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Introduction

Thirty years after its publication, it remains true that the only absolutely satisfac-
tory theorem on families of curves on surfaces (so a fortiori on higher dimensional)
varieties of general type is the conclusion of [B2] that on surfaces with many
symmetric tensors curves of a given genus are bounded in moduli. A revealing
re-interpretation of this result is provided by Gromov’s view of the isoperemetric
inequality for (holomorphic) discs as not just a combinatorial consequence of, but
as morally equivalent to, negative (holomorphic) sectional curvature. As such,
we may re-phrase Bogomolov’s theorem as asserting that up to the exception
of finitely many rational and elliptic curves the isoperemetric inequality holds
for discs in the algebraic directions. Unfortunately, despite the fact that any
holomorphic disc may be arbitrarily well approximated by those inside algebraic
curves, the isoperemetric inequality that one obtains from Bogomolov’s theorem
is far too dependent on the genus of the curves in question as to answer even a
rather qualitative question such as whether such surfaces admit a Zariski dense
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entire mapping. The non-existence of such mappings, i.e. the Green-Griffiths
conjecture, would of course be a corollary of the isoperemetric inequality outside
of finitely many algebraic curves, and, in-fact, it transpires that they are equiva-
lent, cf. [Kl] and [DV]. In addressing, therefore, the former question for surfaces
with many symmetric tensors, the extension [M1] of Bogomolov’s theorem to
parabolic (in the sense of Ahlfors) Riemann surfaces is very much the child of
[B2], while in so much as it was wholly motivated by [M1], the present paper is
unquestionably a grandchild.

Underlying any of [B2], [M1] through to our current considerations, is that
there is absolutely no sense whatsoever in which algebraic geometry is a priori
adapted to the study of sectional curvature. It is, however, extremely good at
aiding and abetting the study of Ricci curvature. The critical reason for this
is that all the large scale properties of Ricci curvature on a variety X/C are
completely encoded in a single object: the canonical line bundle KX provided
the singularities of X are sufficiently nice. In fact, by definition, the largest class
of singularities where this assertion holds are known by the name of canonical
singularities. That there is a need to restrict one’s attention to some class of
singularities is evident from the existence of rational plane curves with ample
dualising sheaf, that such a class of singularities ought to be exhaustive is the
object of the minimal model programme.

The minimal model programme is, of course, a rather old theorem for al-
gebraic surfaces going back at least to Castelnuovo and Enriques. Equally the
singularities in question transpire to be extremely simple, i.e. quotients of smooth
by finite sub-groups of SL2. From this lemma, one can progress to a more detailed
examination of the surface according to the growth of the number of sections of
KX , i.e. the Kodaira dimension κ(X) ∈ {−∞, 0, 1, 2}. This a priori rather coarse
invariant (which takes a sign opposite to the curvature by the way) turns out to
be rather precise for κ(X) < 2, and with this hypothesis even allows us to make
a list of what might occur. Indeed for κ(X) = −∞ we find that the surface must
admit a pencil of rational curves, and otherwise there is a canonical model which
for κ(X) = 0 looks rather flat, i.e. an abelian, K-3, or Enriques surface, while
for κ(X) = 1 it’s ‘semi-flat’, i.e. an elliptic fibration over a hyperbolic (orbi-fold
sense) base. Unfortunately the classification theorem’s only contribution to the
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remaining case, κ(X) = 2, is an appellation: general type. Nevertheless on the
canonical model of such a surface KX is ample so Yau’s solution of the Calabi
conjecture (in this case strictly speaking Tian-Yau since there may be singulari-
ties, [TY]) implies that there is a metric with Ricci curvature −1. As such, from
the Ricci point of view, our understanding of algebraic surfaces is rather good.
In fact, if one adds to this the further insight of Seiberg-Witten theory that KX

isn’t just a holomorphic but a diffeomorphic invariant, one might even say that
our knowledge is excellent.

The problem with the Ricci point of view, however, is that it is really a
property of volume not of length. Consequently on canonical models of surfaces of
general type one doesn’t naturally obtain an isoperemetric inequality for the area
of discs in terms of the length of their boundary, but an isoperemetric inequality
for the volume of balls in terms of the volume of their boundary. Indeed, this is
true even without the solution of the Calabi conjecture, which of itself doesn’t
improve the situation much beyond the implied constant in the said inequality
(and even that isn’t improved if one works with a Nevanlinna type volume).
Whence for many many years the only real deep geometric insight that came
from the Ricci point of view occurred in complex dimension 1, so much so that
Gromov could remark, [G1], that the Riemann-Koe̋be uniformisation theorem was
the Jewel in the Crown of all geometry. Of course this is now radically superseded
by Perelman’s geometrisation theorem in real dimension 3, albeit that even here
we should observe that the (real) dimension is just small enough, and no more,
to allow genuinely profound geometric information to be derived from the Ricci
tensor.

Now, as it happens, the paper [B2] was (is), in fact, part of a bigger project,
cf. [B1], to delve much more deeply into the geometry of algebraic surfaces by
way of symmetric tensors. It’s very hypothesis that the surface X possesses
many symmetric tensors leads to some a priori insight about the (holomorphic)
sectional curvature. Indeed the sectional curvature tensor lives rather naturally
not on X, but on its projective tangent space π : P (TX)(= P(ΩX)) → X. The
most natural algebraic object on the latter is its tautological line bundle L, and
X has many symmetric tensors if and only if there is a metricisation L of L such
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that for ω any metric on X,
c1(L) À π∗ω

with the inequality in the sense of currents. This may usefully be compared with
the definition that the holomorphic sectional curvature of a metric ω is at most
−K < 0, in which case the particular metricisation L

ω induced by ω satisfies,
∫

∆
f∗ω ≤ 1

K

∫

∆
(f ′)∗c1(L

ω)

for all holomorphic discs f : ∆ → X, and of course f ′ : ∆ → P (TX) its deriva-
tive. Consequently, Bogomolov’s hypothesis is very similar to something like
‘generically negative sectional curvature’. In some sense its generically a little
stronger, but where the genericity fails it’s telling us nothing. Needless to say
the failure is occurring at some algebraic hypersurface S, say, in P (TX), and if
this hypersurface doesn’t dominate X then we certainly have what we’re looking
for grosso modo: negative sectional curvature outside of finitely many rational
and elliptic curves. Consequently the difficulty in the main theorem of [B2] is
precisely to prove that curves whose derivatives factor through S admit a bound
on their degree, and, effectively, this question poses itself for any surface X and
any dominant divisor on the projective tangent space, since there is no longer
any help to be had from the global hypothesis on tensors.

Such a question is a lot more tricky than it might seem, since what in effect
we’d like to prove is that if enough curves satisfy a given (1st order) differential
equation, then they all satisfy an algebraic one. On the other hand, a moment’s
thought reveals that pulled-back to S the differential equation in question be-
comes linear of first order, i.e. on S the curves in question are now invariant
by a foliation F . At which point, we suddenly find ourselves in the presence
of Riccism, because what would be more than sufficient would be to know that
sectional curvature along the foliation is negative, and, since its a foliation by
(holomorphic) curves this is in fact a Ricci curvature.

