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BABY GEOGRAPHY AND MORDELLICITY OF SURFACES

Michael McQuillan

Abstract. We prove strong Mordell for surfaces of general type and non-negative
index over characteristic zero function fields by way of a, probably, more interesting
lemma.

1 Introduction

There is a programme to establish the conjectured hyperbolicity of surfaces of gen-
eral type, [McQ]. Their similarly conjectured Mordellicity over characteristic zero
function fields is in principle amenable to the same strategy thanks to the technique
introduced in the proof of Vojta’s 1 + ε conjecture over function fields, [McQ13].
Nevertheless, the said technique which yields a derivative over the function field,
and not just its base point, is delicate when there is bad reduction. As such, for the
purpose of the present, we proceed classically by way of differentiating with respect
to the base point, and make a start on the Mordell problem for surfaces as a function
of their geography by way of:

Theorem 1.1. Let X ⊗ K/K be a geometrically integral smooth minimal surface
of general type and non-negative index, i.e. c2

1(X ⊗ K) ≥ 2c2(X ⊗ K) over a field
of functions in characteristic zero. Denote by Z ⊂ X ⊗ K the proper Zariski closed
subset whose geometrically irreducible components are rational or elliptic curves
over K, then there are constants −κ(X ⊗ K) < 0, and α(X ⊗ K) ≥ 0 such that any
algebraic point f of X ⊗ K\Z satisfies:

hωX⊗K/K
(f) ≤ κdiscr(f) + α. (1)

In particular (cf. A) the K-rational points of X ⊗ K\Z are contained in finitely
many sub-varieties whose normalisations are iso-trivial.

The corresponding hyperbolicity theorem is due to Steven Lu, [Lu91], and is,
in essence, Miyaoka’s almost ampleness theorem, [Miy83]. By way of a standard
variation, Section 1, on this theme we reduce, 1.4, along the lines that these references
suggest, the theorem to the following,
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Lemma 1.2. Let X ⊗ K/K be a geometrically integral smooth surface over a field
of functions in characteristic zero. Denote the base point by k, i.e. k is algebraically
closed and K/k are the rational functions on a curve over k, and let Y ⊂ P(ΩX⊗K/k)
be closed with every generic point finite over X ⊗ K, then there are constants
−κ(X ⊗ K, Y ) < 0, α(X ⊗ K, Y ) ≥ 0, and a proper closed subset W ⊂ X ⊗ K, such
that any algebraic point f on X ⊗ K\W whose derivative f ′ over k belongs to Y
satisfies:

hωX⊗K/K
(f) ≤ κdiscr(f) + α. (2)

Arguably, the lemma is more interesting than the theorem since it has no re-
strictions on chern numbers, and, so, has the potential to be applicable under less
restrictive geographic constraints. In neither case are there restrictions on the degree
(K(f) : K), and in either case we work with normalised heights and discriminants.
Strictly speaking the former depends on the choice of a model X/S for S/k smooth
proper with function field K. Much of the time this is un-important, and the height
notation is less cumbersome. Occasionally, however, there may be some hidden de-
pendence, and when there is, notably 3.2–3.3, and the end of the proof, it is spelt out.
Similarly, we use the dualising sheaf notation, ωX⊗K/K , etc., even though this is a
bundle, so avoiding KX⊗K/K , and up to normalising by the reciprocal of (K(f) : K),
height along a bundle just means degree along the curve f : T → X in the model
corresponding to the point, while discriminant means (geometric) genus of T , (14).

Finally let us give a guide to the proof of the lemma. After base change, one may
suppose that Y is the union of its geometrically integral components. By hypothesis,
each algebraic point in question lifts to at least one such by way of its derivative
over k. Fixing our attention on such a component we may therefore replace X by
it, and the condition f ′ ∈ Y amounts to f is invariant by a foliation by curves F .
The key point is to bring the canonical bundle KF of forms along this foliation into
play, which is done by an optimal height estimate, 3.3, along KF , akin to those
whether in the theorem, (1), or the lemma, (2), i.e. κ = 1 + ε, such optimality be-
ing, incidentally, false, [ACLG12], at the level of the theorem. This statement needs
generic resolution of foliation singularities, and is false otherwise, equivalently with-
out resolution KF should be written ωF and carries little information. Regardless
for trivial reasons KF is effective, and a little less trivially it has, Fact 3.6, a partic-
ularly elegant Zariski decomposition over the generic point, i.e. its nef. part is of the
form KF0 for F0 the induced foliation on some X0 ⊗ K with quotient singularities
obtained from contracting chains of invariant rational curves, X ⊗K → X0 ⊗K. By
3.3 we are therefore, 3.7, reduced to studying the situation where KF0 has numerical
Kodaira dimension 1. Since it is effective, much the same argument as employed in
the classification theorem of foliated surfaces over a point establish that its Kodaira
dimension is 1. Thus, while not logically necessary, it is very useful, and perhaps
even desirable, to understand a priori how the proof goes of the related statement
in the classification, [McQ08, IV.4.1–IV.5.2], of foliated surfaces over a point, i.e.
the (foliated) minimal model of a foliated surface of general type with numerical
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(foliated) Kodaira dimension 1 and an effective canonical divisor is (either) of the
natural foliations on a quotient of a product of curves by a finite group, since every-
thing post the proof of 3.3, is a variant on this. Indeed, once the Kodaira fibration
X ⊗ K → B ⊗ K of KF is found it’s even (76)–(77), a map of foliated varieties
(X ⊗ K,F ) → (B ⊗ K,G ), and by [Jou78], the latter must be a pencil of curves
B → C over k. In terms of models, this forces the algebraic points to lie in the
F -invariant fibres X → C, where the induced foliation is a quotient of a product of
curves, and one concludes by adjunction (81)–(83).

Thus, relative to the geography, the proof is involved, which suggests that k
rather than K differentiation is un-sustainable under less restrictive hypothesis.

