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Abstract The classification of foliated surfaces (McQuillan in Pure Appl Math Q
4(3):877–1012, 2008) is applied to the study of curves on surfaces with big co-tangent
bundle and varying moduli, be it purely in characteristic zero, or, more generally
when the characteristic is mixed. Almost everything that one might naively imagine is
true, but with one critical exception: rational curves on bi-disc quotients which aren’t
quotients of products of curves are Zariski dense in mixed characteristic. The logical
repercussions in characteristic zero of this exception are not negligible.

Mathematics Subject Classification 14G17 · 14J10 · 32S65

1 Introduction

For X/C a smooth algebraic surface with �1
X/C

big, a theorem, [3], of Bogomolov
asserts:

The set, Z , of rational or elliptic curves on X is finite, (1)

and, better still, for H an ample divisor on X :

There is a constant −κ(X, H) < 0 such that if f : C → X is any map from

a smooth curve which doesn’t factor through Z , then H · f C � −κχ(C).
(2)
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434 M. McQuillan

Wherein, the notation is constructed according to the mnemonic: if ω is a metric on X
(or indeed any complex manifold) with (holomorphic) sectional curvature −K < 0,
then (Gauss–Bonnet) ∫

C
f ∗ω � − 1

K
χ(C). (3)

Nevertheless, one shouldn’t, even if Z = ∅, imagine for a second that (2) is equivalent
to negative sectional curvature, e.g. there are buckets of simply connected surfaces in
Bogomolov’s class with Z = ∅. Rather what (2) expresses is a weak, or (1) weaker
still, algebraic vestige in complex dimension 2 (⊂ real dimension 4) of the implication
that negative Ricci curvature implies negative sectional curvature in real dimension
at most 3. Indeed, by [24], the canonical model of X admits (in the orbifold sense
should this not coincide with the minimal model) a Kähler–Einstein metric of Ricci
curvature −1, but, as we’ve remarked, will in all probability catastrophically fail to
admit a uniformisation of the type encountered in real dimension 2 or 3. There are, of
course, much better holomorphic vestiges of negative sectional curvature than (1)–(2),
of which, the best to date is that Gromov’s isoperimetric, [11], holds, i.e.:

There is a constant − K (X) < 0 such that

if f : � → X is any holomorphic disc, then

areaω( f ) =
∫

�

f ∗ω � 1

K
lengthω(∂ f ) =

∫
∂�

|d f |ω
(4)

where for ease of exposition, we suppose Z = ∅, which gives us the right to take ω

equal to the Kähler–Einstein metric in (4). In particular, in exceptional cases where
one does have uniformisation, e.g. ball and bi-disc quotients, one sees that the right
value of −K = −κ(X, KX )−1 whether in (2) or (4) is the holomorphic sectional
curvature of the Kähler–Einstein metric, so −2/3 for balls, respectively −1/2 for the
bi-disc, and, already [1], this turns out to be best possible in the restrictive algebraic
context (2)–(3).

The much deeper inequality (4) while affording a revealing insight into the relation
of (2) with the isoperimetric profile, is, however, only really our immediate interest
in respect of the complexity, 1.9, of the algebraic surface part of its proof, [14], as
opposed to the part, [12] or [6], valid on all almost complexmanifolds in all dimensions,
and such questions of complexity are in turn subordinate to the main question of
how does Bogomolov’s theorem vary in moduli. This already has its own interest in
characteristic zero, so we set things up accordingly: S will be an irreducible affine
scheme of finite type flat over a Noetherian integral domain of characteristic zero,
and X/S a smooth family of S-projective surfaces, with say X and its generic fibre
geometrically irreducible for convenience, thenwe have two subtly different theorems.

Theorem 1.1 Suppose X/S above satisfies Bogomolov’s condition �1
X/S big, then

exactly one of the following happens,

(a) There exists a constant −κ < 0, along with a closed nowhere dense sub-scheme
Z ⊂ X, such that for every closed geometric point Spec(k) → S and every sepa-
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Curves on surfaces of mixed characteristic 435

rable map f : C/k → X from a smooth k-curve which doesn’t factor through Z,

H · f C � −κχC . (5)

(b) The closed points s ↪→ S of positive residue characteristic are dense, and the
generic fibre is dominated by a modification of a bi-disc quotient (including b.t.w.
the case of a product of curves).

Theorem 1.2 Suppose X/S above satisfies Bogomolov’s condition �1
X/S big, then

exactly one of the following happens,

(a) There is a closed nowhere dense sub-scheme Z ⊂ X such that for every closed
geometric point Spec(k) → S, every map f : C/k → X from a smooth rational
or elliptic k-curve factors through Z.

(b) There exists a nowhere dense closed sub-scheme Z of X; a surjective map S′ → U
from an open dense affine sub-scheme S′ ⊂ S onto the spectrum of a sub-ring ofQ;
finitely many bi-disc quotients Yi/U which (over Q) don’t admit an almost étale
cover by a product of curves; and real quadratic number fields Ki (functorial in Y )

such that infinitely many primes p ∈ U are inert in each Ki ; X ×S S′ is dominated
by an irreducible component of Yi ×U S′ for each i , and every rational or elliptic
curve C/k → X which doesn’t factor through Z is the image of some f : P

1
k → Yi

of H-degree O(p), for Spec(k) → S a closed geometric point of characteristic p
inert in some Ki , and f invariant by one of the natural foliations on Yi/U arising
from the bi-disc structure, yet missing the cusps should they exist.

Before proceeding to discuss the theorems in mixed characteristic, let us note that the
obvious combination of 1.1, Noetherian induction, the upper semi-continuity of h0,
and (to get the optimal Z as below) Riemann–Hurwitz gives

Corollary 1.3 Let X → S be the universal smooth family of (minimal) surfaces of
general type over some irreducible component of the moduli space/C, then if the
co-tangent bundle of the generic fibre is big, the set Z whose fibre over s ∈ S is the
rational and elliptic curves on Xs is a closed nowhere dense sub-scheme, and there
exists a constant −κ < 0, such that for every closed geometric point s ∈ S(C) and
every map f : C → Xs from a smooth curve which doesn’t factor through Z,

H · f C � −κχC . (6)

The case of 1.3 where the bigness of �1 is guaranteed by Riemann–Roch, i.e. c21 > c2
is also a theorem of Miyaoka, [21], and, when the two overlap, Miyaoka’s theorem is
way better since it provides explicit (and very simple) functions of the Chern numbers
for κ and the degree of Z , whereas 1.3 says such functions exist, but they could be
anything.

Now, irrespectively of whether we’re inmixed characteristic or not, it’s well known,
and easy, see the proof of 1.1 in Sect. 5, that Bogomolov’s theorem reduces to studying
curves invariant by a foliation F, so 1.1 and 1.2 are really just corollaries of
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Theorem 1.4 Let (X,F) → S be a family of foliations by curves on a family X/S
of smooth projective surfaces of general type with X and its generic geometric fibre
irreducible for convenience, then exactly one of the following happens,

(a) There exists a constant −κ < 0, along with a closed nowhere dense sub-scheme
Z ⊂ X such that for every closed geometric point Spec(k) → S and every
separable F⊗k invariant map f : C/k → X from a smooth k-curve which does
not factor through Z,

H · f C � −κχC . (7)

(b) The closed points s ↪→ S of positive residue characteristic are dense, and the
generic fibre is a modification of a bi-disc quotient (including b.t.w. the case of
a product of curves) with F one of the natural foliations induced by the bi-disc
structure.

Theorem 1.5 Hypothesis as in 1.4, then exactly one of the following happens,

(a) There is a closed nowhere dense sub-scheme Z ⊂ X such that for every closed
geometric point Spec(k) → S, every invariant map f : C/k → X from a smooth
rational or elliptic k-curve factors through Z.

(b) There exists a nowhere dense closed sub-scheme Z of X; a surjective map S′ → U
from an open dense affine sub-scheme S′ ⊂ S onto the spectrum of a sub-ring of
Q; a bi-disc quotient Y/U which (over Q) does not admit an almost étale cover
by a product; and a real quadratic number field K (functorial in Y ) such that
infinitely many primes p ∈ U are inert in K ; X ×S S′ is a bi-rational modification
of an irreducible component of Y ×U S′ with F/S′ the base change of one of
the natural foliations on Y/U arising from the bi-disc structure, and every F-
invariant rational or elliptic curve not factoring through Z is F⊗k invariant for
Spec(k) → S a closed geometric point of characteristic p inert in k. Moreover for
each such k, with p � 0, there is a F⊗k invariant generically embedded rational
curve f : P

1
k → Y , with Y understood as a Deligne–Mumford champ if there are

quotient singularities, missing the cusps E should these exist such that

p

2
� (KY +E) · f P

1
k � (p−1)c2,log(Y, E) (8)

and, along which some non-classical modular form of weight (2p,−2) vanishes.

At first sight 1.4.(b) may appear surprising, but it obviously happens. Specifically, say
f = f1 × f2 : C → X = X1 ×X2 a curve on a product of hyperbolic curves overFp to
avoid pointless technicalities, then f separable is only equivalent to, say, f1 separable
and there’s nothing to stop us composing f2 with a huge multiple of Frobenius. As
such separable curves of (a fixed) genus g on a product of hyperbolic curves in
characteristic p are not bounded in moduli once g is (depending on X) sufficiently
large, albeit, by Riemann–Hurwitz and separable/inseparable factorisations of the fi ,
the above is the only way this can happen, while, plainly, there are no rational or
elliptic curves. This brings us to the case of bi-disc quotients which (up to a finite
group action) aren’t products of curves, and as one sees there is a clear distinction
between primes p which are split, as opposed to inert in the real quadratic field K of
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1.2.(b). From the point of view of constructing counterexamples to boundedness in
moduli of curves of genus g, the mechanism, 3.12, of the case of products of curves
is equally valid, (48), when p is split, and, indeed, this is, 3.9, the only mechanism.
Nevertheless, in the presence of cusps there is some subtlety, i.e. bounding rational
curves at split p, see the proof of 1.5 in Sect. 5, has more to it than what one can say
at a fixed prime.