To understand the precise functorial properties of the situation, it’s extremely
helpful to think in terms of an appropriate 2-category of analytic stacks in which
the classifying stack [S/F ] is defined. Providing such a definition (e.g. [M5]
A.1-2) will not be the object of this introduction nor will it even intervene much
in the article beyond a few explanatory notes in V.2 and V.3. Nevertheless,
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it is important to understand that there is a well defined functorial object σ :
S → [S/F ], and a functorially well defined relative dualising sheaf, which for,
say S Q-factorial is nothing other than the 1st chern class of the rank 1 quotient
of Ω1

S which defines the foliation. Functorially such a bundle should be written
KS/[S/F ], but we abbreviate this as KF , the bundle of holomorphic volumes along
the leaves. Consequently, and in an absolutely functorial way, we may extend the
definitions of Mori theory, and talk about whether S → [S/F ] has canonical
singularities or not. In the first place we can do this at the level of the algebraic
category, while hoping that subsequently such a definition will like the absolute
case of varieties mapping to points, truly allow us to encode the properties of the
relative (Ricci) curvature in the purely algebraic properties of KF .

Such then will be the programme of this article, but already in the very exis-
tence of a modification ρ : S̃ → S such that the induced foliation F̃ has canonical
singularities we find Bogomolov’s solution to the problem of [B2]. Indeed, in any
dimension, it isn’t that easy to find (formal) invariant curves which pass through
the singularities, and in dimension 2 it’s particularly tricky, i.e. there are at
most 2 such curves, so that if infinitely many algebraic curves were invariant by
F̃ , then all but finitely many of these are pairwise disjoint, so the foliation is
necessarily an algebraic pencil.

Much of this line of reasoning continues to apply in the situation of [B2]’s
direct descendent [M1], albeit that the curves in question are now maps f : Y →
X from parabolic Riemann surface. This means that the Green’s function viewed
from a choice of origin 0 ∈ Y goes to infinity on the ideal boundary, so, in fact,
there is a so called Evans potential p : Y → [−∞,∞) satisfying ddc(p) = δ0,
and exhausting Y . Instead, therefore, of calculating the degrees of curves, we
now seek to calculate the areas of ‘discs’ Y (r) := {y ∈ Y : p(y) < r}, and to
bound these areas by their (negative) Euler characteristic, χ(r), or, equivalently,
the zeroes of the meromorphic differential ∂p. As it happens, this should all be
understood in the sense of Nevanlinna theory, which by its very definitions, cf.
[M2], allows much of the argument of [B2] to proceed mutatis mutandis, so for
example if f ′ : Y → P (TX) doesn’t factor through exactly the same bad S as
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before, one gets an isoperemetric inequality of the form,
∫ r

−∞
dt

∫

Y (t)
f∗ω ¿ −χ(r)

where, as we’ve said, the double (Nevanlinna) integral is just a technical device
in order to fully profit from the (integrable) complex structure. Consequently,
the entire problem of [M1] was to obtain a similar bound under the hypothesis
that f was invariant by a foliation F with (without loss of generality) canonical
singularities on a surface S. Certainly Bogomolov’s theorem permitted us to
assume that f was Zariski dense, and with this hypothesis one could prove that
canonical singularities, as a priori defined in the algebraic category, exhibited the
same excellent properties in greater generality, i.e. up to a very small error,

∫ r

−∞
dt

∫

Y (t)
f∗c1(KF ) ≤ −χ(r)

If one is un-surprised by this, then one is very much overlooking the subtlety of
what a canonical singularity is. After all a plane curve C →pt is a perfectly good
example of a foliation, but if its singularities aren’t canonical (equivalently C is
smooth since the dimension is 1) then this statement is false. Furthermore the
a priori definition for foliations is done in an algebraic (and in fact bi-rational)
category , so that such a well behaved analytic extension of the definition was
by no means obvious. It is, however, true that such analytic extensions are a
very very general phenomenon, to such an extent that canonical singularities
are exactly those for which such an inequality holds for all invariant discs, and
with appropriate (equi-dimensional) changes in definition, this ought not even to
depend on the dimension of the leaves.

Such general considerations are not, however, sufficient to prove [M1]. Nev-
ertheless, one does observe that if functorially with respect to the ideas σ : S →
[S/F ] is of general type, i.e. KF is big, then indeed there is nothing left to do.
That this wasn’t an entirely ridiculous hypothesis was a theorem of Miyaoka,
[Mi2], i.e. if F isn’t a pencil of rational curves than KF is pseudo-effective. The
type of S is, of course, general in [M1], while on a surface we have the index
theorem/Zariski decomposition, and excluding KF contractible (profiting from
some of the ideas in [B1]) wasn’t hard, so there remained the intermediate pos-
sibility that the nef. part K0 of KF was non-trivial yet had zero square. The
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key to excluding this was the intervention of the transverse dynamics, or more
precisely that on the étale part of [S/F ] there is a well defined bundle K[S/F ]

which extends to a bundle (the chern class of the sub-sheaf defining the foliation)
on all of S, and satisfying,

KS = KF + K[S/F ]

Now since f is invariant, this latter bundle ought to intersect Y in zero, but
at the singularities of F , canonical or otherwise, the topus isn’t étale, and this
intersection is calculated by a residue. The conclusion of [M1] was therefore ob-
tained by establishing that this residue vanished as soon as the winding number
(functorially understood, this is actually a little different from the multiplicity)
of f around the singularities vanished. The winding number being rather easily
approximable in an algebraic way, then allowed one to conclude that this was
incompatible with the simultaneous possibility of K0 having a trivial square and
not being able to bound the area of discs in Y by their negative Euler characteris-
tic. Consequently there were, for example, no Zariski dense entire maps invariant
by a foliation on a surface of general type, although all the proof really required
was KF .KS > 0.

It was, however, this very last step involving the transverse dynamic and the
calculation of the residue which gave the appearance that [M1] could never pro-
ceed beyond the case of surfaces. Furthermore, as the above, only marginally
post factum, presentation suggests, the very nature of the problem invited a
re-consideration from the point of view of seeking a generalisation of Enriques-
Kodaira theory, or functorially better Mori theory, to the relative situation of
foliations σ : S → [S/F ]. Indeed, modulo it’s observations on canonical singular-
ities and curvature, [M1] was trivial for foliations of general type, [Mi] said that
(numerical) Kodaira dimension −∞ was equivalent to strictly positive curvature,
and even an invariant pencil of rational curves, so why not just classify every-
thing else. Such a classification ought to yield a rather explicit list, and with
such a list, there would be no need for the tricky piece of transverse dynamics
that had intervened at the end of [M1], and everything would be functorially
understood for proceeding to a study of foliations by curves in all dimensions,
from which generalisations of [B2], and [M1] to all surfaces, not just those with
many symmetric tensors.
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Such was the initial motivation for the study of foliated surfaces by their Ko-
daira dimension, and it is critical to understand it, because it permeates the intro-
ductions of the initial pre-print, [M3], from almost 7 years ago, and what seemed
to be a definitive form of it, [M4], 5 years ago. Unfortunately, this supposed
definitive version was so caught up in having succeeded in proving a classification
theorem (which in some form or another had been a driving pre-occupation since
I first read [B2] 14 years ago) that it failed to admit that according to its own
motivation it was a complete failure. Indeed rather than re-proving [M1] by a
wholly algebraic study in the spirit of Enriques, Kodaira, Mori et al, the entire
study hinged on [M1] in an absolutely critical way. That this occurred was the
result of the fact that abundance fails for foliations by curves, e.g. quotients of a
bi-disc, which isn’t a product of curves, come with a pair of foliations, either of
which has numerical Kodaira dimension 1, but actual Kodaira dimension −∞.
Consequently the classification theorem must wrestle with the study of line bun-
dles K0 as encountered in [M1] which are nef., non-torsion, have nil square, but
no tensor power of which admits sections. Manifestly this is more or less the
exact opposite of what algebraic geometers like to study, and it required radical
new methods, with the key to the study being [M1] itself, in fact, a considerable
strengthening of it to the case of discs/arbitrary Riemann surfaces rather than
just parabolic ones.