2 Riemann-Roch Calculations

We have both an absolute base field which is algebraically closed of characteristic
zero, say, C for convenience, rather than k, and the function field K = C(S) of a
smooth projective curve S. Our interest is smooth surfaces over K, so, say, a proper
family X → S of surfaces, which is generically smooth and geometrically integral,
with, for convenience X non-singular. Over the generic fibre, we have a short exact
sequence on X ⊗ K := X ×S Spec(K):

0 → ΩS/C ⊗ K
∼→ OX⊗K → ΩX⊗K/C → ΩX⊗K/K → 0 (3)

where, here, and elsewhere the superscript 1, will be omitted from the notation. In
particular, (3) yields st (Ω∨

X⊗K/C) = st(Ω∨
X⊗K/K), for st the Segre polynomial, so:

s2 (Ω∨
X⊗K/C) > 0, if s2 (Ω∨

X⊗K/K) > 0. At the level of the projective bundle,

PX⊗K/C := P(ΩX⊗K/C) = P(ΩX/C) ×S Spec(K) (4)

with projection π to X and tautological bundle L, this says L4
X⊗K/C > 0. Thus:

χ
(
PX⊗K/C, L⊗n

X⊗K/C

)
∼ n4

4!
L4

X⊗K/C 	 n4, (5)

grows positively in n, for c1(X ⊗ K)2 > c2(X ⊗ K). We calculate the cohomology,

Hi
(
PX⊗K/C, L⊗n

X⊗K/C

) ∼−→ Hi(X ⊗ K, Symn ΩX⊗K/C), (6)

where we profit from Rjπ∗L⊗n
X⊗K/C = 0 for j > 0. To guarantee large h0, we need

only control H2, which is isomorphic to H0(X⊗K, SymnTX⊗K/C⊗ωX⊗K/C). Whence
we’ll conclude that L is big provided that TX⊗K/C is not big. In fact,

Lemma 2.1. Suppose that the generic fibre X ⊗ K is minimal of general type, and
the family is not iso-trivial, then, h0 (X ⊗ K, SymnTX⊗K/C) = 0, ∀n ∈ Z>0.
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Proof. Suppose otherwise, and let C be a generic member of a sufficiently high
multiple of ωX⊗K/K . Then ΩX⊗K/K |C is semi-stable, [Kob87, Theorem 8.3], and
ωX⊗K/K · C > 0 so in fact, ΩX⊗K/K |C is ample, and whence

H0((X ⊗ K, SymnTX⊗K/K) = 0, ∀n ∈ Z>0. (7)

Now suppose there is a minimal n ≥ 1 such that h0 (X ⊗K, SymnTX⊗K/C) �= 0, and
consider the exact sequence afforded by (3),

0 → Symn−1 ΩX⊗K/C → Symn ΩX⊗K/C → Symn ΩX⊗K/K → 0 (8)

then if n ≥ 2 we obtain an element of H0 (X ⊗ K, Symn TX⊗K/K). By (7) this is
nonsense, while again by (7) if n = 1: ΩX⊗K/C must be a split extension of ΩX⊗K/K

by OX⊗K , and so X ⊗ K/K is isotrivial. �

Consequently, if X ⊗ K/K is not iso-trivial,

h0(L⊗n
X⊗K/C) grows like n4 for s2 = c2

1 − c2 > 0 on the generic fibre, so: (9)

Fact 2.2. Let X⊗K/K be a surface of general type with s2(X⊗K) > 0, then for H
ample on X, there are constants −κ(X) < 0, α(X) > 0, and a divisor D ⊂ PX⊗K/C

such that any algebraic point f satisfies,

(a) hH(f) ≤ κ discr(f) + α or (b) f ′ ∈ D (10)

wherein the heights and discriminants are understood to be normalised by the degree,
cf. (14).

Proof. The iso-trivial case is in [Bog77], so we suppose otherwise, and write the
algebraic point as f : T → X, for T → S finite, T/C smooth. It has a derivative,

f ′ : T → P(ΩX/C) (11)

and for L the tautological bundle on the latter:

L ·f ′ T ≤ (2g − 2) (12)

for g the genus of T . By (9) there is some n ∈ Z>0 such that nLX⊗K/C − π∗H
is effective, say, D. Equivalently for D the closure in P(ΩX/C), there are divisors
F+, F− ≥ 0 supported in fibres of X → S such that,

nL = π∗H + D + F+ − F−. (13)

The proposition is intended with normalised heights and discriminants, i.e.,

hH(f) =
H ·f T

(T : S)
, discr(f) =

2g − 2
(T : S)

etc. (14)

so taking intersections with L we conclude. �
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To improve this when the index is non-negative, requires

Lemma 2.3 (cf. [Miy83], [Lu91]). Let F/C be a smooth minimal surface of general
type and non-negative topological index with Y ↪→ P(ΩF/C) π−→ F a divisor each
generic point of which dominates F then for L the tautological bundle on P(ΩF/C)

L2 · Y > 0 (15)

unless the universal cover of F is a bi-disc.

Proof. Let ρ : F → F0 be the canonical model, then F0 admits, [TY87], a Kähler-
Einstein metric in the orbifold sense, i.e. on a smooth champ de Deligne-Mumford
p : F → F0 almost étale and bi-rational over its moduli F0. Consequently, [Kob87,
Theorem 8.3], ΩF/C is KF0 semi-stable, so by Hartogs’ extension ΩF/C is KF =
ρ∗KF0 semi-stable. We have, however, the tautological sequence

0 → N → π∗ΩF/C → L|Y → 0 (16)

so by hypothesis and KF semi-stability

0 ≤ (Y : F )(c2
1 − 2c2) = (L|Y )2 + N2 ≤ 2(L|Y )2. (17)

As such we’re done unless for every irreducible component Y ′ of Y :

0 = (Y ′ : F )(c2
1 − 2c2) = 2(L|Y ′)2 = 2(N |Y ′)2 (18)

and without loss of generality Y is irreducible. It is defined by an injection

0 → M → SymnΩF/C, n ∈ Z>0 (19)

where M is a line bundle, and (16) is saturated, while by KF semi-stability

KF · M ≤ n

2
K2

F (20)

so from

(L|Y )2 = ns2(Y ) − KF · M, (21)

we’re equally finished unless we have equality in (20).
Now by Hartogs’ extension (16) and (19) have analogues for ΩF/C for line bundles

L , N , M say, and a divisor Y ↪→ P(ΩF/C) in the obvious notation whose pull-
backs (as Q-divisors after resolving any indeterminacy from Y to the moduli of Y if
necessary) may well be different from their analogues over F , but their intersection
numbers with KF = p∗KF0 are the same. In particular from (17)

KF · L |Y = KF · L|Y = KF · N = KF · N > 0 (22)

we must have (L |Y )2 = N 2. As such Bogomolov-vanishing, [Bog78]; (19) and the
first equality in (17) combine to

0 ≥ N 2 = (L |Y )2 = ns2(Y ) − KF · M = n(c2(F ) − c2(F )). (23)
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If, however, ρ is non-trivial the rightmost term in (23) is strictly positive- each con-
traction of a connected component of the exceptional divisor reduces the topological
Euler characteristic by at least 3/2- so we must have F = F0 = F ; KF is ample;
(19) is an injection of line bundles by [Kob87, Theorem 8.3]; and π : Y → F is finite.