This brings us to the amusing logical consequences of (8). More or less by def-
inition, every theorem in algebraic geometry over C is an ACF0 (first order theory
of algebraically closed fields of characteristic zero) theorem. Unfortunately, and evi-
dently, since there is quantification over a priori unbounded sets of curves in both (1)
and (2) neither is a statement in ACF0. One could, however, ask whether a theorem,
T( f ), about some type of curve, f on X , has a proof which is essentially ACF0, i.e.
does it have, for X fixed, the form

Pi ∧ Tj ( f ) ⇒ T( f ) (9)

where Pi are finitely many ACF0 theorems and Tj ( f ) is a, possibly infinite, set of
tautologies valid for all curves f that we wish to study. A priori, therefore, f could be
arbitrary, fixed genus, or whatever, but in practice, and mathematical precision in 1.6,
f is rational. For example any map f : C/k → X from a smooth curve to a geometric
fibre has a factorisation f = f0g into purely inseparable followed by separable, so,
the existence of such a factorisation is such a tautology. Better still separable maps
admit a derivative f1 := f ′

0 : C/k → P1 := P(�X/S) → P0 := X , and if L1 is the
tautological bundle then

L1 · f1C = −χ(C) − Ram f0 (10)

is another tautology, which can even be iterated to an infinite sequence of tautologies,
i.e. for Pm ↪→ P(�Pm−1/S) the mth jet bundle, Lm its tautological bundle, and fm the
mth derivative of f0,

Lm · fmC = −χ(C) − Ram fm−1 . (11)

Now Bogomolov’s condition is that for some a, b the ACF0 statement

Pa,b(X) : H0(X,Syma�1
X (−bH)) �= 0 (12)

is a theorem, so, choosing a, b appropriately and using just the tautology (10) the
reduction of 1.1–1.2 to 1.4–1.5 is essentially ACF0 in the sense of (9). On the other
hand a theorem is ACF0 iff it’s ACFp for p � 0, so a proof with the structure of (9)
would imply a uniform bound in moduli for almost all p, and whence 1.5.(b) implies

Corollary 1.6 For every bi-disc quotient X, possibly with cusps E and quotient sin-
gularities, in which case X is to be understood as a Deligne–Mumford champ, but
not a finite quotient of a product of curves, and F either of the natural foliations the
following (true) statement has no essentially ACF0 proof;

There are at most finitely many F-invariant rational curves on XC\E . (13)
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Nowwhile it’s true that by 1.4.(b)we could construct for high genus curves on products
of curves a related statement with no essentially ACF0 proof, this is only because
of an evident separability rather than “bi-separability” issue which we could have
excluded via amore sophisticated variation of (9).Wehaven’t bothered to do this, since
it’s not only irrelevant for rational curves, but, manifestly, the weaker the statement
with no essentially ACF0 proof is, the more interesting it becomes. For example, the
tautologies (11) imply tautological inequalities,

Lm · fmC < 0 (14)

for rational curves, while for each m, our foliation, F, defines a surface Xm ↪→ Pm
in the mth jet space through which fm must factor, so for all non-negative integers
n1, . . . , nm with non-zero sum, n, all the ACF0 statements

H0(Xm, L(n) := L⊗n1
1 ⊗ · · · ⊗L⊗nm

m

) �= 0 (15)

are false on bi-disc quotientswhich aren’t quotients of products of curves. Now, if there
are cusps, the L(n) of (15) aren’t very interesting, e.g. not even pseudo effective [17,
IV.5.7], but (13) is so weak that we have the right to do all this logarithmically, so
the natural map Xm,log → X is an isomorphism and the bundle in (15) (understood
logarithmically if necessary) is just the nth power of the canonical of the foliation
Kn
F, so, we recover the well known fact, [23] or [17, IV.5.4], that KF, which is in fact

nef. in characteristic zero, has Kodaira dimension −∞, which as it happens, 3.3, is a
lemma in the proof of 1.5.(b), but, in principle 1.6, or better, 1.5.(b) is a much stronger
fact than κ(F) := κ(KF) = −∞, c.f. 1.9.(c) for another example.

As to the proof of the theorems themselves, they are largely an application of
the classification theorem, [17], of foliated surfaces, the theorems of which (if not
the proof) are statements in ACF0, so by model completeness they’re actually ACF0
theorems, and can be taken to be the Pi in (9). The tautologies, Tj , of op. cit. while
taking (10) as their starting point are much more sophisticated. In particular they are
false if the fibre over the generic point of S does not have canonical, 2.3, foliation
singularities, and require careful analysis, (83)–(97), of how invariant curves meet
such singularities. The precise statement is the refined tautological inequality, 4.2, and
it is delicate. For example in characteristic zero (14) for all m is equivalent to being
rational, but not in characteristic p, 3.4, and one could reasonably call such curves
pseudo-rational. Now the refined tautological inequality gives 1.4.(a)&1.5.(a) more
or less gratis when the foliation is of general type, i.e. κ(F) = 2, but it does not
imply that pseudo-rational curves invariant by such foliations aren’t Zariski dense in
mixed characteristic. Indeed it strongly exploits the difference between rational and
pseudo rational—or genus g and pseudo genus g for that matter—and it may well be
the case that there is a foliation of general type in mixed characteristic with Zariski
dense pseudo-rational curves, for which, by the same reasoning as above, (15) would
have to be false for all n but KF would be big. In any case since we’re also supposing
that X has general type in the usual sense, the only other possibility is that F is one
of the natural foliations on a bi-disc quotient. The case of which where κ(F) � 0 is
a product of curves, and we have the pleasing fact that foliated Mori theory hits the
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logical obstruction of 1.6 on the nose, i.e.

F has only finitely many invariant rational curves (16)

is always a true statement for complex surfaces of general type, but

Corollary 1.7 Let F be a foliation on a complex surface of general type, then T.F.A.E.

(a) The foliated Kodaira dimension satisfies κ(F) � 0.
(b) Foliated abundance holds, i.e. ν(F) = κ(F).
(c) The (true) statement (16) is an essentially ACF0 theorem.

As such it remains to indicate the proof of 1.5.(b), and the distinct behaviour of the
invariant rational curves according to whether p is split or inert, which are, in fact,
equivalent to the foliation being p-closed, 2.5, or not. In this context, it’s relevant to
observe that the way [14] would prove (13) is not Liouville’s theorem but Baum–Bott
residue theory, Appendix, which gives over C that the degree of the canonical, KG, of
the other foliation along our curve is zero, and the rest is easy. Now a particular feature
of the natural foliations on bi-disc quotients is that once they’re p-closed, they’re p-
adically integrable, and at such p one canmimic, (50), Baum–Bott residue theory with
values in a characteristic zero field. Consequently the proof of [14] may be pushed
through. The case of 3.9 of rational or elliptic curves missing the cusps (whence a
p-adic proof of (13) provided one chooses p correctly, i.e. split) is particularly easy,
whereas the general case, see the proof of 1.5 in Sect. 5, is very much a variation
on [14]. Otherwise p is inert and the locus of vanishing of the p-curvature is no longer
the whole surface but a divisor cut out by the non-classical modular form of 1.5.(b),
and if one looks at this divisor carefully enough, 3.6, one finds the rational curves
(8). Complimentary to this is the behaviour at a fixed split prime. In characteristic
zero, as the referee observed, 3.7, again by Baum–Bott, every invariant curve is in
the resolution of the cusps. Similarly, at the split primes, there is a strong notion of
invariance with analogous properties to that in characteristic zero, which, in terms of
(a priori incompatible) local liftings equates to full p-adic invariance. The possibility
of rational curves which might be invariant in this sense was already the reason for
our variant, (50)–(51), of Baum–Bott, but it can be pushed to a strict analogue of the
absence of any (non-trivial) invariant curves, to wit:

Compliment 1.8 (3.13) Let (Y,F) be the natural foliation on a bi-disc quotient of
1.5.(b), and Yp the reduction at a sufficiently large prime, p, split in the quadratic field
of op. cit., then there are no curves other than those in (the possibly empty) resolution
of the cusps satisfying the strong F-invariance discussed above, i.e. that factorisation
(48) occurs infinitely often.

Amusingly, our variant of Baum–Bott immediately reduces this, (60), to a strictly
weaker statement, 3.20, than the (foliated) Kodaira dimension being −∞ modulo a
split prime, but because there is, for p fixed, no relation betweenACF p andACF
 even
for 
 all other primes, one cannot, deduce this as above, (14)–(15) et seq., from the
existence of rational curve at the inert primes, and instead there is a lengthy diversion
to push through a weak version of the non-existence of sections in characteristic zero
as found in [17, IV.5.4].
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Before concluding this introduction it is appropriate to make

Scholion 1.9 (Complex hyperbolicity as an essentially ACF0theorem) We know this
can’t be true by 1.6, but remarkably, for surfaces in the Bogomolov class, (13) with
entire instead of rational is almost the only problem. More precisely for pointed Rie-
mann surfaces there is a tautology of the form (10) but for intersection numbers and
Euler characteristics understood in the sense of Nevanlinna theory, leading to a refined
tautological inequality (which was actually the motivation for 4.2) and one can ask
for an essentially ACF0 proof of (2), exactly as in (9) but with the implied tautolo-
gies, intersection numbers, etc. understood in the Nevanlinna sense. In particular, the
original motivation of the classification theorem was (with a view to generalisation)
to find an essentially ACF0 proof of [14]. This is discussed in the introduction to [17]
at length, so we won’t go on about it here, but the basic irony of the proof of the clas-
sification theorem is (modulo soft theorems, Gromov’s sense, of Brunella, [5], and
Duval, [6]) is that it’s essentially a corollary of what it was intended to give an essen-
tially ACF0 proof of, i.e. the main theorem on algebraic degeneracy of entire curves
invariant by a foliation of [14]. As such, the proof of the classification is certainly not
ACF0. Nevertheless its statements are, so, as we’ve said, by model completeness they
are ACF0 theorems. Now argue as we did before, in the Nevanlinna setting the first
step, cf. (12), is still essentially ACF0, and we reduce to analytic curves invariant by
foliations. Again, the F of general type case is gratis, while products of curves is easy,
and again essentially ACF0, so we’re left with the class of surfaces in 1.6.

At this pointop. cit. tells us thatwe’rewasting our time, andwe should look carefully
atwhat is involved. To fix ideas, say our goal is nomore than [14], i.e. there is noZariski
dense,F invariant entire curve, f : C → X ′, for X ′ a smooth surface in the Bogomolov
class which may be no better than a modification of a bi-disc quotient X . The cusps,
E , are also F invariant, and no invariant curve can meet them, so we certainly have
f : C → X\E . There is, however, a possible issue with quotient singularities, i.e.
we may only have an entire curve on the moduli of the Deligne–Mumford champ of
(13) and not an entire curve in the orbifold/Deligne–Mumford sense in which the
curves of (13) are rational. As such one cannot a priori use Liouville, and indeed there
can be rational and elliptic curves on X\E if this is not understood in the orbifold
sense. Nor, even supposing that it can be done when there are quotient singularities,
is it necessarily appropriate to try and force a Liouville style argument, since if we
want to understand the logical structure then less is best. Consequently, Baum–Bott
residue theory still looks to be the way to go. Again this is absolutely trivial for bi-disc
quotients in a way consistent with the intuition that (13) should be trivial, and one has
that the Nevanlinna degree of the canonical, KG, of the other foliation is zero for free,
with the subsequent steps being trivial given the refined tautological inequality which
absorbs the problem of the quotient singularities. This line of reasoning has a number
of further pleasing features, viz:

(a) A large chunk of Baum–Bott theory, i.e. with values in the base field, Appendix,
is not only valid in the Zariski topology, but has perfect sense in ACF0.