One might, therefore, reasonably ask what has changed in the last 5 years,
beyond being able to admit that at the last time of writing the introduction
was rubbish and failed to admit that a nasty philosophical loop had developed
in the motivation. In this respect the principle change is the generalisation of
[M1] to foliations by curves in all dimensions, [M7], and in particular an appro-
priate functorial understanding, [M6], of the measure theory of analytic stacks
that eventually permitted a solution of the residue problem in all dimensions.
Granted, for the full applicability of the theory to questions such as the Green-
Griffiths conjecture one requires to know that every foliation by curves admits a
modification with canonical singularities, but this is a detail that isn’t at all rele-
vant to the theory itself functorially and categorically understood. Consequently
with the certainty of hind sight one can say that the classification theorem is
simply an application of a highly functorial piece of methodology, [M1], and this
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is the point of view which we will take. Better still, once one accepts that [M1] is
really the key point, then one should apply it freely and liberally, and this leads
to a truly satisfactory theory of general type objects, which is properly speaking
the generalisation of the uniformisation theorem to this generality, and which
goes well beyond the limited detail that algebra alone provides.

With this in mind, a substantive difference between the current article, and
the pre-print [M4], is that we will not prove the generalisation of [M1] to arbitrary
discs. This has been done elsewhere, and our goal here is to investigate its
applications. A similar consideration applies to canonical singularities, at least
in so much as more general theorems have already been established, [M5] I.6. A
similar remark could be made in respect of foliated minimal models, but, better
properties result from studying canonical models, and these I don’t know how to
construct from 4-folds on. Consequently, there are very good reasons for a hands
own approach to the construction of canonical models of foliated surfaces in the
usual ‘keep track of the contracted graph’ sort of way, and this also serves to
preserve the historical order in which just recognition is given to the importance
of [Mi2] even if it has been improved radically by [BM]. Nevertheless, all but one
of the possible graphs lead to quotient singularities on the contraction, so there
is a very good case for a systematic use of algebraic stacks (or, if one prefers,
since the dimensions are too small for the difference to occasion any substantive
problems, orbifolds). Ideally this is what should have been done, but apart from
laziness in respect of making too many changes, and warnings from Bogomolov
about ‘educational issues’ associated to algebraic stacks, one should again respect
the historical order of the thing, and it wasn’t me, but M. Brunella who realised
that the contractions being employed in constructing a minimal (as opposed to
canonical) model yielded singularities which were the quotients of a smoothly
foliated bi-disc by a finite group. This observation subsequently permeated the
use of algebraic stacks in the higher dimensional minimal model theorem, [M5],
and since its un-questionably the correct point of view (especially in the most
delicate aspects of classification) we have made frequent allusions to it, i.e. after
presenting the proof more or less as it was, and in a very typically geometry of
surfaces sort of way, the technical and conceptual simplification resulting from
the use of algebraic stacks is explained. Hopefully the simplifications alone will
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promote a greater interest in stacks which are the natural functorial objects of any
geometry from algebraic to the lowest of regularities. Another series of allusions
and comments that have been introduced is as to what becomes of the theory
on arbitrary foliated 2-dimensional proper stacks, and indeed quasi-projective
surfaces. One can conveniently (if not quite technically correctly) view the latter
as a stack with infinite monodromy around the boundary, and of itself this makes
the quasi-projective case a straightforward interpolation of the proper case which
ought to be useful for those engaged in industries such as the study of foliations
in the affine plane.

With these remarks in mind, let us make a summary of the chapters. In many
points the material is dense, and highly exhaustive in its detail, as was the case
of the original pre-prints. These details constitute the most exacting and precise
description of the canonical model that the theory allows. This was done, and
is being done again with the above stacky extras, so that whatever one wants to
know about the behaviour of the curvature of a foliated surface along its leaves
should already be here. As such we proceed as follows,

I Singularities. This is an exposition of purely algebraic properties and it
strikes me as being difficult to improve the presentation of [M5] I.6 as occasioned
by the minimal model theorem in all dimensions. As such, what is of a general
nature, i.e. I.1, presents nothing more than a summary of op. cit. On the other
hand I.2 is specific to dimension 2, and the main fact here is I.2.4, albeit that
knowing these are an exhaustive list of Q-Gorenstein singularities depends on the
canonical model theorem. I suspect therefore that some important subtlety about
canonical foliation singularities may be being over looked. Indeed like terminal
singularities, they must arise from quotients of foliations on smooth surfaces, but
the reason for the former is rather obvious I.2.1, while the latter is very nearly
false, i.e. fails for log-canonical singularities I.2.5. The final section I.3 discusses
residues around singularities, but in a purely algebraic way appropriate to the
minimal model theorem. Indeed, much of the way that the notion of invariant
bundle and/or curve is employed via residue calculations can be much improved,
cf. [M5] II.6, but the actual presentation has the advantage that it intervenes
by way of simple numerical calculations akin to those of classical surface theory
such as the contractibility of a bunch of curves with negative definite intersection
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matrix, cf. I.3.2.

II Positive Characteristic. The main goal here is the foliated bend and break
lemma of Miyaoka, II.4.1, which on surfaces easily yields the cone theorem II.4.3.
The alternative approach of Bogomolov and myself that works in all dimensions
is summarised in II.5. The pre-ceding sections, especially II.1 and II.2 have a
much more ambitious goal by way of the role of positive characteristic methods
in classification. As such where they might lead can only really be understood
after the final section V.5.

III Minimal models. The object here isn’t just a minimal model theorem,
i.e. a model with KF nef for F not a rational pencil, III.2.1, but to make KF
as positive as possible, i.e. a canonical model as defined III.3.1, whose existence
and structure is detailed in III.3.2.

IV Classification. This is the central part of the manuscript, and merits
division by the numerical foliated Kodaira dimension ν(F), viz:

IV.1 ν(F) = −∞. By Miyaoka’s theorem this implies that the foliation is
a conic pencil, but the converse is only true with canonical singularities. The
log-canonical situation is, however, rather interesting, and is a nice example of
the naturality of algebraic stacks IV.1.4.

IV.2 ν(F) = 2. The important thing here is the lack of a good algebraic
description, i.e. the canonical ring need not be finitely generated IV.2.3. This
results from the structure, IV.2.2, of the non Q-Gorenstein (so understood in
the sense of Mumford intersection theory) singularities. For the ambient space
a surface, this failure is specific to non-integrable foliations, but the spirit of the
counterexample is similar to its failure in the integrable case in higher dimensions,
cf. [Ke] 3.1.

