composition with px, yq is the
identity.

(c) For every σ P B, there is a path γσ : r0, 1s Ñ U bσ from�8, i.e. Repγσptqq Ñ
�8 as tÑ 0, to any point such that,

} 9γσptq} ¤ C
B
Bt Re

�
γσptq

�
for a constant C depending on the branch.

Thus while we don’t formalise it, the most convenient way to think of this is that
for the various branches in ξ, the U b Ñ ∆2 define a Grothendieck topology which
by (b) is exactly the same as that corresponding to sectorial neighbourhoods.

In any case, we plainly get solutions on sectors as soon as we get solutions
on the U bpdq, for d Euclidean distances in ξ and σ and everything is as III.1, to
wit,

(1) K : g ÞÑ e�ξ
³ξ
�8

eρgpρ, σqdρ is a right inverse to D, uniformly bounded
(as d varies), for the sup-norm on U bpdq, since the fibres U bpdqσ preserve
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the shape indicated in III.1, i.e. the implied constant in III.2.2(c) is the
same for all U bpdq, since only the length of the axis changes as we move
by the Euclidean distance in σ.

(2) Arguing as in II.4.2 we can glue to a bounded right inverse, again denoted
K, on a domain U of aperture up to 3π in ξ containing all of the U b

for b bounded away from purely imaginary. The resulting Updq being
equivalently the gluing of the U bpdq, or understood with respect to the
Euclidean distance in σ on one factor, and a metric comparable to the
Euclidean distance in ξ on the other.

(3) For ε � 0, DK � 1 � εK, and by uniform boundedness on the Updq, we
can do this by power series in ε.

(3) The field B
Bξ is, of course, xpyqB, up to a constant, while B

Bσ is χ, in fact,
up to the same constant.

(4) Nothing changes on adding in new variables zj , 1 ¤ j ¤ m, fields B
Bzj

and
going to operators polynomial in B

Bξ ,
B
Bσ , and B

Bzj
.

Thus to summarise,

III.2.3 Fact Let f ÞÑ P pfq be as in III.2.1, or even as above with extra variables
zj provided the functional derivative is conserved, then for U as above (or
U �∆m should there be extra variables) the equation

P pfq � g

has a solution on Updq provided
��g��

U
is sufficiently small, with smallness un-

derstood as per III.1.3. In particular if g vanishes on either the divisor x � 0 or
y � 0, then for every value of argpxq, argpyq there are open sectors X,Y about
the same of sufficiently small radii such that we have a solution on X�Y �∆m

for some smallish disc in the additional variables.
Again let us note,

III.2.4 Remark Again this is very much a good case in the spirit of II.4.4,
i.e. despite the singular nature of B we still haven’t encountered any of the less
desirable phenomenon detailed in II.1.5, notwithstanding the apparently more
straightforward set up II.1.1.

III.3 The Bad Case

We now proceed to the case that will bring together all the difficulties to date,
and add new phenomenon so far not encountered. To begin with let us introduce,

III.3.1 (a) Set Up Let px, yq P ∆2 and let B be a vector field singular at the
origin, such that for m the maximal ideal of the same,

B : m{m2 ÝÑ m{m2
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is semi-simple with ratio of eigenvalues, λ P C� enjoying Repλq   0. As such the
coordinates x, y are chosen such that the divisor x � 0 and y � 0 are invariant
by B (this can always be done analytically) and,

B � x
B
Bx � λcpx, yqy BBy

and cpx, yq � 1 pmod m2q.
The fact that B cannot necessarily be linearised is, somewhat surprisingly,

neither here nor there. All of the bad phenomenon already occur in the fully
analytic setting where λ � �1, and xy is a first integral. Nevertheless we avail
ourselves of Écalle’s spiralling normalisation:

III.3.1 (b) Revision (cf. [Éca94]) For elog x � x, a priori log x in a left half
plane, there are constants C and N such that on a domain of the form: |x| | log x|N ¤ C ; |y| ¤ Cu
the field B may be conjugated to a linear one. In particular for S a sector of
width 2π in x and ∆ a disc in y, of respectively sufficiently small radii we have
coordinates x, y on S �∆ such that,

B � x
B
Bx � λy

B
By

with y � apx, yoldq yold, px, yoldq Ñ px, yq; yold the original coordinate, invertible
in S �∆, and taking arguments in yold is the same thing as taking arguments
in y.

In light of this discussion, and indeed the generality that will be subsequently
necessary, we therefore introduce,

III.3.1 (c) Final Set Up Let px, yq be coordinates in a domain S �∆, with
S a sector of aperture 2π{p in x, and y varying in a disc ∆. Denote by B the
field x B

Bx � pνy B
By , Repνq ¡ 0, p P N, and let f ÞÑ P pfq, 0 ÞÑ 0, be a differential

operator polynomial in xpB and y B
By with the functional derivative of the form:

D � P 1p0q : f ÞÝÑ
"
p1� εq1� xp

p
B
*
pfq

for ε a small function in x and y.
Plainly we first consider ε � 0, put ξ � x�p for x in a sector of aperture 2π{p

such that ξ branches on the right, i.e. Repξq ¡ 0, along a slit bounded away
from strictly imaginary. We shall subsequently see that a solution analytic in
y, even if we were in the stronger hypothesis of III.3.1(a) is simply impossible,
so we don’t waste time, and introduce logarithms, eX � ξ, eY � y, for X,
Y in appropriate right, respectively left, half planes. A convenient variable is
σ � 1

νY � X; it’s domain is, a priori, either all of C, for ν R R, or a left half
plane for ν P R. Now consider the function Y {ν, which has domain a left half
plane rotated through 1{ν, and intersect this rotated half plane with the half
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plane RepY {νq   0 so that the exponential takes values in the disc. Within the
disc take a domain Ωαprq of the type encountered in II.1, as shown in figure
III.3.1, for some appropriate |α| � 1, and r sufficiently small, to be specified

Re
�

exp Y
ν

	Ωαprq

α

δ

Im
�

exp Y
ν

	

r

Figure III.3.1

so that rotating through a fixed sector of aperture   π keeps some other ρα,
for |ρ| � 1, ρ to be specified, as the unique point in the domain with minimal
Repραq.

Now, take the pre-image, ωαprq of this domain under the exponential in the
intersection of the two half planes that constitute the domain of Y {ν (or just
one half plane if ν P R). Next take the image of ωrpαq � H, H domain of X,
under pY {ν,Xq ÞÑ pσ,Xq, limit σ to a strip, i.e. Impσq P I for some interval I
of width less than π, and make an appropriate choice of α, so that as σ varies
in the strip, e�σα is the unique point in the image UI of this domain under
id � exp in the fibre of α where Repξq has its minimum, and this is strictly
bounded away (i.e. r sufficiently small) from the other corners of the rhombus
Ωαprq where a minimum might occur. Unsurprisingly, the domains UI have all
the properties that we require, viz:

III.3.2 Fact Supposing the sector S of III.3.1(c) satisfies the branching on the
right condition for ξ, take x � ξ�1{p, and y � ξνeσν for an appropriate deter-
mination of the arguments in ξ (a.k.a. strip in X),

(a) px, yq maps UI to our original domain S �∆ in x and y.

(b) For any J � I sufficiently small (where sufficiently small depends only on
ν), px, yq on UJ is Schlict, and UI is covered by finitely many UJ .
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(c) Varying I we can cover, with finitely many I, a region containing S1 �
∆1zt0u, for S1 � S and ∆1 � ∆ of sufficiently small radii, and, S1 � t0u is
in the closure of every UI .

(d) The points ppσq � e�σα in the fibres UI,σ are a holomorphic section of
the fibration in σ, and every point ξ P UI,σ, any σ, can be joined by a
path γσ : r0, 1s Ñ UI,σ, γp0q � ppσq, to ppσq such that,

} 9γσptq} ¤ C
B
Bt Re

�
γσptq

�
for C some suitable constant depending on I, or more accurately its width
alone.

This gives therefore a domain UI � C2 with fibres over σ as shown in figure
III.3.2, with σ varying in a strip so that ppσq not only stays on the left, but

ppσq

UI,σ

Im
�
ξ
	

Re
�
ξ
	

b

Figure III.3.2

the lines emanating from it are bounded away from purely imaginary. For
convenience, we change the domain of the original x variable a little so that the
inner boundary is a rhombus adapted to the branch, and in each fibre add a
disc, à la III.1, around ppσq of radius κ ¡ 0, and call the resulting domain UI,κ.
All of the properties (1)-(4) enunciated prior to III.2.3 remain valid, with the
obvious change to the integral operator from the base point at 8 to ppσq, and
B
Bξ ,

B
Bσ being xpB and y B

By up to some constants, so that:

III.3.3 Fact Suppose in addition to our set up III.3.1(c) the resulting sector in
ξ � x�p branches on the right, and that in the presence of further variables,
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the functional derivative is conserved, then for UI as above (or UI �∆m should
there be extra variables) the equation

P pfq � g

has a solution in UIpdq provided
��g��

U
is sufficiently small. The smallness con-

dition can be guaranteed by the simple expedient of shrinking the radius of the
sector in the x-variable provided g satisfies a condition of type��g��

Sr�∆
¤ Crα

on sectors in x of radius r, and α ¡ 0, C anything.
Bearing in mind that this is conceivably rather far from what one might

expect in terms of an intuition that comes from good cases such as II.4.1 and
II.2.1-2, let us prolong this investigation by way of,

III.3.4 Scholion Again, although not formalised, the best way to consider the
UI Ñ S � ∆ are as a Grothendieck topology, which is the natural one for
solutions, as we will see shortly. The kind of spiralling sectors UJ , J sufficiently
small, being open in the classical topology, whence, solutions on such sectors
really spiral for ν R R. Of course, one could take sectors in x and y alone if
ν P R, but this seems rather pointless. Indeed, for the applications envisaged
in [McQ] sectors in y are actually worse, and moreover the divisor y � 0 has,
in general, no algebraic description if the field B arose whether by resolution
of singularities on a projective surface, or a formal surface inside an ambient
projective variety. Consequently, there’s no sane sense in which sectors in x and
y should be considered a better topology than the UI . One can, of course, as per
post II.4.1(b), fiddle with the construction somewhat, i.e. if |S| is the aperture
in ξ, and |I| the width in σ, do anything with,

|S| � |I|   3π

albeit say |I|   π to be on the safe side. Thus, |S|, |I| are never simultaneously
big enough to be able to conclude to the uniqueness of solutions, and attempt
patching to a wider aperture. Furthermore full analyticity in y is simply impos-
sible. Indeed, suppose otherwise, and consider the equation,�

1� xp

p
B�pfq � g

which is hypothesised to have a solution f analytic in S�∆, whenever g is. As
such, if gkpξq, k P NYt0u are the Taylor coefficients in yk of g, then those of f ,
say fkpξq, must satisfy, �

1� kν

ξ



fk � B

Bξ fk � gk

Now, consider values of ξ in a sector S, of small aperture, around the negative
real axis, then on S bounded solutions of this equation are unique. Consequently
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for ξ P S,

fkpξq � ξ�kνe�ξ
» ξ
�8

skνesds

which indeed doesn’t depend on the branch ξ ÞÑ ξν , since different choices
cancel. Restricting our attention to ξ � �s, s P R¡0 sufficiently large, we can
write this as

fkp�sq �
» 8

0

e�t
�
1� t

s

	kν
gkp�s� tqdt

Plainly we wish to impose that the solutions f are bounded on S � ∆, so we
can interchange limits as s Ñ 8, restrict our attention to gk � ck, constant,
and conclude,

lim
sÑ8

fkp�sq � ck Γpkν � 1q
subsequencing in s if necessary. This is, however, manifestly absurd, since the
left hand side is bounded by Ck for some constant C. Consequently for g
analytic on ∆, a function of y, with ck decreasing not too rapidly, there are
no bounded solutions f analytic on S �∆1, no matter how small ∆1, so taking
finite iterates such as,

Ņ

n�0

�xp
p
B�ng

yields many other functions without solutions, but which according to our ha-
bitual condition of sufficient smallness, are as small as we like. Manifestly the
problem is akin to II.1.5(a), but much worse, since even meromorphic in y be-
haves very badly, e.g. if g � p1�yq�1, then there is a “ resurgent ” type solution,
say ν � 1 for simplicity,

fpx, yq �
» 8

0

e�t

1� yp1� txpqdt

however here a path from 0 to 8 must be chosen, and this path must avoid
py � 1qy�1x�p, from which the necessity of restricting not just the argument of
x but also that of yxp.

III.4 Intermission

Before proceeding to the evident extension of III.3 to a divisor supported along
x � 0 and y � 0, let us first address the case of a purely real eigenvalue, since
this will require the spiralling linearisation of Écalle as per III.3.1(b), so say:

III.4.1 Set Up Let px, yq P ∆2 be coordinates in a polydisc, B as per III.3.1(a),
but with λ P R 0. Further let f ÞÑ P pfq, 0 ÞÑ 0, be a differential operator
polynomial in the fields,

xpyqB, χ � qx
B
Bx � py

B
By
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(p, q P N) enjoying a functional derivative of the form,

D � P 1p0q : f ÞÝÑ
"
p1� εq1� 1

p� qλ
xpyqB

*
pfq

for ε a small function of x and y.
Multiplying, as necessary P by a unit, we begin with ε � 0, and,

xpyqB � xpyq
�
x
B
Bx � λy

B
By



for a domain of the type indicated in III.3.1(b). Consequently, we already have
a logarithm X of x, and we further take one Y of y, defined by y � eY , Y
belonging to a left half plane. Exactly one of p{λ�q, respectively p�λq may be
negative, and for consistency with III.3 we suppose that it is the former. Slightly
more conveniently, therefore we put �ν � λ{pp � λqq, ν P R¡0, and take as an
invariant function σ � p1� qνq{p pY �λXq, with domain of definition a left half
plane. Thus for ξ � pxpyqq�1, branched on the right, as ever strictly bounded
away from purely imaginary, and ζ its logarithm, our operator becomes,

D � 1� B
Bξ

in σ, ξ coordinates, with,

X � �
�

1
p
� qν

p



ζ � qσ, Y � νζ � pσ

Now take Y {ν to belong to some appropriate ωαprq, α, r to be chosen, as per
III.3.1(c). Furthermore for suitable constants C1, C2 to be chosen define Rpσq
by,

logRpσq � max
" �pq

1� qν
Repσq � C1, C2

*
Finally confine σ to a strip, Impσq P I, according to which α, r will be chosen,
and for convenience suppose Repσq   C3, sufficiently negative. This allows us
to define a UI � C2 in ξ, σ variables by way of,

ξ P e�pσωαprq X ERpσq

where ERpσq, cf. III.3.2, is the exterior of a rhombus adapted to the branch.
Consequently the fibres of UI have the form shown in figure III.4.1, so that,
modulo the augmentation of Rpσq with σ, nothing has changed from III.3.2,
and actually it’s quite a bit better. The important points being that we have a
holomorphic section ppσq � αe�pσ{ν , and that as σ P I varies, the inner (which
is in fact fixed) and outer sides of the appropriate rhombi remain bounded away
from purely imaginary. As such the UI posses the salient features to which we
have become accustomed, viz:
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αe�pσ{ν

Im
�
ξ
	

Re
�
ξ
	

Rpσq

b

UI,σ

Figure III.4.1

III.4.2 Fact Choose an appropriate branch ζ of the logarithm of ξ, and put
x � eX , y � eY for X,Y functions of ζ and σ as above, then,

(a) px, yq maps UI to our original domain ∆�∆.

(b) For any values of argpxq, argpyq, there are open sectors S Q argpxq, T Q
argpyq of sufficiently small radii such that for an appropriate choice of I
and the branch b, we have a map S � T Ñ UI whose composition with
px, yq is the identity.

(c) The holomorphic section ppσq � αe�pσ{ν can be joined to any other point
of the fibre UI,σ by a path γσ : r0, 1s Ñ UI,σ satisfying

} 9γσptq} ¤ C
B
Bt Re

�
γσptq

�
for C a constant depending only on the width of I, provided Repσq is
sufficiently negative.

Now, we have (1)-(4) as per III.1 or III.2 after adjoining in each fibre a disc of
some fixed radius κ, and of course, modulo the usual caveats, adjoining further
variables z1, . . . , zm in some polydisc ∆m, so to summarise,

III.4.3 Fact Let things be as in III.4.1, then for UI (more correctly UI,κ) as
above (or UI,κ �∆m in the presence of further variables), the equation,

P pfq � g

56



has a solution in UIpdq provided
��g��

U
is sufficiently small. The smallness con-

dition may be guaranteed by the simple expedient of shrinking the radii in x or
y sufficiently provided g vanishes on x � 0 or y � 0. In particular every value
of argpxq, argpyq admit, under this condition, open sectors S,T of sufficiently
small radii such that we have a solution in S�T �p∆1qm, and ∆1 a smaller disc
in the additional variables.

To conclude, let us note:

III.4.4 Remark Availing ourselves of Écalle’s spiralling linearisation, we can
equally dispense, in the above notations, with the case λ � �p{q. Indeed the
only substantive change that one should make in this case is to the actual set
up II.3.1, and replace the field qx B

Bx � py B
By occurring there by B, so that after

dividing P by a unit (in the domain of the linearisation as above), one may
proceed exactly as in §II.3.

III.5 Worst Case

Actually to what extent this remaining case is really worse than III.3 is a matter
of debate. It is, however, certainly the most fastidious, whence the separate
treatment of a real eigenvalue in III.4, so as to lighten the complication and
allow us to reduce to,

III.5.1 Set Up Let px, yq P ∆2 be coordinates in a polydisc, and f ÞÑ P pfq,
0 ÞÑ 0, be a differential operator polynomial in the fields,

xpyqB,
�
B � x

B
Bx � λy

B
By



, χ � qx

B
Bx � py

B
By

λ R R, p, q P N, Repp{λ� qq   0, and functional derivative of the form,

D � P 1p0q : f ÞÝÑ
"
p1� εq1� 1

p� qλ
xpyqB

*
pfq

for ε a small function of x and y.
As before we first treat ε � 0, pass to logarithmic coordinates eX � x,

eY � y, both in appropriate left half planes, and take ξ, ζ, σ, ν as post III.4.1,
observing, however, that the a priori domain of σ is all of C , and Repνq ¡ 0,
ν R R. As such a better invariant function is τ � pσ{ν, and it is this variable
whose imaginary part should be constrained to some interval I, according to
which α, r are chosen by the prescription Y {ν P ωαprq, otherwise, the definition
of UI is, modulo Repτq ! 0 (depending on I), exactly as before in §III.4. The
properties III.4.2(a) & (c) remain valid, while (b) gets replaced by the Schlictness
of UJ Ñ ∆2 for J � I of sufficiently small width, but now with a further bound
on argpξq, together with the finite covering considerations of III.3.2(b)-(c), i.e.

III.5.2 Fact Define px, yq as in III.4, then,

(a) px, yq maps UI to ∆2, our original domain.
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(b) For J � I sufficiently small, and argpξq confined, or better Impζq in a
sufficiently small interval K, the restriction of px, yq to UJpKq is Schlict,
and UI is covered by finitely many such UJpKq.

(c) Varying I we may cover some smaller bi-disc
�
∆1

�2 punctured in xy � 0,
by finitely many UI , which in turn have in their closure (in fact naturally
extend) to every point of the real blow up in x � 0, followed by the same
in y � 0.

(d) The holomorphic section ppτq � e�τα can be joined to any other point of
the fibre UI,τ by a path γτ : r0, 1s Ñ UI,τ satisfying,

} 9γτ ptq} ¤ C
B
Bt Re

�
γτ ptq

�
for C a constant depending only on I, provided Repτq is sufficiently neg-
ative.

The conditions (1)-(4) of III.1/2 after adjoining in each fibre a disc around the
base point of radius κ carry through verbatim, and we let ∆m be a polydisc in
any additional variables we may wish to add provided the functional derivative
is unchanged, and whence,

III.5.3 Fact Let the set up be as III.5.1 then for UI,κ as above (or for that
matter UI,κ �∆m in the presence of further variables), the equation,

P pfq � g

has a solution in UIpdq provided
��g��

U
is sufficiently small, where this smallness

condition is guaranteed by the simple expedient of shrinking radii if g vanishes
on x � 0 or y � 0. In particular on the finite covering UJpKq of a sufficiently
small punctured bi-disc by ∆m, envisaged in III.5.2(b)-(c), we have solutions to
our equation.

As such, it only remains to close this chapter by way of,

III.5.4 Remark Of course it could be that there are, in this case, solutions in
open sectors S�T in argpxq, argpyq as encountered in III.4.3, since, plainly, this
is a different question to that addressed in III.3.4. On the other hand III.3.4
is consistent with, and identical to, all the phenomena encountered in II.1.5
and various subsequent manifestations of the same, that the “right” variables in
which one should take arguments are fibrewise, and on the base of the fibration.
Consequently, such an improvement would be rather surprising.
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IV Saddle-Nodes

IV.1 Normal Forms

As has been said, in addressing the difficulties of nodes, we will be applying the
implicit function theorem towards the limit of what is possible. Consequently
we must be precise about the form of the operator to be investigated, beginning
with:

IV.1.1 Set Up Let D be a germ of a vector field on a bi-disc ∆ � ∆, such
that the induced foliation, defined by the vector field B, has a saddle node
at the origin, and D vanishes to order p along the strong branch. More or
less consistently x � 0 will be the equation for the strong branch, while y,
another coordinate, will vary from being tangent to the weak branch, whence
genuinely analytic, or the weak branch itself, so possibly formal, or analytic if
x is restricted to a sector. In any case, we always take D so that, D � xpB.