On the other hand we have a (non-zero since we’re in characteristic 0) composi-
tion

π∗M ⊗ L−n|Y = OY (−Y ) → ΩP(ΩF/C)/C → ΩP(ΩF/C)/F = π∗KF ⊗ L−2 (24)

vanishing along some (possibly empty) divisor R which by (18) and equality in
(20) has nil π∗KF degree, so, indeed R is empty since π is finite and KF is ample.
Consequently the co-kernel of the leftmost map, ΩY , in (24) is isomorphic to the
kernel of the rightmost, π∗ΩX , while Y is l.c.i., and F is smooth whence π is also
flat, so it’s an étale cover. Finally, therefore, we can replace π∗ΩF in (16) by the
co-tangent bundle of the smooth surface Y , so, by (17) and [Kob87, Theorem 8.3],
(16) is actually a split exact sequence, and the universal cover of Y , which is equally
that of F , is a bi-disc. �


We can, therefore, improve Fact 2.2 to

Fact 2.4. Again let X ⊗ K be a non-isotrivial minimal surface of general type, but
now with non-negative topological index, τ , equivalently c1(X ⊗K)2 ≥ 2c2(X ⊗K),
then for any divisor, D ⊂ PX⊗K/C, each generic point of which dominates X ⊗ K
LX⊗K/C|D is big, unless, after a base change in K, X ⊗ K admits an étale cover by
a product of curves.

Proof. We may suppose D is geometrically irreducible. There is an integer m and
a line bundle M on X ⊗ K such that, OP (D) ∼−→ L⊗m

X⊗K/C ⊗ π∗ M∨. We wish to

calculate the intersection number, L3
X⊗K/C · D on the generic fibre. To this end,

observe:

L3
X⊗K/C · D=L3

X⊗K/C · (mLX⊗K/C − M)=ms2 (TX⊗K/C)−ωX⊗K/C · M. (25)

The map, M → L⊗m
X⊗K/C, defined by D, may be pushed forward and we obtain a

composition:

M → SymmΩX⊗K/C → SymmΩX⊗K/K , (26)

while D irreducible implies the composite map M → Symm ΩX⊗K/K is non-zero, so
we may saturate the composition (26) to obtain a divisor Y ↪→ P(ΩX⊗K/K) each
component of which dominates X ⊗ K and which (employing L• for tautological
bundles) is linearly equivalent to mLX⊗K/K − M̄ for some line bundle M̄ ≥ M on
X ⊗ K. Plainly, by (3), ωX⊗K/C = ωX⊗K/K , is nef so by (25)

L3
X⊗K/C · D − L2

X⊗K/K · Y = ωX⊗K/K(M̄ − M) ≥ 0. (27)
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On the other hand: by Weil rigidity, [Wei60], a non-isotrivial smooth bi-disc quotient
is an étale quotient of a product of curves, so by hypothesis, and 2.3:

L3
X⊗K/C · D >

3m

2
τ (X ⊗ K) ≥ 0. (28)

To determine the cohomology Hi (D, L⊗n
X⊗K/C), we use the exact sequence,

0 → L⊗n
X⊗K/C (−D) → L⊗n

X⊗K/C → L⊗n
X⊗K/C|D → 0 (29)

so, on taking n sufficiently large, we are reduced to excluding the possibility that
H2 (PX⊗K/C, L⊗n

X⊗K/C) grows in dimension like n3. Arguing as before 2.1 we must
simply exclude that H0 (C, Symn TX⊗K/C) grow like n3, for C a generic member of
a suitable multiple of ωX⊗K/C. Proceeding exactly as in the proof of 2.1 we see that
we are done unless H0 (C, TX⊗K/C) �= 0. This of course forces TX⊗K/C|C to split,
and better still the semi-stability of ΩX⊗K/K |C obliges,

0 → ΩX⊗K/K |C → ΩX⊗K/C|C → OC → 0

to be the Harder-Narismhan filtration for the bundle ΩX⊗K/C, and whence the
tangent sheaf (over C) of the orbifold covering of the canonical model of X ⊗ K
encountered at the beginning of the proof of 2.3 splits, which again implies that
X ⊗ K is isotrivial. �


We freely base change in K as necessary. The components of D appearing in
(10)(b) which don’t dominate X ⊗ K, are the pull-backs of curves. If these curves
aren’t rational or elliptic, the height bound (10)(a), for a possibly different κ, is easy,
e.g. [McQ13] is optimal, but [Voj91] is sufficient. Similarly lifting algebraic points to
a covering étale over K changes the discriminant at most by a constant, so, again
either of the above height bounds for curves over K gives the height bound (10)(a),
and whence Fact 2.4 refines Fact 2.2 to:

Fact 2.5. Let X ⊗K/K be a surface of general type with τ(X ⊗K) ≥ 0, then for H
ample, there are constants −κ(X) < 0, α(X) > 0, and a sub-scheme Y ⊂ PX⊗K/C,
finite over X ⊗ K at each of its generic points such that any algebraic point f not
belonging to the at worst finite set of rational or elliptic curves on X⊗K/K satisfies,

(a) hH(f) ≤ κ discr(f) + α or (b) f ′ ∈ Y . (30)