(b) Without further hypothesis, however, in characteristic p it, therefore, only calcu-
lates Fp valued intersection numbers of invariant bundles with invariant curves, and,
as it happens, this is exactly how one gets the lower bound in (8).
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(c)Under the p-adic integrability condition, not only does it work, 3.9, but the resulting
proof, see the proof of 1.5 in Sect. 5, it affords of the boundedness of rational or elliptic
curves at such primes is formally almost identical to what we’ve said above about the
entire curve case over C, and this is how it should be, i.e. a priori there’s very little
that one can say about a Zariski dense set of rational or elliptic curves in mixed
characteristic, respectively a Zariski dense entire curve, other than tautologies of the
form (10)–(11), respectively their Nevanlinna variants, and deductions of the form (9)
by way of finitely many ACF0 theorems. Baum–Bott with values in a characteristic
zero field is, however, a statement which admits exactly this distinction, and it nails
the logical problem posed by the rational curves of (8) on the nose, i.e. forget about
everything one already knows, then, in se, the implication Baum–Bott with values in
a characteristic zero field & (8) (in fact just any lower bound going to ∞ for rational
or elliptic curves) ⇒ F is not p-adically integral for p � 0 holds.

(d) It’s in excellent agreement with Miyaoka’s proof, [21], of 1.3. In general terms,
this consists of fixing the curve and making finitely many ACF0 statements about it
and the surface. Amongst these statements, the only one that doesn’t have the form
(9) is closure of certain global logarithmic 1-forms whose poles are allowed to depend
on the curve. In the general case of 1.1.(a)&1.2.(a) this strategy may well fail, but for
F-invariant curves on bi-disc quotients, it should go through in the presence of p-adic
integrability.

Despite these highly attractive properties, it does not follow from 1.6 or even (8)
that there is a logical necessity for Baum–Bott theory in proving the Green–Griffiths
conjecture, [14], for surfaces in theBogomolov class. It is, however, an absolute logical
necessity that some non ACF0 statements with very similar properties to (c) must
intervene. The present scholion is, however, a best possible scenario wherein model
completeness in ACF0 gets us down to the bi-disc case. The practice is, currently,
much worse, i.e. the classification theorem, [17], and whence all the results of the
present article depend on the general Baum–Bott “residue estimate” of [14], or some
appropriate variant thereof, [4]. This is much trickier than the (trivial over C) bi-disc
case, and nailing a similar “residue estimate”, [18], for foliated 3-folds (whence, inter
alia, Green–Griffiths for surfaces with 13c21 > 9c2) can reasonably be described as
difficult.

The original motivation for investigating the variation of (1)–(2) in mixed character-
istic was an ingenious (unfortunately, its current status is we’re stuck) idea of Fedor
Bogomolov to reduce the study of the moduli of curves on surfaces of general type
to the big co-tangent case, and I would certainly not have ventured into this area had
he not prompted it. In questions of logic, I am always indebted to Ehud Hrushovski,
and, in the particular, to an informative discussion—with an eye to getting more out
of (8)—as to whether there was a better formulation of 1.6 than my ad hoc definition
(9). At the risk of exposing my ignorance in such matters, with any misunderstanding
being mine, his comments may usefully be noted: there is an elaboration of a lan-
guage about the “generic curve” in course, but, currently, it couldn’t be considered
usable; secondly (my) incompetence in making logical definitions shouldn’t distract
from the limitations that (8) puts on any extension of the Lefschetz principle. This is,
however, first and foremost a paper in mixed characteristic algebraic geometry, whose
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presentation has been much improved by the carefully considered comments of the
referee, e.g. 3.7, and, implicitly, the inclusion of the Appendix, on Baum–Bott theory.
Finally the influences of Nick Shepherd-Barron and Torsten Ekedahl, both in the clas-
sification theorem and the present article are legion. I never met Ekedahl, but Nick has
frequently communicated to me many of his insights. Amongst which, I asked Nick
how one proved the “folk theorem” (I had heard a similar thing from Oort) 1.5.(b).
He replied that it was Ekedahl who had told him, and Ekedahl had said it was just a
matter of looking at where the p-curvature vanishes, and applying adjunction. As it
happens, it took me a bit of thought to find the seemingly not so obvious adjunction,
(32), but in terms of Ekedahl’s exact sequence, (42), it’s extremely natural, and to the
author of the p-closed condition it would have been wholly obvious. Requiescat in
pace.

2 Singularities

By a foliation (by curves) on an algebraic space, or indeed champ, X over a locally
Noetherian base S we will mean a rank 1 quotient of�X/S , i.e. a short exact sequence,

0 → �X/F → �X/S → KF. IZ → 0. (17)

This definition supposes a certain amount of regularity. If we were working with
champs (which won’t really be the case) then X should be Deligne–Mumford, other-
wise �X/S isn’t defined, while to write the quotient as KF. IZ , where KF is a bundle
and Z the singular locus supposed of co-dimension at least 2 amounts to supposing
that the foliation is Gorenstein, i.e. given everywhere by a vector field non-vanishing
in co-dimension 1.

If we further suppose that S is a field, k, say, of arbitrary characteristic and X
is normal irreducible, then we can functorially extend the definitions of Mori theory.
Details may be found in [17, I.1–I.2] for surface (which is largely our present interest),
and [16, I.6–7], or [20, I.iii, III.i] in general. In particular it transpires that log-canonical
and Gorenstein is equivalent to non-nilpotence (at closed points of Z of (17)) in the
sense of the following

Revision 2.1 (cf. [13])We let A be a complete regular local ring containing a coeffi-
cient field, k, supposed algebraically closed. Next let ∂ ∈ mDer k(A). For every n ∈ N

we have an exact sequence,

0 → mn

mn+1 → A

mn+1 → A

mn
→ 0.

We can consider ∂ as a k-linear endomorphism, ∂n, of An = A/mn for each n. Con-
sequently ∂n has a Jordan decomposition ∂S,n⊕∂N ,n into a semi-simple and nilpotent
part. These are compatible with the restriction maps An+1 → An, and so on taking
limits give a Jordan decomposition ∂S⊕∂N of ∂ .

Observe as an immediate consequence
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Fact 2.2 ∂ is semi-simple iff there’s a choice of generators xi ∈ m, and λi ∈ k such
that

∂ =
∑
i

λi xi
∂

∂xi
∈ Derk(A). (18)

Where it’s important to emphasise that semi-simplicity in 2.2 is to be understood in
all of A, rather than just modulo m2 since this is its sense in

Fact 2.3 ([20, III.i.3])A foliation in characteristic zerowith log-canonical Gorenstein
singularities has canonical singularities iff it has no semi-simple points at which, up
to scaling, the λi of (18) are non-negative integers.

Describing the nilpotent part is worth the trouble. Notice: [∂S, ∂N ] = 0, so given
∂S as above we just compute a basis for fields which commute with it. Putting � =
(λ1, . . . , λn) and � ·−, to be the usual inner product, albeit with values in k, these are
easily seen to be, cf. [13]

(a) xQxi
∂

∂xi
, � ·Q = 0, Q = (q1, . . . , qn), q j ∈ N ∪ {0},

(b) xQxi
∂

∂xi
, � ·Q = 0, Q = (q1, . . . , qn), q j ∈ N ∪ {0} for j �= i,

qi = −1

(19)

where of course xQ = xq11 . . . xqnn . As such, following [17, II.1.6]

Corollary 2.4 Let ∂ be a non-singular derivation of a complete regular local ring A
over an algebraically closed field k of characteristic p > 0 isomorphic to its residue
field then there is a choice of coordinates x, y1, . . . , yn in the maximal ideal such that
up to multiplication by a unit,

∂ = ∂

∂x
+

n∑
i=1

x p−1 fi (x
p, y)

∂

∂yi
.

Proof We can certainly multiply ∂ by a unit, in such a way that for some x ∈ m,
∂x = 1. Now consider ∂̃ = x∂ , and its Jordan decomposition ∂S⊕∂N . Trivially
∂S = x∂/∂x , in some coordinate system x, y1, . . . , yn . Observe that in our formulae
for the nilpotent part wemust have an exponent of x in the monomial (xQ xi ) at least 1,
since x |̃∂ , whence the claim. ��
This is best possible, and so could reasonably be called the characteristic p Frobenius
theorem. One can only do better if the following holds.

Definition 2.5 ([7]) The foliation is p-closed if for some, and in fact any, local gen-
erator ∂ of the foliation the fields ∂ p and ∂ are parallel.

The special coordinates of the divertimento can be used to ‘compute’ the p-curvature,
to wit:
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Fact 2.6 The ideal where ∂ p∧∂ vanishes is exactly the ideal cut out by the fi (x p, y)’s
whence (albeit this doesn’t require special coordinates) it is invariant.

Proof We have ∂ p(x) = 0, while

∂ p(yi ) = ∂(p−1)x p−1 fi =
∑

a+b=p−1

xb∂b

a!(b!)2 ( fi )

and for all i , ∂( fi ), from which ∂b( fi ) for any b, belongs to ( f1, . . . , fn). ��
As such, the p-curvature can only vanish if all the fi = 0, so

Fact 2.7 The following are equivalent for a smoothly foliated irreducible algebraic
space or indeed champ,

(I) The foliation is p-closed.
(II) There exists a closed point ξ such that in the complete local ring ÔX,ξ there are

coordinates (x, y1, . . . , yn), and the foliation has the form,

(x, y1, . . . , yn) �→ (x p, y1, . . . , yn). (20)

(III) For every point ξ there are coordinates in the complete local ring ÔX,ξ such that
the foliation has the form,

(x, y1, . . . , yn) �→ (x p, y1, . . . , yn). (21)

Consequently, even if Z is empty, it’s far from true that curves invariant by a foliation
by curves have to be smooth, and this is the case even if the foliation isn’t p-closed.
For example,

∂ = ∂

∂x
+ x p−1(y2+ x p)

∂

∂y
(22)

then the invariant curve y2 + x p certainly isn’t smooth, even though the foliation
isn’t p-closed, and, indeed, by 2.4 the singular locus of the set where the p-curvature
vanishes is essentially arbitrary. It’s therefore perhaps a little surprising that there are
natural criteria whereby the locus of vanishing of the p-curvature is extremely well
behaved at the singular points, e.g.

Fact 2.8 Suppose A of 2.4 has dimension 2, and that ∂ has 2-invariant smooth
transverse branches while being semi-simple modulo m2 with the ratio, λ0, of the
eigenvalues not belonging to Fp, then there is a choice of formal coordinates such
that, up to rescaling by a constant,

∂ = x
∂

∂x
+ λ(x p, y p) y

∂

∂y
, λ(0, 0) = λ0 (23)

so, in particular, the ideal defined by ∂ p∧∂ is just (xy).

Indeed, just apply (19)—by hypothesis we don’t have to worry about (b).
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3 Rational curves on bi-disc quotients

Now let us apply these considerations to find rational curves on bi-disc quotients, X ,
which are not (a precision that will subsequently be eschewed) finite quotients at a set
of positive characteristics of positive (in fact about half) density. We begin with the
smooth case, so in characteristic 0, �X splits as

�X = KF�KG (24)

for 2-integrable foliations F, and G. By [9, 6.2.(iii)] there is a set of primes of positive
density where F isn’t p-closed (and, as it happens, at the same primes G isn’t closed
either, 3.8, but we don’t need this for themoment).Wework over the reductionmodulo
p at such a prime, with say base change to the algebraic closure k for convenience, and,
of course p � 0 to guarantee not just good reduction, but also the splitting (24). The
essential fact that we will use in analysing the locus where the p-curvature vanishes
is

Revision 3.1 ([23] or [17, IV.5.4]) In characteristic zero KF and KG are nef. line
bundles of Kodaira dimension −∞, so in particular

K 2
F = K 2

G = 0, 2KF ·KG = c2 > 0, KX , is ample. (25)

So that before getting underway let’s make

Warning 3.2 Over our current choice of k, KF⊗k and KG⊗k will be big, whence
very far from nef., although (manifestly) (25) will continue to hold.