While normal forms for p � 0, and conjugation to them in sectors have been
studied extensively, c.f. [MR82], [Éca92], this doesn’t provide that much of a
shortcut to the p � 0 case, so we may as well just do things from scratch. The
formal situations is as follows:

IV.1.2 Fact There are formal coordinates x, y in which D may be written as:

xp
"
Rpxqy BBy �

xr�1

1� νxr�p
B
Bx

*
where r P N, Rpxq has degree at most r, Rp0q � 0, and ν P C.

Proof. The weak branch, y � 0, exists formally, and the restriction of D to it is
a 1-dimensional vector field vanishing to some order, p� r � 1, by definition of
r, at the origin. Changing x as necessary we may suppose,

D
��
y�0

� xp�r�1

1� νxr�p
B
Bx

Similarly, Dyy is a function which on restriction to y � 0, is of the form xp�unit,
which by a change of y coordinate we may suppose is a polynomial Rpxq of degree
¤ r. This suffices to identify the formal invariants, and even as preparation to
apply I.4.1. However, to avoid repetition in treating the analytic case we further
simplify the behaviour of Dx by studying it mod y2, and from a little linear
algebra it emerges that the previous expression for Dx

��
y�0

is actually, after a
suitable coordinate change valid mod y2. Consequently we may suppose that
our field has the form,

D � xp
"�
Rpxq � y apx, yq

	
y
B
By �

� xr

1� νxr�p
� y2 bpx, yq

	
x
B
Bx

*
and we seek a formal conjugation of this to the normal form IV.1.2 in ξ, η of
the form,

x � efη
2
ξ, y � egηη
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for some formal functions f and g. This amounts to solving the following system
of PDE’s:

η�2

#
e�pfη

2 Bξ
ξ
� ξrerfη

2

1� νefpr�pqη2ξr�p

+
�

e�pfη
2
�
Bf � 2f

Bη
η



� e2gη b

�
efη

2
ξ, egηη

� � 0

η�1

"
e�pfη

2 Bη
η
�R

�
efη

2
ξ
�*� e�pfη

2
�
g
Bη
η
� Bg



� egη a

�
efη

2
ξ, egηη

� � 0

where the terms on the extreme left are formal functions, not just meromor-
phic. Re-arranging in the obvious way, there is a vector valued operator P pf, gq
sending 0 ÞÑ 0 for which we require to solve the equations,

P pf, gq �
�
a
b

�
Now the functional derivative of P has the form,

P 1p0q :
�
f
g

�
ÞÝÑ pA� 1Bq

�
f
g

�
where A is a matrix of functions such that,

Ap0q � Rp0q
�
2 0
0 1

�
The operator Ap0q�1B, operates on ξiηj as p2�jqRp0q, or p1�jqRp0q, according
to the row, up to a topologically nilpotent operator N . Whence the same is true
for A� 1B, so A� 1B has a right inverse, and we conclude by I.4.1. �

Now if this seems a little heavy handed as an approach to the formal normal
form, it’s because it will, fortunately, be applicable mutatis mutandis analyti-
cally. In the first place, we can, and will suppose without warning that we start
with a situation as close to IV.1.2 as we please in the m-adic topology, for m the
maximal ideal at the origin. On the other hand the weak branch may not exist
analytically. It does, however, exist on domains of the form S�∆ for S a sector
in the x variable of width up to 3π{r “patched from sectors branched on the
right” (e.g. apply II.4.3 with n � 1), and again we may suppose the asymptotics
with respect to the formal solution in IV.1.2 as good as we like. Now, since we
don’t really care about a full asymptotic expansion we can suppose,

D
��
y�0, xPS

� xp�r�1 B
Bx

This can be done for a coordinate x P S, as close to, zp1� νzp�r log zq�1 as we
like, z extending to an analytic coordinate in the whole disc. Or, more precisely,

x � z
�
1� νzp�rplog z � fpzqq��1
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for fpzq bounded up to the boundary of S, so x is Schlict. Again, we also
prepare the y variable so that,

By
yxp

����
y�0, xPS

� xpRpxq

This can be done via a change of coordinates,

px, yq ÞÝÑ �
x, y egpxq

�
gpxq � Op|x|N q, for N as big as we like, so, once more, it’s Schlict. Finally there
is the preparation,

Dx
��
xPS

� xp�r�1 pmod y2q
where by construction we already have,

Dx

xp�1
� xr � yapxq pmod y2q

and apxq � Op|x|N q. Obviously we seek a new variable X in the form X �
xp1� fpxqyq, and this amounts to solving the linear equation:

Rpxqf � xr�1 Bf
Bx � xrpp� rqf � �apxq

Now this is trivially possible, c.f. II.4.1(a) et sequel, on a sector of width 3π{r,
but there is a conflict between the branching here and that for producing the
weak branch. More precisely, the latter is done by patching solutions in sectors
of width 2π{r such that the conformal mapping x ÞÑ xr has a branch within π{2
(be it above or below) Rp0q, while the former must be branched, again above
or below, within π{2 of �Rp0q, so at the end of the day we can only actually
do both equations for sectors of width 2π{r� ε, and the branch of the resulting
conformal mapping x ÞÑ xr is “on the left”, i.e. within π{2 of �Rp0q. This
concludes the preparation, and again we seek a change of coordinates of the
form,

x � efη
2
ξ, y � egηη

which conjugate our vector field to that of IV.1.2 with ν � 0. The resulting
system of PDE’s being exactly the same as in the proof of op.cit. So dividing
through by Rpξq the functional derivative is a small bounded perturbation of,

1

�
η
B
Bη �

ξr�1

Rpξq
B
Bξ



�
�
2 0
0 1

�
under a change of coordinates of the form,

ξ ÞÝÑ ξ
�
1� c1ξ

r�1 � � � � � crξ log ξ
�

ξ sufficiently small to guarantee that it’s Schlict, the �1 part of this formula
becomes,

η
B
Bη �

ξr�1

Rp0q
B
Bξ
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and we make the evident change of coordinates,

ζ � Rp0q
ξr

, s � η exp
�1
r
ζ
	

so that the functional derivative becomes, on dividing through by r,

1
r

�
2 0
0 1

�
� 1

B
Bξ

where s P C, and, without loss of generality, Repζq ¥ log |s|. This admits a
bounded right inverse,

K0fpζ, ηq � exppBζq
» 8

ζ

expp�Bzqfpz, ηqdz, f �
�
f
g

�
and, rather evidently, B is the matrix occurring on the previous line. Notice,
in particular, the branching is correct, i.e. our previous restrictions imposed ξr

within π{2 of �Rp0q, which amounts to ζ being branched in Repζq   0, so one
chooses the boundary in the original x variable so that the leaves have the shape
shown in figure IV.1.2, or some appropriate variation thereof for the branch b.

log |s|

b

R
Repζq

Impζq

Figure IV.1.2

Consequently,
P 1p0qK0 � 1� εK0
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for ε as small as we like a function, whence P 1p0q has a bounded right inverse
K. Plainly we arrange that the a, b occurring in the proof of IV.1.2 are in as
large a power of m as we a priori please - actually 1 would be enough if they
were divisible by x, which could always be arranged via blowing up, otherwise
we must take care at the y boundary and proceed as in I.3.6. As such shrinking
the radii in x and y as appropriate we arrive to,

IV.1.3 Fact Let D be as in the set up IV.1.1, then there is a Schlict mapping
pξ, ηq ÞÑ px, yq from a domain of the form Sξ � ∆η, ∆η a disc, Sξ a sector of
width 2π{r � ε with ξ ÞÑ ξr branching within π{2 of �Rp0q which conjugates
D to the field,

ξp
"
Rpξqη BBη � ξr�1 B

Bξ
*

Proof. It remains to prove that the mapping constructed above is Schlict. To
this end, apply the conformal mapping ζ : ξ ÞÑ ξ�r. Then the derivatives in ζ
and η of f and g are bounded on sub-domains a finite Euclidean distance from
the boundary, so for zpζ, ηq our mapping,

z � id� ηBpζ, ηq
with the derivatives of B bounded as indicated, so at the price of a small shrink-
ing of radii and aperture, the mapping is Schlict. �

To which we may usefully add,

IV.1.4 Remark Since we’re dealing with fields, not foliations, even for p � 0,
the factor Rpξq cannot be removed, nor can it’s degree be decreased.

IV.2 Bounded Sectors

We can begin to solve some PDE’s whose functional derivatives are nodes, i.e.

IV.2.1 Set Up Let px, yq P ∆2 be coordinates in a bi-disc, and f ÞÑ P pfq a
differential operator polynomial in the fields

D � xpB, y
B
By

for D, B as per IV.1.1, and with functional derivative in 0,

P 1p0q : f ÞÝÑ
�
1� D

p� r

	
pfq

As the name bounded sectors suggests we don’t really need the full detail of
IV.1.3 since we’ll be constructing bounded right inverses. Nevertheless we’ll
use it since it will allow us to treat with an uniform notation the bounded and
unbounded cases. Consequently, let us immediately restrict to S �∆ a domain
as per op.cit. in which we may write,

B � Rpxqy BBy � xr�1 B
Bx
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Take �zpxq to be a primitive of x�pr�1qRpxq in the obvious way, i.e. avoid adding
in any constants, having determined a branch of log x, which is holomorphic
in S. This leads to a first integral s � y exppzq where the domain of s is
potentially all of C. Plainly z is unbounded, and as ever it’s convenient to work
in neighbourhoods of 8, so ζ � 1{x, and, of course,

IV.2.2 Triviality Denoting, equally, by S the corresponding sector in ζ of
width up to 2π{r the mapping ζ ÞÑ zpζq is conformal onto neighbourhoods of
infinity branched on the left, and of a slightly smaller aperture.

In terms of the mapping s : S�∆ Ñ C the fibres are rather easy to describe,
viz: Repzq ¥ log |s|, for y in the disc of radius 1. The appropriate variable,
however, against which we should attempt to integrate is ξ � ζp�r, where we
only have conformality on sectors of width 2π{pp�rq, or 2π{p1�p{rq in z space,
and p is arbitrary. Consequently for p ¡ 3r there are necessarily sectors where
the fibres are bounded, and �8 cannot be used as a base point. By IV.2.2 we
can, for |ζ| " 0 and slightly shrinking the aperture reasonably confuse sectors in
ζ, z and ξ. The most convenient confusion is to take sectors, Σ, in the z variable,
so, implicitly, never bigger than 2π{p1� p{rq. Nevertheless the variable ζ is the
governing variable, so Σ really means one of the connected components of ζ�1Σ.
There are also certain critical values c of the argument where there is need for
caution, viz:

IV.2.3 Caveat The values of the argument of ξ where say a half line ζ P R�c
has Repcp�rq � 0, i.e. ξpcq purely imaginary, will require caution. Plainly
these occur at intervals of π{pp� rq, and away from them any other ray R�γ is
asymptotic (|ζ| " 0, depending on the distance between γ and the ξ imaginary
direction) to a straight line in ξ space bounded away from purely imaginary.

Things are fastidious enough without worrying about the optimal size of
sectors, so we’ll content ourselves with neighbourhoods thereof, beginning with;

IV.2.4 (a) Easy case The ray through ζ0, has Repζp�rq Ñ �8 as it goes to
infinity, and Re

�
zpζ0q

�   0.
Take some small sector Σ around this direction which doesn’t cross a ξ-

imaginary direction. Furthermore choose a straight line Impz{νq � 0, so that
for λ in the projection of Σ onto S1 in the ζ plane, Re

�
λpRp0q{ν� is never zero.

This latter condition means: the level curves Impz{νq � const, are uniformly
asymptotic to straight lines in the ξ-plane for |ζ| " 0, as ζ varies in Σ. Plainly
if the aperture of Σ is sufficiently small, there are many such ν. Now define
the domain of ζ, Z say, by it’s manifestation in the z-plane, as shown in figure
IV.2.4, where we further refine the choice of ν so that Re ξppq   Re ξpqq, e.g.
argument of ζ0. Now take η in the left half plane H to be the logarithm of y,
and σ the logarithm of s, then the domain of σ is H � Z � H � p. This give a
fibring, σ : LÑ H � p with fibres,

Lσ � tz P Z : Repzq ¡ Repσqu

On any Lσ the harmonic function Repξq has it’s minimum on the boundary. On
the other hand, Repξq Ñ 8 as z P Z goes to infinity along any fixed argument,
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Z

p

q
Σ

Impz{νq � R

Repzq

Impzq

Figure IV.2.4

while by construction the derivative of Repξq is never zero on any ray bounding
Σ (|ζ| " 0), so for Repσq ! 0, the minimum occurs at p, and strictly so. Whence,

V �  
σ : Repξq��

Lσ
has a strict minimum at p

(
is open and non-empty. It’s also closed since if σn Ñ σ P H � p, p is at worst a
not necessarily strict minimum. However p may be joined to any point in Lσ by
a path that follows Impz{νq � const, followed by a straight line in the z plane
with constant argument, along which the derivative of Repξq is piecewise never
zero, and since Repξq Ñ �8 along lines of constant argument, it’s actually
piecewise increasing. Consequently V is H � p, p is the good choice of base
point, and for γ the path described above,��dγ�ξ�� ¤ C dRepγ�ξq

for C depending on the aperture and R in the definition of Z. Consequently
after adjoining a small Euclidean disc in the ξ space around p we have a right
inverse to P 1p0q, viz:

Kgpξ, σq � e�ξ
» ξ
p

etgpt, σqdt

a priori after base changing our original fibration in s by the logarithm σ, but
manifestly periodic in σ, whence a right inverse in the domain of the s variable.

65



IV.2.4 (b) Trickier Case The ray ζ0 has Repζp�rq Ñ �8 as it goes to infinity,
and Re

�
zpζ0q

�   0.
Again take the domain Z Q ζ to be defined via its manifestation in z space,

viz: a small sector around ζ0 cut by a line Impz{νq � R to be specified. Now
restrict η � log y to a spiralling neighbourhood, viz: η P N , where N is a cone
in the left half plane contained in Σ and the cone p � C whose intersection
with Σ defined Z. Then rather conveniently the domain of σ � log s is also
Z. This leads to a fibration σ : L Ñ Z with fibres as shown in figure IV.2.4.
Now we can take the cone N as close to parallel to one of the bounding rays

Impz{νq � R

p

q

Σ
Lσ � Z X pσ �Nq

Repzq

Impzq

bpσq

apσqσ

Figure IV.2.4

for Σ as we please, so for Repσq very large, minRepξq in Lσ will be attained at
σ. Whence in the first instance, if W � Z is the open where Re apσq   Re p,
Re bpσq   Re q - notation as in the figure IV.2.4 - then the open subset V of W
where Repξq has a strict minimum at σ (for all of Lσ) is closed and non-empty
since the derivative of Repσq is non-zero on all of the lines bounding Lσ. As
such this even remains true in W , and σ continues to be the strict minimum on
a neighbourhood of W , so a connectedness argument again yields that σ is the
strict minimum for Repξq for all σ P Z. Consequently σ is our candidate for a
base point with holomorphic variation and we consider the operator:

Kgpξ, σq � e�ξ
» ξ
ξpσq

etgpt, σqdt

For any σ the maximum of pKgqpξ, σq is attained on the boundary. Any point on
the boundary of Lσ may, however, be reached from σ by a path in the boundary
along which Repξq is not only increasing (exactly how depends on the “sign” of
the derivative on Impz{νq � R between p and q) but for R " 0 is as close to a
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piecewise linear path in the ξ space bounded away from strictly imaginary as
we please. As such by the usual procedure of adding a small Euclidean disc of
fixed radius in ξ space around ξpσq we have a right inverse for P 1p0q to which
we may apply the implicit function theorem. Whence there remains to discuss,

IV.2.4 (c) Need for caution case The ray through ζ0 is asymptotically
purely imaginary, Re

�
zpζ0q

�   0.
We again take Σ to be a small sector around ζ0, cut by a line Impz{νq � R

to be chosen, so that the domain Z of ζ is as before. Without loss of generality
we may suppose that Σ is bounded by rays λ�, λ� on which Repξq goes to �8,
respectively �8 and the argument of ζ increases from λ� to λ� - otherwise
change the choice of the root of �1. Now denote by θ the increment from λ�
to a general point in Σ, and φ the increment to the ξ-imaginary value. Then
the condition that the level curves Im

�
z{�Rp0qλr��	 � constant are bounded

away from strictly imaginary in the ξ-plane is: pp� rqλ� � pθ bounded strictly
away from π{2 mod πZ. The ξ-imaginary value however occurs at pp� rqφ, so
this can be achieved provided λ� is strictly within pr{pqφ of the ξ-imaginary
value. Consequently we take ν between λ� and λ�, but very close to λ� so that
Impz{νq � constant is bounded away from strictly imaginary throughout Σ,
all of this being understood for |ζ| sufficiently large. Similarly again we restrict
η � log y to a cone N , but with bounding rays µ�, µ� between ν and λ� and
ultimately as close to λ� as we please.

The shape of the leaves is, therefore, as per IV.2.4(b), with all boundary
lines bounded away from purely imaginary, Z continuing to be the domain of σ,
and with the further proviso that Repξq is negative on the λ� boundary, positive
on the λ� boundary, and for appropriate choices of µ�, µ�, the set where Repξq
has a strict minimum on Lσ at σ is non-empty. Consequently a slightly easier
version of the previous connectedness argument applies to conclude that Repξq
always has a strict minimum at σ as σ varies through Z, and the right inverse
K to P 1p0q is given by the same formula. We may, therefore, summarise our
conclusions in the usual way, viz:

IV.2.5 Fact Let f Ñ P pfq be as in IV.2.1, or even with extra variables zj pro-
vided the functional derivative is conserved and the operator is also polynomial
in the B

Bzj
, then for any value θ of the argument of x such that Re

�
Rp0qeirθ�   0

there is an open sector S around x, and a cone N centred on 0 in the domain of
log y (supposed, without loss of generality a left half plane) such that for ∆m a
domain for the extra variables, the equation

P pfq � g

has a solution in Updq, U � S � N � ∆m, provided }g}U is sufficiently small.
In the cases IV.2.4(b)-(c), i.e. Repxr�pq ¤ 0, N is a proper sub-cone of H and
the sufficiently smallness condition is guaranteed as soon as g vanishes at the
origin by the simple expedient of shrinking the radii. In case IV.2.4(a), where
we can take N � H, and actually obtain analytic solutions in y, we can allow
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the operator to be polynomial in B
By , but g should vanish to a sufficiently high

order (determined by P ) at the origin to permit us to reason as per I.3.6.
It will transpire that for many values of x, essentially those admitting a

sector of width 2π{pp� rq which extends into Repzq ¡ 0 we can do better than
this. In general, however, full analyticity in y is not possible, which we’ll discuss
by way of,

IV.2.6 Scholion The appearance of log y, and whence spiralling rather than
full neighbourhoods of y is not a result of stupidity but rather of an intrinsic
problem that the latter is impossible. The discussion III.3.4 adapts itself easily
to this case. For convenience we’ll suppose p even, and r � 1, although this is
extremely far from being necessary. Putting Rp0q � 1, we assert,

IV.2.6 (bis) Claim There are no fully analytic solutions in y in any open
neighbourhood of the negative real axis of the equation�

1�D
�pfq � 1

1� y

Proof. Suppose otherwise, and let
°8
k�0 fkpxqyk be the Taylor expansion of f ,

then the fk must satisfy,

fk p1� kxpq � xp�2 Bfk
Bx � 1

Changing to ζ � 1{x, so ζ and z planes coincide, this becomes,

fk pζp � kq � Bfk
Bζ � ζp

If this equation has a solution in R 0, then it’s unique, more correctly the
bounded solution is unique, so:

fkpζq �
» ζ
�8

eQkptq�Qkpζqtpdt

where Qkpζq � ζ
p�1

�
ζp � kpp� 1q�, so that,

fkpζq � 1� ke�Qkpζq

» ζ
�8

eQkptqdt

Now consider the critical value of Qkpζq at γk � �k1{p and the behaviour on
pγk � 1, γkq, which is of the form

p k1�1{p

p� 1

�
1�Opk�1{pq

	
so rather comfortably for k " 0,

Qkpζq
��
pγk�1,γkq

¥ k1�1{p

1� 1{p p1� εq
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whence no matter the value of ζ, eventually fkpζq admits a lower bound of the
form,

|fkpζq| � fkpζq ¥ exp
�

1
2
k1�1{p

1� 1{p



for k " 0, which is impossible. �

Obviously one can make much more brutal examples, but just as in III.3.4
even meromorphicity doesn’t improve the situation, and we can even look at
the solution of “resurgent type”, viz.» 8

0

"
1� y exp

�
�
�
1� tpp� 1qxp�1

�1{pp�1q � 1
x

	*�1

e�tdt

so there is a problem as soon as,

t � 1�

�
1� x plog y � nq

	p�1

pp� 1qxp�1

for log y a fixed branch of the logarithm and n P Zp1q, which constitutes a
barrier to giving any sense to this formula without imposing further restrictions
in log y.