3 Foliations by Curves

The goal is to prove that on surfaces of general type and non-negative index all
algebraic points satisfy (30)(a). The obstruction is (30)(b), so (b) implies (a) will
do. This no longer has anything to do with chern numbers, and we assert,
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Lemma 3.1. Let X ⊗ K/K be a surface of general type and Y ⊂ PX⊗K/C a sub-
scheme finite over X ⊗ K at each of its generic points, then for H ample there are
constants −κ(X, Y ) < 0, α(X, Y ) > 0 such that algebraic points f with f ′ ∈ Y
excluded from a proper closed subset in X ⊗ K/K satisfy,

hH(f) ≤ κ discr(f) + α. (31)

The proof will occupy the rest of the manuscript. Plainly we may suppose Y
geometrically irreducible, and the points f are Zariski dense. The condition f ′ ∈ Y
is a first order O.D.E.. Since the points f also lift to Y by differentiation, we can
replace X by Y without changing their discriminants, so without loss of generality
the O.D.E. is linear, i.e. it’s a foliation by curves F . The condition f ′ ∈ Y may thus
be replaced by f is invariant by F , which in turn is given by a short exact sequence,

0 → ΩX/F → ΩX⊗K/C → KF IZ → 0 (32)

where the kernel is reflexive rank 2, KF is the bundle of forms along the leaves, and
Z the (generic) singular sub-scheme of F . As such Y is in fact,

Proj
(∑

K⊗n
F · In

Z

)
. (33)

The singularities are important, and we blow up to make them best possible. This
means, functorially with respect to the ideas, canonical, [MP13]. By op. cit., canoni-
cal resolutions of foliations exist for 3-folds, but here we need much less, i.e. canonical
over the generic point, so [SdS00] is perfectly adequate. Base changing as necessary,
we may suppose that every singularity whose generic point is flat over S is K-
rational. In the following the order of quantification is critical,

Fact 3.2. Let X/S with H ample on X be a model of XK such that the following
hold,

(a) Y of 3.1 is a foliation by curves, F , on X.
(b) Over some Zariski open U ⊂ S, every singularity of F |U is canonical, and

defines a section of X|U → U .

Then understanding heights to be computed on this model, for every ε > 0, there is
a proper sub-variety Vε ⊂ X ⊗ K and α(ε) > 0 such that,

hKF
(f) ≤ discr(f) + εhH(f) + α(ε), f /∈ Vε. (34)

Proof. This is immediate from the substantially more general [McQ05] V.6.1. Since,
it is critical to the proof, and the present case permits substantial simplification we
give the details. Nevertheless some familiarity with Jordan decomposition, [Mar81],
of vector fields is necessary, so, even though this is just linear algebra, 3.4, one may
wish to cross reference op. cit. As in the proof of Fact 2.2 we identify f with a map
from a (smooth) curve T finite over S. The derivative, (11), now factors through the
sub-scheme, Y , defined by F , which, (33), is isomorphic to the blow up in Z, so the
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tautological bundle L on the projectivised tangent space is isomorphic to KF |Y (−E)
for E the exceptional divisor. We may suppose f does not factor through Z, whence
we have a finer form of (12),

KF ·f T = (2g − 2) + sf,Z − Ramf (35)

for g the genus of T , and sf,Z the Segre class of f around Z. Any component of Z
which is not flat over S

can contribute at most a constant times (T : S) to the Segre class, (36)

which we’ll employ repeatedly in proving (the manifestly, (35), sufficient to imply
Fact 3.2):

Claim 3.3. Let everything be as in Fact 3.2, and for U ⊂ S Zariski open let sf,Z∩U

be the part of sf,Z supported over U then up to an implied constant depending on
U

sf,Z − sf,Z∩U ≤ OU ((T : S)). (37)

Moreover: there is a Zariski open Uε, a constant α(ε), and a proper closed sub-variety
Vε of X|Uε

such that any invariant curve f not factoring through Vε satisfies,

sf,Z∩Uε
− Ramf ≤ εH ·f T + α(ε). (38)

Purely for notational convenience, we suppose in addition to Fact 3.2(a) and (b)
that a blow up has been performed in every singular component flat over S. Whence
the exceptional divisor is an algebraic invariant hypersurface through the singularity.
Similarly we may suppose that over U at a given singularity, Z, there is a vector
field ∂ generating the foliation. This descends to an OU -linear map,

∂ ∈ End(JZ/J2
Z) (39)

for JZ the reduced ideal supported on Z. Normalising so that x = 0 is an equation
for the exceptional divisor, should there be 2 such eigenvalues, then shrinking U as
necessary we can write,

∂ = x
∂

∂x
+ a

∂

∂y
+ g

∂

∂z
, a = λy mod J2

Z (40)

where (x, y) = JZ � g, and λ : U → A
1. Generically canonical is not equivalent

to λ not identically positive rational, but, this latter condition can be achieved
by blowing up, so, for notational convenience, we’ll suppose it. Irrespectively to
prove (37) in this case we can by (36) blow up in points as much as we wish, so,
without loss of generality, every component of the singular locus of F flat over
S is smooth at every s ∈ S\U , and so, not just generically but in a sufficiently
small neighbourhood of every closed point, such a component may be identified
with the locus x = y = 0. Consequently we can clear denominators in (40) by way
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of multiplication by a suitable function in order to obtain a local generator in a
neighbourhood of any closed point of such a component of the form

∂ = hx
∂

∂x
+ a

∂

∂y
+ g

∂

∂z
, h �= 0 mod (x, y), a, g ∈ (x, y) (41)

wherein h, a, g are regular functions, z may be identified with a coordinate at s ∈ S,
and the origin with s ∈ S\U . As such if t �→ (x(t), y(t), z(t)) is a branch of f cutting
the singular locus in s then x(t)z(t) �= 0 and (41) implies

min{ordt(x(t)), ordt(y(t))} ≤ ordt(g) = ordt(zh). (42)

Consequently if we write h = h0(z) + h1 for some function h1 ∈ (x, y), then either
ordt(h) ≤ ordt(h0) and (42) implies (37) (for components which generically admit 2
eigenvalues) or

ordt(h0) = ordt(h1) (≥ min{ordt(x(t)), ordt(y(t))}) (43)

and (37) follows from combining (43) with h0 �= 0.
Now, to understand what invariant curves can meet Z over U one uses Jordan

decomposition. As above we profit from (3.2)(b), to identify the given component of
interest with S, and the Jordan decomposition takes place not in the completion in
Z, but only in the completion in the maximal ideal in a point, to wit:

Revision 3.4. Let s ∈ U ∩ Z then in the completion, Ôs, in m(s) there is a Jordan
decomposition of the generator ∂,

∂ = ∂S + ∂N , [∂S , ∂N ] = 0 (44)

into semi-simple, ∂S , and, topologically nilpotent, ∂N , parts. Furthermore for some
coordinates x, ηs, ζs with the latter formal functions in the completion at s and
ηs = y, modulo m(s)2,

∂S = x
∂

∂x
+ λ(s)ηs

∂

∂ηs
. (45)

In particular, if an invariant curve passes through the singularity, it’s completion
must be invariant by ∂S , and ∂N . Thus, supposing, as we may, that the curve is not
the singular locus itself, we have the following cases,

(1) λ(s) /∈ Q+, then any invariant curve must factor through x = 0, or ηs = 0, and
the function ζs must vanish.