The first step is to write the locus of vanishing of the p-curvature (of F) as a sum of
irreducible divisors

P := pKF − KG =
∑
i

niCi (26)

so that by 2.6 we know the Cartier divisors OX (−niCi ) are F-invariant. We wish,
however, to know that the Ci themselves are F-invariant. This will follow if we know
that p� |ni , which follows a fortiori from

Fact 3.3 Let Np be the maximum of the ni ’s in (26) then lim supp p−1Np = 0.

Proof Suppose to the contrary that lim supp p−1Np = ε > 0, then for some infinite
set of primes p, there is a curve Dp in characteristic p such that

KF − εDp � 0 ∈ NE1(X⊗k)⊗Q. (27)

Consequently, the degrees of the Dp are bounded independently of p, so they must
belong to finitely many components of the Hilbert-scheme. Sub-sequencing as nec-
essary, we can suppose that this component is the same for all p, and whence it’s
non-empty in characteristic zero. As such (27) may be supposed to hold for Dp = D0
independent of p from which KF − εD0 is pseudo-effective in characteristic zero.
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However, cf. [17, IV.5.7], by Zariski decomposition and Hodge-index in characteris-
tic zero this forces KF to be numerically equivalent to an effective divisor (whence
effective since q(X) = 0) in characteristic zero contradicting 3.1. ��
As such for νi : C̃i → Ci the normalisations of the curves in (26); −χi = 2gi − 2
their geometric Euler characteristics; and ri the ramification of the νi we obtain

KF ·Ci = −χi − ri . (28)

Again, before proceeding, let us make another

Warning 3.4 It is immediate, from (25)–(26) that there are curves with KF ·Ci < 0
and a moments thought even shows that the tangent sheaf of Ci is even a bundle
isomorphic to K∨

F|Ci . This does not, however, imply that the Ci are rational, since
tangent vectors do not necessarily lift to the normalisation in positive characteristic.
A perfectly good example is provided by (22), which has the further curious property
that the derivative ν′

i : C̃i → P1 := P(Ω1
X ), and indeed all subsequent derivatives,

ν
(m)
i , to all higher jet spaces, Pm , has exactly the same ramification as νi . In particular
if Lm were the tautological bundle on such spaces, then

Lm ·
ν

(m)
i

C̃i (here = KF ·Ci ) < 0, for all m (29)

which formany proof theory purposes is just as interesting asCi rational. Nevertheless,
in characteristic p, the pseudo rationality condition (29) is not equivalent to rationality.

Complementary to (28) we have the tangency divisor ofCi withG, i.e. the composition
of

OCi (−Ci ) → �X |Ci → KG|Ci (30)

which is necessarily non-zero since k is algebraically closed—albeit perfect, which is
natural here, since everything is arithmetic would do. Consequently if ti is its degree
then

ti = (KG+Ci ) ·Ci � 0. (31)

Putting (28) and (31) together, we therefore obtain

(pKF+KG) ·Ci = − pχi − C2
i + (ti − pri ). (32)

Now observe that by (25), (pKF+KG) ·P = 0, so there is at least one curve such
that (32) is not positive, and we assert

Claim 3.5 If, for Ci in the support of P, (pKF+KG) ·Ci � 0 then Ci is rational.

Proof In the first place, we show C2
i < 0, since, otherwise P ·Ci � 0, and whence

KF ·Ci � (p+1)−1KX ·Ci > 0 (33)
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so that the left hand side of (32) is at least 2p(p+1)−1KX ·Ci > 0, which is nonsense.
Now suppose that Ci isn’t rational, i.e. χi � 0 then we must have

pri > ti . (34)

To exclude this follows a fortiori if it doesn’t happen locally at any branch through a
singular point ofCi , so to this endwe take a generator, ∂ , ofF in the special coordinates,
and notation, of 2.4 with A the completion of OX in the said singularity, so that our
branch is defined by a prime factor g(x p, y) of f (x p, y) being equal to zero, while the
local contribution to the tangency divisor of the branch is the order of gy(x p, y) along
it. Now consider the normalisations, ν : � → �2, ν′ : � → �2 of the irreducible
plane curves g(x p, y) = 0, and g(z, y) = 0, where � := Spf k[[t]]. These fit into a
diagram

�
t �→(•tm, •tn)

t �→•td
�2

(x,y) �→(x p,y)

�
s �→(•sm′

, •sn′
)

�2

where (m, n), respectively (m′, n′) are relatively prime positive integers, and • denotes
some unit. As such, we obtain

pm = dm′, n = dn′

and there are two cases to consider. In the first place suppose that p|d, then m = m′,
n = pn′, and the ramification is at most m − 1. If, however, we write g(x p, y) as a
power series in monomials xa yb, then we must have am + bn � mn, so the tangency
divisor is at least

(m − 1)n � p(m − 1)

which contradicts (34). In the other case, m′ = pm, n = n′, so the ramification is at
most n − 1, while if we write g(z, y) as a power series in monomials za yb, then we
must have am′ + bn′ � m′n′, and whence the tangency is at least

n(mp − 1).

From which (34) implies n − 1 > n(m − 1/p), so m = 1, and the absurdity that the
branch is unramified. ��
It therefore remains to consider the general bi-disc quotient. In characteristic zero, after
resolving the cusps, these have atworst isolatedquotient singularities. In particular they
are smooth champs in a particularly simple way, i.e. they admit a finite étale covering
by a space, and since our interest is to find rational curves on such champs, there is
absolutely no loss of generality in supposing that there are no quotient singularities.
As such, we can work on a smooth surface X with simple normal crossing boundary
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E , each connected component of which is a polygon of rational curves, and whence
(24) generalises to a splitting

�X (log E) = KF�KG. (35)

Remaining in characteristic zero for the moment, the foliation singularities, whether
of F or G, are identical with the singularities of E (which, b.t.w., is invariant by
both foliations) and can be described [17, IV.2.2] in suitable formal coordinates by a
generator

∂ = x
∂

∂x
+ λy

∂

∂y
(36)

where λ is a real quadratic irrationality, and xy = 0 is the local equation for E .
Consequently if we work modulo sufficiently large primes such that X, E have good
reduction; (35) continues to hold; and (Fp(λ):Fp) = 2, so 2.8 applies. In particular,
therefore, if we understand the locus of vanishing of the p-curvature logarithmically,
then it does not contain any component of E , i.e. (26) holds with no Ci in the support
of the cusps. On the other hand, [17, IV.2.2], KF ·E ′ = KG ·E ′ = 0 for every E ′ in
the support of E , so P is disjoint from E , while KX + E descends to an ample divisor
on the contraction of the cusps, whence everything is exactly as in the smooth case,
and we deduce

Proposition 3.6 Let (X, E) be a model over the integers of a smooth algebraic champ
obtained by resolving the cusps (if any) of a bi-disc quotient no finite étale cover of
which is a product of curves, then for F either of the natural foliations arising from
the bi-disc structure there is a set, P, of primes of positive density such that for k an
algebraically closed field of characteristic p ∈ P there is a F-invariant rational curve
f p : P

1
k → X\E, and constants c,C, depending on X, H, where the latter is an ample

divisor, such that
pc � H · f p P

1
k � pC. (37)

Proof Suppose first that lim inf p∈P H · f p P
1
k is finite, then there is an irreducible com-

ponent of the Hilbert scheme (say of a finite projective étale cover of X to avoid some
technicalities) which contains a rational 1-cycle missing E for infinitely many primes,
whence a non-trivial rational curve fC : P

1
C

→ XC\E , which is nonsense. On the
other hand, the residue theory of Baum–Bott, [2], is, Appendix, valid in Hodge groups
over k, and f misses E , so, (107), KG · f p P

1
k vanishes modulo p, while KF · f p P

1
k is at

most −2. Consequently, since KF + KG is ample on contracting the cusps, we must
have KG · f p P

1
k = pd, d ∈ N. Supposing, therefore, p � 0 to avoid bad reduction, we

can take c in (37) anything such that H − cKG is ample, while by (26), C is at worst
KF ·H . ��
As the referee observed this may usefully be contrasted with the situation in char-
acteristic 0, or indeed, 3.13, sufficiently large primes where F is p-closed, to
wit:

Remark 3.7 In characteristic 0 by the Frobenius theorem; the structure of canonical
foliation singularities; and since everything is understood in the orbifold sense, the
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following are equivalent for a F-invariant map f : � → X from a not necessarily
compact Riemann surface

(a) f −1(E) �= ∅.
(b) f −1(sing(F)) �= ∅.
(c) f −1(E) = �.

If furthermore � is compact, and by a minor abuse of notation, we identify it with
a smoothly embedded orbifold then if any of (a)–(c) were false, � would miss the
singularities so by Baum–Bott theory, cf., A.2, A.7 and A.6,

�2 = KX/F(E) ·� = KG ·� = 0 (38)

which, cf. proof of 3.3, is impossible by the index theorem. Consequently,

All invariant compact curves in characteristic zero must factor through E .

Or alternatively, apart from the cusps, one of the natural foliations on a bi-disc quotient
has an invariant algebraic curve iff an étale cover (in the orbifold sense) is a product
of curves.

Before proceeding to analyse the complimentary primes let us also make

Remark 3.8 If some étale cover of our bi-disc quotient were a product of curves, then,
of course, the foliation is p-closed for all p and the divisor (26) never exists, nor, are
there any rational curves. Similarly, in the hypothesis of 3.6, we can—[9, remark, p. 23]
when there are no cusps, and [17, II.2.3] otherwise—take, for p � 0, the complement,
P′, to P to be primes where both F and G are p-closed. The decomposition P�P′ of
sufficiently large primes can be naturally identified with those, P, which are inert,
respectively, P′, split in some real quadratic extension (depending naturally on X )
K/Q. It’s both curious, and typical of this sort of problem, that the relation of K to
the geometry is more obvious when there are singularities, i.e. in the notation of (36),
it’s just Q(λ).

As to what happens at P′ the following is surprisingly, cf. 3.12, precise

Proposition 3.9 Let (X, E) be as in 3.6 with (up to excluding a finite set of primes of
bad reduction) P′ the set of primes complimentary to P then for f : C/k → X any
separable map from a smooth curve over k of characteristic p ∈ P′ which doesn’t
factor through E there is a m = m( f ) ∈ N ∪ {0} such that

(KX+E) · f C � − (1+ pm)χ(C\ f −1(E)) (39)

where for D a divisor on C, the Euler characteristic χ(C\D) is χ(C) minus the
number, Dred of points in D counted without multiplicity. In particular, therefore, for
any such curve, χ(C\ f −1(E)) < 0, and over k, X\E is “algebraically hyperbolic”.