IV.3 Unbounded Sectors

We retain the set up, definitions, and notations of IV.2, but pass to consider
values where Re

�
zpζq� ¡ 0. Consequently ζ belongs to some sector to be

specified and a convenient shape of the domain Z of ζ will be of the form shown
in figure IV.3. As such the domain of s is C. The parameter R is to be specified,
and we observe,

IV.3.1 Triviality For R " 0, all level curves pRepzq � constqXZ are uniformly
asymptotic to straight lines bounded away from purely imaginary in the ξ-plane
provided for ζ P Σ of module 1, ζp � �Rp0q{|Rp0q|. The values of the argument
of ζ for which this occurs will be referred to as critical.

We will be able to take �8 as a base point, whence for consistent definitions
of �8 we will be able to patch à la II.4.2 from small to large aperture, so in
the first instance we won’t worry about this too much. Consequently let the
argument of ζ0 be given and suppose that it’s not critical, then,

IV.3.2 Very Easy Case Repζp�rq Ñ �8 along the ray through ζ0.
In this case all rays in Z, for Σ sufficiently small are uniformly asymptotic

to straight lines in the ξ-space bounded away from purely imaginary. Whence
they provide paths γ in the ξ-space from �8 to any point satisfying,��dγ�ξ�� ¤ C dRepγ�ξq
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Z

Repzq � R

Σ

Repzq

Impzq

R�zpζq

Figure IV.3

whence, as ever, a suitable right inverse for P 1p0q is provided by,

pKgqpξ, sq � e�ξ
» ξ
�8

etgpt, sqdt

Otherwise in the limit, the ray through ζ0 has non-negative argument. Now
suppose ζ0 is between two critical arguments which continue to lie in Re

�
zpζq� ¥

0, then we have two possibilities for how to put a sector Σ around ζ0 which has
rays ζ� with Repζp�r� q Ñ �8, and one of them must be possible, i.e.

IV.3.2 (b) Another Easy Case Not in IV.3.2(a) and ζ0 is between two critical
values c�, c� of the argument, Repzpc�qq ¥ 0, then there is an open sector
Σ Q ζ0 not containing critical values of the argument, with bounding rays σ�, σ�
uniformly asymptotic in the ξ-space to straight lines, on the latter Repξq Ñ �8,
and on the former to �8.

So here we can go from �8 to any point by first travelling along σ� then
straight down a level curve Repzq � constant . For R " 0, Repξq   0 on
σ�, positive on σ�, and we are away from critical, so this path is uniformly
asymptotic to a path in the ξ-space consisting of straight lines bounded away
from purely imaginary and increasing Repξq, i.e. integration from �8 works
again.

Now suppose, zpζ0q is between exactly one critical point and the imaginary
axis in the z-plane. If the critical point itself has Repcp�rq Ñ �8, then we’ll
be able to find Σ exactly as in IV.3.2(b). Otherwise the situation is as follows,

cp � Rp0q, cp�r � λ, Repλq ¥ 0, Rp0qjr � �?�1
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where c is the critical argument, and the z-imaginary axis j, which, if say we
look in the upper half plane of z, may be written j � ceiθ, θ ¡ 0, so:

i � λeirθ, jp�r � λeipp�rqθ � ieipθ

and θ   π{p by hypothesis. Consequently we again encounter rays bounded
strictly away from purely imaginary in the ξ-plane, asymptotic to straight lines
and Repξq Ñ �8, whence;

IV.3.2 (c) Still Easy Case Not cases (a) or (b), Re
�
zpζ0q

� ¡ 0, ζ0 not crit-
ical, then there is a sector Σ � tRepzq ¡ 0u with exactly the same properties
encountered in IV.3.2(b).

It therefore remains to treat the critical points, and the z-imaginary points.
In this respect, observe that there are no critical points with cp�r purely imag-
inary, RepRp0qcrq ¡ 0. So, away from the imaginary axis, we have,

IV.3.2 (d) Last Easy Case Not (a)-(c), whence ζ0 critical, but Repζp�r0 q Ñ
�8, then we can take our sector exactly as IV.3.2(a) with the same paths.

Whence there remains to treat the case Repcp�rq ¡ 0. Irrespectively of
the position of c, by the calculation preceding IV.3.2(c) we can find sectors
Σ�, Σ� � tRepzq ¡ 0u starting at c, the former being above and the latter
below, which eventually contains rays with Repζp�rq Ñ �8. Plainly, however,
it is impossible to use �8 as a base point without permitting paths which are
somewhere tangent to imaginary in the ξ-plane. We must, therefore, be rather
carefull beginning with an analysis of the critical condition, which is really only
an approximation to the truth, viz:

dRepξq dRepzq � 4πpp� rq |ζ|2pr�1q Im
�
ζpR

�
1
ζ


 	
ddc|ζ|2.

Now consider ζ � tceiε of argument close to that of c, and in an abuse of nota-
tion, put Rp1{ζq � Rp0qRp1{ζq so that we have Rp0q � 1 and we’re examining
the vanishing of the real analytic function

Im

#
eipε R

�
1
tc
e�iε


+
In the degenerate case that Rp1{ζq has zero imaginary part on the ray through
c, this goes like ε p1�Op1{tqq, so for t " 0, it only vanishes on ε � 0. Otherwise
there is 1 ¤ k ¤ r, and a real analytic unit upr, εq such that the function may
be written, after multiplication by a suitable unit as,

ε� 1
tk
u
�1
t
, ε
�

where we permit the fixed ambiguity � so that u takes values in R¡0 - the am-
biguity, of course, being fixed since the pε, tq space is connected. Thus in terms
of the coordinate τ � t�1 at 8, there is a real analytic change of coordinate
τ ÞÑ ρ taking positive to positive, such that the equation becomes,

ε� ρk
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Whence it has exactly one solution, and we summarise this by way of,

IV.3.3 Fact For t " 0, there is a real analytic function t ÞÑ cbptq P S1, such that
tbptqc is the unique point in the ζ-plane where the level curves Repξq � const,
Repzq � const have a tangent on |ζ| � t in any open sector around c which does
not contain any other critical points. The function bptq satisfies the estimate
bptq � 1�Op1{tq.

In a slight abuse of notation, therefore, we replace our sectors Σ�,Σ�

by domains with the same respective bounding rays in the z-plane on which
Repζq Ñ 8, but replace the common boundary R�c by the image of cbptq in
z-plane, while continuing to use the same symbols Σ�,Σ�, albeit Σb�,Σ

b
� if

there is risk of confusion. The derivative of Repξq along this common boundary
may be conveniently calculated in the ζ plane, and it is, unsurprisingly, asymp-
totic to a straight line in ξ space bounded away from purely imaginary with
Repξq Ñ �8. Consequently in the ξ plane our domain has the form shown
in figure IV.3.3; in which the salient features are that Repξq increases along

ξ
�
Σb
�,s

�

bpsq
Repξq

Impξq

Figure IV.3.3

the boundary which has a unique imaginary tangent at bpsq, for b the implicit
function of s defined by IV.3.3, and, of course, |ξ| " 0.

Now define domains L�, L� by way of a definition of their fibres over s P C,
viz: rather than taking the lower, respectively upper, boundary to be the curve
b, one takes from bpsq a straight line of fixed gradient in the z-plane very close to
the tangent to the ray through c, but slightly below, or above, as appropriate.
Whence the fibres L�,s conserve the salient features of Σb�,s observed above.
If one is not too greedy in the choice of the ray bounding L� on which Repξq
goes to �8, the level curves parallel to the straight line that we have added
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are uniformly asymptotic to straight lines in ξ-space bounded away from purely
imaginary. Observe furthermore that the L�,s are unchanged under rotations in
the y-variable, whence if d2 is the Euclidean distance in y there is a well defined
domain L�,d2 with exactly the same properties which corresponds to the effect
of shrinking the domain of definition of y to a disc of radius d2 less. With this
in mind, we intend to employ the implicit function theorem on the domains,

U�pd1, d2q � L�pd1, rd2q X L�,d2

with L�pd1, rd2q � C2 in ps, zq coordinates as per pre I.3.3, and rd2 the function,

� log
�

1� d2

Y



for Y the radius of the disc in y, so that for e2   d2,

rd2 � re2 ¥ d2 � e2
Y � e2

¥ d2 � e2
Y

Consequently for a suitable constant C determined by the straight line to which
the curve b is uniformly asymptotic, any n P N, and any function g,��Bng��

U�pdq
¤ n!Cn

Y n

pd2 � e2qn
��g��

U�peq

Let us employ this to invert the operator 1�D � 1� xpB as follows: Observe
that Dn is an operator of the form,

ņ

i�1

ci,nζ
�ipnqBi

where ipnq ¥ pn, whence,��ζpnDng
��
U�pdq

¤ Cn
Y n

pd2 � e2qn
��g��

U�peq

The constant Cn depending only on B and n. Now for n sufficiently large to be
chosen, put

Tg �
n�1̧

i�0

Dig

and, rKgpξ, sq � e�ξ
» ξ
�8

etpDngqpt, sqdt

where for paths we come in along the ray with Repξq Ñ �8, then in the ξ-plane
go parallel to the real axis, and if necessary (and evidently around b it is) go
straight down the imaginary axis. This operation admits a bound,�� rKg��

U�pdq
¤ C

��Dng
��
U�pdq

� 2
��ζpnDng

��
U�pdq

» 8

1

dt

tnp{pp�rq
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so for n large enough, i.e. np ¡ p� r, K � T � rK yields a right inverse to P 1p0q
satisfying the bound, ��Kg��

U�pdq
¤ Cn

Y n

pd2 � e2qn
��g��

U�peq

for some constant Cn depending only on B and n. The domains U�pdq are a little
complicated but they do contain a L�,δ for δ a bit bigger than d, and |ζ| " 0
provided the lower, respectively upper, boundary line is take sufficiently close
to parallel to the boundary b, so, in fact an open neighbourhood of Σb� for some
slightly smaller disc. Let us summarise all this by way of,

IV.3.4 Fact Let f ÞÑ P pfq be not just an operator as IV.2.1 but actually
polynomial in B and B

By , and even possibly with extra variables zj in which
it is also polynomial in the the B

Bzj
, provided that the functional derivative is

conserved, then for any value of the argument of x such that Re
�
Rp0qxp{|xp|� ¡

0 and not critical with Re
�
xp�r{|xp�r|� ¡ 0 there is an open sector S around

x, and a smaller (in fact any strictly smaller than the original) disc ∆ Q y such
that for ∆m a domain for the extra variables the equation

P pfq � g

has a solution in Updq, U � S � ∆ � ∆m, provided
��g��

U
is sufficiently small.

As per I.3.6 the sufficient smallness condition can be guaranteed by the simple
expedient of shrinking radii, provided g vanishes to a sufficiently high order at
the origin determined by P . In the case that the argument is critical, say c,
there are open neighbourhoods S�pcq, S�pcq of the domains Σ�, Σ� in the leaf
space as discussed above in which all the above remains true on S�pcq � ∆m.
The domains S�pcq have the same tangent space at the origin as sectors with
a ray on c, and the other above or below as appropriate, but one of them may
very well fail to contain even a closed sector containing c.

To which let us adjoin,

IV.3.5 Remark The curve of critical points is a fairly serious obstruction. Lo-
cally at bpsq in ξ space we have a situation like in figure IV.3.5, where in a
poor approximation we take b to be R�c, i.e. the Euclidean distance in ξ space
from b to this line can grow polynomially and c�, c� are rays above and below
intersecting the boundary curve in b� and b�. Irrespectively the Euclidean dis-
tance between b� and b not only grows polynomially, but on the face of it any
attempt to find a right inverse to 1� B

Bξ which is bounded at b� and b� appears
doomed to failure due to the change in the derivative of Repξq at b, which seems
to preclude any estimate for |dγ| in terms of dRepγq along any path.

There remains to discuss the purely imaginary cases; to this end, as pre
IV.3.2(c) denote by j a solution of Rp0qjr � �i, then we have the following
possibilities,

IV.3.6 (a) Easy Imaginary Case Repjp�rq   0, exactly as per IV.3.2(a),
any small sector around j does, and ultimately conclude IV.3.4 with a sector
around j.
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Figure IV.3.5

IV.3.6 (b) Still Easy Imaginary Case Repjp�rq ¡ 0. Here by the observa-
tions pre-ceding IV.3.2(c) the nearest critical point c in the Repzq ¡ 0 plane has
Repcp�rq Ñ �8, so we can find a sector à la IV.3.2(b)/(c) all but ε of which is
in the Repzq ¡ 0 plane, and conclude IV.3.4 with a sector around j.

So now we have the rare, but not impossible, jp�r � �i, i.e. imaginary
z going to imaginary ξ, at least asymptotically, and it is necessarily a critical
value. Around j there are regions in Repzq   0 and Repzq ¡ 0 and we have
further sub-distinctions,

IV.3.6 (c) “Bounded” Case For arguments k close to j, and RepRp0qkrq   0,
Repkp�rq   0. Here IV.2.4(c) is valid verbatim, i.e. we can find a sector S around
j, and a cone in the logarithm of y, and we have a conclusion as per IV.2.5. We
could have attempted this fully analytically using the boundary curve b, and
�i8 in one of the components, but it’s not worth the trouble.

IV.3.6 (d) “Unbounded” Case As IV.3.6(c) but Repkp�rq ¡ 0. One can
just do this from �8, even with a bounded right inverse K, viz: as paths one
can come in along the ray which goes to �8, and then horizontally straight
across in the ξ-plane, since the bounding curves Repzq � σ are always to the
right of the ray. Whence the conclusion is as per IV.3.4 with an actual sector
around j.

IV.4 Last Case

There remains to discuss the possibility defined by,

IV.4.1 Set Up Let px, yq P ∆2 be coordinates in a bi-disc such that x � 0,
respectively, y � 0, is the strong, respectively weak branch of a node with
saturated generator B and r as per IV.2.1. Let q P N, p P Z¥0 be given and
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f ÞÑ P pfq a differential operator sending 0 ÞÑ 0 polynomial in the fields,

xpyqB, xr
�
qx

B
Bx � py

B
By



with functional derivative of the form

p1� εq �D

where ε is a function vanishing at the origin, and the �1 part D is a field of the
form punitq � xpyqB, where the unit is chosen so that Dpxpyqq � �

xpyq
�2. Up

to a homothety in y anything of which the �1 part of the functional derivative
is parallel to a node while vanishing to order p, respectively q, along the strong,
respectively weak, branch, and nowhere else, has exactly this form, after scaling
by a unit.

Now proceed exactly as before, restricting to a sector S �∆, introduce the
normal form for B and the functions ζ, zpζq, s as before. A slightly more conve-
nient rescaling is to only rotate in the y variable so that Dpxpyqq � λpxpyqq2,
λ P R¡0 fixed, so that we can shrink |y| as we please. Whence if ξ � pxpyqq�1,
then in ξ, s coordinates the functional derivative is

p1� εq � λ
B
Bξ

and we first treat the case ε � 0. Now observe that, sq � ξ�1 exp
�rzpζq� whererzpζq � zpζq � p log ζ and by construction zpζq has the form,

Rp0q
r

ζr
�
1� c1ζ

�1 � � � � � crζ
�r log ζ

	
Whence there is no practical difference between rzpζq and zpζq, i.e. ζ ÞÑ rzpζq is
still a conformal mapping in neighbourhoods of 8 on sectors of aperture up to
2π{r. Now for a suitably large R consider the regions Imprzq ¥ R, respectively
Imprzq ¤ �R. The conjugacy which brings us into the normal form IV.1.3 in
the rz-plane is branched within π{2 of �1, so whichever of these half planes we
wish to study we may suppose that the branch is in the other. Consequently
let’s say we’re in the upper half plane H�

R , and with no-branching there in.
Choose a branch of the logarithm η of ξ in a strip domain T with Impηq   0,
branched on the right (i.e. Repξq ¡ 0), and suppose further that ξpT q is a
rotated rhombus adapted to the branch, cf. figure III.1.1, around which, either
on the left or right, one can go from the point Repξq minimum to any other with
Repξq strictly increasing, i.e. adjust the left boundary of T a little.

With these prescriptions, the domain of the logarithm σ of sq is precisely
H�
R , and we have a fibring σ : LR Ñ H�

R of the total space by the leaves of B,
so, fibres: pσ � T q XH�

R . Observe that, LR
��
H�

R�2π

� LR�2π, so it will suffice to

solve our equation on the domains rLR � LR
��
H�

R�2π

. This is rather convenient
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Figure IV.4.1

since pξ, σq embeds rLR in C2 with fibre over σ exactly the complement of our
rhombus adapted to the branch. Whence,

pK0gq pξ, σq � e�ξ{λ
» ξ
�8

et{λgpt, σqdt
σ

is a left inverse for ε � 0 which is absolutely bounded irrespective of any shrink-
ing in x or y. While this can be analytically continued to the surface of the
logarithm of s, it can not be done in a bounded way. We are, however, exactly
in the situation of II.4.2, so, again we can glue the rLR as the branch varies to
obtain a domain U�

R of aperture up to 3π in the ξ variable, together with a
bounded right inverse on the same, which we continue to denote by K0.

The situation is marginally more complicated in the right half planes Reprzq ¥
R. Taking T to be a strip domain implies that the domain of the logarithm σ of
sq is all of C. This gives a fibring σ : ΛR Ñ C of the leaf space of B with fibres:
tReprzq ¡ Ru X pσ � T q, so viewed under the conformal mapping ξ,

σ
�
Lσ

� � #
|ξ| ¥ eR�Repσq Repσq   R, ξ R b
|ξ| ¥ 1 Repσq ¥ R, ξ R b

Supposing, after appropriate homothety that the domain of ξ is the unit disc
minus the branch b. A priori, this cannot quite be done even for a branch on the
real axis, due to the imaginary tangent on the boundary, and the augmentation
of this problem as Repσq increases. This is, however, little different from the
problem already encountered in III.1.1, and we may simply adopt the expedient
of defining a domain V bR � ΛR fibre by fibre, in such a way that the excluded
region in the plane of ξ is always a rhombus adapted to the branch, and, of
course V bR � ΛR�C , for some constant depending on the branch. The difference,
of course, between our current situation and say III.1.1 is that such surgery
has no relation to our base point, which is always �8, so that in V bR we have
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an absolutely bounded right inverse pε � 0q irrespective of any homotheties or
shrinking given by,

pK0gq pξ, σq � e�ξ
» ξ
�8

etgpt, σqdt

and again these patch to a bounded right inverse, again denotedK0, on a domain
VR of aperture up to, but never equal to, 3π.

As such, if we took the branching in rz to be along the negative real axis, then
we have right inverses K0 in domains U�

R , U�
R , and VR, with a minor lack of

symmetry between the first two depending on whether the strip domain T Q η is
in the upper or lower half plane. Irrespectively, they glue to a region UR which
certainly contains,!rz : | Imprzq| ¡ R� 3π, Reprzq ¡ R� C

)
�
!

logpξq : logpξq P T
)

for C a constant depending on how close we push the imaginary width of T
to 3π. Plainly the regions U�

R and U�
R do not meet, but where either of these

meets VR we find that the difference, E, say, between the operators we have
constructed on them is a bounded operator such that�

1� B
Bξ



pEq � 0

so eξE takes values in the base of the fibration and is bounded by,

inf
ξPLs

eRepξq}E}

A priori, perhaps not every leaf in the intersection has paths on which Repξq Ñ
�8, but many do, e.g. | Impσq| ¡ R � 3π, and the base of the intersection is
connected, so, in fact E � 0. Whence the K0 patch to a right inverse in all of
UR. We can then take care of the perturbation in the usual way, i.e.

P 1p0qK0 � 1� εK0

with everything bounded irrespective of any shrinking in x or y, so, after such
ε is sufficiently small and the right hand side becomes invertible.

At this point, however, we have an unfortunate last minute complication vis-
à-vis the behaviour around rz P R 0. Outwith the good fortune that our normal
form is analytic in the original bi-disc, which would, indeed be very fortunate
since it’s true with probability zero, we necessarily have a branch in the left half
plane of rz, so we’ll content ourselves to investigate a domain for rz of the form:

Z�R1,R2
�  rz : Reprzq ¤ �R2, Imprzq ¥ �R1

(
or the reflection in the real axis, Z�R1,R2

thereof. Taking our strip T in the
lower, respectively upper, half plane, we again have the convenience that the
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domains of σ and rz coincide. Whence the leaf space for B expresses itself as
a fibring σ : L�R1,R2

Ñ Z�R1,R2
with fibres, pσ � T q X Z�R1,R2

. Observe that
L�R1,R2

��
ZR1,R2�2π

� L�R1,R2�2π, so it will suffice to work on the sub-domains,

M�
R1,R2

� L�R1,R2

��
Z�R1,R2�2π

Under the conformal mapping ξ, the fibres become annuli with a fixed inner
circle, and outer circle expp�Repσq � R1q cut along the branch b. Whence,
in fact, this descends to an actual fibring over the punctured disc (of radius
expp�R1q) with coordinate sq, i.e. M�

R1,R2
is the base change of this to the

surface of the logarithm. Nevertheless this is something that we know, since we
first encountered it in II.1 even without the inner circle, that this is something
we can’t do.