IV.3 ν(F) = 0. As might be expected these arise from vector fields, but may
actually be a quotient under a finite group action preserving the foliation, but
not the field. A complete list of possibilities is provided in IV.3.6.

IV.4 ν(F) = 1, and κ(F) ≥ 0. This goes very much as expected, i.e. abun-
dance holds, and there is a Kodaira fibration, IV.5.1. If anything the proof is
easier than its classical Enriques analogue since the presence of the foliation is a
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help not a hindrance. In any case, apart from elliptic pencils of varying moduli,
the fibration is transverse in all but finitely many fibres to the foliation. Whence,
outside of the said fibres, such foliations permit a very elegant description of
[X/F ] as a conic, elliptic or higher genus bundle over an appropriate BΓ, for Γ
discrete. Nevertheless, in the conic or elliptic cases, so called Riccatti or Turbu-
lent foliations, there’s much more to the canonical model, and indeed a further
compactification data at the non-transverse fibres is required. This is explained in
detail in IV.4.4, with the complications of the Riccatti case, IV.4.4.(ii) being par-
ticularly noteworthy since they are shadows of yet more complicated phenomenon
in the situation of general type.

IV.5 ν(F) = 1, and κ(F) = −∞. Ultimately, IV.5.11, the canonical models
will transpire to be the Baily-Borel compactification of Hilbert-Modular surfaces
in either of their natural foliations. The proof appears arduous, so one should
read the more general discussion (extending to general type foliations) of variation
of conformal structure in V.3 first to understand that the principle is rather
simple. Alternatively, the history of the proof reveals that its complication is
more imagined than real. Specifically, the very first version [M3] of this article
addressed the question under the hypothesis that KF admitted a sufficiently
regular semi-positive metricisation KF . Under such a hypothesis one might hope
to identify another foliation G transverse to F as the kernel of the semi-positive
form c1(KF ). Any expert on such so called Monge-Ampère foliations will tell
you, however, that such a hope is vain, and this is a waste of time. Surprisingly,
but rather easily, the entire theory of such a Monge-Ampère foliation G radically
simplifies in the presence of F , and this is just yet another example of the power of
the Bochner technique/integration by parts, and is a very general observation in
all dimensions. In any case, the problem seemed to be solved, but, unfortunately
the desired regularity of the metric was rather high, e.g. local weights with at least
2nd derivatives `2, and general nonsense was never going to produce anything
beyond first derivatives `2−ε. The solution to this difficulty was proposed by
M. Brunella, i.e. one should take the canonical Poincaré metric guaranteed by
[M1] and the uniformisation theorem whose curvature along the leaves is −1. A
priori, however, this might not have been semi-positive, and establishing this is
Brunella’s theorem [Br5]. The notable feature of this choice is that its symmetries
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force a lot of cancellation in the Bochner formula, which in fact becomes local, and
in turn the required regularity is much less, in fact, one sees that locally bounded
will do. As such, the theorem was completed when [M1] was generalised from
parabolic to arbitrary Riemann surfaces. Whence, since the scope of this article
is applications of [M1], the contents of IV.5 (modulo the initial overlap with
IV.4) are the wholly generalisable Bochner formula, and the proof, by way of a
regularisation argument, that the said Bochner formalism works for the leaf wise
Poincaré metric in the presence of Brunella’s semi-positivity theorem (which is
logically indispensable so it’s worth noting Brunella’s second proof [Br6]), and
some appropriate generalisation of [M1].

V Conformal structure. More or less by definition a choice of metricisation
on TF allows us to consider σ : S → [S/F ] as a varying family of conformal
structures. Plainly the best choice is the canonical or Poincaré metric. This may,
however, not always make sense, e.g. when the foliation is given by a global
vector field. In fact, this and rational or elliptic pencils is essentially the only
way that the canonical metric isn’t well defined and continuous outside a proper
algebraic set, V.1. Nevertheless there is a subtlety in the use of ‘essentially’,
V.1.4, since some of the foliations in question are not quite those of Kodaira
dimension 0, but are actually bi-analytic, as opposed to bi-rational compactifi-
cations of them, V.2, so that the Kodaira dimension may actually be 1, albeit
that most things of Kodaira dimension 1 are hyperbolic. As such, there is a
further refinement of classification via Kodaira dimension by way of (uniform)
hyperbolicity of the leaves. In such a refinement, what is seen to distinguish
the hyperbolic foliations of Kodaira dimension 1 from general type is that the
conformal structure of the latter varies, where this should be understood, V.3,
in a natural generalisation of the Weil-Petersson metric. In addition, we see
that the combination of Brunella’s semi-positivity theorem and [M1] allows a not
un-reasonable generalisation of Bers simultaneous uniformisation theorem to the
situation of σ : S → [S/F ], V.3. To conclude, therefore, given its central role,
it seems appropriate to review not only the proof of [M1] (and in its generalised
form) but exactly how it naturally occurs as a substitute for abundance given the
failure of the latter, V.4. Finally, V.5, we review what can be retained in positive
and mixed characteristic. This review reveals that in so much as hyperbolicity
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problems are concerned (in characteristic zero) even the proof of [M1] enjoys a
certain optimality, V.5.6, although this doesn’t quite exclude the possibility (as
dictated by the original motivation and on which Bogomolov and I have devoted
some effort) of a proof of the classification theorem (but not of [M1]) by way of
positive characteristic methods, V.5.8.

Certainly, Bogomolov himself has taken a considerable interest in this article,
and its development, so it’s not only a pleasure to thank him for his contribu-
tions, but also to offer the article to him on the occasion of the celebration of
his 60th birthday. Another important contributor, beyond even his theorem on
the pluri-sub-harmonic variation of the Poincaré metric, was Brunella, to whom
along with Gromov, Mendes, and Shepherd-Barron grateful thanks are extended.
More critical, however, was the contribution of Cécile in preparing the text, and
my apologies to her for any lack of elegance that my clumsy editing may have
introduced.
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I. Singularities

I.1. A summary

Somewhat surprisingly the theory of minimal models of foliations on surfaces
necessitates a consideration of singularities very much in the spirit of Mori’s
programme for 3-folds. Although we will ultimately be occupied only with what
may occur in dimension 2 there seems to be no harm in setting out from a more
general perspective. Our basic objects of study are pairs (X,F) where X is a
normal projective variety (or possibly just a proper normal algebraic space) over
a field k, and F is an integrable foliation, i.e. a saturated subsheaf TF of the
tangent sheaf TX closed under lie brackets. Necessarily there is an immersion
j : (X0,F0) ↪→ (X,F) with X\X0 of codimension 2, X0 non-singular and TF0

locally free so that we may define KF to be j∗(Λtop T ∨F0
). Of course if we wish to

pursue the study of such objects in the spirit of the minimal model programme
then KF better be Q-Cartier. The strongest possible sense in which this may be
understood is naturally,

Definition I.1.1. A pair (X,F) is said to be Q-foliated Gorenstein if there
exists m ∈ N such that j∗{(Λtop T ∨F )⊗m} is locally free. If in addition we can take
m = 1, then we say that (X,F) is foliated Gorenstein.