Proof By hypothesis we have a non-trivial map

f ∗�X (log E) → ωC (log f −1(E)) (40)
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and wild ramification is a help rather than a hindrance, i.e. the degree of the right hand
side in (40) is at most −χ(C\ f −1(E)). Consequently if both the induced maps from
f ∗KG and f ∗KF arising from combining (35) with (40) are non-trivial, then we get
(39) with m = 0, so without loss of generality f is F, but not G, invariant.

This much is characteristic independent, but by the definition of P′, and [9,
remark.(ii), p. 23] in the smooth case, respectively 2.8 should there be cusps, both
our natural foliations are p-integrable. Even better, [9, remark.(iii), p. 23], they are
actually p-adically integrable, so in particular F is a height m-foliation in the sense
of [7] for all m ∈ N, i.e. one can replace p by pm in 2.7. This means that there are
compatible factorisations,

X
ρm−−→ Ym

σm−−→ X (m) (41)

of the mth powers, Fm
X , of the geometric Frobenius together with natural exact

sequences

0 → K pm

F = ρ∗
mσ ∗

mK
(m)

F → ρ∗
m�Y ∗

m
(log Em) → �X∗(log E) → KF|X∗ → 0 (42)

where Em is the divisor induced by the cusps on Ym which will be singular if the cusps
are non-empty, so, for the moment we only understand (42) in the complement, X∗,
resp. Y ∗

m , of the (foliation) singularities. Irrespectively, the height (m+1)-structure
defines a section of the left hand side of (42) so, again, away from the singularities we
still have a splitting

�Y ∗
m
(log Em) = σ ∗

mK
(m)

F |Y ∗
m

� KGm |Y ∗
m
, ρ∗

mKGm = KG. (43)

In order to understand the singularities we require

Lemma 3.10 Let everything be as above with W the Witt vectors of k, then in the
completion,X, of a foliation singularity (in a local lifting over W ) the foliation admits
a semi-simple generator, i.e. coordinates x, y such that TF|X is generated by

x
∂

∂x
+ λy

∂

∂y
, λ ∈ Zp. (44)

Proof We prove, by induction, that the foliation has a sequence of compatible gener-
ators, ∂m , and coordinates xm, ym such that (44) holds modulo pm, with xm ym = 0
the cusps modulo pm. In the case m = 1, [17, II.1.3], the Jordan decomposition of
2.1 and p-closure combine to give what we need. Now consider going from m to
m + 1 with x = xm , y = ym and a generator mod pm+1 normalised by ∂(x) = x ,
then linear algebra reveals that ∂ semi-simple modulo pm implies that we still have
a Jordan decomposition ∂S + ∂N modulo pm+1, with the nilpotent part exactly as in
(19).(a), i.e.

∂N =
∑

i+ jλ=0 (pm+1)

(
εi j x

i y j
)
y

∂

∂y
, εi j = 0

(
pm

)
. (45)

Now to obtain a local generator, ∂m , of the foliation at the corresponding singular point
of the resulting foliation on Ym of (41) from ∂m−1 one applies the difference operator,

123



Curves on surfaces of mixed characteristic 451

δ(∂m−1) := p−1 (
∂
p
m−1 − ∂m−1

)

by first working modulo p2, then reducing modulo p. Better still the complete local
ring of Ym is easily expressed in the Jordan coordinates, i.e.

k [[xi y j ]], i + jλ = 0 (pm) (46)

and we deduce that the Jordan decomposition of ∂m is

δm(∂S) + p−m∂N .

Consequently, [17, II.1.3] applies again to deduce that ∂N = 0 (pm+1), and whence
(44). ��
This may be applied to extend the definition of KGm across the singularities via

Fact/Definition 3.11 Say a meromorphic differential, ω, on an irreducible variety, Y ,
has log-poles along aWeil divisor, E , if everywhere locally there exist (possibly empty
but finite) sets of functions ai , zi such that

ω −
∑
i

ai
dzi
zi

∈ �1
Y , support(zi ) ⊆ E for all i.

Then KGm extends over the singularities to a line bundle on Ym with log-poles
along Em .

Proof In the coordinates of (44) the generator of KG on X at a singularity is given by

ω = λ
dx

x
− dy

y
(47)

which for Zi j = xi y j a function on Ym as per (46) is equally

− j−1 dZi j

Zi j
, provided p � j,

so ω of (47) is a closed differential on Ym with log-poles along Em . Now, over Y ∗
m ,

sections of KGm are exactly the closed differentials in KGm−1 , and whence the claim
follows by induction in m. ��
Now suppose inductively (we already have the case m = 1) that ρm f admits a fac-
torisation

C
f

Fm
C

X

ρm

C (m)
fm

Ym

(48)

where FC is Frobenius and fm is separable. If, however, this were to fail for ρm+1 f ,
then the composition (wherein wild ramification is again help rather than hinderance)
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f ∗
mKGm → f ∗

m�Ym (log Em) → ωC(m) (log f −1
m (Em))

implied by (43), cf. (40), is non-trivial, so by (48), and 3.11,

KG · f C � −pmχ(C\ f −1(E)) (49)

which, by the definition of F-invariance, already holds with m = 0 for KF whence
(39).

As such, there remains the possibility that (48) holds for allm. Here, if it were true,
that f could be lifted to characteristic zero, then it would follow from A.7 that the
degree of KG along f would be zero. In characteristic p, however, the situation is in
a sense simpler since by (43), (48), and 3.11

f ∗KG = (Fm
C )∗KGm ⇒ pm |KG · f C (50)

and since this is hypothesised to hold for all m,

KG · f C = 0 which implies: (KX+E) · f C = KF · f C � −χ(C\ f −1(E)) (51)

and completes the proof since KX + E is ample on contracting E , so, χ(C\ f −1(E))

< 0 is nonsense. ��
Having achieved our goal let us observe that 3.9 is optimal

Remark 3.12 Consider first the case where X = X1×X2 is a product of smooth geo-
metrically irreducible hyperbolic curves, and everything is defined over Fp to avoid
some technicalities. Then for any map f : C/Fp → X from another smooth geometri-
cally irreducible curve, if both projections, fi , are separable, thenbyRiemann–Hurwitz
we get (39) with m = 0. The condition of 3.9, however, is only that f is separable, so
there’s nothing to stop us replacing f = f1 × f2 by gm := f1 ×Fm f2 for as large a
multiple, Fm, of Frobenius as we like. As such KX ·gmC grows linearly in pm, while
χ(C) is constant, so the appearance of pm in (39) is unavoidable and separable curves
of bounded genus on X are not bounded in moduli. Similarly, if one toys with the
examples in [1], exactly the same mechanism should yield examples of products of
curves where

KX · fi Ci � −(1 − ε)(1 + pm)χ(Ci ) (52)

for infinitely many separable curves fi : Ci → X . As such, if, for any bi-disc quotient,
X , be it a product of curves or not, were we to define PX , P′

X as primes where the
natural foliations aren’t, respectively are, p-closed then 3.6, (which, 3.8, is void for
products of curves) and 3.9 (just apply Riemann–Hurwitz and separable/inseparable
factorisation) hold exactly as stated. In particular, (39) is in no way the result of
non-classical behaviour of bi-disc quotients at p ∈ P′

X—indeed the overwhelming
evidence suggests that one ought to have p-adic uniformisation at such primes, while
from the proof we see that the mechanism giving rise to the factor pm in op. cit.
is exactly the same as that for products of curves. Similarly, to see that the factor
pm is necessary in (39) one can exploit, at least when there are no cusps, that the
canonical model of Ym occurring in (41) behaves, [8], exactly as in characteristic zero.
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Specifically, the 5-canonical map is very ample, while Ym has exactly the same Chern
numbers as X , so there is a very ample bundle H = 5KYm whose generic member is
a smooth curve Cm ↪→ Ym with χ(Cm) independent of m. The pull-back, ρ∗

mCm , is,
generically, an irreducible curve C ′ whose normalisation, f : C → C ′, satisfies (48).
As such the degree of f grows like pm, while χ(C) remains bounded. Again, however,
in all likelihood, the examples in [1] can be tweaked to give the lower bound (52) on
the nose, i.e. ε = 0 up to the addition of a constant o(pm).

Similarly, we can improve our understanding of the possibility that (48) occurs ad
infinitum by establishing the characteristic p-analogue of the referee’s observation,
3.7, i.e.

Compliment 3.13 Let p be a sufficiently large prime as in 3.9, then irrespectively
of whether there are cusps or not, any algebraic curve f : C → X (with f the
normalisation of its image) admitting the factorisation (48) for all m belongs to the
support of a cusp.

This is a good bit trickier, cf. 3.20, than its characteristic 0 motivation 3.7, and will
need some preliminaries, to wit:

Lemma 3.14 (cf. 3.7) Let p and f be as in 3.13 with E the cusps then f is an
embedding, and the following are equivalent

(a) f −1(E) �= ∅.
(b) f −1(sing(F)) �= ∅.
(c) f −1(E) = C.

Proof We only do (b) implies (c) of the equivalence since everything else is not only
similar but easier. Irrespectively, for some integers a, b ∈ N write the map f at the
singular point as

f : t �→ (ξ tau, ηtbv), u(0) = v(0) = 1, ξ, η ∈ k

in the mod pm Jordan coordinates of (46), then by hypothesis for every pair of integers
(i, j) with i + jλ = 0 (pm),

ξ iη j t ia+ jb f ∗(uiv j ) (53)

is a function of t p
m
, and since without loss of generality ab �= 0 we must therefore

have

b

a
= −λ (pm). (54)

The integers a, b are, however, the order of tangency between f and the branches of
the cusps, so they’re independent ofm while λ is a quadratic irrationality, and whence
(54) is nonsense for m � 0. ��
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Lemma 3.15 If XK is the fibre over the quotient field of the Witt vectors of k, then
without loss of generality, the specialisation map

Pic(XK ) → Pic(X) (55)

restricted to the torsion sub-groups is an isomorphism.

Proof The torsion in the left hand side of (55) is finite, and a given bundle is trivial in
characteristic 0 iff it’s trivial for p � 0, so (55) is certainly injective on torsion. As to
surjectivity, whether over X or XK a torsion bundle L is numerically trivial, so if A is
ample n(A + L) has, by Riemann–Roch, a section for n ∈ N independent of p. ��
Lemma 3.16 For p as in 3.13 the bundle KF is nef.

Proof Suppose to the contrary that there is a curve C with KF ·C < 0. As such in the
notation of (41)–(43),

ρ∗
mKYm ·C = (pmKF+KG) ·C < 0, for m � 0.

Thus, following [22], bend and break applies (a priori there could be a problem with
singularities, but on surfaces it’s a non-issue, [8, 2.1], since the canonical can’t go up
on passing to a minimal resolution) so that for H an ample bundle on X and every
geometric point c of C there is a rational curve Lm

c � c such that

σ ∗
mH ·Lm

c � −4 · σ
∗
mH ·(ρm)∗C
KYm ·(ρm)∗C

m→∞−−−−→ −4 · H ·C
KF ·C . (56)

Now if Mm
c is the reduced pre-image of Lm

c in X then the left hand side of (56) is

pm−nH ·Mm
c

where n is the largest integer such that the factorisation (48) (albeit with Mm
c rather

than C) holds. Consequently, not only do the curves Mm
c belong to finitely many

families, but the difference m − n is bounded as m → ∞. This is, however, exactly,
3.13, what we’re trying to eliminate, but with the added hypothesis that the curve is
rational, and this is impossible by (51), and 3.14. ��
Lemma 3.17 To prove 3.13 it is sufficient to exhibit whether for KF, or KG, two
disjoint curves some rational multiples of which are numerically equivalent to KF,
resp. KG.