Consequently we have to accept the solution of the form already explained
in §III.3. More precisely, for a given value ψ of the argument of sq, replace
the right boundary of Z�R1,R2

by the pre-image under the exponential of an
appropriately large rhombus adapted to the argument of sq, to form a domain
Z�ψ,R2

.
Again L�R1,R2

��
ZR,R2

� L�R1,R2
for R ¡ R2, so there’s no loss of generality

in supposing that the domain of σ is some Z�R,R2
, R " R1, strictly to the left

of Z�ψ,R2
, and our leaf space, again restricting to R2 � 2π, may be taken, after

descent, to be a fibring, sq : L�ψ,R2�2π Ñ ∆� over a punctured disc with fibres
the rhombus multiplied, whence stretched and rotated, by s�q. This therefore
gives a domain like that post III.3.2 with a holomorphic base point, ppsq, where
Repξq is minimal for aperture up to π around s. The desired right inverse is
therefore,

pK0gq ps, ξq � e�ξ
» ξ
ppsq

etgps, tqdt

which is absolutely bounded by the various angles, wholly independent of any
scaling, so, modulo adjoining a small Euclidean disc in ξ around the base point,
and taking the usual power series to deal with the 1� ε term, we have a right
inverse K to P 1p0q which comfortably satisfies the conditions of the implicit
function theorem, albeit at the price of arguments in s, as already encountered
in III.3. Whence it’s here that the polynomiality in the fields IV.4.1is really
required - otherwise one could do much better. In any case, we have,

IV.4.2 Fact Let f ÞÑ P pfq be a differential operator of the form IV.4.1, even
with extra variables zj , 1 ¤ j ¤ m, with polynomiality in the B

Bzj
, and even

polynomial in x B
Bx , y

B
By if we’re away from rz P R 0, provided, as ever, that

the functional derivative is conserved. Then there is a domain UR as described
above (so, modulo conditions on the radius better than an open sector excluding
the values of x for which Rp0qxr{|xr| P R 0 in the x variable and of argument
up to 3π in xpyq) such that on UR �∆m the equation,

P pfq � g
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has a solution in URppdqq provided
��g}UR

is sufficiently small. The smallness
criteria can simply be guaranteed by vanishing of g at the origin, and diminishing
the original radii in x and y, possibly at the price of loosing a little aperture
in S, and of course, very small shrinking of the extra domain ∆m. Otherwise,
i.e. Rp0qxr{|xr| P R 0, we can take a domain U� (precise form as above) which
contains closed connected sectors above, � � �, respectively below, � � �, x
and the other boundary the ray through x, for which every value of the argument
of xpyq admits an open sector S of aperture up to π, such that on replacing UR
by U� all of the above conclusions continue to hold.
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V 3-D Centre Manifolds

V.1 Algebraic Reductions

V.1.1 Set Up (Characteristic 0) Let B be a germ of a singular vector field
around a point, where germ may be understood as being in any of Zariski, étale
or analytic topologies, according to the pleasure of the reader. Denoting the
maximal ideal of the point by m we further suppose:

(a) The induced linear map

B :
m

m2
ÝÑ m

m2

is non-nilpotent with one non-zero eigenvalue, counted with multiplicity, which,
for convenience, we’ll suppose to be 1.

(b) B is non-zero in co-dimension one.
Although the discussion will always be local, we wish to make further sim-

plification by way of blowing up, so we’ll think of this as a foliation X Ñ rX{Fs
(equivalently, a rank one saturated sub-sheaf of the ambient, and always smooth,
tangent sheaf) with singularity as prescribed above. The given singularity is
canonical in the sense of [MPb], so, a fortiori has the following property

(c) For any sequence of blow ups in smooth invariant centres,

π : rX � Xn ÝÑ Xn�1 ÝÑ � � � ÝÑ X1 ÝÑ X0 � X

i.e. the centre of Xi Ñ Xi�1 is invariant by the induced foliation on Xi�1, π�B
is everywhere defined and continues to satisfy (b), equivalently generates the
induced foliation on rX.

(d) For any point rx of the induced singular locus of the induced foliation onrX, the corresponding linearisation of π�B on the Zariski tangent space at rx is
non-nilpotent.

With this rather laborious introduction out of the way, observe that in the
completion pO of the local ring in the maximal ideal, the Jordan decomposition
may, in formal coordinates x, y, z be written as,

B � BS � BN , BS � z
B
Bz , BN � apx, yq BBx � bpx, yq BBy � cpx, yqz BBz

Our goal, in a sense to be made precise is “the convergence of z”, and before
we can do this it will be necessary to simplify the situation by way of blowing-
up. By way of illustration, consider the case where our original singularity
is isolated, and denote by π : rX Ñ X the blowing up in this point with E
the exceptional divisor. Off the proper transform rS of the formal invariant
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hypersurface S : pz � 0q, the induced foliation is smooth except at one point, p,
say (� r0, 0, 1s for E �Ñ P2 in homogeneous x, y, z coordinates). As it happens
at p there are 3 non-zero eigenvalues, p1,�1,�1q, but there is a better functorial
property that occurs. More precisely, we are supposing that our original foliation
F has the form:

0 ÝÝÝÝÑ Ω1
rX{Fs ÝÝÝÝÑ Ω1

X ÝÝÝÝÑ KF � IZ ÝÝÝÝÑ 0

where the aforesaid saturation condition defines the left and right hand sides
of this sequence, albeit there are more functorial ways to make the definition
which justify the notation, and in the present discussion IZ � pz, a, bq. On rX,
however, there is an exact sequence,

0 ÝÝÝÝÑ Ω1
r�X{FsplogEq ÝÝÝÝÑ Ω1�XplogEq ÝÝÝÝÑ π�KF � IW ÝÝÝÝÑ 0

Again the left and right hand terms being defined by the saturation requirement
but here for T�Xp� logEq. In any case, off rS the ideal IW has no support, and
we formalise this as follows:

V.1.2 Definition Let X Ñ rX{Fs be a foliation with canonical singularities,
and, as per V.1.1(c),

π : rX � Xn ÝÑ Xn�1 ÝÑ � � � ÝÑ X1 ÝÑ X0 � X

a sequence of blow ups in invariant centres lying over the foliation singular
locus in X, with E the total exceptional divisor. Then the locus of non-log flat
points is the sub-scheme defined by IW , where IW is the ideal in the short exact
sequence,

0 ÝÝÝÝÑ Ω1
r�X{FsplogEq ÝÝÝÝÑ Ω1�XplogEq ÝÝÝÝÑ π�KF � IW ÝÝÝÝÑ 0

Any point not in the support of this ideal will be referred to as log-flat.
To clarify this definition, let us offer,

V.1.3 Remarks: (a) Suppose more generally X Ñ rX {Fs is a foliated Deligne-
Mumford stack with X smooth, or even just foliated Gorenstein with canonical
singularities, and otherwise arbitrary. Then it follows from [BM97] that the
singular locus Z of F can be monomialised by a sequence of invariant blow ups
for the action of F . A priori this may not be same as the sense of V.1.1(c) since
the pull-back of TF (� K_

F ) along a blow up need not be saturated. However, the
singularities are canonical, so, in fact, there is no such problem. Consequently,
whenever the singularities are canonical there are sequences such as that of
V.1.2 which are as global as one could probably wish (i.e. with respect to étale
patching) and yield an exceptional divisor E on rX which is both invariant, and
contains the induced singular locus.

(b) Log flatness is conserved by invariant blowing up. Actually it’s also con-
served by the only other operation that is guaranteed to preserve the canonicity
of the singular locus, viz: blow up in an everywhere transverse centre, but this
is less relevant.
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(c) Our ultimate goal is to understand “centre manifolds”, i.e. the a priori
purely formal sub-scheme defined by the vanishing of all the eigenvectors with
non-zero eigenvalue in the Jordan decomposition at a point. By hypothesis,
log-flat points have an invariant algebraic (i.e. component of the exceptional
divisor) through them with non-zero eigenvalue. Whence in such a study, the
dimension has been reduced by one in the strongest possible way as soon as
log-flatness occurs.

Returning to our initial example of an isolated singularity in dimension 3,
we conclude that we can safely ignore everything that occurs outside rS. In
the case where a, b P m2, the trace of rS (necessarily E X rS by the way) is a
connected component of the singular locus, Z, say, by abuse of notation and rS
is a formal sub-scheme of the completion of X in Z. In a bad case where a P m,
but b P m2, the foliation on rS is smooth except at one point q, say, and the
ambient foliation still has an isolated singularity of the type being discussed.
Most of the time the situation on rX will already be that of the previous good
case, but in very bad cases we may have to blow up once more, this time in q,
to obtain the good case. Regardless, we see that the isolated situation quickly
reduces to a non-isolated singularity which we summarise by way of,

V.1.4 Triviality Suppose our singularity is as per V.1.1, but isolated, then
there is a sequence of blow ups in singular points (of length at most 3) such
that every point of the induced foliation rX Ñ r rX{Fs is either,

(a) Log-flat.

(b) A singularity of type V.1.1 with a non-isolated (in fact isomorphic to P1)
singular locus, which is also the non-log flat locus.

The above possibility V.1.4(b) is actually a somewhat special case of the general
situation since we must distinguish between components of the singular locus
according to the number of eigenvalues at their generic point. In the general
non-isolated case at hand we may write,

BN � f1px, yqn1 � � � fkpx, yqnk

�
αpx, yq BBx � βpx, yq BBy

	
� cpx, yqz BBz

in the completion of the local ring, with fi irreducible and α, β (possibly units)
relatively prime and all the fi vanishing at our point 0 under consideration. In
particular all the components of the singular locus are L.C.I., and we distinguish:

V.1.5 Definition (dimension 3) A central component C of the singular locus is
a non-isolated one where the generic (whence everywhere if the singularities are
canonical, and/or in the germ sense) number of non-zero eigenvalues counted
with multiplicity is 1.

Let I be the ideal of the union of the central components. This is L.C.I, so
B descends to a linear map,

B :
I

I2
ÝÑ I

I2
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of the (locally free) co-normal bundle, which is rank 1-everywhere, so the kernel
and co-kernel are locally free O{I-modules of rank 1. The latter is naturally the
kernel of 1�B, i.e. even if we were global rather than local, TrpBqbB_ defines a
no-where vanishing section of OpKF q{I, which can thus be identified with O{I
by the same so that locally the map is,

f ÞÝÑ Bpfq
TrpBq mod I2

In any case, linear algebra gives,

V.1.6 Triviality In the completion pX of X in I (and whence globally if that
were the context) there is a smooth formal hypersurface S such that for any
point c P C, the completion Sc of S at c is cut out by the unique eigenvector of
the Jordan decomposition of B at c which has non-zero eigenvalue and defines
a smooth formal sub-scheme of the completion Xc of X in c, i.e. the centre
manifold is a well defined formal sub-scheme of pX.

Again, let us clarify what is going on,

V.1.7 Remark As we’ve seen in II.2, and again let us emphasise [McQ] §1.5
as a source of further details, this is false at non-central components, i.e. even
for something with Jordan decomposition at a point,

z
B
Bz � xy

B
By

one can make examples, even algebraic ones, where the failure to converge in
the completion of z � y � 0 is as bad as one likes. This is the phenomenon of
the beast. Nevertheless V.1.6 defines a larger object than that given by Jordan
decomposition and it is this object that is to be understood as the formal central
sub-variety, so, by definition, it’s trace is the union of the central components.

This said any blow up in any point in any central component, is log-flat
everywhere off the proper transform of S. Inside S such operations make the
induced vector field improve in the usual way, i.e. after a finite number of steps
the induced foliation in S will have canonical singularities and not just the cen-
tral, but also the non-central components form a simple normal crossing divisor
in S. At this point we may blow-up in the central components themselves to
obtain that every central component of the proper transform rS of S is the in-
tersection of a component of the exceptional divisor with rS. In particular rS
is even a formal sub-scheme of the completion of X in these divisors. Plainly,
this entire discussion is étale local, i.e. globalises, and is applicable globally,
were that the context, to any connected component of the singular locus where
the singularities are of the form V.1.1. Globally, if the singularities are canon-
ical on a non-isolated connected component, the only other possibility is that
generically there are 2 eigenvalues. Where the number of eigenvectors (with
multiplicity) goes to one, we have already smoothed such components, and else-
where they’re already smooth for co-dimension reasons. Consequently we can
blow-up in these too. Now, while S is not a formal sub-scheme around such
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a component, it does determine a formal sub-scheme in the completion of the
fibre in the exceptional divisor afforded by this operation, with trace the point
where the proper transform of the neighbouring central component meets the
divisor. Away from this point everything is log-flat, which is a Zariski open
condition, so around this fibre an explicit calculation via Jordan decomposition
implies that Zariski locally, all non log-flat points lie on the proper transform
of the central components. Whence, we have achieved:

V.1.8 Fact Let X Ñ rX{Fs be as in V.1.1, then there is a sequence of blow
ups,

π : rX � Xn ÝÑ Xn�1 ÝÑ � � � ÝÑ X1 ÝÑ X0 � X

in smooth centres of the induced singular locus such that the proper transformrS of the formal central sub-variety satisfies,

(a) Off the trace of rS (equivalently the induced central components), rX Ñ
r rX{Fs is log-flat.

(b) Every component of the singular locus meeting rS (including the non-
central ones) is the intersection of a component of the exceptional divisor
with rS, which is still simple normal crossing in rS.

(c) The induced foliation in rS has canonical, and even for convenience re-
duced, i.e. no eigenvalue in Q�, singularities.

Furthermore if X were an étale neighbourhood of a foliated Deligne-Mumford
stack X Ñ rX {Fs with canonical singularities, then all of this can be done
globally, i.e. the sequence π is as above but globally, and our particular instance
is the restriction to X of the same. This straightforward, if lengthy discussion,
may be brought to a close by way of observing:

V.1.9 Corollary Let things be as per V.1.1, and for π of the form V.1.8, and in-
deed even augmented by further blow ups in the induced singular loci contained
in central components, we can étale or analytically locally (according to the
context) achieve after completion in the central components of our bi-rational
modification a formal generator of the induced foliation of the form,

z
B
Bz � xpyq

"
apx, yqx BBx � bpx, yqyε BBy

*
where x � 0 is always the local equation of an exceptional divisor, p P N, and
q P Z¥0. If q ¡ 0 then y � 0 is also to be understood as an exceptional divisor,
and ε � 1, or 0 according as this is the case; which may or may not define a
central component depending on whether we’re at a beast or not, and the field
δ which multiplies xpyq is saturated with canonical singularities everywhere
(following standard usage smooth is allowed). Notice the completion is in the
ideal pz, xy�q, with � � 1 if z � y � 0 is central and 0 otherwise, so the entire
singular locus may be covered by finitely many opens where this holds, should it
be compact, or always in the étale “type fini” setting, if that were our context.
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Proof. By V.1.6 the centre manifold is already a well defined formal sub-scheme
of the singular locus encountered in X, so a fortiori after the above completion.
As such, let V be a formal affine in the completion in the ideal I defined in V.1.9,
then shrinking V as necessary we may suppose that we have a local equation
z � 0 for rS and a formal generator pB such that pBpzq � z.

We distinguish the case y non-central, so that I may be written pz, xq and
the asserted form in x and y is certainly true modulo z. Convergence in the
topology of completion in z � 0 is stronger than that in OV (strictly speaking
ΓpOV q but this is cumbersome), so we proceed modulo zk, starting at k � 1, we
may suppose the assertion holds modulo zk, with a,b the functions encountered
modulo z. If, say, q � 0, we attempt a substitution x ÞÑ Xp1�ξzkq, y ÞÑ Y �ηzk,
ξ, η functions of x, y. Then, modulo zk�1 we find,

z�k
�BX
X

�XpapX,Y q
	
� z�k

�Bx
x
� xpapx, yq

	
� xp

 
pξa� xξax � ηay

(
� xpδpξq � kξ

z�k
�
BY �XpbpX,Y q

	
� z�k

�
By � xpbpx, yq

	
� xp

 
pξb� xξbx � ηby

(
� xpδpηq � kη

So there is a purely linear equation to solve in OV
��
pz�0q

of the form

k

�
ξ
η

�
�N

�
ξ
η

�
� z�k

�
x�1Bx� xpapx, yq
By � xpbpx, yq

�
and N is topologically nilpotent since x is and δpxq P pxq. The other cases
are similar, i.e. y non-central but ε ¡ 0, as above but use the substitution
Y � yp1�zkηq, which again is the substitution to use in the central case, where
one appeals to the nilpotency of xy. �

V.2 Analytic Preparations

From V.1.9 the reader may safely infer, or jump to, the form of the PDE that
we must solve to find the centre manifold. At first glance, one might think that
everything has been done, and this is true when, in the notations of V.1.9, q ¡ 0.
Otherwise there is a lacuna because the polynomiality of the operator in the
fields as hypothesised in III.3.1(c), and IV.1.1 is not satisfied a priori because
we are missing an invariant hypersurface,i.e. the “y � 0” plane, which inter
alia, is really necessary to afford sufficient space to apply the implicit function
theorem in these cases.

The first step to remedying the said lacuna is to find what corresponds to
the “y � 0” plane intersected with the formal centre manifold. We have two
cases to consider, viz:

V.2.1 Set Up Suppose we’re in the situation V.1.8 then we require to find an
invariant surface “y � 0”, so, a priori the curve “y � z � 0” in the cases where
the Jordan form in the complete local ring for a formal generator of the foliation
may be written as,
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(a) Linear Case: z
B
Bz �

xp

1� νxp

�
x
B
Bx � λy

B
By

	
, p P N, ν, λ P C, Repλq   0.

(b) Linear Case bis: As above but λ P Q 0, so the Jordan form is more
complicated, but it’s precise form of no actual importance, which would
not be the case if λ P Q¡0.

(c) Nodal Case: z
B
Bz �x

p
�
Rpxqy BBy �

xr�1

1� νxr�p
B
Bx

	
, notation as per IV.2.2.

Now observe that in all of these cases the following preparations may be achieved
modulo the maximal ideal m at the point to any order k without prejudicing
the convergence, viz.:

Bz � z pmkq, By � λxpupx, yqy pmkq, Bx
x
� xp�rvpx, yq pmkq

where r � 0 in the linear cases, and λ � Rp0q in the nodal case, with u, v P 1�m.
Blowing up in a point we improve to a q ¡ 0 situation except around the proper
transform of the formal curve in question. We may, however, now multiply by
a unit so that, x�1Bx � xp�r. Changing the notation accordingly with m the
maximal ideal in the blow up, we may now suppose:

Bx � xp�r�1, Bz � upx, yqz pmkq, By � λxpvpx, yqy pmkq

and, again, u, v P 1�m, but λ possibly different, i.e. λold� 1 in the linear cases.
Blowing this up, again in the point, we may further suppose that u, v P 1� pxq
and the congruences hold modulo xk (actually xk�1 so we change notation
appropriately). Now we look for our curve in the form x ÞÑ px, ηpxq, ζpxqq
which amounts to solving the ODE,

xp�r�1η1pxq � λxpvpx, ηqη � xkapx, η, ζq
xp�r�1ζ 1pxq � upx, ηqζ � xkbpx, η, ζq

where k is as large as we like, and a, b are convergent functions. In particular
we can divide the first equation by xp, and we find a functional derivative,�

η
ζ

�
ÞÝÑ

�
λ� xr�1 B

Bx 0
0 1� xr�p�1 B

Bx

� �
η
ζ

�
� xkA

�
η
ζ

�
where A is a matrix of functions in x, and we change k as we please. Now let’s
consider the case A � 0, and look for a right inverse of the form,�

K1 0
0 K2

�
We have 2 cases to consider. The first, r � 0, is rather easy. The construction
of K2 is as per II.4 with total aperture 3π{p, and branching on the right as
described in II.4.2. We can’t do better than this, so there’s no point in fussing
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over the analyticity of K1. Consequently we immediately pass to the surface of
the logarithm, say x � eξ, Repξq ! 0, and ξ is a strip of width 3π, so that:

pK1gq pξq � �eλξ
» ξ
�8

e�λtgptqdt

is a bounded right inverse since Repλq   0. Now shrinking the disc in x as ap-
propriate and applying the usual power series for bounded perturbations with a
bounded right inverse, yields a bounded right inverse for the functional deriva-
tive.

The case r ¡ 0 is much more fastidious. We have to respect the conditions
of the implicit function theorem, actually here it’s just the contraction mapping
principle, and the combinatorics are sufficiently fastidious that we won’t even
bother trying to get the best possible, i.e.