Now the important thing to remark is that there is a priori no relation between
the singularities of X and those of (X,F). Indeed the curious reader may skip to
IV.2.2 to see an example where the underlying space is Gorenstein but (X,F) is
not foliated Gorenstein. Conversely we suppose nothing about X beyond its nor-
mality. Regardless, as we will see shortly there are other weaker interpretations
of the notion of KF being Q-Cartier so let us simply be a little vague about it for
the moment and continue in the usual way, [K2], i.e., let p : (X̃, F̃) → (X,F) be
a proper birational morphism of pairs, with the obvious definition of that notion,
then in NS1(X̃)Q we may write,

KF̃ = p∗KF +
∑

E

a(E, X,F) E

for E an exceptional divisor contracted by p. Should p′ : (X ′,F ′) → (X,F) be
another such map then for any “reasonable” definition of KF being Q-Cartier
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(e.g. (X,F) Q-foliated Gorenstein) then given E in X̃ with non-empty proper
transform E′ we have a (E, X,F) = a (E′, X ′,F ′), whence we obtain a map,

a (−, X,F) : {exceptional divisors overX} → Q .

There is obviously no harm in extending aX,F to actual divisors on X by putting
it to be identically zero on the same. Indeed this is even internally consistent since
TF is saturated. At this point everything translates rather nicely into commuta-
tive algebra. Any divisor on any modification of X certainly defines a discrete
rank 1 valuation on the field of rational functions, and by [ZS], Theorem 31, the
converse is true if we restrict to valuations with non-empty centre (n.b. this con-
dition is vacuous if X is proper) whose residue field over the residue field of the
centre has transcendence degree at least the dimension of the local ring of the
centre minus 1, i.e. so called prime divisors,

Our function aX,F is therefore a function,

aX,F : {prime divisors of k(X) with non-empty centre} → Q

and we may thus define,

Definition I.1.2. Let Z be an irreducible subscheme of X, then,

discrepX,F (Z) = inf{aX,F (v) : centre of v ⊃ Z} .

Furthermore we say (by analogy with the usual case) that (X,F) has a canonical
singularity at Z (respectively terminal) if the discrepancy, discrepX,F (Z), is non-
negative (respectively strictly positive).

It’s worth noting,

Remark I.1.3. While this definition could have been phrased more precisely
as say canonical foliated singularities (resp. terminal foliated singularities) we
have chosen not to do so since the usual notions of canonical and terminal make
no appearance in this article. Whence the words canonical, and terminal should
always be understood as canonical foliated and terminal foliated.

Now in commutative algebra terms here’s what’s going on. At the level of
the local ring OX,Z we have a saturated submodule TF ⊗ OX,Z of Derk(OX,Z)
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(= OX,Z ⊗TX , by the way, since dualising coherent modules commutes with flat
base change). A discrete rank 1 valuation v with centre containing Z corresponds
to a not necessarily dominant map of local rings OX,Z → R, where R ⊂ k(X) is
a discrete valuation ring with valuation v. There is then a unique maximal, and
indeed free, submodule TF̃ of Derk(R) with TF̃ ⊗R k(X) = TF ⊗OX

k(X) (strictly
speaking we should sheafify the left hand side, but it’s notationally convenient to
identify modules and their sheafication, so we will). Interpreting negative powers
of the maximal ideal of R in the obvious way there is an integer d with,

R⊗OX,Z
Hom((Λtop TF ⊗OX,Z)⊗m,OX,Z) = md

R ⊗ (Λtop T∨F̃ )⊗m

where m is the appropriate power for making KF a bundle and the integer d is of
course the discrepancy. Unfortunately this definition is not terribly practical if
the foliation isn’t Gorenstein, i.e. the relation between duals and tensor products
is a mess. However in the Gorenstein case it’s all rather tidy. Let’s illustrate this
for foliations by curves. Since we’ve assumed that X is normal, this is equivalent
to TF being a bundle, i.e. the foliation is given everywhere by a possibly singular
vector field. Naturally we take a vector field ∂ which generates TF generically
around Z. Equally there is a derivation ∂̃ of R generating TF̃ so that if π is
a uniformising parameter then, ∂̃ = πd∂. These observations allow us to start
proving some properties of canonical singularities, albeit we begin with what we
mean by a smooth point,

Definition I.1.4. A (scheme) point Z of a foliation by curves (X,F) is said
to be smooth if locally around Z, TF = OX,Z ∂ for ∂ a derivation whose residue
in TM ⊗ k(Z) is non-zero for some ambient non-singular variety M in which X

is embedded around Z. The singular points, sing(F), is the set of non-smooth
points.

Of course it might be linguistically preferable to call a singular point a non-
smooth point, since the notion of canonical singularity doesn’t suppose that the
point is singular in the above sense. On the other hand, this kind of convention is
well established in the Mori theory framework, so no confusion seems likely. It’s
also worth remarking that a smooth point is Gorenstein, and this latter condition
is open for general nonsense reasons, so openness of the smooth locus follows from
its openness in the Gorenstein locus, which is clear. In characteristic zero smooth-
ness at Z is equivalent, by the classical Frobenius theorem, to the rather more
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descriptive property of the foliation being given in a formal (or even analytic)
neighbourhood of Z by an everywhere relatively smooth fibration. Better still,
the Frobenius theorem may even be interpreted as defining a smooth infinitesimal
equivalence relation at the smooth points of the foliation, which in turn, admits
an analytic continuation to a smooth groupoid in the analytic topology, and even
(after some blowing up) an extension of the same over the singular points (al-
beit, very probably, with non-discrete stabilisers at such points), so that in an
appropriate 2-category of analytic stacks, a foliation in characteristic zero is best
thought of in terms of the quotient map X → [X/F ] of X over the classifying
stack of the foliation. From this latter point of view, the definitions that we have
proposed are nothing other than the relativisation of the standard definitions of
standard Mori theory.

Needless to say we have so far refrained from a discussion of the more general
notions of log-terminal and log-canonical. To this end let us simply localise our
discussion by putting X = SpecOX,Z , and introduce finitely many effective Q-
Cartier prime divisors Bi. To such divisors, or more generally prime divisors, E,
of the function field, we must introduce a function,

ε(E) :=
{

0 if E is invariant by the foliation
1 if E is not invairant by the foliation

where foliation should be understood as the saturation of our given foliation about
the local ring at E. For convenience we’ll put εi = ε(Bi), and introduce weights
0 < ai ≤ 1 associated to each Bi, which, in turn defines the boundary,

B :=
∑

i

aiεiBi

Furthermore, at any prime divisor, E, Bi affords a multiplicity νi(E), and we
make,

Definition I.1.5. The germ (X, B, F ) is said to enjoy any of the properties listed
below if for every prime divisor E with centre Z the appropriate inequality holds,

(a) Terminal whenever aX,F (E)−∑
aiεiνi(E) > 0.

(b) Canonical whenever aX,F (E)−∑
aiεiνi(E) ≥ 0.
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(c) Log-terminal whenever aX,F (E)−∑
aiεiνi(E) > −ε(E).

(d) Log-canonical whenever aX,F (E)−∑
aiεiνi(E) ≥ −ε(E).