Proof We do KG since this is the case we will use. Irrespectively, since h1,0 is zero
in characteristic zero and p � 0, the hypothesis is equivalent to,

X → |nKG| (57)

being a base point free linear system for some large n. Now let,

β : X → B (58)
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be the Stein factorisation of (57), then the a priori problem we face is that β may not
be generically smooth. This can only occur, however, if we have a factorisation

β : X
FX−−→ X (1) β(1)

−−→ B

through Frobenius, and replacing X whether by X (1) or some other twist X (m),m � 0,
we eventually conclude, in the obvious notation, that β(m) is generically smooth. Now,
as it happens, under the hypothesis of 3.13, X is isomorphic to X (m), albeit it’s better
practice to replace B by B(−m) and twist back, but, in any case, we can, on ignoring its
relation with (57), suppose without loss of generality that (58) is a generically smooth
map whose fibres are numerically equivalent to rational multiples of KG. In particular,
therefore,

β∗ : β∗KB → �1
X

is non-zero, while its projection to KF is zero by (25) and 3.16, so we must have an
identity of Q-divisors

KG = β∗(KB+�)

for some divisor Q divisor � on B, and since KG �= 0 in Néron–Severi,

degree(KB+�) > 0. (59)

On the other hand, � is of the form

∑
i

(
1 − 1

ei

)
+

∑
j

aj

where ei ∈ N prime to p arise from the tame ramification, and aj � 1 from the wild
ramification, so (wild helps, and just as in characteristic zero) the left hand side of
(59) is at least 1/42. Consequently a generic fibre of β has degree with respect to any
ample bounded by 42 times that of KG, so for p � 0 it lifts to characteristic zero,
which is absurd by 3.1. ��
With the preliminaries in place we can give

Proof of 3.13 Modulo replacing � by C , (38) is valid as stated for essentially the
same reasons—our variant, (50), of Baum–Bott, and 3.14, while h1,0 = 0 for p � 0,
so (identifying C with its smooth image) there are integers a, b ∈ N such that

aKG = bC ∈ Pic(X). (60)

As such if d is the g.c.d. of the pair a, b and a = da′, b = db′ there is a line bundle
M such that

KG = b′M, C = a′M ∈ Pic(X) mod (torsion). (61)
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Appealing to 3.15 we can replace X by an étale cover (in the orbifold sense if we
don’t a priori simplify the problem by way of the residual finiteness of the orbifold
fundamental group) independent of p � 0, so, without loss of generality, a = a′,
b = b′ are relatively prime, and (61) holds exactly in Pic(X), rather than mod torsion.

In any case, since C cannot also be invariant by G we have a non-zero tangency
divisor, (30), which by (38) is nowhere zero, so by (60) C is a + b torsion. Better, by
(48),

OC (C) (indeed any divisor that descends to every Ym,F )

is pm-divisible in Pic(C)(F)
(62)

for F the finite field of definition of C , so it’s actually 
-torsion, for 
 the non-p part
of a + b. On the other hand, lifting 
-torsion bundles is purely topological, so in the
completion X̂ of X in C there is such a bundle, L , and for Xn the nth thickening in C ,
we attempt, by induction to show that C |Xn is isomorphic to L|Xn . On a sufficiently
fine étale cover U → X̂ , with (s, t) : R = U ×XU ⇒ U the projections, we have,
therefore, a generator x of OU (−C), which is hypothesised to satisfy,

s∗x = l (1+ f xn) t∗x mod (I n+2
C ), n � 1 (63)

where l : R → μ
 is the transition function for L∨, and f ∈ OU . We have however,
without loss of generality, a generator ∂ of TG|U , with transition function g : R → Gm ,
and applying this to (63) we obtain

s∗(∂(x)) = gl (1 + (n+1) f xn) t∗(∂(x)) mod (I n+1
C ) (64)

which means (since ∂(x) is invertible): if D is defined to be C − L then

(KG+C) + nD = 0 ∈ Pic(Xn+1). (65)

Multiplying by a and combining with (60) we have, therefore:

(a + b)C + anD = (b + a(n+1))D = 0. (66)

Now, this far, we’re just following the characteristic zero proof of IV.5.1, case (d),
in [17], in which one concludes from the exact sequence

H1(C,OC (−nC))
x �→1+x−−−−−→ Pic(Xn+1) → Pic(Xn) → 0 (67)

in which D belongs to the kernel, that it’s zero iff it’s torsion. In positive characteristic,
however, we only know this is p-torsion, so we have a problem albeit since a, b are
relatively prime:

we’re done if p |a.

As such, we can suppose a, p relatively prime, and form the ath root π : Xa → X
of C guaranteed by the torsion free version of (61), which from (a, p) = 1 is an F
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equivariant operation, so Xa → [Xa/F] is still a height m-foliation for all m, while
by 3.14

ΩXa (log Ea) = KGa�π∗KF, KGa = π∗KG + (a − 1)Ca,

π∗C = aCa .

Consequently, we have the advantage of a global section, ω, of KGa , where

KGa = (b + a − 1)Ca := cCa (68)

but with the disadvantage that Xa may no longer be liftable. Regardless we still have
factorisations

Fm
Xa

: Xa
ρm−−→ Ya,m

σm−−→ X (m)
a

wherein both Ca and KGa are invariant by ρm and we assert

Claim 3.18 For every m there is a global section ωm of KGa over Ya,m such that
ω = ρ∗

mωm.

Proof of claim By induction, wherein ω = ω0, the assertion is equivalent to ωm being
closed. Observe that ωm vanishes along C (m)

a (identified with its image under ρm) to
order c by virtue of (68) and what we’re trying to exclude, viz: 3.13, so dωm �= 0
implies

KGa + σ ∗
mKF = cCa + � = KGa + �, � � 0 (69)

and whence σ ∗
mKF = �, where by 3.16 and the log-variant of 3.1, � cannot vanish

on C (m)
a . Alternatively, at the level of Picard groups, we have a commutative diagram

0 Ker(ρ∗
m,m+1) Pic(Ym+1,a)

ρ∗
m,m+1

Pic(Ym,a)

0 Pic(C (m+1)
a )[ p] Pic(Cm+1

a )
F∗
Cm+1

Pic(Cm
a )

(70)

wherein what we have to prove is that the class KGa (−cC (m+1)
a ) in themiddle group of

the top row vanishes, given, that by indiction it belongs to the kernel. The obstruction
to vanishing is, however, exactly the section of σ ∗

mKF defined by (69), i.e. we have a
commutative diagram

Ker(ρ∗
m,m+1)

obs H0(Ym,a, σ
∗
mKF)

Pic
(
C (m+1)
a

)[ p] obs H0
(
C (m)
a , K

C(m)
a

)
(71)
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with injective horizontal arrows. The pull back of KGa (−cC (m+1)
a ) along the middle

arrow of (70) is, however, by (62), prime to p torsion, so its image in the left hand
corner of (71) is zero, i.e. � of (70) vanishes on Ca which is nonsense. �

Now the Cartier operator respects the foliations, so for every m, by 3.18 we have
sections

Cartier(ωm) ∈ H0(Y ∗
m,a, KG) = H0(Ym,a, KG) (72)

which by 3.17must be parallel toωm , andwherein Y ∗
m,a is, oncemore, the complement

in the foliation singularities. Should it be non-zero, then c of (68) satisfies

p |(c + 1). (73)

As such if we return to the induction (63)–(67), (where now a = 1 and b = c) with
the additional information of (73), then the strategy of op. cit. can be changed to prove
thatC is p
 torsion on X̂ . Specifically, one can, without reference to (73), already take
f in (63) to be in the image of Frobenius, and one changes l = lold of op. cit. to,

lnew = loldF
∗h, h : R → μp, a co-cycle, (74)

which is possible since in the flat topology,

0 → OC (−nC)
x �→1+x−−−−−→ μp,Xn+1 → μp,Xn → 0 (75)

is exact, and the leftmost sheaf in (75) has no H2. Consequently either the coefficient
in (66) is prime to p and D is zero, or we get that p |n, and we can continue by way
of (74) thanks to (75).

Finally, therefore, we have the possibility that for every m the Cartier operators in
(72) vanish. In particular, therefore, (73) cannot hold, and we further assert

Claim 3.19 Under the above hypothesis there is a factorisation,

σm : Ym,a → T → X (m)
a (76)

wherein the former map is bi-rational, in fact it is an isomorphism off C (m)
a where, for

x a local equation of the same, it has a cusp of the form

x �→ (
xc+1, x pm )

(77)

while the latter map in (76) is an irreducible αpm -torsor.

Proof First suppose Y ∗
m,a = Ym,a , i.e. there are no cusps. The case m = 1 is standard,

and T is given by

OX (1) [ξ ] ⊂ OY1, ω = dξ

wherein the latter equation is to be understood locally since the difference of two such
solutions is a pth power. Consequently, by 3.18, we can certainly take the 2nd map in
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(76) to be a tower of αp torsors, but we need a little more. To this end, confusing push
forward to X (m) of a structure sheaf with itself for notational convenience, observe
that we have sheaves of rings,

OYm,a ⊃ O
Y (1)
m−1,a

⊃ · · · ⊃ O
Y (m−1,a)
1

⊃ O
X (m)
a

and the nth inclusion may be defined locally as

OYm,a � f iff

(
Dpi

pi !
)

( f ) = 0, 0 � i < n,

for some divided symmetric powers of a local vector field D in the Ga-direction. A
priori such powers need not commute, but if we normalise them by

(
Dpi

pi !
)(

ω
(i)
m−i

) = 1 (78)

then for a local solution dξ = ω off C (m)
a we have

(
Dpi

pi !
)

(ξ pi ) = 1

so, in fact, they commute, and the exponential

pm−1∑
n=0

(
Dn

n!
)

affords an αpm action on Ym,a wherever the normalisation (78) has sense, i.e. off C (m)
a .