V.2.2 Digression on Branching For any value of the argument of ζ � 1{x
there is an open sector about the same such that we can construct K1,K2 as
bounded integral operators by integrating from the point where Repλζrq, respec-
tively Repζp�rq has a minimum, thus possibly, but by no means necessarily, �8.
To avoid any inconvenience when restricting the radius of x as the inner bound-
ary for the domain of ζ, rather than a piece of circle take a suitable straight line
Repρζq � constant such that dRepρζqdRepλζrq, respectively dRepρζqdRepζp�rq
are uniformly bounded below by c1|ζ|r�1, c2|ζ|p�r�1 for suitable constants c1, c2
and all ζ in the sector.

Let us therefore summarise our conclusions,

V.2.3 Fact For x restricted to a sector S of width 3π{p in the linear cases and
otherwise as per V.2.2 in the nodal case, with branching in the former case
as per II.4.2, there is a smooth invariant curve x ÞÑ px, ηpxq, ζpxqq, x P S, as
tangent to the normal form given by y � z � 0 as we please, i.e. look for a
solution η � xerη, ζ � xerζ for any e but with k " e so as not to change any of
the above.

Effecting the change of coordinates y ÞÑ y� ηpxq, z ÞÑ z� ζpxq we therefore
still have for any k we wish,

Bz � uz � xkb, By � λxpvy � xka

for a, b now functions on S �∆2. Now however py, zq is an invariant ideal, so it
must contain a, b. Let us therefore write,

Bz � ruz � xkβy, By � λxprvy � xkαz

for ru � upx, yq � xkcpx, zq, rv � vpx, yq � xkdpx, yq, and some functions α, β of
all the variables. Now let’s look for an invariant hypersurface ry � 0 in the form
y � ry � zfpx, zq. This amounts to solving the PDE:

f
!rupx, zf, zq � xkβpx, zf, zqf

)
� Bf � λxprvpx, zfqf � xkαpx, zf, zq
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where B is the operator,

f ÞÝÑ �rupx, zf, zq � xkβpx, zf, zqf�zfz � xp�r�1fx

so that the relevant functional derivative of the appropriate operator f ÞÑ P pfq
sending 0 ÞÑ 0 is,

P 1p0q : f ÞÝÑ
!rupx, 0, zqz BfBz � xp�r�1 Bf

Bx
)
� f

!rupx, 0, zq � λxprvpx, 0q)
� xkzfαypx, 0, zq

and we have to achieve P pfq � xkαpx, 0, zq. Nevertheless we have the inconve-
nience that the node in the above functional derivative is not in normal form,
albeit, rupx, 0, zq � upx, 0q � xkcpx, zq, so the situation is not too bad. Dividing
through P pfq by rupx, 0, 0q, and making an appropriate Schlict mapping in x, we
already achieve the preparatory steps encountered in the proof of IV.2.3. Here
the situation is in a sense easier, and we only have to conjugate the variable z,
which we attempt to do in the same way. When r � 0, the situation is exactly
as per op.cit., and the argument in x drops from 3π{p to 2π{p, since the ap-
propriate infinity is, again, the negative of that encountered in the construction
of K2 prior to V.2.2. In the situation r ¡ 0, we’ve made no attempt to do
anything except keep a small open sector about our direction of interest. If in
the notation pre IV.2.3, in the variable ζ � x�pp�rq, this sector contains �8,
nothing changes. Otherwise the only way this doesn’t happen is if our sector
is wholly in Repζq   0, in which case we take a domain of the form shown in
figure V.2.3, for s a first integral. Such a leaf is bounded, but we’re interested

Impζq

Repζq

Repζq � log |s| Repζq � �R

Figure V.2.3

in the minimum value of Rep�ζq to find our base point, so anything on the
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line Rep�ζq � �R will do, or better move the line a little off vertical so that
the minimum is unique. Essentially this is similar to something like IV.2.4(a),
since the problem with bounded leaves is when the base point is on the mobile
(function of s) as opposed to the fixed boundary.

Consequently we obtain new coordinates px, zq, still on S � ∆, but now S
has aperture 2π{p if r � 0, such that the functional derivative has the form,

P 1p0qf �
�
xp�r�1 Bf

Bx � z
Bf
Bz

	
� f � εpx, zqf

where as ever εpx, zq goes to zero as x Ñ 0, which, by coincidence, up to
ε is exactly the same operator that we had to deal with in constructing the
conjugation. Again this operator has a bounded right inverse independent of
the radius in x, so the habitual power series gives a bounded right inverse to
P 1p0q even after adjoining small discs about the base point if necessary when
r ¡ 0, and whence we deduce:

V.2.4 Quick Note on Branching For r ¡ 0, since we’re limiting our ambition
to an open sector around every direction nothing changes from V.2.3. For r � 0,
the conformal mapping x ÞÑ x�pp�rq must be branched within �π{2 of �1, and
we have a sector of width 2π{p.
V.2.5 Fact In the linear and nodal cases envisaged by V.2.1, every value of
the argument of x is contained in an open sector S of some small radius (the
prescription being given by V.2.4) such that on Sx � ∆2

py,zq we can find an
invariant hypersurface which is as tangent as we please (i.e. as per V.2.3, do
y � ry�xezf , for k " e " 0, to get whatever one wants modulo powers of pxq in
the initial convergent coordinates) to the invariant formal hypersurface denoted
by the same letter in the formal normal forms V.2.1(a)-(c).

V.3 Solving the PDE

Plainly most the the work has been done in §II-IV and it remains only to check
that the equation of the centre manifold is of a type encountered therein. There
are some subtleties as suggested in V.2, so we put ourselves in the situation of
V.1.8, and apply V.1.9 according to cases of ascending difficulty.

To begin with, suppose we are in the situation of only one central component
and apply V.1.9 by way of multiplication by a unit to obtain a convergent gener-
ator B of the foliation on a polydisc or even étale open such that for (convergent)
coordinates x, y, z:

Bz � z pIkq, Bx
x
� xpapx, yq pIkq, By

yε
� xpbpx, yq pIkq

where k P N is some large integer to be chosen, I � pz, xq, and a, b are possibly
truncated versions of their manifestations in V.1.9 since the latter were functions
after completion in x. Now blow up in the central component z � x � 0, then
the congruences for x�1Bx, y�εBy become congruences modulo pxqk. Whence,

90



replacing V.1.8 by a blow up in the central component (which in no way changesrS), multiplying through by the unit u � �
1�Bx{x��1, and changing k to k� 1,

a to ua etc., we may suppose,

Bz � z � xkγ,
Bx
x
� xpa� xkα,

By
yε

� xpb� xkβ

for a, b functions of x and y, and α, β, γ functions of x, y, z. Now let’s look for
the centre manifold in the form of a graph rz � z � fpx, yq, which yields the
PDE,

P pfq � �xkγpx, y, 0q
where f ÞÑ P pfq is the operator:

f � xk
�
γpx, y, fq � γpx, y, 0q�� xp

�
apx, yq � xk�pαpx, y, fq�xfx

� xp
�
bpx, yq � xk�pβpx, y, fq�yεfy

This has functional derivative,

P 1p0q : f ÞÝÑ �
1� xkγzpx, y, 0q

�
f � xp

�
apx, yq � xk�pαpx, y, 0q�xfx

� xp
�
bpx, yq � xk�pβpx, y, 0q�yεfy

So take �D to be the vector field that corresponds to the part of the functional
derivative of order �1, then, modulo the order zero terms (i.e. functions of f),

P pfq � �Df � xk
�
αpx, y, fq � αpx, y, 0q

�
xfx � xk

�
βpx, y, fq � βpx, y, 0q

�
yεfy

In all of the set ups encountered in §II-IV there is announced a basis of deriva-
tions in which the operator should be polynomial. Here it’s actually linear, but
regardless, this basis always contains D and the module xnT p� log x,�ε log yq,
for some fixed n (basically p, but maybe not in III.1 and IV.3), and T the mod-
ule of derivations in x and y, provided we’re not in the situation of III.3.1(c) or
IV.2.1, where things are more delicate, and the discussion is postponed. Whence
taking k " 0, we have in all other cases where q � 0, no problem in satisfying
the condition enunciated in the various set ups, plainly at which point we can no
longer work étale locally and we restrict to the analytic topology to satisfy the
equation on neighbourhoods governed by the type of the singularity of D, which
are everywhere canonical around x � 0, and even reduced, where appropriate
to eliminate one case. Better still if we look for a solution rz � z � xefpx, yq,
for any 0 ! e ! k, the functional derivative’s �1 part is unchanged on dividing
through by xe, and the formula for the �1 part of P pfq is as above except that
α, β are evaluated at xef . So, we can achieve any approximation to the formal
central manifold in the completion of the central components that we please.

We now pass to the case where z � y � 0 is a central component, so
necessarily q ¡ 0. Our preparation by way of V.1.9 is wholly analogous, the
displayed formulae at the first step being exactly the same up to fixing ε � 1,
replacing xp by xpyq, and taking I to be the ideal pz, xyq. One resolves this ideal
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in 2-steps, viz: first blow up one central component then the other, the order
being irrelevant, and rS remains unchanged. Continuing, as before, to denote
an approximate local equation for it by z � 0, multiplying through by the unit�
1�Bx{x�By{y��1, and so forth, we may thus assume that we have a prepared

form:

Bz � z � pxyqkγ, Bx
x
� xpyqa� pxyqkα By

y
� xpyqb� pxyqkβ

for a, b functions of x and y, and α, β, γ functions of x, y, z. Whence, if as before
�D is the �1 part of the functional derivative, the difference between this and
the appropriate operator P pfq in order �1 is given by,

P pfq � �Df�pxyqk
�
αpx, y, fq�αpx, y, 0q

�
xfx�pxyqk

�
βpx, y, fq�βpx, y, 0q

�
yfy

The basis of polynomial terms occurring in §II-IV where this discussion applies
all contain the module of derivations pxpyqqNT p� log x,� log yq, for some N ,
in fact N � 1 except for the bad case around the negative real axis in IV.4.
Consequently we can do all of these cases and by an appropriately large choice
of k " e " 0, even find the centre manifold in the form rz � z�pxyqefpx, yq, for
any e.

It therefore remains to apply V.2.5 in order to deal with the problem cases
of type III.3.1(c) or IV.2.1. Here q � ε � 0, and the difficulty is stable whether
under blowing up in points or central components. Furthermore, completing
in a maximal ideal then blowing up, as opposed to blowing up and completing
in the exceptional divisor is the same operation where we have a problem, so
we can make our preparation either according to V.2, or as we’ve done initially
here, i.e. both the current preparations modulo pxqk and those of V.2 are valid
simultaneously. We then make a coordinate change implied by V.2.3 and V.2.5
of the form y ÞÑ y � xkfpx, zq, z ÞÑ z � xkgpxq, for f, g functions on S �∆, or
S1 respectively, with S, S1 as per V.2.5 and V.2.3. Consequently on S �∆2 we
arrive to,

Bz � z � xkγ,
Bx
x
� xpa� xkα,

By
y
� xpb� xkβ

For a, b, α, β, γ as before except that the domain of x is now restricted to S.
This yields the polynomiality in the operator required by III.3.1(c) or IV.2.1
for exactly the same reason as already encountered above, but at the price
of restricting the domain of x. Worse still the operator in question is rather
sensitive to coordinate changes, and this operation really changes the �1 part,
D, of the functional derivative, albeit only modulo xk, nevertheless its domain
of definition need not be a bi-disc in px, yq, but is only a priori Sx�∆y, so that
III.3.3 and IV.2.5 cannot be applied as stated.

Fortunately the right inverses constructed in these cases are all bounded, and
rather robust, so §III.3 and §IV.2 can still be applied provided we can achieve
the conjugations implied by III.3.1(b) and IV.1.3.
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The latter we have already seen in solving the equation that afforded V.2.5.
Indeed in IV.2, we construct a bounded right inverse, whence the same for a
small bounded perturbation, so we only need to conjugate the foliation (not
the field as per IV.1) to normal form, so the computation is exactly the same
as V.2, even if the particular node is different the principle is the unchanged,
i.e. nodes may be conjugated to normal form in any open sector provided one
starts from a position where the form along the strong branch is a sufficiently
high order of approximation to the normal form. Here, of course, one can start
from an arbitrarily good approximation, and whether in IV.2 or V.2 we never
attempted to obtain more than an open sector in x, while the domain of y
remains a disc whether in V.2 or in the conjugation currently envisaged, so IV.2
can be applied mutatis mutandis to solve the requisite PDE and again with an
arbitrary order of tangency to the formal solution modulo powers of pxq. If one
wishes to calculate the optimal aperture where this can be achieved one should
be cautious because of the problem already encountered in V.2.2, which is twice
compounded (i.e. notations as per op.cit., we subsequently have to construct
K 1

1, K
1
2 with branching in the opposite direction to K1, K2 found therein) via

V.2.4 and the above, and then one still has to apply IV.2.
This leaves us to prove an analogue of III.3.1(b), but under weaker hypoth-

esis. Again the situation is one where a bounded right inverse was achieved, so
we only need to bring the foliation into normal form, whence the following will
do,

V.3.1 Lemma Let B be a vector field on a sector S (in practice of width 2π{p)
times a disc ∆ with coordinates x P S, y P ∆ such that,

B � x
B
Bx � y

�
λ� xgpx, yq� BBy

with Repλq   0 and g holomorphic and bounded on S �∆, then there exists a
Schlict mapping px, Y q : S�∆ Ñ S�∆ (modulo appropriate shrinking of radii
and loss of epsilon in aperture) conjugating the field to:

x
B
Bx � λY

B
BY

Proof. We first prepare the situation modulo y, i.e. for Y � efpxqy attempt to
solve Y �1BY � λ pmodyq. This amounts to the ODE,

f 1pxq � �gpx, 0q
which can even be solved with supxPS |f |{|x| ¤ }g}, so this is very comfortably
Schlict. Whence without loss of generality, y

��g, so, in a minor confusion of
notation we replace gpx, yq by ygpx, yq. Now consider a normal form,

D � x
B
Bx � λY

B
BY

and look for a Schlict mapping, px, Y q ÞÑ �
x, ypx, Y q� to our given field in the

form, y � Y eY fpx,Y q. Whence we have to solve the PDE,

λf �Df � eY fxgpx, Y eY f q
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which can even be done by the contraction mapping principle. Alternatively
written as P pfq � xgpx, Y q for a suitable operator P , the functional derivative
is,

P 1p0q : f ÞÝÑ λf �Df � fxY
�
gpx, Y q � gypx, Y q

	
and P pfq � P 1p0qf is an order 0 operator, i.e. one can take φ a constant in
I.3.2(b). Irrespectively, in the first instance we need a right inverse for,

Lf � λf �Df

and to avoid confusion put λ � �ν, where Repνq ¡ 0. We pass to logarithmic
coordinates e�ξ{ν � x, eη � y, σ � η � ξ, and divide through by λ, to obtain

λ�1Lf � f � Bf
Bξ

in σ, ξ coordinates. Now the domain of η is a left half plane Repηq   �R, while
that of ξ, T say, is a right half strip rotated through ν. Consequently for an
appropriate choice of strip/determination of log x or even |x| sufficiently small,
the domain of σ and η coincide. Viewing our original S � ∆ as a fibring over
the domain of σ, the fibres are, therefore,

Lσ �
�
σ � T

�XDompηq
leading to a domain in ξ space, over which we must integrate, of the form shown
in figure V.3.1. Unsurprisingly therefore, notation as per the diagram,

Impξq

R � Repσq

q

p

Lσ

Repξq

T

Figure V.3.1

pK0gq pξq � e�ξ
» ξ
p

gpξ, σqeξdξ
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works fine, and P 1p0qK0 � 1 � ε, ε a small function divisible by x and Y . So
shrinking the radius in x alone is wholly adequate to provide a right inverse to
P 1p0q. This solves the PDE by the implicit function theorem, and the resulting
mapping, as per IV.1.3, is comfortably Schlict on admitting a small loss of radius
and aperture in x. �

Evidently this has a certain nuisance, which we observe by way of,

V.3.2 Warning If, notations of the proof of V.3.1, one looks for f � xnF ,
some n P N, then the leading part of the functional derivative will change to,�

n� λ
�
1�D

Consequently if we take n too big, we fall into a fairly inconvenient situation
where we’d have to take base points on the line �R�Repσq � Repξq, which tends
to result in some messy restriction in log y, or worse σ. Plainly, however, we’re
okay provided that n   �Repλq. It’s also true that from a valuation theory
perspective the problem is, supposed non-algebraic for simplicity of exposition,
the discrete valuation v obtained by taking the order of vanishing at the origin
on the formal curve y � z � 0. In particular blowing up here, λ ÞÑ λ � 1, and
one can follow v, and blow up ad nauseum to have Repλq as negative as one
wishes. In such a sense one can achieve arbitrary good approximations to the
formal central manifold around the central components, but only on a model
that depends on the approximation which is desired.

This said we can therefore summarise our conclusions by way of,

V.3.3 Fact Suppose the central components are compact, or start from a germ
à la V.1.1. Then following a bi-rational modification of the form V.1.8, possi-
bly augmented by further blowing up in points to accommodate the problems
associated with singularities of the type described in V.2.1, the trace (i.e. the
central components) of the formal central manifold can be covered by finitely
many open sets, isomorphic to either discs or a neighbourhood of a plane node.
In the former case take y to be a coordinate on a disc, in the latter x, y plane
coordinates and xy � 0 the node, and similarly xy � 0 the singular locus even
if we’re in a neighbourhood where central and non-central components meet.
In any case there is always a further coordinate x whose zero locus is an ex-
ceptional divisor intersecting the central sub-scheme in a central component.
This yields a bi-disc ∆2 Q px, yq. Denote by I the ideal of the reduced scheme
structure of the singular locus, and by V.1.9, let z be a third coordinate which
is an approximation to some fixed order e of the central sub-scheme pz � 0 in the
formal I-adic completion. Then, modulo the precision V.3.2, there is a finite
covering tUku of either ∆2zV pIq, or possibly only ∆2zpxy � 0q, in the situation
of V.2.1 with y � 0 understood as the curve encountered in V.2.3 (so really,
S�∆zpxy � 0q) and finitely many sectors S in x) - the exact form of the cover-
ing being determined by the formal type of the induced foliation in the formal
central manifold, and being detailed on a case by case base in §II-IV - such that
on each Uk there is a bounded holomorphic function ζkpx, yq such that the zero
locus of z� ζkpx, yq is invariant and agrees with pz � 0 to some prescribed order
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determined by the approximation z, and indeed goes to infinity as the quality
of the approximation z goes to infinity. Plainly, modulo the above caveat that
occurs for singularities of the form V.2.1, an open neighbourhood of the singular
locus punctured in the said locus admits a finite covering where such invariant
hypersurfaces may be found. In this sense the formal central sub-scheme may
be said to “converge” in dimension 3.
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VI Normal Forms

VI.1 Scalar vs. Vector

So far we’ve largely concentrated on obtaining right inverses to scalar rather
than vector equations. The general relation between these is a whole can of
worms that it’s preferable to avoid, so let’s confine ourselves to some useful
facts as we will employ them, albeit we can certainly permit a wholly general,

VI.1.1 Set Up Let U � Cn be a domain , with Updq as encountered in I.3.2(a),
and P : E Ñ E a uniformly C1,α, α ¡ 0, operator on an analytic vector bundle
in the sense of I.3.2(b). Suppose further that there is a vector field D on U , and
a linear endomorphism A P Γ

�
U,HompE,Eq� such that,

P 1p0q � D1�A

and that E
��
U

is trivial, so that A may be identified with a r � r matrix, for r
the rank of E.

Plainly in such a situation we have good possibilities to reduce to scalar
equations. The precise values of the scalars may be important so let us formalise
this by way of,

VI.1.2 Definition Let χ P C (in practice non-zero), and D as per VI.1.1, then
the spectral problem at χ is said to admit a polynomial solution if, as per I.3.2(c),
there are a family of right inverses Kpdq for domains Updq between Upδq and
U to χ � D such that, for Upδq � Updq � Upeq � U , there are constants Cχ,
n ¥ 0, independent of d and e for which,��Kh��

Updq
¤ Cχ

��h��
Upeq

n¹
i�1

pdi � eiq�n

In the particular case that n � 0, consistent with the previous usage, we say
that K is bounded.

The bounded case is particularly simple, and was already encountered in the
proof of IV.1.3. We formalise it as follows:

VI.1.3 Triviality Let Updq be as per I.3.3 for P a polynomial operator in the
implied standard fields B

Bzi
in the sense of I.3.4. Suppose further that A is semi-

simple, modulo a small perturbation ε, and that the solution to the spectral
problem for each eigenvalue χ is bounded. Then, provided ε is sufficiently small
(}ε}maxχ Cχ, in the notation of V.1.2) the Cauchy problem for P 1p0q has a
non-ludicrous solution in the sense of I.3.2(c), in fact even of polynomial type
as encountered in I.3.6.