(2) λ(s) = m/n ∈ Q+\Z>0, then an invariant curve is exactly an element of the
family ζs = 0, xm = ρηn

s , ρ ∈ C.
(3) λ(s) ∈ Z>0, an invariant curve belongs to the family, ζs = 0, xm = ρηs, ρ ∈ C,

but exactly which elements of this family, if any, are invariant depends on ∂N .
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Jordan decomposition cannot be done uniformly along Z. In fact not even the hy-
persurface η need exist in the completion in Z over a Zariski open in S- as one might
guess the problem here is when λ(s) ∈ Z>0. However (by linear algebra) for every
k ∈ Z>0, to be chosen, we can achieve that there is an algebraic function y on a
Zariski open such that for s ∈ Uk, a Zariski open depending on k,

ηs = y(mod Jk
Z). (46)

As such if Ik is the ideal (x, yk)∩ (y, xk) and f : Δ → X a germ of a formal invariant
curve, pointed in p, crossing Z at some s = f(p) ∈ Uk then,

ordp(f∗Ik) ≥
{

k Case (1) as above,
min{H(λ(s)), k} Cases (2) and (3)

(47)

for H(λ(s)) the big height, i.e. max{m, n} in the above notation. There are only
finitely many points in Q with big height less than k, so we throw these away to get
a possibly different open Uk. Further every crossing of such a Z contributes exactly
1 to the difference between the ramification and the Segre class so by (47),

sf,Z∩Uk
− Ramf ≤ 1

k
· sf |Uk

,Ik
. (48)

Now for a section of Hd, d ∈ Z>0 over X⊗K to lie in Ik⊗K is at most 2k conditions,
so for d = 2

√
k, or thereabouts, and k sufficiently large,

Γ(X ⊗ K, H⊗dIk) �= 0. (49)

Thus if f does not lie in the base locus, Bk of the linear system (49), and we shrink
Uk so that the linear system is defined over the same, then:

sf,Z∩Uk
≤ 2√

k
H ·f T (50)

so by (48) we’ve done (38) in the 2-eigenvalue case.
In the 1-eigenvalue/saddle node case, we first do (37), so as in (41) we find a

local generator of the foliation of the form

∂ = hxe+1 ∂

∂x
+ a

∂

∂y
+ g

∂

∂z
, e ∈ Z≥0, h �= 0 mod (x, y), a, g ∈ (x, y) (51)

where h, a, g are regular functions; x = y = 0 defines the reduced structure on
the singular locus; and x = 0 is still the exceptional divisor. Now while e = 0 is
not impossible, it’s very rare so in principle the analogue of (42) for a germ of an
invariant curve is much worse, to wit:

ordt(g) = ordt(zh) + eordt(x) (52)
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Now g ∈ (x, y), so blowing up in (x, y) as necessary (since any new components of
the singular locus flat over S will, generically, have 2 eigenvalues) we may suppose
that

g = xmg0, g0 = zn modulo (x), for some m ∈ Z>0 n ∈ Z≥0, (53)

and we distinguish the following cases: m > e so (52) implies (37) by way of the same
dichotomy encountered in (42)–(43); m < e so without loss of generality ordt(x) >
nordt(z) since- cf. (43)- we would otherwise have

sZ,f (s) ≤ (e + 1)ordt(x) ≤ (e + 1)nordt(z) = (e + 1)n(T : S) (54)

and there’s nothing to do, whence (52) becomes

nordt(z) − ordt(zh) = (e − m) ordt(x) (55)

and we’re done again; otherwise e = m, n = d + 1, d ≥ 0 and, without loss of
generality ordt(x) > (d+1)ordt(z), while if we again write h = h0(z)+h1, h1 ∈ (x, y),
then we can similarly suppose ordt(h1) > ordt(h0), so

h0(z) = νzd + O(zd+1), ν �= 0. (56)

On the other hand the identity (52) results from the differential identity

(xehz)
x

ẋ
= g

z

ż
, (xz)(t) �= 0 (57)

afforded by (51), so from the leading term in t of (57), ν ∈ Q>0, and

ordt(x) = νordt(z) (58)

which, cf. (54), completes the proof of (37) in the 1 eigenvalue case. Ironically (38) is
easier here because there is a formal invariant hypersurface η = 0, the formal centre
manifold, defined in the fibre over a Zariski open subset U ⊂ S of the completion in
Z such that the semi-simple part of the Jordan decomposition is uniformly of the
form,

η
∂

∂η
(59)

in some coordinate system ξs, η, ζs in Ôs, with ξs = 0 the exceptional divisor. Thus
invariant curves either factor through one of the exceptional divisor or η = 0. The
former may be ignored, and in the latter case the induced foliation in η = 0 either
leaves Z invariant, or it does not. In the former case there are no other invariant
curves crossing Z over a sufficiently small Zariski open. In the latter case they can
be taken of the form ζ = Constant, in some coordinate system x, η, ζ defined in the
completion of Z over a Zariski open with x = 0 the exceptional divisor, and (η, xk)
algebraic for any k, which one then takes as Ik in (49) and argues as in (50). �
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Now consider the composite of the natural maps,

ΩK/C = OX⊗K → ΩX⊗K/C → KF . (60)

This is non-zero at every f , which are Zariski dense, so it defines a non-zero section
Γ, which we confuse with the curve that it defines, of KF . To fix ideas: Γ has a
Zariski decomposition, if the nef. part were big then there is a δ > 0 such that, for
f not factoring through a proper subvariety,

hKF
(f) ≥ δhH(f) (61)

so (34) implies (31) and we’re done. Consequently, what’s required is some (foliated)
minimal model theory in order to understand the non-generic case where this fails.
We could appeal to the general theory of [McQ05], but we essentially only have a
surface question, so things can be done by hand. Base changing in K we may suppose
that every intersection of components of Γ is a section, and:

Fact 3.5. Let C ⊂ X ⊗ K be a curve then:

(a) If C is not invariant by F , then (KF + C) · C ≥ 0.
(b) If C is invariant and belongs to the support of Γ then it is smooth and satisfies:

KF · C = −χC + sZ(C).
(c) The invariant part of Γ is simple normal crossing, and the crossings in the same

occur only at singularities of F ⊗ K.