Once again, these are the functorial extensions of standard Mori theory to
the relative situation X → [X/F ]. The inevitable intervention of the function
ε can be seem by extracting roots of divisors, or looking at how TF transforms
as a subsheaf of the sheaf of derivations with logarithmic zeroes, provided the ai

have the form 1 − 1
ei

for ei ∈ N ∪ {∞}. In any case we can, evidently, without
loss of generality suppose that all of the Bi are transverse to the foliation at their
generic point.

All of which is as true for an arbitrary foliation, as it is for a foliation by
curves. However, just as a curve singularity which is any of terminal, canonical,
etc. is rather well behaved, so too do these definitions behave well for folia-
tions by curves. In the first instance this is most easily done when everything is
Gorenstein, so, also the Bi Cartier, and we summarise the salient facts from [M5]
I.6.

Fact I.1.6. Let (X,F) be the germ of a Gorenstein foliation by curves in char-
acteristic zero then it is terminal if and only if it is smooth with Z transverse to
F .

Proof. op. cit. I.6.9

Which leads to,

Fact I.1.7. Let (X, B,F) be the germ of a Gorenstein foliation by curves with
Cartier boundary, then in characteristic zero the following are equivalent,

(a) (X, B,F) is terminal.

(b) (X, B,F) is log-terminal.

(c) Either B consists of a single component of multiplicity 1 transverse to F
and of weight < 1, or B is empty, and in both cases (X,F) is terminal.

Proof. op. cit. I.6.11

To describe the canonical and log-canonical singularities requires a little no-
tation. As in I.1.4, we fix an embedding X ↪→ M of X into a smooth M (of
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which everything will be ultimately independent), and, furthermore choose a
quasi-coefficient field K in OM,Z of k(Z). This allows us to decompose a vector
field ∂ defining the foliation as,

∂ = ∂K + δ

where the latter is a k derivation of K, and the former a K derivation of OM,Z .
All of which may look highly non-functorial, but on working to first order at
singular (more precisely non-smooth) points, functoriality is restored, and we
obtain a K linear map,

DK ∈ End

(
mX,Z

m2
X,Z

)

As such, we can talk about DK being semi-simple, nilpotent etc. as a K linear
map, and indeed,

Fact I.1.8. Let (X,F) be the germ of a singular Gorenstein foliation by curves
then it is log-canonical iff DK is non-nilpotent.

Proof. op. cit. I.6.13 .

Unlike I.1.7, log-canonical and canonical are not quite identical, even for an
empty boundary, but the difference (at least algebraically speaking) is slight,

Fact I.1.9. A singular Gorenstein germ (X,F) which is log-canonical is canonical
unless it satisfies one of the following equivalent conditions,

(a) There are K embedding coordinates, x1, · · · , xd, and m1, · · · ,md, positive
integers, such that up to re-scaling by a unit,

∂K = m1x1
∂

∂x1
+ · · ·+ mdxd

∂

∂xd

(b) Z is the centre of a prime valuation with negative (X,F) discrepancy.

(c) Z is the centre of a prime valuation E with (X,F) discrepancy −1 and
ε(E) = 1.

Proof. op. cit. I.6.12

As it happens, the discussion becomes a little more complicated if the weights
ai < 1

2 , and to the best of my knowledge there is no particular reason for working
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in this generality. Indeed the natural cases are weights of the form 1− 1
ei

, for ei

a positive integer, which correspond to coverings, or ei = ∞ which corresponds
to quasi- projective varieties and/or coverings by logarithms. Let us call such
weights geometric and observe,

Fact I.1.10. Let (X, B,F) be the germ of a Gorenstein foliation by curves
in characteristic zero with non-empty Cartier boundary, and geometric weights
which is log-canonical then, in fact, it is canonical, and should it not be terminal
the possibilities are,

(a) The germ (X,F) is terminal, B has multiplicity 1 and weight 1.

(b) The germ (X,F) is terminal, B has multiplicity 1 and weight 1
2 , and enjoys

a simple tangency with F , i.e. if ∂ and f are local equations ∂2(f) 6= 0.

Proof op. cit. I.6.14

All of which is a rather exhaustive description of the Gorenstein case. To go
from Gorenstein to Q-Gorenstein one employs in characteristic zero the standard
covering trick by way of extracting roots, i.e.,

Triviality I.1.11. Let (X,F) be a normal Q-Gorenstein germ over C, then there
is a cyclic covering p : Y → X, étale in codimension 1 such that the induced
foliation (Y,F) is Gorenstein. Better still this construction globalises, so that for
(X,F) normal Q-Gorenstein there is a smallest normal Deligne-Mumford stack
π : X → X, the Gorenstein covering stack, étale in co-dimension 1, such that the
induced foliation (X ,F) is Gorenstein.

Again the details are in op. cit., this time I.5. Unfortunately, the stack word
often leads to a reaction of blind panic. Post [KM], however, this is completely
un-warranted (cf. [M5] I.2-3), since locally (in the étale topology) a stack is just a
finite group acting on a scheme. In particular, in the context of I.1.11, this means
that one shouldn’t just think of Y , or for that matter (Y,F), but of Y together
with the action of gal(Y/X), whose fixed points are the locus where p isn’t étale,
and, of course, Y becomes an étale neighbourhood of X . Consequently, even
locally it is more functorial to think of X than Y , and in contra-distinction with
ordinary Mori theory we have,
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Fact I.1.12. Let (X,F) be a germ of a Q-Gorenstein foliation by curves in charac-
teristic zero with π : (X ,F) → (X,F) its Gorenstein covering stack, then (X,F)
has terminal, respectively canonical, respectively etc. singularities iff (X ,F) does.

Proof op. cit. I.7.1

Needless to say this discussion equally extends to the case of a boundary
divisor, albeit that one should be careful to extract the roots of the Bi one at a
time, so as to get a stack X̃ → X , étale in co-dimension 1, which not only has the
induced foliation Gorenstein but on which each Bi becomes Cartier. Again the
relation between terminal, canonical etc. on (X̃ , B,F) and the same on (X, B,F)
is, as per I.1.12, necessary and sufficient, so that I.1.6-10 also give an exhaustive
description in the Q-Gorenstein case by simply observing that the latter is the
quotient of the former by a finite group. At which point we may reasonably close
this section by way of,

Remark I.1.13. (cf. op. cit. I.7) It isn’t really our intention to trouble ourselves
overtly with non-empty boundary divisors. Nevertheless, there is quite a lot of
practical interest in the case where the boundary weights are all 1. The easiest
way to go from a non-empty boundary, to what in some sense might be termed a
full boundary is to use covering stacks. Indeed, given a boundary with geometric
weights < 1 we can construct a stack ξ : Ξ → X, ramified only over the Bi in
co-dimension 1 such that the induced foliation G on Ξ has canonical bundle,

KG = ξ∗KF +
∑

i

aiξ
∗Bi

so that minimal model theory on Ξ without boundary is simply that of X with
boundary. Unfortunately, this doesn’t quite work if the ai = 1, but, needless to
say, the ai = 1 case is often easily deducible from the ai < 1 case by the simple
expedient of considering the limiting behaviour. As such, it’s quite useful to think
of the ai = 1 case as a stack with countable stabilisers along the Bi even though
such a thing doesn’t quite exist.