Proof. By hypothesis, A is diagonal with eigenvalues χ1, . . . , χr, and for each
eigenspace there is a right inverse Ki to the operator χi1�D which is bounded.
Whence the diagonal operator K0, consisting of Ki on each eigenspace affords,

P 1p0qK0 � 1� εK0

so provided ε is sufficiently small, the usual power series may be applied. �
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The situation is potentially much more subtle for unbounded solutions of
the spectral problem but we’ve already hinted at how to do it in I.4.5, which
we now make explicit, viz:

VI.1.4 Claim Let things be initially be as per VI.1.3 but now suppose that
A is semi-simple, modulo a small perturbation ε. Suppose further that the
spectral problems not just for the χi, but also the differences χi�χj , including
i � j, admit a polynomial solution, and, in the sense of I.3.6, ε decreases at
a sufficiently rapid polynomial rate in comparison with that for the totality
of the χi � χj spectral problems. Then potentially for a different U which
has been shrunk accordingly, and on which the χi spectral problems are still
polynomial, the Cauchy problem for P 1p0q has a non-ludicrous solution in the
sense of I.3.2(c), and even of polynomial type in the sense of I.3.6.

Proof. Let χ be the diagonal matrix with entries χi. A conjugation of the
operator D1� χ by an invertible matrix of functions Q yields the operator,

D1� �
Q�1

�
DQ

��Q�1χQ
�

so for Q � exppqq, q P glrpOU q, we want to solve,

expp�qqD exppqq � expp�qqχ exppqq � χ � ε

which has a functional derivative,

D � �
q, χ

�
and, of course, q ÞÑ rq, χs is a semi-simple endomorphism of glr with eigenval-
ues χi � χj . By hypothesis, therefore, the implied operator in q satisfies the
conditions of the implicit function theorem, and we have a solution as soon as
ε is sufficiently small. Of course, this may be difficult to guarantee if we’re not
in the situation envisaged in I.3.6, or similar, at which point we may have to
shrink the domain U to guarantee a solution. At this point, however we have
found a matrix of functions, such that the implied change of basis puts P 1p0q in
the form,

D1� χ

so, again, by hypothesis, we conclude. �

While this is a perfect sufficient lemma for a situation such as I.4.5, the
condition that the spectral problem in zero, i.e. χi � χj , admits a solution is
not practical, so we make,

VI.1.5 Remark Let us put ourselves in the situation of VI.1.4 but suppose
now that A is semi-simple with distinct eigenvalues χi, and only the spectral
problems for χi�χj , i � j, admit a polynomial solution. Under these hypothe-
sis, with the same hypothesis on ε, we can, on an appropriately smaller domain,
effect a change of basis by a matrix of functions such that P 1p0q has the form,

D �A
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where A is semi-simple, but the eigenvalues are now functions rχi which up to a
small perturbation are the χi. In practice we’re only concerned about situations
similar to IV.3, where the implied difficulty is already overcome by way of the
normal form IV.1.3, or, to a much lesser extent, II.2, since, where we used power
series there, which was by no means essential, the normal form was trivial to
obtain.

VI.2 Quasi-formal preparation

We blow up sufficiently as per V.1.8 and consider the analytic space X (or stack,
albeit this can be largely eschewed) around the singular components, which we
complete in the central components, in the sense implied by V.1.9, to form a
formal analytic space (or stack) pXan. As such the formal affines have rings of
functions of the form,

limÐÝ
n

OX
pz, xpyqqn

notations as per V.1.9 with OX holomorphic functions. This permits some
simplification over the general formulae of op.cit. at the price of a moderately
long list and a couple of caveats, viz:

VI.2.1 List Possibly after blowing up of pXan, every geometric point has at
worst an analytic neighbourhood (i.e. often étale is possible if our context were
algebraic) with coordinates x, y, z, conventions as per V.1.9 on which we find
a generator of the induced foliation which enjoys one of the following normal
forms,

(a) z
B
Bz � xp

B
By , p P N.

(b) z
B
Bz �

xp�1

1� νpyqxp
B
Bx , p P N, ν P Ctyu.

(c) z
B
Bz �

xp�1yq

1� νpyqxp
B
Bx , p, q P N, ν P Ctyu.

(d) z
B
Bz � xpy

B
By , p P N.

(e) z
B
Bz �

xpyq

1� νxpyq

�
x
B
Bx � λy

B
By

	
, p P N, q P Z¥0, ν P C, λ R Q.

(f) z
B
Bz � xp

�
Rpxqy BBy �

xr�1

1� λxp�r
B
Bx

	
, p, r P N, degR ¤ r, λ P C.

(g) z
B
Bz �

xpyq

1� yq
�
Rpxq � λxp�r

��y BBy � xr

1� νxr
�
qx

B
Bx � py

B
By

�	
,
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where p, q, r P N, degR ¤ r � 1 and λ, ν P C. The above normal form (g)
cannot, in general, be obtained in a neighbourhood of pXan, but only in the
weaker completion at a point, or, equivalently after blowing up, in the divisor
x � 0. Nevertheless the remaining cases, even though some reduce to (g), can be
obtained in neighbourhoods of pXan, and are all for a negative rational eigenvalue
�k{l, with k, l relatively prime integers, viz:

(h) z
B
Bz �

xiyjpxkylqn
1� xiyj

�
Rpxkylq � λpxkylqn�r�!�lx BBx � ky

B
By

�
� pxkylqr

1� νpxkylqr
�
jx

B
Bx � iy

B
By

�)
,

where xpyq � pxiyjqpxkylqn with at least one of i, j P Z¥0, less than k, respec-
tively l, pi, jq � 0, n P Z¥0, r P N, λ, ν P C, with convention on pp, qq as per
V.1.9, and otherwise R of degree at most r � 1.

(i) z
B
Bz � pxkylqn

!
Rpxkylq�lx BBx � ky

B
By

�� pxkylqr
1� νpxkylqn�r x

B
Bx

�)
,

for n, r P N, degR ¤ r, Rp0q � 0, ν P C.

(j) z
B
Bz �

xiyjpxkylqn
1� xiyj νpxkylq

�
lx
B
Bx � ky

B
By

	
,

for ν a formal function, and the multiplier of pxkylqn understood to be 1 if
pi, jq � 0. Otherwise, prescriptions on i, j, n are exactly as per (h).

VI.2.1 (bis) Proofs of cases (a)-(g) This is occasionally a bit more tricky
than one might think, since by V.1.9 one is only reduced to finding a normal
form for a plane field in an object which itself is only a formal analytic space
with trace the central components, i.e. it is not the completion of an analytic
space, so certain formulae that one might think of applying are not a priori
justifiable.

In the first instance consider (a). By hypothesis we are in a neighbourhood
of a point, 0 say, in the trace together with a formal field on the formal centre
manifold of the form,

xpB � xp
!
upx, yq BBy � xapx, yq BBx

)
where u is a unit, so without loss of generality up0q � 1, and the formal function
x � 0 defines the trace. In particular by the definition of pXan, the restriction
of B to the trace is convergent. Consequently restricting the neighbourhood of
0 and changing coordinates appropriately we may suppose that u � 1pmodxq,
for some convergent function y on the trace. Now consider a change of variables
ξ � efx, for which Bξ � 0. This amounts to solving,

Bf � �apx, yq
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To do this choose a mapping from functions on the trace O∆, say, to OxXan
,

so we can write OxXan
� O∆rrxss. Whence we can expand in Taylor series and

integrate term by term to obtain a continuous right inverse K0, say, to B
By , and

whence if upx, yq � 1� xbpx, yq then,

BK0 � 1p1� xbpx, yqq

which is a topologically nilpotent perturbation of the identity so B has a right
inverse, and we can suppose Bx � 0. Finally, therefore, we look for η � egy such
that Bη � xp, which amounts to the equation,

eg
�
1� y

Bg
By

	
� u�1

Now we can apply I.4.1. The functional derivative is,

P 1p0q : g ÞÝÑ g � y
Bg
By

which has continuous right inverse by power series in x, followed by term by
term power series expansion in y, which, inter alia, respects the filtration by
the ideals pxnq, n P N, so PK � 1 is nilpotent, and the fact that we’ve already
achieved our solution modx, guarantees the conditions of I.4.1.

The case (b) is much simpler. Here by hypothesis we start with a plane field
of the form,

xpB � xp�1
!
upx, yq BBx � apx, yq BBy

)
with u a unit. Here if rB denotes the division by u, the formula,

ry � 8̧

n�0

p�1qnx
nrB
n!

y

is convergent in OxXan
, even étale locally if that were our context, so without

loss of generality By � 0. Consequently functions of y are now like constants,
and proceeding inductively we obtain the asserted form, and again even étale
locally if that where the context, i.e. νpyq in the strict Henselisation of the trace.

Now the argument of (a), respectively (b), applies mutatis mutandis to es-
tablish (c) after completion in y � 0, respectively x � 0. Of itself, however, this
does not establish (c), since the topology here is convergence modulo powers
of xy. This latter assertion is true, but since we’re prepared to blow up ad
nauseum, we can eschew the tedium of actually checking it by observing that,
after blowing up, completion in x and y, separately, becomes completion in the
singular locus. This subterfuge introduces new cases of type (a), but we know
how to do that, together with one case of type (c), and another singular one
that we’ll come to directly. It also introduces a multiplier in the field in x and
y, but in a straightforward way that is easily eliminated.
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The same blowing up considerations, in combination with the ubiquitous
case (a), imply that it suffices to verify cases with q � 0 in the completion at
a point, and those with pq � 0 in, without loss of generality, the completion in
x � 0 should some symmetry be present. Consequently (d) is easy, and (e) is
reduced to the Jordan form V.2.1 for q � 0.

Applying the same considerations to (e) for q � 0, we may suppose that
we have our normal form to any order in x and try to conjugate to the desired
one in a way that converges modulo powers of y. Arguing as per op.cit. with
B � ξB{Bξ � λyB{By, then after a linear change of coordinates the functional
derivative becomes, �

0 0
0 �pp� qλq

�
� 1B

Our preparations assure that this is un-obstructed mod y, after which we can
expand in powers yn of y, and the situation remains un-obstructed for each n
since λ R Q, so that we obtain the desired solution by I.4.1.

This brings us to nodes, (f) having already been done in IV.1.2. To do
(g), which is only true mod completion in x � 0, we know that after blowing
up it is equivalent to completion in a point, so we’ll avail ourselves of such a
simplification. Whence, by hypothesis, we have a formal plane field,

D � xpyqB

with B the generator of a node, pq � 0, and x � 0, respectively y � 0, the
strong, respectively weak, branch. Looking at B mod y, after scaling in x and y
we may suppose,

B � upxqy BBy � vpxqxr�1 B
Bx

For u, v formal units with up0q � 1, vp0q � q, so in an obvious abuse of notation
say, B � B0 mod y, for

B0 � upxqy BBy � xrvpxq
�
qx

B
Bx � py

B
By

	
� upxqD1 � xrvpxqD2

where now up0q � vp0q � 1. In particular, we can write B � B0 � B1 for
B1 P yTxXp� log x,� log yq, for which a convenient basis is, evidently, yD1, yD2.
Now such fields have formally convergent exponentials, so consider attempting
to conjugate xpyqB0 to D by such, i.e. attempt to solve,

exppEqxpyqB0 expp�Eq � xpyqB0 � xpyqB1
where we view the left hand side as a formal operator 0 ÞÑ 0, with functional
derivative,

E ÞÝÑ rE, xpyqB0s
which in terms of our basis D1, D2 amounts to,

aD1 ÞÝÑ xpyq
�
qaB0 � B0paqD1

�
, bD2 ÞÝÑ �xpyqB0pbqD2 � bxpyqrD2, B0s
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and a, b formal functions in the ideal pyq, which up to a topologically nilpotent
operator amounts to,

aD1 ÞÝÑ xpyq
�
qa� y

B
By

�
D1, bD2 ÞÝÑ �xpyq�1 Bb

ByD2

which, expanding in powers of y, is invertible except on yq mod yq�1. Now
observe that we can make an a priori coordinate change x ÞÑ efpxqx, y ÞÑ egpxqy
such that u � 1 and v � p1 � νxrq�1, for some ν P C. Furthermore, we may
successfully perform a conjugation of B into B0 modulo yq.

For a � yqαpxq and b � yqβpxq our functional derivative modulo yq�1

simplifies to,

yqαD1 ÞÝÑ xpyq
"

qxr

1� νxr
ppα� xαxqyqD1 � qxrα

1� νxr
yqD2

*

yqβD2 ÞÝÑ xpyq
"
�qβ � qxr

1� νxr

�
pβ � xβx � rβ

1� νxr

	*
yqD2

so we can get everything except terms of the form RpxqyqD1, degR ¤ r � 1,
and xp�ryqD1. Consequently we organise things by way of surjectivity in D2,
so that the missing terms take the form of a multiplier of B0, while as already
observed modulo yn, for n ¡ q there are no further obstructions, whence the
normal form (g).

The remaining cases may be reduced to this one. Indeed, say the eigenvalue
of the implied linear part is �k{l, for k, l relatively prime positive integers. Then
the implied divisor may be written as xiyjpxkylqn for i, j, n P Z¥0 with i   k
and/or j   l. Furthermore whether in the completion in a point or around a
branch, one can achieve an expression for the formal plane field in the form,

xiyjpxkylqn
"
l
�
1� apxiyj , xkylq

	
x
B
Bx � k

�
1� bpxiyj , xkylq

	
y
B
By

*
for some formal functions a, b vanishing at the origin. Now there are various
cases to consider, viz:

VI.2.1 (bis) Case (h) The couple pi, jq � 0 and the descended plane foliation
in X � xkyl, Y � xiyj is singular, then we have the normal form,

xiyjpxkylqn
1� xiyj

�
Rpxkylq � λpxkylqn�r�!�lx BBx � ky

B
By

�
� pxkylqr

1� νpxkylqr
�
jx

B
Bx � iy

B
By

�)
for some r P N, λ, ν P C and R a polynomial of degree at most r � 1.
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VI.2.1 (bis) Case (j) As above but the descended plane foliation is smooth,
then we have the normal form,

xiyjpxkylqn
1� xiyj νpxkylq

�
lx
B
Bx � ky

B
By

	
for some formal function ν. In particular, the difference between (h) and (j) is
according to whether the foliation has a formal first integral or not.

VI.2.1 (bis) Case (i) The couple pi, jq is zero but n � 0. In this case we
descend to a plane field in X � xkyl, Y � y and if the implied foliation in X
and Y is singular then we have a normal form,

pxkylqn
!
Rpxkylq�lx BBx � ky

B
By

�� pxkylqr
1� νpxkylqn�r x

B
Bx

�)
for r P N, R a polynomial of degree at most r P N, Rp0q � 0 and ν P C.

VI.2.1 (bis) Case (j1) As above but the descended foliation is smooth and we
obtain the normal form,

pxkylqn
�
lx
B
Bx � ky

B
By

	
Finally, it remains to make the same distinctions in the case n � 0, i.e.

VI.2.1 (bis) Case (h1) The couple pi, jq is non-zero but n � 0, so, in particular
by way of cases already considered only that of q � j � 0. As such we descend to
a plane field in X � xkyl, Y � x and obtain, whenever the descended foliation
is singular, a normal form,

xp

1� xpRpxkylq
!�
lx
B
Bx � ky

B
By

�� pxkylqr
1� νpxkylqn�r y

B
By

)
for some ν P C, and R a polynomial of degree at most r P N.

VI.2.1 (bis) Case (j2) As above but for the descended foliation being smooth,
so that we have a normal form,

xp

1� νpxkylqxp
�
lx
B
Bx � ky

B
By

	
for some formal function ν, and, plainly, VI.2.1(bis) (j), (j1), (j2) may be distin-
guished from VI.2.1(bis) (h), (h1), (i) by the fact that they admit a formal first
integral.

It is in addition rather convenient to have on hand further conjugations of
these normal forms that bring us closer to one of the formulae employed in
§III-IV, to wit,

104



VI.2.2 Fact (e) The normal form of VI.2.1(e) under the change of coordinates,
or better spiralling change of coordinates,

X � x�
1� νxpyq logpxpyqq�1{pp�λqq , Y � y�

1� νxpyq logpxpyqq�λ{pp�λqq
becomes the pure monomial form,

z
B
Bz �XpY q

�
X

B
BX � λY

B
BY

	
A suitable conjugation of VI.2.1(f) has already been achieved in IV.1.3, while
the case of VI.2.1(g) is more subtle, viz:

VI.2.2 Fact (g) For x in a sector up to 2π{r (actually somewhat better as we’ll
see in the course of the proof) and y (or better log y) in a spiralling domain as
per figure II.2.2, there is a conjugation x ÞÑ Xpx, yq, y ÞÑ Y px, yq under which
the normal form VI.2.1(g) becomes the monomial form;

z
B
Bz �XpY q

�
Y

B
BY �Xr

�
qX

B
BX � pY

B
BY

	

Proof. Suppose in the first instance q ¡ 1 and ν � 0. Then for any n P N,
n   q, we can attempt to find the conjugation from the given normal form in x
and y to that in X and Y by way of,

x ÞÝÑ XefY
n

, y ÞÝÑ Y egY
n

This amounts to solving a coupled system of PDE’s with a functional derivative
of the form, �

f
g

�
ÞÝÑ A

�
f
g

�
�D

�
f
g

�
where D is the field Y B{BY � Xr

�
qXB{BX � pY B{BY

	
, and A is a matrix of

the form �
n 0
�p n� q

�
� ε

where as ever ε is a matrix in small functions. Whence up to ε, diagonal with
eigenvalues f ÞÑ nf , ppf � qgq ÞÑ pn � qqppf � qgq. In an attempt to preserve
the notation of §IV, we can pass to ξ � pXpY qq�1, s � ξ�1 exp

�
X�r{r�, so

that for a certain domain fibred as s : L Ñ B, and embedded by ps, zpXqq in
B � C, for zpXq � X�r{r,

D � �q BBz
where, to re-iterate, the above appearance of z is a regrettable notational confu-
sion, i.e. its a function of X alone and has nothing to do with the ambient 3-fold.
In any case for rz � zpXq � pp{rq log zpXq, the fibres of L for σ the logarithm of
s are described by rzpXq P σ � q �Domainplog Y q
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The difference between rz and z is, as per §IV.4, of little importance. What is
important, however, is that in the z-plane we must integrate both from right
to left (eigenvalue of f), and left to right (eigenvalue of pf � qg). The former
poses no problem and is essentially, exactly the situation encountered in IV.1.3,
the latter presents the difficulty in the full domain of the logarithm of a purely
imaginary boundary on the left. Consequently, we restrict the domain of log Y
as per figure II.2.2, which results in a domain in rzpXq space as shown in figure
VI.2.2. The constant R is of course to be chosen, and the lines meeting Imprzq �

Reprzq

Imprzq

R

σ

Lσ

Figure VI.2.2

R simply reflect the sector up to 2π{r that we’re aiming for, so anything not
purely imaginary will do, and evidently a similar diagram for Imprzq � �R to
cover everything. At which point there’s no problem constructing a bounded
right inverse for the functional derivative modulo the usual caveats, viz: add a
Euclidean disc about the ppf � qgq base point σ in every fibre according to the
conditions of the implicit function theorem and use the usual power series to
get the case of ε � 0.

Consequently we have achieved our conjugation for log y in a spiralling do-
main and xr in a sector up to 2π. In particular the restrictions on q and ν are
seen to be groundless. The latter as per IV.1.3, and the former since Y n really
means, exppn log Y q for n   q, which has perfect sense even for q � 1 provided
we drop the condition that n is an integer, albeit it must be taken positive to
ensure that the solution of the PDE leads to a Schlict mapping. �

The case (h) is very much a combination of (e) and (g), i.e.

VI.2.2 Fact (h) Conventions on x, y as per V.1.9, then for one of x or y be-
longing to a spiralling domain and the other in a disc or a half plane à la figure
II.2.2, if pq � 0, or x in such a domain and y in a disc if q � 0, the normal form
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(h) may be conjugated via x ÞÑ Xpx, yq, y ÞÑ Y px, yq to the monomial form

z
B
Bz �XpY q

�
lX

B
BX � kY

B
BY



Proof. Despite its complication we can always assume that the normal form is
at least as good as,

z
B
Bz � xpyq

"
lx
�
1� xkylapx, yq� BBx � ky

�
1� xkylbpx, yq� BBy

*
Now for M � XuY v any monomial with u ¤ k, v ¤ l, we can attempt to look
for the conjugation in the form,

x ÞÝÑ XefM , y ÞÝÑ Y egM

This leads to a partial differential operator in f, g with functional derivative,�
f
g

�
ÞÝÑ

"�
χ� lp �ql
kp χ� kp

�
� ε

*�
f
g

�
�D

�
f
g

�
for D the field lXB{BX �kY B{BY , and χ � pDMq{M . For ε � 0, the matrix in
question has eigenvalues χ, χ � plp � kqq, which in the case of (h) are distinct.
Consequently we must invert the scalar operators,

µ�D

for µ the eigenvalues. Now observe if q � 0, then just as in V.3.1, we can take
χ   0, e.g. M � Y in op.cit., so both eigenvalues are negative. Otherwise
according to the sign of lp � kq, one chooses M so that both eigenvalues have
the same sign.