Proof. In (a), by definition, the composition:

OC(−C) → ΩX⊗K/C → KF (62)

is non-zero. Similarly, if C is smooth, then f−1IZ is a Cartier divisor, OC(−E), say,
with E of degree sZ(C), and if, furthermore, C is invariant, then there is a surjection,

ΩC/C → KF |C(−E) → 0. (63)

Should in addition C be in Γ, then ΩK/C maps to zero under the above, so there is
even a surjection,

ωC/K → KF |C(−E) → 0 (64)

and both sides are line bundles, so this is an isomorphism. Whence we only require
to prove the various smoothness and normal crossing assertions.

Now, in the proof of 3.3, we’ve already (implicitly) seen by way of the Jordan
decomposition at a singularity, 3.4, that there are at most 2 formal invariant hyper-
surfaces containing the singularity which are flat over K, and that these are smooth
with simple normal crossings. Consequently, we’re reduced to proving that the in-
variant part of Γ is smooth outside the singularities. As such, let Σ ↪→ Γ\Z be any
(irreducible) multi-section of S, whence it’s finite étale over some sufficiently small
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Zariski open U ⊂ S. By the definition of Γ, Σ cannot be F -invariant- otherwise the
composite,

ΩU/C|Σ ∼→ ΩΣ/C
∼→ KF |Σ (65)

would certainly not be null. Thus, shrinking U as necessary, we may suppose that
F is everywhere transverse to Σ, and, better still, there is a function x vanishing
on Σ and a generator ∂ of the foliation about the same such that ∂(x) = 1. At this
point the Frobenius theorem is valid in the completion in Σ, more precisely for any
function f on a formal neighbourhood:

∞∑
n=0

(−1)n

n!
xn(∂)n(f) (66)

converges in the completion, so there is a unique invariant hypersurface containing Σ,
and it is smooth. Alternatively, since we’re over C, by the usual Frobenius theorem,
take the germ of an analytic hypersurface which is Σ together with the unique germ
of an invariant curve through each point. �


The first of these tells us that the conditions KF · C < 0, and C contractible are
incompatible, the second that if C ⊂ Γ were to satisfy KF · C < 0 then it must be
a smooth invariant rational curve. The self intersection may well not be −1, so its
contraction X → Y may lead to a quotient singularity. There is, however, a minimal
smooth champ de Deligne-Mumford Y → Y , the Vistoli covering champ, whose
moduli is Y , [Vis89, 2.8]. Both Fact 3.5, and its proof, are valid étale locally, so
modulo understanding rational curve in the broad sense of a 1-dimensional champ
with positive Euler characteristic, we may, cf. [McQ08, III.3-III.3.bis], continue con-
tracting to obtain:

Fact 3.6. There is a contraction ρ : X ⊗ K → X0 ⊗ K to a surface with quotient
singularities such that,

(a) KF0

∼→ OX0⊗K(ρ∗Γ), and: KF = ρ∗KF0 +
∑

i aiEi, ai ∈ Q+, for Ei ⊂ Γ smooth

invariant simple normal crossing rational curves.
(b) The Q-divisor KF0 is nef., and the Ei are contracted by ρ.
(c) The restriction, p∗Γ0, to the Vistoli covering champ p : X0 ⊗ K → X0 ⊗ K of

ρ∗Γ satisfies Fact 3.5(b) and (c).

As it happens, [MP13, III.i.1] or [McQ05, I.6.11], and perhaps surprisingly, ter-
minal foliation singularities are smooth points of a foliation on a Vistoli covering
champ should this exist, more generally idem on the Gorenstein covering champ,
i.e. smallest champ de Deligne-Mumford such that the canonical along the foliation
is a bundle, so, in fact, cf. [McQ08, III.3.2], one can prove that the connected com-
ponents of X → X0 are actually chains of rational curves- the hands own dual graph
alternative in op. cit. also proves the same. However, we don’t need to know this,
and we observe that we have the following possibilities:
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Alternatives 3.7. Exactly one of the following occurs:

(a) KF0 is big, and, as we’ve observed post (61) we’re done by (34).
(b) KF0 has numerical Kodaira dimension 0, so the map from ΩK/C|X0 is an iso-

morphism. Whence X0 is iso-trivial, and we’re done again.
(c) KF0 has numerical Kodaira dimension 1.

We therefore exclusively concentrate on the alternative (c), and we assert:

Claim 3.8. In the notation of Fact 3.6, not every curve in Γ0 is invariant.

Proof. We harmlessly confuse Γ0 with its moduli, and suppose otherwise, then for
ρ∗Γ0 =

∑
aj Cj , aj ∈ Q+ the given divisor expressed as a sum of irreducible compo-

nents, the said components are smooth and normal crossing, Fact 3.5(c). The fact
that the crossings only occur in foliation singularities implies,

(ωX⊗K/K − KF )· Cj ≤ −C2
j −

∑
k �=j

Ck· Cj (67)

for every j, while the fact that it is nef. of square 0 gives,

− aj C2
j =

∑
k �=j

ak Ck· Cj (68)

again for every j. Whence multiplying (67) by aj , summing, and combining with
(68) gives

ωX⊗K/K· p∗ Γ0 ≤ KF · p∗ Γ0 = 0, (69)

which is absurd since ωX⊗K/K is big. �

In addition we also make:

Further Claim 3.9. ρ∗Γ is supported on disjoint irreducible curves Ci such that
the champs Ci → Ci lying over any Ci in X0 ⊗ K are smooth and everywhere
transverse to F0.