Nevertheless, the divided symmetric powers defined by (78) extend meromorphically
around C (m)

a , and while this doesn’t define an action on Ym,a it does define an action
on T defined by (77). In the general case that Y ∗

m,a �= Ym,a all of the above is valid
over the complement of the foliation singularities, so that by 3.14 the extension of the
torsor over these is (locally) just Ym,a → X (m) itself. �

To conclude the proof of 3.13, we have

H1(Xa, αpm ) = Hom(αpm ,Pic0(Xa)) for all m,

and T in 3.19 is irreducible, so Pic0(Xa) must be positive dimensional. On the other
hand, �1

Xa
can have no section other than ω—otherwise we get either a section of KF

which for p � 0 lifts to characteristic zero, or a second section of KGa contradicting
3.17—so by Igusa’s inequality, the Albanese,

α : X → E
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is an elliptic curve, and our section ω is a pull-back along α, which, in turn, is gener-
ically smooth. Plausibly, however, α restricted to Ca is inseparable, but replacing X
by Ym for m � 0 we can suppose this doesn’t happen, so, in fact, Ca is a (possibly
multiple) fibre of α, and we reduce to 3.17. ��
Given the length of the proof of 3.13, and its close relationship with the classification
of foliations in characteristic zero it’s worth concluding with

Remark 3.20 The characteristic zero version, 3.7, of 3.13 is not only simpler, but, at
least implicitly, stronger, since it follows a fortiori from the characteristic zero lemma

A foliation,G, admitting an everywhere transverse curve C with C2 = 0

has Kodaira dimension 1, i.e. the curve moves in a pencil.
(79)

which, as we’ve said, is [17, IV.5.1.(d)], and is necessarily reproduced here en passant,
(61)–(67). Similarly, and with little change, [19, III.10], (79) is valid for families in
characteristic zero. Equally, it may well be the case that (79) holds in characteristic p,
but we certainly haven’t proved it, or better we’ve only proved the very weak variant
in which C is not only invariant by a foliation F transverse to G, but infinitely so in the
sense that (48) holds for all m. As such, and despite its similarity with (79), neither
3.13, nor its proof, establishes that at the split primes either of the natural foliations
on a bi-disc quotient, which isn’t a product of curves, have Kodaira dimension −∞.

4 Refined tautology

Again, let X be an algebraic space or Deligne–Mumford champ over a locally Noethe-
rian base S. For Spec(k) ↪→ S a closed (of any characteristic) point, andC/k a proper
smooth curve (or indeed proper 1 dimensional smooth Deligne–Mumford champ), we
consider a separable map f : C → X . As such if P := P(�1

X/S), then by base change
P(�X/k) = P⊗S k, to which, by the definition of separability, there is a derived curve,
f ′ : C → P(�X/k), admitting the following

Tautology 4.1 Let L be the tautological bundle on P, and χC = 2 − 2g(C) the
geometric Euler-characteristic of the curve, then

L · f ′C = −χC − Ram f � −χC . (80)

In the case that f : C → X is invariant by a foliation by curves F, with X/S smooth
to fix ideas, this can, in the notation of (17), be re-written as follows: outside of Z ,
the foliation defines a section of P(�X/S) → X , whose closure over Z is the blow
up π : X̃ → X in Z , including any implied nilpotent structure. As such there is an
exceptional divisor E , L|X̃ = π∗KF(−E), and, provided that f doesn’t factor through
Z , the intersection E · f ′C can be identified with the Segre class sZ ( f ), so the first part
of the tautology (80) becomes,

KF · f C = −χC − Ram f + sZ ( f ). (81)
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We’d like to refine this by “removing” the Segre class term. This can be done for S
of finite type over Z, and (X,F) → S a family of foliations by curves with canonical
singularities over each generic point of S—otherwise it’s false, but we don’t need that.
The precise statement is,

Fact 4.2 Let S/Z be of finite type, with (X,F) → S a family of foliations by curves on
a proper (over S)Deligne–Mumford champwith canonicalQ-Gorenstein singularities
over each generic point of S, then for every ε > 0 there is a closed, nowhere dense,
sub-champ Zε of X such that every curve f : C/k → X over every closed point
Spec(k) ↪→ S invariant by F⊗S k which doesn’t factor through Zε satisfies,

KF · f C � −χC + εH · f C (82)

where H is a line bundle on the moduli of X which is big, relative to S, over every
generic point of the same.

This is stated in [16, V.6.1] for S a field of characteristic zero, wherein the situation
even involves invariant discs, which don’t have so much sense in mixed characteristic.
The proof though, which is all of op. cit. SectionV, continues to have perfect sense, and
works in the generality stated. With respect to the immediate interests of this article,
we only need the case of X/S a smooth geometrically connected family of projective
surfaces, and since the theorem is stable under base change and throwing awaynowhere
dense closed sets (precisions which may well be subsequently eschewed) we can
further suppose that each singularity is a section. Plainly the difficulty is to estimate
sZ ( f ). This is, however, subordinate to a local question: how does a local invariant
curve meet Z , so we can suppose everything complete in some connected component
of Z . Now, as it happens, the pure characteristic 0 case isn’t much easier than that
of mixed characteristic, and, indeed, is strictly easier than the variation for algebraic
points over characteristic zero function fields treated in [19, III.2]. As such we confine
ourselves to mixed characteristic, while supposing, for ease of exposition, that S is an
open subset of the spectrum of the ring of integers of a number field, K . In particular,
after appropriate localisation and without loss of generality, we can suppose that the
completion in Z is an affinoid Spf (B) with trace S on which the foliation is defined
by an everywhere singular, but non-vanishing in co-dimension 1, vector field ∂ .

Proof of 4.2 for mixed characteristic families of surfaces Tofix ideas, let’s beginwith
the easy case, i.e. a so called saddle node over K , equivalently the semi-simple part
(over K ) has only one non-zero eigenvalue. As such, over K , one can refine (19) to
find formal coordinates x, y in B{K } (where { } is formal localisation, which, [15], is
not to be confused with localisation) such that

∂ = x
∂

∂x
+ yr+1

1 + νyr
∂

∂y
, ν ∈ K , r ∈ N. (83)

Now, while there is no comparably simple formula in all of B, observe that 4.2 is
stable under blowing up in the singularities, which we can suppose done a priori so
we have an exceptional divisor E ⊃ Z which, without loss of generality, in (83) is the
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plane y = 0. Similarly, straightforward linear algebra shows that the plane x = 0 is
a well defined F-invariant formal sub-scheme in all of B, so over B we can suppose
that our generator has the form

∂ = x
∂

∂x
+ yr+1b(y, x)

∂

∂y
, b(0, 0) = 1. (84)

With this is mind, we next consider what happens at s ∈ S of characteristic p, i.e.
reduce modulo k(s), and complete Z⊗k(s) to get a new local ring As in which
2.1 and (19) are valid. Consequently, for a change of coordinates of the form
(x, y) �→ (x, z= yus(x, y)) where us is a unit in As , we can improve (84) to a
Jordan decomposition

∂ = x
∂

∂x
+ zr+1bs(z, x

p)
∂

∂z
, bs(0, 0) = 1, bs ∈ As . (85)

Plainly, this depends on s, but it has the manifest advantage that if f = (x(t), z(t)) :
�s → Spf (As) is a F-invariant map from the formal disc over k(s) then it must be
invariant by both the semi-simple and nilpotent parts. As such if x(t) �= 0 then, by
invariance under the semi-simple part, ẋ �= 0 and z = z(t p). Consequently for ord the
order of vanishing under f ∗ at the closed point of �,

sZ ( f )loc − Ram f,loc � ord(x) − ord(ẋ) � 1 � 1

p
(E · f �)loc (86)

where the Segre class and intersection number are understood locally in the obvious
way. In particular, for ε given as in 4.2 and p � ε−1 we certainly have the kind of
bound that we require to deduce (82) from (81). To deal with the alternative possibility
that x(t) is identically zero: observe that for r as in (84) and any d ∈ N this forces

sZ ( f )loc � r + 1

d
sZd ( f )loc (87)

for Zd the subscheme defined in all of Spf (B) by the ideal (x, yd) of (84), i.e. sZd ( f )loc
is equally the (local) intersection of f with the exceptional divisor of a weighted blow
up with weights (1, d). Now over the generic point Zd has length d, while the number
of sections of a multiple mH of an ample bundle grows like m2, so for d � m2

�(XK , H⊗m IZd ) �= 0, m = O(
√
d). (88)

Consequently, throwing away a nowhere dense (dependent on d) Zariski closed subset
of X , we have the global inequalities

sZd ( f ) � √
d H · f C �⇒ r + 1

d
sZd ( f ) � 1√

d
H · f C (89)

which is again an appropriate bound for d � ε−2, cf. [19, (49)–(50)].
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This reduces us to singularities, Z , whose semi-simple part over the generic point
has two non-zero eigenvalues. To avoid some pointless technicalities we can (since it
doesn’t change KF) suppose that the singularities over the generic point are reduced
in the sense of Seidenberg, i.e. either the previous case of nodes, or the ratio of the
eigenvalues is not in Q>0. The Seidenberg property is stable under blowing up, so
again, for convenience, we can suppose that there is an exceptional divisor E ⊃ Z ,
and whence the semi-simple part over K has the form

y
∂

∂y
+ λx

∂

∂x
(90)

for y = 0 a local equation for E , and, after base change if necessary, λ ∈ K\Q>0. The
first of a couple of additional subtleties is that unlike (84) the invariant branch x = 0 of
F which exists (just apply (19) and the Seidenberg condition) in the completion at the
generic point, may fail to exist in the completion Spf (B) over all of S. More precisely,
for d ∈ N some large integer to be chosen, linear algebra, cf. (19), reveals that the
obstruction to finding a coordinate hypersurface x = 0 other than the exceptional
divisor such that

∂(x) ∈ (x) + I d+1
Z (91)

occurs at points s ∈ S such that

λ ∈ {1, . . . , d } mod (m(s)). (92)

Thanks to our Seidenberg hypothesis this only occurs at finitely many closed points—
indeed their residue characteristics, p, must even satisfy p � d. Such quantification
isn’t so important however, since d � ε−2 will be fixed once we have global sections
of H⊗m(x, yd) over the generic point for m of size commensurable to

√
d, so we just

discard fibres where (92) could happen.
Now the easy sub-case occurs at s ∈ S where λ isn’t in the prime sub-field of

k(s). By 2.8, Fs cannot be p-closed, while, conversely, the locus where ∂ p∧∂ is zero
contains all invariant curves, so our invariant curve must be one of the coordinate
hypersurfaces in (23). One of these is the exceptional divisor, so we can ignore this
possibility, while the other agrees with x = 0 of (91) to order d, and in either case the
maximum possible value of the local contribution

sZ ( f )loc − Ram f,loc (93)

is 1. As such, if we again put Zd to be sub-scheme cut out by (x, yd), but here with x
as in (91), then

sZ ( f )loc − Ram f,loc � 1

d
sZd ( f )loc (94)

and, as in (89), we have what we need.
This leaves us with the possibility that λ belongs to the prime field Fp ↪→ k(s),

and we effect a change of coordinates (x, y) �→ (xs, y) to identify (on completion in
Z⊗k(s)) the semi-simple part
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∂S(s) = y
∂

∂y
+ λs xs

∂

∂xs
, (95)

of a re-scaling of ∂ over k(s), wherein the hypersurface xs = 0 may be supposed
in agreement with x = 0 to order d + 1. Writing our invariant curve as f : t �→
(xs(t), y(t)), observe that the maximum possibility for (93) is still 1, and it would
actually be negative if f were widely ramified. Plainly, this latter possibility can be
ignored, but equally if t �→ y(t) were wild then (86) would hold, while if t �→ xs(t)
werewild then (94) holds as soon as p � d. Consequently,we can suppose that both the
coordinate projections of f are tame. As such ifm, n are the smallest positive integers
whose ratio mod p is λs , then for ord again the order of vanishing on restriction to �,
invariance by the semi-simple part (95) implies

ord(xs) � m, ord(y) � n (96)

or one of f ∗xs , f ∗y vanishes identically. This latter possibility is exactly what we
encountered in the previous discussion of λs /∈ Fp, whence, on treating it in the
same way, we can suppose that (96) holds. On the other hand since λ ∈ K\Q>0, any
Arakelov intersection of λ ∈ P

1
S with m/n is, up to the irrelevance of a choice of

metric on O(1)
P
1
C

, non-negative, so

max{m, n} � p. (97)

Finally, therefore, if p � d, then, either n � p and we have the estimate (86) or
m � p and we appeal to (94). Having thus estimated all the possibilities for the local
contribution to (93) we deduce the refinement (82) of the tautology (81). ��

5 Surfaces of general type

Throughout this section S is an irreducible affine scheme of finite type over a Noethe-
rian integral domain with generic point of characteristic zero, e.g. Z, and X/S is a
smooth family of S-projective surfaces of general type, with H a S-ample line bundle.
The principle conclusions, 3.6 and 4.2 of Sect. 3, respectively Sect. 4, combine with
the minimal model theory of [17] to yield

Proof of 1.4 By 3.6 and 3.12, (a) is hopelessly false should (b) occur, so it remains to
prove (a) otherwise. By the classification theorem, [17], this amounts to the following
distinct possibilities:

(i) The (foliation) canonical KF is big on the generic fibre.
(ii) The generic fibre is as (b) but points of positive residue characteristic aren’t dense.