A priori the logarithms, eξ � X, eη � Y , lie in left half planes, and for
σ � kξ � lη, again in a left half plane, we have a fibring of the domain U of
interest, by way of σ over B with fibres in, say, ξ,

Domainpξq X
!σ
k
� l

k
Domainpηq

)
Now if q � 0, one is always integrating from right to left, so leaving η in a half
plane, and taking ξ is a spiralling domain works - the resulting integral operator
being periodic in η. For q � 0, this still works if both eigenvalues are negative,
and again things descend to a disc. Otherwise if both eigenvalues are positive
then one must take σ as the base point, and integrate from left to right in ξ
space, whence loosing, potentially periodicity in η. As ever the usual conditions
of adding a Euclidean disc around base point in the fibres should be applied,
while one treats the perturbation by the habitual power series. �

The previous proof only used that lp� kq � 0, so it immediately applies to
VI.2.1(j) for the couple pi, jq � 0, and otherwise VI.2.1(j) is already monomial.
Consequently, there only remains to treat,
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VI.2.2 Fact (i) Provided k{l � �1 (a condition that can always be achieved
by blowing-up, or taking a square root in x or y) for x belonging to a spiralling
domain and y in a disc, there is a conjugation x ÞÑ Xpx, yq, y ÞÑ Y px, yq of the
normal form VI.2.1(i) to the monomial form,

z
B
Bz �

�
XkY l

�n�
lX

B
BX � kY

B
BY



Proof. We keep the initial notations of the proof of VI.2.2(h), but for M,N
monomials in X,Y to be chosen, and look for the conjugation in the form

x ÞÝÑ XeMf y ÞÝÑ Y epNg�kMfq{l

Consequently we have to solve the coupled system of PDE’s,�
DM

M



f �Df � lM�1

!�
enNg � 1

��XkY lepn�1qNga
)

�
DN

N



g �Dg � �lkN�1XkY lpa� bqenNg

As such if we choose M � N , with M
��N and N

��XkY l, but not equal to it,
the functional derivative is a bounded perturbation of the left hand side of the
above. In particular, if, without any serious loss of generality l ¡ 2, then M � Y
and N � Y 2 is a good choice, resulting for the same reason as VI.2.2(h), in a
solution on the type of domain described. �

VI.3 Integrable Cases

It is convenient to import the distinctions of §II and §III-IV into a division of
cases for the existence of normal forms, particularly for the ubiquitous V.2.1(a)
which is rather different. To this end consider,

VI.3.1 (a) Set up We have a holomorphic foliation in 2 � n � m variables,
z, y, x1, . . . , xn, t1, . . . , tm with normal form, up to a formal unit:

z
B
Bz � xp11 � � �xpn

n

B
By

We prepare as follows: let B be an actual convergent generator, and, of course,
blow up in central components so that all congruences modulo pz, xp11 � � �xpn

n q
or powers thereof, become congruences modulo xp11 � � �xpn

n , around the formal
centre manifold. Whence solving for the centre manifold à la V.3, and dividing
through by a unit congruent to 1 modulo as large a power of xp11 � � �xpn

n as we
please, we have

VI.3.2 (a) Reduction We may suppose that on a domain S1�� � ��Sn�∆2�m,
i.e. sectors Si in xi of width θi with p1θ1� � � � � pnθn   π that our foliation has
a generator of the form

B � z
B
Bz � xp11 � � �xpn

n

!
a
B
By � bixi

B
Bxi � cj

B
Btj

)
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where a � 1, bi, cj � 0 modulo z and any power of xp11 � � �xpn
n we please, and

the summation convention is employed.

Proof. Divisibility by the monomial xp11 � � �xpn
n of the relevant terms is a conse-

quence of blowing up as already encountered in V.3 et sequel. Consequently it
remains only to simplify the field modulo z, which one does in the usual way,
i.e. if rD is a field with rDy � 1 then,

f ÞÝÑ
8̧

n�0

p�1qn
n!

yn rDnf

defines an invariant function, and this converges by I.1.6 on S1�� � ��Sn�∆m�1,
since the xi are invariant. One can then obtain an appropriate change of variable
in y by way of a path integral. �

Now consider conjugating to the normal form in ζ, η, ξi, τj variables by way
of a conjugation,

z ÞÑ ζ, y ÞÑ η � ζf, xi ÞÑ ξie
ζgi , tj ÞÑ τj � ζhj

This amounts to solving the system of PDE’s,

f�B̌f � ξp
�eζpkgk

ξ
�1

	
�ξpeζpkgkα, gi�B̌gi � ξpeζpkgkβi, hj�B̌hj � ξpeζpkgkγj

where B̌ is the normal form, ξp � ξp11 � � � ξpn
n , a � 1� zα, bi � zβi, cj � zγj . Up

to a bounded perturbation, this system has a functional derivative

1� B̌

understood in Om�n�1. One might be tempted to invert this by way of an
expansion in power series in ζ, but, unfortunately, the trick of putting a Eu-
clidean disc in the appropriate variable (here ξ�p11 � � � ξ�pn

n η) around the base
point to guarantee a sheaf like inverse as per I.3.2(a) doesn’t work, so it’s bet-
ter to just accommodate the extra variable in the fibration. More precisely if
Y � ξ�p11 � � � ξ�pn

n η, then over and above the fibring functions encountered in
II.1 we have a further function, ζ expp�Y q, so, say, σ � Z � Y for exppZq � ζ
and Z in a left half plane. Consequently we have a fibration s : L Ñ B, with
fibre over pσ, ξ, τq exactly,

Lpξ,τq X
�� σ �H

�
where Lpξ,τq is the fibre encountered in II.1, and H the domain of Z. Manifestly
this leads to no change in the key features enunciated in II.1.2-3, and we may
safely add a Euclidean disc in Y around the base point in each fibre to guarantee
the conditions I.3.2 of the implicit function theorem, taking into account, as ever,
the bounded perturbation by way of the usual power series. Consequently, we
obtain,
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VI.3.3 (a) Fact Let things be as per VI.3.1(a) then for a domain as per
VI.3.2(a) there is a generator B of the foliation conjugate to the normal form,

z
B
Bz � xp11 � � �xpn

n

B
By

The remaining cases are very similar. Due to its close proximity to the above,
we’ll turn our immediate attention to,

VI.3.1 (b) Set Up Everything as per VI.3.1(a), but suppose that the normal
form is,

z
B
Bz � xp11 � � �xpn

n y
B
By

where now, implicitly, y � 0 is the equation of an invariant, even algebraic
hypersurface, albeit just as V.1.8 the component defined by z � y � 0 would
not be central.

Now we can certainly achieve a similar reduction as previously, viz:

VI.3.2 (b) Reduction Denote by X the monomial xp11 � � �xpn
n , and S a domain

of the form |X| ¤ r, Imp1{Xq ¡ 0 if RepXq ¡ 0. Then on S � ∆2�m we can
find a generator of the foliation of the form,

B � z
B
Bz � xp11 � � �xpn

n

 
ay

B
By � bixi

B
Bxi � cj

B
Btj

(
for a, bi, cj as per VI.3.2(a). Similarly for S � S1�� � ��Sn a product of sectors
resulting in a small sector about the positive real axis in 1{X and ΩSpRq the
spiralling sector in the logarithm of y, as per II.2, we can obtain the same but
on ΩSpRq � S �∆1�m.

Proof. Modulo notation (i.e. ξ � X�1) and changing from negative to posi-
tive real axis to reflect the normalisation implicit in the normal form, the first
assertion follows from II.2.2 with the same proof as VI.3.2. The second asser-
tion is more subtle. Observe that the co-normal sheaf I{I2, for I the ideal of
the singular locus is a free O{I-module of rank two. Furthermore for appro-
priate (convergent) coordinates and J � pBz, Byq, J b O{I is also a free rank
two O{I-module - the assertion may be checked after completion, since it is
independent of the same - so by inspection in the completion, and Nakayama’s
Lemma, J � I. Consequently one can achieve a priori, the preparation Bz � z
mod I2, in fact even mod In, but never fully in the completion, cf. post II.2.2.
In particular after finding the centre manifold, and taking exppY q � y, Y in a
left half plane, we may suppose that on the centre manifold our field has the
form,

X
!
a
B
BY � bixi

B
Bxi � cj

B
Btj

)
with a a unit, and bi, cj vanishing at �8, in fact belonging to the pull-back
under the exponential of the ideal pyq. At this point the formula of VI.3.2(a)
rendering the directions in xi and tj fully invariant now converges, albeit at the
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price of a decrease in the angle of the cone, cf. figure II.2.2, defining the domain
ΩSpRq. �

Plainly we attempt the same king of conjugation as before, adopting the
same variables, but with y � eζfη. As such we obtain the system of PDE’s,

f�B̌f � ξp
�eζpkgk

ξ
�1

	
�ξpeζpkgkα, gi�B̌gi � ξpeζpkgkβi, hj�B̌hj � ξpeζpkgkγj

where still, a � 1�zα, and modulo evaluating α, βi, γj at peζfη, eζgixi, τj�ζhjq
rather than pη� ζf, eζgixi, τj � ζhjq the same system of PDE’s. A priori VI.1.5
does not apply. This may be remedied as follows, for Imp1{Xq bounded away
from zero there is no difficulty solving modulo arbitrarily large powers of ζ.
Consequently to obtain the distinct eigenvalue condition of op.cit. one should
solve to a suitable large power of ζ, i.e. n � m � 1, change basis to f , hj ,
g2, . . . , gn, p1g1 � � � � pngn � G, and weight the conjugation appropriately,

y ÞÑ eζfη, τj ÞÑ τj � ζ1�jhj , xi ÞÑ egiζ
m�1�i

ξi, X ÞÑ eζ
m�n�1Gξp11 � � � ξpn

n

In the particular case of immediate interest in dimension 3, this amounts to
x�1Bx being 0 mod z2, and taking x ÞÑ eζ

2gξ. After such a change one can then
construct a fully analytic inverse to P 1p0q by expanding as power series in yazb

by way of the exact the same estimates of §II.2 provided Imp1{Xq is bounded
away from zero. Otherwise we must divide by cases. In the first place we have
sectors ξi P Si, such that ξ�p11 � � � ξ�pn

n is close to a positive real. As per case
(a) take Z to be a logarithm of ζ, and Y � ξ�p11 � � � ξ�pn

n log η, σ � Z � Y , so
that we have a fibration over pσ, ξ, τq with fibre,

Lpξ,τq X
�� σ �H

�
the fibre Lpξ,τq being exactly as in figure II.2.2, bearing in mind the change of
normalisation, i.e. X close to positive real, so to find the centre manifold we
integrate from right to left, whereas to obtain the conjugation we must go from
left to right. This latter operation may be done in a bounded way with �8 as
base point so VI.1.3 applies. Similarly for ξi in sectors Si such that X is close to
negative real, the domain of Y is the negative of that in figure II.2.2 intersected
with a translation of a left half plane, so, again, we can integrate from the apex
of the cone and VI.1.3 applies. Consequently we achieve,

VI.3.3 (b) Fact Let S be one of the connected components of the set defined
by Im

�
x�p11 � � �x�pn

n

� ¡ ε, |xi| sufficiently small with formal normal form as
per VI.3.1(b) then on a domain of the form S � ∆2�m, i.e. full analyticity in
the other variables, we can achieve a conjugation so that the foliation admits a
generator of the form,

z
B
Bz � xp11 � � �xpn

n y
B
By

Otherwise for Si Q xi sectors of appropriately small radii, such that x�p11 � � �x�pn
n

is close to positive real (sectorially), respectively (sectorially) negative real, and
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y belonging to the domain ΩSpRq we can achieve an identical conjugation but
on the domain S � ΩSpRq �∆1�m.

Obviously, as per II.2 and the discussion of the beast, this is the best possible
and, in a sense it’s already implicit in V.3.1 that it is possible. Notice, however:

VI.3.4 Remark It’s tempting to suggest that the restriction to xi in a sector
Si such that xp11 � � �xpn

n is close to positive or negative real could be replaced by
a single condition involving only xp11 � � �xpn

n . This may be true, but it wouldn’t
follow from the implicit function theorem, which requires bounds on the deriva-
tions xiB{Bxi which arise from the aforesaid restriction xi P Si.

Again for want of a better place for it, let us treat the generalisation of
classical nodes, viz:

VI.3.1 (c) Set Up We have a holomorphic foliation in 2 � n � m variables
z, x, y1, . . . , yn, t1, . . . , tm with normal form, up to a formal unit,

z
B
Bz �

xp�1

1� νpy, tqxp y
q1
1 � � � yqn

n

B
Bx

in the topology of completion in pz, xp�1yq11 � � � yqn
n q, p P N, qi P Z¥0, νpy, tq

convergent, and for qi � 0, the hypersurface yi � 0 is supposed to define
an invariant hypersurface which arises from blowing up, and defines a central
component z � yi � 0 inside the formal centre manifold.

As ever we perform appropriate simplification, possibly after further blowing
up, modulo z, viz:

VI.3.2 (c) Reduction Let S be a domain in x, y such that x�p is within 3π
of the argument of yq11 � � � yqn

n (so �1 if all qi � 0) then on S � ∆1�m we may
suppose that we have a generator of our foliation of the form,

z
B
Bz �

xp

1� νpy, tqxp y
q1
1 � � � yqn

n

!
ax

B
Bx � biyi

B
Byi � cj

B
Btj

)
and a, bi, cj as per VI.3.2(a).

Proof. This is very much the same as the reduction VI.3.2, with the minor
caveat that one should make a sufficiently good formal approximation to avoid
any loss of domain in the x, y variables. �

Proceeding, therefore, as before we attempt to conjugate to the normal form
in ζ, ξ, ηi, τj variables by way of,

z ÞÑ ζ, x ÞÑ eζfξ, yi ÞÑ eζgiηi, tj ÞÑ τj � ζhj

which in turn results in the system of PDE’s,

f � Bf � ξpηqζ�1

1� νξp

! epfζ�qkgkζ

1� νepfζξp
p1� νξpq � 1� αζ

)
,

gi � Bgi � ξpηqepfζ�qkgkζ

1� νξpepfζ
βi, hj � Bhj � ξpηqepfζ�qkgkζ

1� νξpepfζ
γj
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for ηq � ηq11 � � � ηqn
n . Consequently up to a bounded perturbation, the functional

derivative is,

1� ξp�1 B
Bξ

for 1 the identity on the trivial bundle of rank m�n� 1. As such the only real
issue here, viz: loss of domain from ξ�p within 3π of argument of �ηq to 2π of
the argument of �ηq has already been encountered in IV.1.3. Unlike cases (a)
and (b) we have actually conserved the normalisations of II.4. Consequently if
X is the monomial ξ�pη�q (having conjugated to ν � 0), with Z the logarithm
of z belonging to a left half plane, we have an invariant function σ � Z � X.
Whence we have a fibring in σ, η, τ coordinates with fibres,

Lpη,τq X
�
σ �H

�
with the leaf Lpη,τq as per II.4.1(b). In terms of the variable X, we now, as
per IV.1.3, have to integrate from �8, as opposed to �8 for finding the centre
manifold. This is, however, done in a bounded way so VI.1.3 applies, and we
obtain,

VI.3.3 (c) Fact Let S, S1, . . . , Sn be sectors in x and yi (supposing qi � 0,
otherwise this may be omitted) such that x�p is within 2π of the argument of
yq11 � � � yqn

n with normal form as per VI.3.3(a). Then for sufficiently small radii in
x and/or yi we can achieve a conjugation on the domain S�S1�� � ��Sn�∆1�m

such that on the same, foliation admits a generator of the form,

z
B
Bz �

xp

1� νpy, tqxp y
q1
1 � � � yqn

n x
B
Bx

VI.4 Singular Cases

The singular cases in the list VI.2.1 permit a certain unity of treatment, albeit,
conventions as per V.1.9, modulo a need for care about the difference between
q � 0 versus q ¡ 0. Nevertheless let us establish some notation by way of,

VI.4.1 Set Up As ever we’re studying a holomorphic foliation around the pos-
sibly purely formal centre manifold, and we’ll suppose that we’re at a point
where the induced foliation is singular so that we have a normal form in pXan,
notation as per VI.2 with caveat for VI.2.1(g),

z
B
Bz � xpyq

!
Apx, yqx BBx �Bpx, yqy BBy

)
Plainly we wish to achieve,

VI.4.2 Proposed Reduction For a suitable domain U in px, yq to be specified
and a disc ∆ in z we have on U �∆ a generator of the foliation of the form,

z
B
Bz � xpyq

!
apx, y, zqx BBx � bpx, y, zqy BBy

)
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where a � A� zα, b � B � zβ, α, β holomorphic on U �∆.
Again a certain amount of caution will have to be exhibited here, particularly

in light of V.2.3/5. Nevertheless, for a normal form in ζ, ξ, η coordinates we will
therefore look for a conjugation in the form,

z ÞÝÑ ζ, x ÞÝÑ eζfξ, y ÞÝÑ eζgη

Consequently we will have to solve the coupled system,

f � Bf �
ξpηqζ�1

�
epζf�qζgApeζfξ, eζgηq �Apξ, ηq

	
� ξpηqαpeζfξ, eζgη, ζqepζf�qζg

g � Bg �
ξpηqζ�1

�
epζf�qζgBpeζfξ, eζgηq �Bpξ, ηq

	
� ξpηqβpeζfξ, eζgη, ζqepζf�qζg

In most cases we’ll be able to employ VI.1.3, but for nodes with q � 0 we’ll
have to look to VI.1.5 and make further preparation - in fact in the x-variable
modulo z2.

Now let us implement this plan according to the various degrees of difficulty
that are implicit therein, so starting from VI.2.1(e) with q ¡ 0. As such we have
a domain U , according to the various cases considered in §III, in x and y on
which we have found the centre manifold, and this can be done up to as large a
power of xpyq as we please. In particular restricting to the centre manifold we
may suppose that we have a plane field in the domain U of the form,

δ �
xpyq

1� νxpyq
D �

xpyq

1� νxpyq

!
x
�
1� pxpyqqkα� BBx � λy

�
1� pxpyqqkβ� BBy)

with k P N as large as we please and α, β bounded functions on U . We aim to
conjugate this to a normal form,

ξpηq

1� νξpηq
Ď �

ξpηq

1� νξpηq

!
ξ
B
Bξ � λη

B
Bη

)
over U , by way of a transformation,

x ÞÝÑ efpξ
pηqqnξ, y ÞÝÑ egpξ

pηqqnη

for some sufficiently large n to be chosen. This amounts to solving a coupled
system of PDE’s which up to a bounded perturbation has functional derivative,�

npp� qλq � p �q
�pλ npp� qλq � λq

� �
f
g

�
� Ď

�
f
g

�
where the matrix in question enjoys eigenvalues npp � qλq, pn � 1qpp � qλq. In
order to try to maintain notation compatible with §III, let eX � x, eY � y define
logarithms of X and Y , σ � λX � Y (or possibly X � Y {λ) a first integral and
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τ � ��pX � qY
�
. As such by VI.1.3 on dividing through by p� qλ, we require

to solve in pσ, τq coordinates scalar equations of the form,�
n� B

Bτ
	
pF q � G

for n P N. Unsurprisingly in the situation of III.2, τ lies in a strip like domain
unbounded in Repτq Ñ 8, which is exactly what one requires for an infinite
base point. In case of §III.4-5, the fibres in σ are bounded, but the pre-images
of the base points envisaged are also those where Repτq is maximum, and since
the variation of the imaginary part of τ is bounded one can simply take paths
which have constant imaginary part followed by an appropriate displacement in
the purely imaginary direction. Consequently in these cases we can obtain the
proposed reduction VI.4.2.

There remains, therefore, to achieve such a reduction for q � 0. Plainly
this requires in the first instance finding an invariant hypersurface y � 0. For
Repλq   0 this has already been done in V.2.5. For Repλq ¡ 0, we first look
for the corresponding invariant curve inside the centre manifold, starting, as
ever, from a sufficiently good approximation modulo powers of pxq. Plainly
we look for the said curve in the form of a graph ry � y � fpxq, with ry � 0
invariant. This results in an ODE with functional derivative, up to a small
bounded perturbation,

f ÞÝÑ λf � x
Bf
Bx

which is, a priori, a little problematic, but for any suitably large e we can replace
f by xef , so the derivative becomes:

f ÞÝÑ pλ� eqf � x
Bf
Bx

Consequently for Repλ� eq   0, we have the right inverse by way of integrating
from �8 in the strip like region which is the domain of the logarithm. At which
point we can argue exactly as in V.2.5, to find the hypersurface ry � 0 albeit
with a loss of domain from a sector of width 3π{p to 2π{p. In any case, all of
this can be achieved modulo arbitrary powers of the ideal pxq, so we have an
identical preliminary reduction as in the case of q ¡ 0, and the entire argument
goes through as before to obtain VI.4.2 with the only caveat being that of the
reduction of the domain as per V.2.4 in the case corresponding to III.1.1.