I.2. Dimension 2

As one might imagine, dimension 2 presents a number of both simplifying
and particular features. Our discussion will continue to be local, so that X =
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SpecOX,Z is a local normal germ with a foliation by curves F , although we’ll now
impose that k(X) has transcendence degree 2 over, for simplicity, an algebraically
closed base field k, with Z now a closed point. In particular we can immediately
note,

Fact I.2.1. (characteristic 0) Let (X,F) be a foliated Gorenstein normal surface
germ which is terminal, then X is smooth.

Proof It suffices to prove that the completion X̂ in Z is smooth. On the other by
I.1.6 hand and the Frobenius theorem, there is a fine quotient X̂ → C := [X̂/F ],
where C is a normal 1 dimensional formal scheme. Consequently C is smooth,
while X̂ → C is a smooth fibration.

From which we can explicitly describe all terminal surface singularities by
way of,

Corollary I.2.2. (characteristic 0) Let (X,F) be a foliated Q-Gorenstein normal
surface germ which is terminal, then for some n ∈ N it is the quotient of a
smoothly foliated smooth germ (Y,F) by an action of Z/n preserving both the
fixed point and the foliation. In particular, on Y there are coordinates x, y and
faithful characters χ, ψ of Z/n, such that the foliation is given by,

∂ =
∂

∂x

and for σ ∈ Z/n the action by,

σ : Y −→ Y : x 7→ χ(σ)x, y 7→ ψ(σ)y

Proof The first part is just a restatement of I.1.12 and I.2.1. Necessarily, however,
the action of Z/n descends to the C of the proof of I.2.1, so the existence of the
coordinate y with actions of the foliation and of the group as described is clear.
The existence of ∂ follows from the usual identification of the local Picard group
with characters, or indeed the very construction of Y , which allows us to find
a generator ∂ of the foliation such that, ∂σ = χ(σ)∂ for some faithful character
χ. Appealing to the Frobenius theorem, we can find ξ such that ∂ξ = 1, so σ

sends ξ to χ(σ)ξ +f(y), for some function f of y. Next one introduces a variable,
x = ξ + g(y), for a suitable g, so that the action on x is linear. Indeed finding
such a x involves solving linear equations, all of which can be solved since the
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group action is finite cyclic. Finally, by construction the group action is without
pseudo reflections, so both the characters must be faithful.

One can even observe that the coordinates of I.2.2 converge in the analytic
topology, so the conclusion of this is that terminal foliation singularities on sur-
faces are as clean as it gets. Now as it happens, the ambient space of a canonical
Q-Gorenstein foliated singularity on a surface is never worse than a quotient sin-
gularity, and rather particular ones at that. Nevertheless, I don’t know any direct
proof of this in the spirit of I.2.1, as opposed to brute force calculation by way of
resolutions. Let us, however, anticipate this development (III.3.2), and proceed
to a description of the local possibilities. To this end let us recall,

Reminder I.2.3. (cf. [Ma]) let A be a complete regular local ring containing a
coefficient field, L, supposed algebraically closed. Next let ∂ ∈ m DerL(A). For
every n ∈ N we have an exact sequence,

0 −→ mn

mn+1
−→ A

mn+1
−→ A

mn
−→ 0 .

We can consider ∂ as a L-linear endomorphism, ∂n, of An = A/mn for each
n. Consequently ∂n has a Jordan decomposition ∂S,n ⊕ ∂N,n into a semi-simple
and nilpotent part. These are compatible with the restriction maps An+1 → An,
and so on taking limits give a Jordan decomposition ∂S ⊕ ∂N of ∂. In particular
∂ is semi-simple iff there is a choice of generators xi ∈ m, together with λi ∈ L

such that,

∂ =
∑

i

λi xi
∂

∂xi
.

To describe the nilpotent part, observe that [∂S , ∂N ] = 0, so given ∂S as above we
just compute a basis for fields which commute with it. Putting Λ = (λ1, . . . , λn)
and Λ · −, to be the usual inner product these are easily seen to be, cf. op.cit.1,

(a) xQ xi
∂

∂xi
, Λ ·Q = 0, Q = (q1, . . . , qn), qj ∈ N ∪ {0}

(b) xQ xi
∂

∂xi
, Λ ·Q = 0, Q = (q1, . . . , qn), qj ∈ N ∪ {0} for j 6= i, qi = −1

1The situation in op.cit. is only discussed in characteristic zero. However what is at stake

is just some linear algebra which is valid in any characteristic provided Λ · Q is understood to

take values in L.
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where of course xQ = xq1
1 . . . xqn

n .

In the immediate case to hand, A will be C[[x, y]], and there is, up to scaling,
only one eigenvalue, λ, say, so an exhaustive, and rather small, list of formal
normal forms in dimension 2 is easily constructed. If, however, our original
singularity of interest was canonical and Q-Gorenstein, we must also allow for an
action of a finite group G, acting on ∂ by a possibly trivial, and not necessarily
faithful, character θ, i.e. ∂σ = θ(σ)∂, for σ ∈ G. The action of G must, however,
preserve the Jordan decomposition, so, in fact, θ is either trivial or takes values
in Z/2. Combining these observations with I.2.3 and anticipating III.3.2 allows
us to assert,

Fact I.2.4. A Q-foliated Gorenstein singularity in characteristic zero which is
not terminal, but nevertheless canonical is formally one of the following,

(a) The quotient by Z/n of ∂ = x ∂
∂x + λy ∂

∂y , where λ /∈ Q, and the group acts
by, σ : x 7→ χ(σ)x, y 7→ ψ(σ)y, for some faithful characters χ and ψ.

(b) The quotient by Z/n of ∂ = x ∂
∂x +(λy+xλ) ∂

∂y , where λ ∈ N, and the group
acts by, σ : x 7→ χ(σ)x, y 7→ ψ(σ)y, for some faithful characters χ and ψ,
with χλ = ψ.

(c) The quotient by Z/n of ∂ = x ∂
∂x + yp+1

1+νyp
∂
∂y , where p ∈ N, and the group

acts by, σ : x 7→ χ(σ)x, y 7→ ψ(σ)y, for some faithful characters χ and ψ,
with ψp = 1.

(d) The quotient by Z/n of ∂ = px(1 + a((xqyp)d)) ∂
∂x − qy(1 + b((xqyp)d)) ∂

∂y ,
where p, q ∈ N are relatively prime, a, b are formal functions in one variable,
the group acts by, σ : x 7→ χ(σ)x, y 7→ ψ(σ)y, for some faithful characters
χ and ψ, and d is the smallest integer such that (χqψp)d = 1.

(e) The quotient by a dihedral type group, G, i.e. an extension of Z/2 by
Z/2n, where the transposition acts on Z/2n by multiplication by p, say,
and p2 ≡ 1 (2n). Necessarily G is without pseudo-reflections. Consequently
if 2a is the maximal power of 2 dividing 2n then p ≡ ±1 (2a), so that if
Dk, Dihk denotes the binary dihedral group of order 4k, respectively the
dihedral group of order 2k (including appropriate abelian groups for small
k) then either,
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(e′) p ≡ −1 (2a), whence if we write 2n = 2alm for some relatively prime odd
integers l and m with p ≡ 1 (l) and p ≡ −1 (m) then G

∼→ D2a−1m × Z/l. In
particular for a suitable choice of formal coordinates x, y and ζ a 4nth root of
unity G has a representation with generators,

α =
[

ζ2 0
0 ζ2p

]
, σ =

[
0 ζn

ζn 0

]

and acts on the foliation defined by the field,

∂ = x(1 + a((xy)l))
∂

∂x
− y(1 + a(−(xy)l)

∂

∂y
,

where a is a formal power series of one variable vanishing at the origin.