The first case is immediate by 4.2 and a suitable choice of ε. In the second case,
notation as in 3.9 albeit in characteristic zero and including the case of products of
curves, we can either use 3.7, or, to keep the logical complexity down, but again,
by classical Baum–Bott residue theory, or by (50), if one wants to be cute about it,
conclude that (51) holds, while in characteristic zero, cf. 3.7, an invariant curve can’t
meet E , so the left hand side of (51) is −χ(C). ��
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Proof of the subtler theorem, 1.5 Plainly (a) holds for products of curves, and their
quotients by finite group actions, while any other bi-disc quotient is defined over Q,
and by 3.6 we have invariant rational curves satisfying (8) whenever p is inert. As
such, by 1.4, it remains to deal with bi-disc quotients at split primes, and we can,
of course, suppose that we’re on a model with generically canonical singularities.
Putting ourselves again in the notation of 3.9, this follows from (39) if there are no
cusps, E . Otherwise, there is some subtlety, since invariant curves can meet E in
positive characteristic. In the proof of 3.9, if (48) holds for allm, then we either appeal
to 3.13, or, less demandingly, avoid using a sledge hammer on a nut, and use our
variant, (50)–(51), of Baum–Bott, so we’d have

KG · f C = 0 mod (pm) for all m which implies (KX+E) · f C � KF · f C (98)

and there’s nothing to do by 4.2. If, however, we’re in the infinitely more likely possi-
bility that (48) holds for somem, but fails for somem+1, then, rather than the former
equation in (98), we only have (49) which, since C is rational or elliptic, affords

(KX+E) · f C � (1+ pm)cardinality( f −1(E)red).

In the particular case that m = 1, we’ve already seen in (95)–(97) that

cardinality( f −1(E)red) � 1

p
E · f C

where the implied constant may be no better than the Arakelov height of λ, i.e. it’s
arbitrary. Nevertheless, this bounds the degree along KX + E by a constant multiple
of the intersection with E , and this works in general—just do (95)–(97) modulo pm

instead of modulo p, which actually has some simplification since xy = 0 of op.
cit. can be taken to be the equation of E , while by 3.10 we have full p-adic Jordan
decomposition. As such we deduce (p � 0 to avoid any bad reduction issues) that any
rational or elliptic curve f : C/k → X where the characteristic of k is a split prime,
satisfies

(KX+E) · f C � E · f C (99)

for an implied constant depending only on X .
Now suppose such rational or elliptic over k(s) are Zariski dense with s ∈ � of

residue characteristic, p, a split prime. By hypothesis, and the fact that we know, 1.4,
that the theorem is true is in characteristic zero we can, cf. proof of 3.6, find for an
infinite set of split p, a rational or elliptic curve, f p : Cp/k(s) → X such that for H
ample

lim inf
p∈�

H · f p Cp = ∞. (100)

On the other hand, for s ∈ �wehave a specialisationmap, [10, 20.3], onNéron–Severi

is : NS1(X⊗k(S))R → NS1(X⊗k(s))R
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whence, by duality, classes in NS1(X⊗k(S))R defined by

[φp] : NS1(X⊗k(S))R → R : D �→ 1

H · f p Cp
is(D) · f p Cp

which for p � 0 certainly intersects any ample divisor, A, positively. On the other
hand, nH − A is ample for n � 0, and vice-versa, so for A fixed, A · [φp] is bounded,
and weak limits of the [φp] exist. Choose one, φ, say, and throw the rest of �, i.e.
[φp] not converging to φ, away, then the underlying f p are still Zariski dense by
(100), so φ may be identified with a (non-zero) nef. class in NS1(X⊗k(S))R. Now,
up to introducing some harmless quotient singularities, there’s no loss of generality in
identifying X⊗k(S) with a resolution, π , of the cusps on the canonical model, [17,
III.3], (X0,F0) of F, and since φ is nef., then, sub-sequencing as necessary, by 4.2

π∗KF0 ·φ = 0

while by (99), E ·φ > 0. We have, however,

φ = π∗(π∗φ) + E ·φ
E2 E

and φ2 � 0, so π∗φ is big and nef. in the Mumford intersection theory of X0, which
by Hodge affords the absurdity, [17, IV.5.5], that KF0 is numerically trivial. ��
Now we can apply this, following, [3], to curves on surfaces of general type in the
usual way

Proof of 1.1,�1
X/S bigLetπ : P = P(�X/S) → X be the projective tangent space, and

L its tautological bundle, then, by hypothesis, there is a δ > 0 such that L − δπ∗H
is effective. Again, by hypothesis, the derivative, f ′ : C → P of our curve exists,
and satisfies 4.1. As such, we’re done unless f ′ factors through a divisor D ↪→ P
dominating X . Such a divisor defines a foliation, F, by curves (on itself) given over
the generic point by

�1
D/S

∼−→ π∗�1
X/S → L|D

so, without loss of generality, curves not satisfying (a) are invariant by a foliation on
a surface dominating X , and we conclude by 1.4. ��
Proof of the subtler theorem, 1.2 Exactly as above, but use 1.5 rather than 1.4. ��

Appendix: Baum–Bott theory with values in the ground field

Let X/S be an algebraic, resp. complex, Deligne–Mumford champ over an algebraic,
resp. complex, space. The Deligne–Mumford condition ensures that �1

X/S is well

123



Curves on surfaces of mixed characteristic 467

defined, and whence for every n ∈ N there is, on identifying H1 with Čech co-cycles,
an Atiyah class,

H1(X,GLn) � E �→ at(E) ∈ H1(X,�1
X/S ⊗OXEnd(E)) :

G �→ d logG := (dG)G−1
(101)

whose symmetric functions define for each q ∈ N Chern-classes of “Hodge type”, i.e.

cq : H1(X,GLn) → Hq(X,�
q
X/S). (102)

As such the Atiyah class of a vector bundle, E , vanishes iff there is a connection

∇ : E → �1
X/S ⊗OX E

and such vanishing implies, a fortiori, vanishing of the Chern classes of (102). Nat-
urally, therefore, the Atiyah class is usually viewed as an obstruction, and, rather
obviously, if one only asks that E admits a connection along certain directions then
this obstruction is smaller, i.e. for any derivation D : OX → M with values in an
OX -module

Fact A.1 The obstruction that a vector bundle E admits a connection along D, i.e. a
map

∇ : E → M⊗OX E

satisfying the Leibniz rule, ∇( f s) = D( f )s + f ∇(s), lies in

H1(X,M⊗OXEnd(E)). (103)

Proof By definition, D corresponds to a map �1
X/S → M, so that the obstruction

(103) is just the restriction of the Atiyah class (101). ��
A generally valid example of such a bundle would be

Example A.2 If C is a family of invariant effective Cartier divisor, then by definition

OX (−C)
D−→ M(−C)

so we get (rather tautological) connections for OX (−C), and OX (C).

Consequently, irrespective of any integrability about the field of directions afforded
by D

Corollary A.3 If f : Y → X is a map such that we have a factorisation

f ∗�1
X/S → f ∗M → �1

Y/S
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then for any bundle E admitting a connection along D the Hodge Chern classes

cq( f
∗E) ∈ Hq(Y,�

q
Y/S)

vanish.

Now the key point is that in the presence of integrability there is at least one rather
interesting bundle admitting a connection along the leaves, i.e.

Fact A.4 Suppose the sheaf of derivations, TF, vanishing along the kernel, �1
X/F, of

�1
X/S → M is closed under bracket and U ↪→ X is the locus where �1

X/F ↪→ �1
X/S

defines a sub-bundle of �1
X/S, then �1

X/F|U admits a connection along �1
X/S|U →

�1
F := HomOX (TF,OX ).

Proof Differentiation affords a map

d : �1
X/F → �2

X/S whose composition with

�2
X/S → �2�1

F is dual to the bracket,
(104)

so by hypothesis the former map in (104) factors through the kernel of the latter, which
over the locus, U , is naturally the image of

�1
X/F⊗�1

X/S → �2
X/S

and the quotient of this by the sub-image of �2�1
X/F is, over, U : �1

X/F⊗OX �1
F. ��

Typically one applies this in the form

Corollary A.5 Suppose �1
X/F,�1

F are bundles; U is of co-dimension 2; and X is S2
then �1

X/F admits a connection,

∇ : �1
X/F → �1

X/F⊗OX �1
F. (105)

Nevertheless,

Warning A.6 It does not follow from A.3 and A.5 that for f : Y → X factoring
through a F invariant sub-variety that the Atiyah class, or even the Chern classes,
whether of f ∗�1

X/F, or f ∗C of A.2, vanishes. Indeed this only follows if (105)
factors, around f , through

�1
X/F⊗OX (Image of �1

X/S → �1
F)

otherwise there is a residue/obstruction in

H1(X, (coker of �1
X/S → �1

F)⊗End(�1
X/F)

)
.

123



Curves on surfaces of mixed characteristic 469

The resulting residues admit, [2] or [17, 1.3] for a characteristic free version, various
formulae, of which the most relevant is:

Example A.7 Let (X,F)be a foliated smooth surfacewith log-canonical singular locus
Z over a field k for which every singularity is a reduced k-point and E an invariant
simple normal crossing divisor such that at any singularity there are two branches of
E then �1

X/F (E) admits a connection without residues, i.e.

∇ : �1
X/F(E) → �1

X/F(E)⊗OX KF IZ . (106)

In particular, for p the characteristic of k and f : � → X any invariant curve

�1
X/F(E) · f � = 0 mod (p). (107)

Proof The in particular follows from the general residue formula [17, 1.3.1] of which
(106) is a minor variation. ��
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