The reduction achieved we can, modulo having ran out of letters, move
relatively swiftly to a conclusion. To actually solve the equation we employ
the conjugation VI.2.2(e), or more correctly followed by a homothety in X,Y
(notations as per op.cit.) so as to multiply our plane field by pp � qλq�1. As
such the main protagonists of §III were the variables Ξ � pXpY qq�1 and some
invariant function s according to which we fibred the domain U , via s, over B,
with U embedding in C2 by way of Ξ � s, and our linearised equation was of
the form: �

1� ε
�� B

BΞ
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for ε a small function, and the left to right integration of §III for finding the
centre manifold having been preserved. Consequently under the conjugation
implied by VI.2.2(e) in ζ,Ξ, s coordinates the field B̌ becomes

ζ
B
Bζ �

B
BΞ

So now we fibre the domain rU � U �∆ over rB, where the latter is the domain
of s and t � ξ exppΞq. As such, by VI.1.3 we must solve the scalar equation,�

1� B
BΞ

	
pF q � G

in a bounded way, where the fibre of rU over ps, tq is,

Us X
�
log t�H

�
where the left half plane H is a domain of the logarithm Z of ζ. As far as
the good cases III.1/2 are concerned this poses no additional problem to those
encountered in V.2.3, i.e. the loss of domain from 3π in Ξ to 2π, which is
consistent with finding the hypersurface y � 0 in case q � 0, and involves no
further loss of domain.

As far as the case of bounded leaves occurring in III.3-5 is concerned, the
situation is similar, but obviously more unpleasant. Specifically the fibres of
U Ñ B are necessarily branched on the right in Ξ, in order to find the centre
manifold, and, unlike the good cases III.1-2 there is no way to change this. We
can, however, take a branch which is very close to purely imaginary. Thus,
although we now have to integrate from right to left in the leaves, rather than
left to right, we still can do everything that we were able to do before except
for a small sector around an imaginary axis. There being two of these, we still
succeed in covering everything, and so obtain,

VI.4.3 Fact Suppose for irrational λ, the foliation admits in a neighbourhood
of rXan a formal generator of the form,

z
B
Bz �

xpyq

1� νxpyq

�
x
B
Bx � λy

B
By

	
Then for U a domain, according to the cases as documented in §III.1-5, in px, yq
with the above small loss in cases §III.3-5, and that of 3π to 2π in §III.1-2,
on a small disc ∆ in z, there is a conjugation in U � ∆ of the generator of
the foliation to the normal form. In particular, when we have to take further
arguments in a variable such as x�λy or similar, as per §III.3-5, these may be
supposed arguments of an invariant function.

Now let us turn our attention to nodes as encountered in VI.2.1(f). The
necessary work to be done is that to achieve VI.4.2. For the case of bounded
sectors as encountered in IV.2, everything has already been done in §V.2-3. For
unbounded sectors we proceed much as in the good cases implicit in VI.4.3.
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Whence in the first place we restrict to the central subvariety and seek the weak
branch of the node therein by way of a graph y � ry � fpxq, ry � 0 the desired
branch. At the risk of a certain notational confusion, this amounts to solving
in a domain U in px, yq where the central manifold exists (so basically a disc in
y by a sector modulo the precision on critical points in IV.2) an ODE in x with
a functional derivative up to a bounded perturbation of the form,

f ÞÝÑ f � Bf
Bz

where z is the conformal variable encountered in §IV.2-IV.3. Since we’re in
the hypothesis of IV.3, Repzq ¥ 0, there’s only really an issue for z purely
imaginary. There are cases IV.3.6(a),(b),(d) where one has a full sector in the
imaginary direction so one can take as base point, Repzq Ñ �8. Otherwise one
is in IV.3.6(c), which should, and further to will be thus supposed, be treated
as the other bounded cases in IV.2. Notice also that when we are around a
ray with Repzq ¡ 0 in a domain that does not admit an intersection with cases
IV.3.6(a),(b),(d) that one has to take a finite base point in the z-plane, and the
possibilities for the weak branch are highly non-unique. Consequently it is best
to construct the right inverse to 1 � B{Bz on domains which are maximal for
the existence of the ambient centre manifold in 3-space. As ever the solutions
in §IV.3 (excepting IV.3.6(c)) patch whenever they have a common intersection
where Repxp�rq   0. The exact position, however, of the critical points with
Repcp�rq ¡ 0 is an absolute obstruction, so this is far from being as simple as a
2π versus 3π discussion.

Evidently we now wish to argue as in V.2.5, which will inevitably involve
some loss of domain, but the situation is not too bad since;

VI.4.4 Claim In all of the cases covered by IV.3 (excepting IV.3.6(c)), the
centre manifold in ambient 3-space may be supposed to exist on a domain V
in x and discs in y, z, so V �∆2 such that V contains open sectors V�, V� on
which the rays enjoy Repx�pp�rqq Ñ �8, respectively Repx�pp�rqq Ñ �8.

Proof. The assertion about �8 is actually the content of the various cases
considered in IV.3. The right inverses to the functional derivative can be patched
when they have a component of Repx�pp�rqq   0 in common, so one gets the
equivalent statement for Repx�pp�rqq going to �8 by going through the exact
same set of cases replacing �8 by �8. �

One also has a more precise statement involving critical points, but for the
moment this is unimportant since V.2.5 involves a bounded right inverse, and
it’s only relevant that we can integrate from �8. As such, as per VI.4.3 we’ve
already changed the direction of integration from right to left in this preparation
alone.

The full preparation to normal form on the centre manifold is exactly as per
IV.1.3 - understanding x as the conformal variable z in the sense of IV.2-IV.3.
In the particular case of immediate discussion around IV.3 one even has �8 as
a base point, so there is absolutely no change. Finally to apply VI.1.5 we must
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achieve a preparation in x�1Bx modulo z2, where here z � 0 is once again the
centre manifold in 3-space. Attempting the preparation by way of x ÞÑ efzx,
this amounts to solving the linear equation,

f

"
1� pp� rqxp�r

p1� λxp�rq2
*
� B̌f � �xpβ

where B̌ is the normal form restricted to the centre manifold, and x�1Bx �
xp�rp1�λxp�rq�1�xpzβ. Now one should be a little cautious since the critical
lines appearing in IV.3 are somewhat intrinsic to the field in question but rather
susceptible to change on multiplication by a unit - equal to 1 modulo xp�r�1

would be okay, but this is not our situation. Consequently one should observe
that if K is a right inverse to

�
1� B̌� then,

f � � xp�r

p1� λxp�rqK
" p1� λxp�rq

xp�r
xpβ

*
solves the equation. For this to have sense β must be a priori divisible by xr, but
this can certainly be achieved by starting from a sufficiently good approximation.

Here and elsewhere the construction of the right inverse to
�
1�B̌� largely just

involves changing plus signs to minus signs in IV.2/IV.3, and being attentive
to the loss of domain. One should, however be cautious, in cases IV.3.6(c) and
(d). The latter isn’t too bad since it just involves a loss of analyticity at it
becomes of the former type when the signs change. The former is, however,
really quite bad. More precisely, it doesn’t seem to be possible to make analytic
solutions, i.e. arguments in x only, in an open neighbourhood of the imaginary
axis. Unlike bounded domains around negative real arguments the conformal
variable z of IV.2, there is not a symmetry between inverting 1� B and 1� B,
and the base point for the former implied by using the cone construction of IV.2
for the latter is not holomorphic. This can be remedied by constraining the
invariant variable σ of IV.2 to any strip bounded by the ray of IV.3.6(c) in the
plane Repzq   0, and any other parallel to it. A priori the implied base point
for an integral operator to invert 1�B is still not holomorphic, but since σ is in
a strip, this is within finite Euclidean distance in the z-plane of a holomorphic
function hpσq. Again notation as per op.cit., this does not imply finite Euclidean
distance in the ξ-plane, so one should change the leaf Lσ by the simple expedient
of adjusting the polygon to have a vertex at hpσq with edges through the same
the straight lines between σ and hpσq and say a parallel to the ray that was the
other edge through the nearby non holomorphic vertex. This leads to a slightly
less tidy domain in σ, ξ coordinates (and of course extended by an open disc
in the ξ-plane around the base point to apply the implicit function theorem),
but à la III.3.2 and III.5.2 all points are still covered. Otherwise the loss of
domain in governed by the usual branching considerations of 2π versus 3π in
the analytic sectors together with the position of the critical points in the sense
of IV.3.1. With this in mind we can therefore not only safely apply VI.1.5 but
argue exactly as prior to VI.4.3 to obtain,
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VI.4.5 Fact Suppose in pXan the foliation admits on a neighbourhood a formal
generator of the form

z
B
Bz � xp

�
Rpxqy BBy �

xr�1

1� λxp�r
B
Bx

	
Then for U a domain in x, y as per IV.2/IV.3, with the above caveats in cases
IV.3.6(c)-(d) on U �∆ there is a conjugation of a convergent generator to the
same. In particular the extra restriction occurring in IV.3.6(c) in the invariant
variable σ explained above is in-fact with respect to an invariant variable for
the foliation on the ambient 3-fold.

This brings us to VI.2.1(g), i.e. a node with q ¡ 0, so at least we don’t have
to worry about finding the invariant hypersurface y � 0. Furthermore even
though VI.2.1(g) cannot be achieved in pXan, but only in the weaker topology of
completion in x � 0 or a point, V.1.9 is sufficient to imply that after blowing up
we may suppose x�1Bx and y�1By are divisible by xpyq, for the ambient foliated
3-fold. By IV.4, VI.1.3 will prove to be applicable provided we can achieve
the reduction VI.4.2. Essentially, this is done as per the proof of VI.2.1(g)
modulo appropriate changes. In the first place, one simply cannot argue as per
op.cit. because exponentials may not converge. Nevertheless if Ď � ξpηq B̌ is the
normal form in ξ, η coordinates one can proceed to seek a conjugation modulo
yk, k   q, modulo yq, and eventually modulo yq�1 for the field restricted to the
centre manifold. Consequently it is certainly necessary to begin from a situation
which is prepared modulo a large power of pxq. In any case, proceeding by way
of successive powers of y, one finds a system of ODE’s in x with functional
derivatives up to a bounded perturbation of the form,�

q � k 0
0 �k

�
� qxr�1 B

Bx
where the derivative can actually be taken as B{Bz in, obvious risk of notational
confusion, zpxq as per IV.2/IV.3. For k   q there is an obvious risk of competing
signs. To minimise the implied loss of domain, observe that since the centre
manifold converges in pXan, so modulo powers of xpyq after blowing up, we can
carry out this step a priori before finding the centre manifold on domains of the
form shown in figure VI.4.5, and negatives thereof for some suitable large R, zpxq
as IV.2/IV.3, and all lines bounded strictly away from imaginary. Furthermore
provided our preparation modulo powers of pxq is sufficiently good, we can also
similarly carry out the preparation modulo yq.

The monomial form VI.2.2(g), which as per VI.4.5 is what we employ to
actually solve the equation, casts a little more light on IV.4. In the persistent
confusion of notation between the conjugated coordinates and the conformal
mappings of IV.2-IV.4 we have, in the notation of the latter, ζpXq � X�1,
zpXq � X�r{r, and after a homothety Bξ � �1, ξ � X�pY �q. Whence in the
notation of op.cit., s � ξ�1 exppzpXqq, which is rather convenient. Irrespectively
we proceed exactly as for VI.4.3. According to the domains encountered in
IV.4.2 together with the fact that we must change from integrating from the
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Repzpxqq

Impzpxqq

R

Figure VI.4.5

left right orientation of IV.4.2 (which again has been conserved) for finding
the centre manifold, to going from right to left. As such we suffer the usual
loss from 3π to 2π in

�
xpyq

��1 in the good regions, i.e. domain of zpxq the
larger connected component of VI.4.5, or its negative, on exclusion of a strip
of width 2R about the negative real axis, while the problematic region around
the negative real axis (in the conformal variable zpXq ) is no worse than before
albeit it’s a good idea to change the rightmost boundary to one that is not
purely imaginary so that we can shrink it and apply the standard perturbation
argument in a uniform way. Ultimately, therefore, we obtain:

VI.4.6 Fact Suppose whether in the completion of pXan in a point, or better
the divisor x � 0, we have the normal form,

z
B
Bz �

xpyq

1� yq
�
Rpxq � λxp�r

��y BBy � xr

1� νxr
�
qx

B
Bx � py

B
By

�	
r P N, R polynomial of degree r � 1, λ, ν P C, then for a domain U in x, y, as
per IV.4 with the above further prescriptions, on a domain U � ∆ we have a
conjugation of a convergent generator to the said normal form. In particular
when we’re obliged in IV.4 to restrict the argument of the variable sq for the
conformal variable zpXq close to negative real, the variable s defining such
restricted domain may be supposed to be an invariant function for the ambient
foliation in 3-space.

In light of VI.2.2(h), the case VI.2.1(h) follows with exactly the same proofs
as VI.4.3 since, as already occurs whether in the proof of VI.2.2(h) or VI.4.3, the
only important thing is that p � qλ � 0, which is what distinguishes VI.2.1(h)
from VI.2.1(i) or (j), which we therefore make explicit note of by way of,
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VI.4.7 Fact Exactly as VI.4.3 but for a rational eigenvalue λ provided p�qλ �
0, which corresponds to the normal form VI.2.1(h) or (j) for the couple pi, jq � 0,
understood by way of any finite truncation of the series ν.

This leaves us with the highly resonant cases VI.2.1 (i)/(j) to do. The
strategy is basically as per VI.2.2(i), in order to obtain the reduction VI.4.2.
Let us spell this out in order to see that there is a difference between the normal
form and simply conjugating to a monomial form. More precisely let us write
the normal form of the plane field as,

B̌ � �
XkY l

�n
Ď �

�
XkY l

�n!
apX,Y q�lX B

BX � kY
B
BY

�� bpX,Y qX B
BX

)
On the other hand, restricting our field B to the centre manifold we have for
px, yq in some domain U as prescribed in §II.3 an expression for B of the form,

�
xkyl

�n "�
apx, yq � pxkylqρα��lx BBx � ky

B
By

	
� �

bpx, yq � pxkylqρβ�x BBx	
*

for ρ some integer as large as we please, and α, β bounded functions on U . Now
let us argue as in VI.2.2(i) but with some change between x and y, i.e. for
monomials M,N in X,Y to be chosen, let us look for a conjugation in the form,

y ÞÝÑ Y ekMf , x ÞÝÑ XeNg�lMf

So that we require to solve the system of PDE’s,

ĎpMfq � �enNgrapx, yq � apX,Y q, ĎpNfq � enNgrbpx, yq � bpX,Y q

where rapx, yq � apx, yq � pxkylqα, and similarly for rb. Now in the particular
cases at hand, a and b are functions of XkY l alone whence,

rapx, yq � apenNgXkY lq � �
XkY l

�ρ
eρnNgαpx, yq

and similarly for rb. Consequently the right hand sides of the above equations
are both divisible by the monomial N , provided N divides

�
XkY l

�ρ, and of
course we suppose that M

��N but is not equal to it. Furthermore the function b
is always divisible by XkY l, so our functional derivative has the shape,�

f
g

�
ÞÝÑ

"�
M�1ĎM 0

0 N�1ĎN

�
� ε

* �
f
g

�
� Ď

�
f
g

�
Consequently we have up to the usual un-troublesome bounded perturbation a
reduction by way of VI.1.3 to solving scalar equations,�

µ� Ď
�pF q � G

say even for the same µ, e.g. M � �
XkY l

�ρ�2
Y , N � �

XkY l
�ρ�1

Y . To solve
the equation we employ the conjugation VI.2.2(i) if our context is VI.2.1(i),
and otherwise do nothing. Irrespectively we have to proceed according to the
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proof of VI.2.2(i) and allow spiralling in the variable X. As per V.2.1 we can
eschew worrying about base points remaining in the domain, since there is only
one derivative in the system of PDE’s, and apply the usual power series to take
care of the bounded perturbation ε. This achieves the preparation VI.4.2 to
an arbitrary order of approximation with respect to powers of the ideal pxkylq,
with a loss of domain exactly as per VI.2.2(i).

Unfortunately this loss of domain has a price, since in the notations of §II.3
the unbounded domain Us now consists of the same left hand boundary, but
a right boundary as per figure II.2.2. Consequently when we come to employ
the strategy of pre VI.4.3 to achieve the actual conjugation on the 3-fold to
the normal form we can suffer further loss of domain. Indeed just as the other
integrable cases in §VI.3, the orientation is reversed from the notation of §II, i.e.
one integrates from right to left to achieve the centre manifold, and, in fact, with
the above choices of M and N also for the preparation VI.4.2. Consequently
in the equation for the normal form one is integrating from left to right. This
implies a problem of holomorphicity of base points unless we also spiral in the
y-variable, with both spiralling in x and y occurring in cones in the logarithm of
the same which must be adapted to s belonging to a strip domain. We have two
cases to consider. In the first place, notation as per II.3, we take s in a sector
S of aperture up to π{r so that sr is bounded away from purely imaginary.
This places us in exactly the situation of II.3.1(b), with large spiralling in x
and y if S is of small aperture around the real axis, and small spiralling if S is
close to full. In either case, we have a holomorphic section as a base point, and
everything is as per op. cit. Otherwise S is again a sector of aperture up to
π{r in s but this time bounded away from negative real. For large spiralling the

bpsq

apsq

Impρq

Repρq

Figure VI.4.7

minimum of Repρq will, according to the imaginary part of sr, be at either apsq
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or bpsq, for all s P S. In neither case, however, is apsq or bpsq holomorphic. If we
re-scale by sr, i.e. view II.3.1(b) in the ξ plane, there are holomorphic sections
αpsq, respectively βpsq, close by. More precisely αpsq, respectively βpsq, is at a
finite (as a function of the spiralling) Euclidean distance from apsq, respectively
bpsq, in the ξ plane. Unfortunately this distance gets magnified by s�r in the
variable that counts, i.e. ρ, so we need to make some changes to use either α
or β as a base point. This has some similarity with the extreme possibilities
about imaginary critical points encountered in VI.4.5. Irrespectively, we simply
modify the domain U 1 of II.3 fibre by fibre to obtain a sub-domain V in which
Repρq has a minimum at α, respectively β, as required, which in turn is joined
by straight lines to the holomorphic sections employed in the previous case. By
construction, at the price of some loss in radius in x and/or y, and in either
variable a small decrease in the spiralling, i.e. the aperture around the real axis
in the domain of the logarithm, V contains, therefore, a domain which is much
the same as U 1. Fortunately, we don’t need more of a polynomiality condition
on the relevant differential operator than that in III.2.1, so we can apply the
implicit function theorem directly in V having constructed a bounded right
inverse in the usual way, i.e. put a disc of fixed Euclidean distance in each fibre
around our base point, and integrate from it to get a bounded right inverse with
power series to deal with any perturbations exactly as per III.2. Whence, to
conclude:

VI.4.8 Fact Suppose that in the completion of pXan we have either of the normal
forms,

z
B
Bz � pxkylqn

!
Rpxkylq�lx BBx � ky

B
By

�� pxkylqr
1� νpxkylqn�r x

B
Bx

�)
for n, r P N, degR ¤ r, Rp0q � 0, ν P C, or,

z
B
Bz �

pxkylqn
1� νpxkylq

�
lx
B
Bx � ky

B
By

	
with everything as above, except ν which is now a formal function of a single
variable. Then for s � xkyl in a sector S of aperture π{n bounded away from
one of real or purely imaginary we have a subdomain U of the product of
hyperplanes defined by log x, respectively log y such that U maps to S, with
spiralling neighbourhoods of x and y as large as we like for S bounded away
from real, or, exactly as per II.3, for spiralling adapted to S for S bounded
away from purely imaginary, such that for z varying in a disc ∆ we can find
a conjugation of a convergent generator B of the foliation on ∆ � U to the
appropriate normal form, and this can be done with an arbitrary large degree
of polynomial approximation modulo xkyl.
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[GML92] Xavier Gómez-Mont and Ignacio Luengo. Germs of holomorphic vec-
tor fields in C3 without a separatrix. Invent. Math., 109(2):211–219,
1992.

[Kob98] Shoshichi Kobayashi. Hyperbolic complex spaces, volume 318
of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1998.

[Kol07] János Kollár. Lectures on resolution of singularities, volume 166 of
Annals of Mathematics Studies. Princeton University Press, Prince-
ton, NJ, 2007.

124
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des opérateurs différentiels”. Math. Scand., 8:116–120, 1960.

[Sei68] A. Seidenberg. Reduction of singularities of the differential equation
Ady � B dx. Amer. J. Math., 90:248–269, 1968.

[Sok80] Alan D. Sokal. An improvement of Watson’s theorem on Borel summa-
bility. J. Math. Phys., 21(2):261–263, 1980.

[vS79] Sebastian J. van Strien. Center manifolds are not C8. Math. Z.,
166(2):143–145, 1979.

[Was85] Wolfgang Wasow. Linear turning point theory, volume 54 of Applied
Mathematical Sciences. Springer-Verlag, New York, 1985.

[Zeh75] E. Zehnder. Generalized implicit function theorems with applications
to some small divisor problems. I. Comm. Pure Appl. Math., 28:91–
140, 1975.

125