Proof. Firstly at the level of Q divisors write Γ0 = Γ′ + Γ′′ as a sum of its invariant
and non-invariant part. By 3.8, Γ′ �= 0, and by Fact 3.5(a) it’s nef, whence by the
Hodge index theorem Γ′ is parallel to Γ0 in Néron-Severi, and so Γ′ · Γ′′ = 0. This
implies, however, that (68) also holds for ρ∗Γ′′, so the proof of 3.8 actually proves
Γ′′ = 0.

Now let C be an irreducible component of Γ0. As in (62) and (63) we have natural
maps,

OC (−C ) → ΩX0⊗K/C|C , and, ΩX0⊗K/C|C → KF0 |C (70)

since C ⊂ Γ0 and not invariant this factors as a non-zero map,

OC (−C ) → ΩX0⊗K/K |C → KF0 |C (71)
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whence if either C were not smooth, nor everywhere transverse (so, inter alia, not
containing a foliation singularity) this composition must vanish somewhere, and
C 2 > 0. This, however, implies KF0 big, which is nonsense. �


Next we have to move the Ci, or better the champs Ci occurring in Further Claim
3.9. A useful simplification is that since X ⊗K is of general type the Ci cannot have
positive Euler characteristic, whence they admit étale covers by honest curves. Fix
i, and let C → Ci be such a cover, then as per [SGA-I, Exposé I, Théorème 8.3],
this extends to an étale cover U with trace C of the completion of X0 in Ci. Now
we use the foliation to move C, to wit:

Final Claim 3.10. Define n ∈ Z>0 by: Γ0|U = nC, and let Um, m ∈ Z>0 be the
mth thickening of C in U , then, for all m ∈ Z>0 OUm

(C) is at worst n + 1 torsion.

Proof. By induction on m, with m = 1 following from the natural map (62) which
affords Fact 3.5(a). For m ∈ Z>0, we have an exponential sequence,

H0(O×
Um

) δ−→ H1
(
C, Im

C /Im+1
C

) −→ Pic(Um+1) −→ Pic(Um) −→ 0 (72)

so without loss of generality we have a n + 1-torsion bundle L on U such that the
isomorphism L∨|C ∼→ OC(C) lifts to Um. Now take a sufficiently fine open cover∐

Uα → U , and denote by ∂α, xα a generator for the foliation, and a defining
equation of C on a given Uα, then for ζαβ the locally constant transition functions
for L, on combining with (72):

Pic(Um+1) � L + C =
[
ζαβ

xβ

xα

]
, so xα = ζαβ(1 + hαβ)xβ (73)

for hαβ a 1 co-cycle in Im
C /Im+1

C . As such if gαβ are the transition functions for K∨
F

then,

∂αxα = ζαβ(1 + (m + 1)hαβ)gαβ∂βxβ

(
mod Im+1

C

)
(74)

which, since C is everywhere transverse, says that L−(m+1)(C +L)−KF is trivial
on Um+1, or equivalently,

0 = (m + n + 1)C + mL = (m + n + 1)(L + C). (75)

The bundle L + C is, by induction, in the image of the H1 in (72), so we’re done
since both this group and Im(δ) are K, so, in particular Q, vector spaces. �


To profit from this, choose some Ci as in Further Claim 3.9, and apply Final
Claim 3.10 to find a map q : X0 ⊗ K → B with connected fibres to a smooth
curve containing Ci, whence, any other possible Cj as, at worst a multiple fibre.
Base changing as appropriate we may suppose that ci = q(Ci) is K-rational, and
denoting by ni the multiplicity of the fibre supported on Ci define a champ B → B
over B with monodromy Z/ni at each ci, and trivial otherwise. By construction q
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lifts to q : X0 → B, and KF0 = q∗KG for some effective divisor KG on B. As the
notation suggests this corresponds to a foliation on B. Indeed, the composite:

q∗ΩB/C → ΩX0/C → KF0 = q∗KG (76)

comes from a map χ : ΩB/C → KG since the fibres are proper and connected, while
the natural diagram,

ΩX0/C −−−−→ KF�⏐⏐
∥∥∥

q∗ΩB/C
q∗χ−−−−→ q∗KG

(77)

commutes. A priori, the image of χ may not be saturated, but if it were not so,
around some fibre Q, say, then Q would have to belong to the support of Γ0 and
be F0-invariant, which is impossible by the same argument affording Further Claim
3.9. Whence, in the strongest possible sense, we have a map of foliated champs
(X0,F0) → (B,G ), i.e. leaves go to leaves.

We can now use the classification theorem, [McQ08], to conclude. As noted,
we’re supposing that our algebraic points f are Zariski dense, so the same is true of
their images in B. Whence, by [Jou78], G has a first integral. Necessarily this first
integral cannot be defined over S, so we take models, with r : BS → C the Stein
factorisation of the integral over some smooth complex curve, so supposing an a
priori base change in K to achieve that the fibres of q are geometrically integral, the
composite p : X → C also has connected fibres. We need to compare the fibrations,

p : X
ρS−−−−→ X0

q−−−−→ BS
r−−−−→ C⏐⏐�π

⏐⏐�
⏐⏐�

S S S

(78)

where the subscript S indicates that we extend over S something that we have only
previously defined at the generic point. We may suppose that X and BS are regular
models, i.e. smooth over C but according to the ad hoc way we’re doing minimal
model theory X0 might be no better than normal and a bit of a mess over a proper
closed subset of S. Actually, by [McQ05] we could avoid this difficulty, but it presents
a limited problem. Let γ be the generic point of C. The foliation singularities of Xγ

over C(C) have, so far, only been rendered canonical if they are also flat over S.
Otherwise they belong to fibres. The resolution algorithm is by successive blow ups
in closed geometric points, so it’s Galois equivariant, whence further blowing up to
obtain generically canonical over C changes nothing, and we assume that this has
been done. By construction there is a (not necessarily effective) divisor F supported
in fibres of π, and a model ES of the Q-divisor contracted by the ad-hoc minimal
model procedure, Fact 3.6, such that,

KF = q∗KG + F + ES (79)
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which equally restricts to the canonical bundle of the induced foliation in p−1(γ),
because of the saturation of χ in (77). Thus for a possibly different divisor F+ again
supported in fibres, but now nef. and effective on B,

KF ≤ q∗(KG + F+) + ES (80)

and, again, similarly for the induced canonical bundle in the generic fibre of p. Thus
the generic fibre of p is a foliated surface with numerical Kodaira dimension at most
1. Any foliated surface of numerical dimension at most 0 is covered by rational or
elliptic curves or is dominated by an abelian surface. We can suppose S as hyperbolic
as we like, so this cannot occur since the said group varieties would cover the fibres
of π which we’re supposing of general type. Similarly, the fibres of r dominate S, so
the generic fibre of p has irregularity as high as we like (1 would do) so (foliated)
abundance holds for the generic fibre of p. Again, by the hyperbolicity of S and the
general type assumption on fibres of π, the generic fibre of p cannot be an elliptic
fibration nor the suspension of a representation in PGL2 or automorphisms of an
elliptic curve, so it must be an isotrivial family of curves of genus h ≥ 2, i.e. after
a base change over the generic point of the generic fibre Bγ of r, the foliation in a
generic fibre of q is the projection onto a curve Qγ . The structure of such foliations
Fγ on fibres Xγ of p is not particularly complicated, but merits a little attention.
The minimal model algorithm is Galois equivariant, and there is a unique map to a
unique minimal model (Mγ ,Hγ), with Mγ a surface over C(C) with at worst isolated
quotient singularities mapping to Bγ . Over the generic point of S, Mγ coincides with
X0⊗K. The Vistoli covering champ Mγ → Mγ exists, is smooth, and maps smoothly
to a champ Bγ over Bγ in such a way that for any V → Bγ scheme like and étale,
Mγ |V ∼→ V × Qγ . All of which holds on replacing γ by a sufficiently small Zariski
open V ⊂ C, and any algebraic point f may be supposed to map to some c ∈ V . As
in the proofs of Facts 2.2 and 3.2 we identify f with f : T → X for T finite over S,
so by adjunction,

ωX ·f T = ωXc
·f T. (81)

The surface Xc maps to the minimal model Mc, by ν say, and, the induced foliation
on the champ Mc → Mc is smooth, so:

ωMc
·νf T = KHc

·νf T (82)

while any extension ωX0 of ωX0⊗K to a bundle on X satisfies, ωX0 = ν∗ωM +F over
a Zariski open in C, and, as ever F supported in fibres of π. Similarly over an open
in C, ν∗KH ≤ KF by the definition of canonical singularities, so for f outwith a
proper sub-variety and some constant α depending only on the models:

ωX0 ·f T ≤ KF ·f T + α(T : S). (83)

The bundle ωX0⊗K is certainly big, so we conclude to 3.1 from Fact 3.2.
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A Isotriviality

By way of notation, let X/S be a flat family of normal projective curves or surfaces over a
complex curve S with generic point Spec(K) ↪→ S and denote by C a general fibre should
the family be in curves, or a generic element |nH| in a generic fibre, for some divisor H
ample on the generic fibre, and n sufficiently large to be chosen.

Fact A.1. Notation as above if ΩX/S ⊗ K|C is ample, and n 	 0, then ΩX/C ⊗ K|C is
ample iff X/S is not isotrivial.

Proof. Modulo the need for the normality hypothesis, the case of families of curves is trivial,
while for surfaces we have an exact sequence,

→ HomX⊗K(ΩX/C,OX) → HomC(ΩX/C,OC) → Ext1X⊗K(ΩX/C,OX(−H)) → (84)

along with the local global spectral sequence,

Hp(X ⊗ K,E xtq(ΩX/C,OX(−H)) ⇒ Extp+q
X⊗K(ΩX/C,OX(−H)). (85)

On the other hand, X is S2 so by [SGA-II, Exposé VII, 1.2], there are no local Ext groups,
so the above Ext1 is just the E

(1,0)
2 term in the spectral sequence, which, [SGA-II, Exposé

XII, 1.4], vanishes for n 	 0. Consequently, there is a retract of the arrow,

0 −−−−→ ΩS/C ⊗ K −−−−→ ΩX/C ⊗ K (86)

iff there is a retract on restriction to C, which, since ΩX/K |C is ample, is false iff every
quotient of ΩX/C|C has positive degree. �

Fact A.2. If no model of the generic fibre of X/S admits a global vector field and it is
dominated by an isotrivial variety, then some model of X ⊗ K is isotrivial.

Proof. Again, the curve case is much easier, and we restrict to the surface case, so that by
hypothesis we have a dominant rational map from some V × S to X, and without loss of
generality X/C is smooth, albeit Q-factorial would do. Cutting by hyperplanes as necessary,
we can suppose that V is a surface, and we resolve the indeterminacy by way of,

V × S
p←−Ṽ

q−→X. (87)

Denote by A a very ample divisor on V , then over a generic s ∈ S, q∗p∗A is a linear system
with base locus of dimension at most zero, whence, in fact, empty base locus by Zariski-
Fujita. Thus, for A sufficiently large, the above linear system determines a bi-rational map
r : X ⊗K → Y , with Y normal (since pull-back of ample by finite is ample and X is normal)
such that, B = r∗q∗p∗A, or a large multiple, is as ample as we require. Now suppose that
Y is not isotrivial. By hypothesis it is not ruled, so ΩY/K is semi-positive [Miy87], whence,
up to replacing A by a multiple, it’s ample on restriction to B provided Y does not admit
a global vector field, and A.1 applies. If, however, we take a generic s ∈ S, so that ps is
defined on Vs with the co-dimension of Vs in V at least 2, then, contrary to hypothesis, the
tangent space to Hom(Vs, Y ) at ps, viz: HomVs

((ps)∗r∗ΩY/C,OVs
) is necessarily zero since

(ps)∗r∗ΩY/C|A is ample. �

Corollary A.3. If a normal curve or minimal surface over K of general type is dominated
by an isotrivial variety, then it is isotrivial.

Proof. The normal model of a curve or the minimal model of a surface of general type is
uniquely unique, so if some model is isotrivial, A.2, the asserted model is too. �
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