(e′′) p ≡ 1 (2a), a ≥ 2, with l, m as above. As such the centre of G contains
a unique element −1 of order 2, and G/ ± 1 ∼→ Dihm × Z/2a−1l. Whence G

could well be abelian (in fact is abelian iff m = 1, cf. IV.4.5, since morally this
corresponds to a non-classical Dynkin diagram ‘D3’), and G has no dihedral or
binary dihedral subgroups. Irrespectively, we may find coordinates x, y so that
for ζ a 4nth root of unity, there is a representation with generators,

α =
[

ζ2 0
0 ζ2p

]
, σ =

[
0 ζml

ζml 0

]

which, for a as above, acts on the foliation defined by,

∂ = x(1 + a((xy)2
a−1l))

∂

∂x
− y(1 + a(−(xy)2

a−1l)
∂

∂y

In particular, with the exception of (e), any Q-foliated Gorenstein canonical sin-
gularity which is not terminal is, in fact, Gorenstein.

Unfortunately, there is no similar characterisation of log-canonical singular-
ities. Certainly if we suppose the ambient space to have quotient singularities,
then a log-canonical singularity must be as in I.2.4, albeit with λ ∈ Q+ in (a).
On the other hand, it is not true that the ambient space need have only quotient
singularities, e.g.

Example I.2.5. On the normal surface, xn+2 + yn+1 + xzn = 0, n ≥ 2, which
isn’t even a rational singularity, the foliation given by, ∂ = n(n + 1)x ∂

∂x + n(n +
2)y ∂

∂y + (n + 1)2z ∂
∂z is log-canonical.



Canonical Models of Foliations 903

Nevertheless, it’s still true that the the essential difference between a log-
canonical singularity (first picture) and a canonical singularity (second picture)
is as per I.2.4 (a), i.e.

y

x

y

x

And indeed, quite generally,

Observation I.2.6. (characteristic 0) Through any Q-foliated Gorenstein canon-
ical singularity on a surface, there is at least one, and at most two formal invariant
branches both of which are smooth.

A singularity which is neither canonical nor log-canonical is a rather different
kettle of fish, and the appropriate picture would be much more like a web. In
any case, the simplicity of I.2.4 should not obscure,

Warning I.2.7. Anyone unfamiliar with foliation singularities should be aware
that the difference between their formal description and their analytic descrip-
tion is like night and day. The former is just linear algebra, the latter, even in
dimension 2 can be rather tricky, e.g. all of the above types, excepting (a) under
some diophantine hypothesis on λ, admit infinite dimensional spaces of analytic
invariants. Nevertheless there is a sense (i.e. in a topus without enough points)
in which all of these formal types converge, cf. [E1] & [MR].
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Apart from their simplicity, another important feature of canonical singular-
ities on surfaces is,

Fact I.2.8. (characteristic 0) Let ρ : (X̃, F̃) → (X,F) be a blow up of a
foliated non-singular surface with canonical singularities then F̃ has canonical
singularities.

Proof Indeed, in any dimension the property of being canonical is only conserved
by blow ups in centres which are either invariant by the foliation or everywhere
transverse to it. In dimension 2, however, the only possible centres are points.

Consequently, given such a nice list of properties, it’s helpful to know,

Fact I.2.9. (characteristic 0) Let (X,F) be a foliated algebraic surface, or even
algebraic space of dimension 2 then there is a proper birational modification by a
sequence of blow ups in smooth invariant centres, ρ : (X̃, F̃) → (X,F) such that
the induced foliation has canonical singularities.

As one might expect, the proof, [S], just involves following one’s nose. The
same proof works equally well in positive characteristic, but only yields log-
canonical since,

Counterexample I.2.10. The foliation given by ∂ = x ∂
∂x − 2y ∂

∂y in character-
istic 5 on A2 does not admit a canonical resolution by a sequence of blow ups in
smooth invariant centres.

Proof. Blow up in the origin. There are two singularities, the one where the
proper transform of the y = 0 branch crosses the exceptional divisor has eigen-
values (1,−3). Blow up in this then there is a singularity at the crossing of
the new exceptional divisor with the proper transform of the old, and there the
eigenvalues are, after multiplication by a unit, (1, 2). Modulo multiplication by
another unit, there is a singularity on the blow up such that this new singularity
has eigenvalues, (1,−2), so the thing just repeats itself, and cannot be resolved.

By, I.1.9, however, this is the only thing that can go wrong, and for a log-
canonical singularity which is not canonical there is obviously a weighted blow
up, ρ : (X̃, F̃) → (X,F) such that the induced foliation is smooth, though one
should note,

Counterexample I.2.11. The foliation defined by ∂ = ∂
∂x on A2 in character-
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istic 2 is canonical, but not terminal.

Proof Indeed, blow up once, then blow up in the induced singularity, and observe
that the 2nd exceptional divisor has discrepancy 0.

Consequently, I.2.8-9 only work in positive characteristic on replacing canon-
ical by log-canonical, and if we want canonical then we must use the weighted
blow up construction to obtain,

Fact I.2.12. (characteristic p) Let (X,F) be a foliated algebraic surface, or even
algebraic space of dimension 2 then there is a proper birational modification in
the 2-category of algebraic stacks ρ : (X̃ , F̃) → (X,F), with X smooth Deligne-
Mumford, such that the induced foliation has canonical singularities.

Lest one thinks that this is just some algebraic fantasy, let’s make,

Remark I.2.13. What’s at stake is really a game of dimensions, and this game
plays out very differently in dimension 3. Indeed, I.2.9 is false in characteristic
zero, and dimension 3, while I.2.12 remains true, cf. [M7] I.1.

The final thing to note in dimension 2, is that by way of Mumford’s intersec-
tion theory we can generalise the definition of discrepancy, and whence those of
canonical and terminal singularities, to arbitrary foliations on normal algebraic
spaces irrespective of whether they are Q-foliated Gorenstein or not. Indeed, we
have Mumford’s Néron-Severi group NSm(X), given by,

Definition I.2.14. Let X be a proper 2-dimensional algebraic space and p : Y →
X a relatively projective birational morphism from a smooth projective variety Y

(such a Y always exists by [Kn]) and Ei the curves on Y contracted by p then for
C a curve on X with C̃ a curve on Y there exist unique positive rational numbers
ai (by virtue of the fact that the intersection matrix Ei ·Ej is negative) such that
if p∗C := C̃ +

∑
i

ai Ei then, p∗C · Ej = 0 for any j. We may then define for

two curves C and C ′, an intersection product C ·C ′ := p∗C · p∗C ′, and NSm(X)
is the free Q-vector space of curves in X modulo numerical equivalence in this
sense. The group NSm(X) coincides with the group NS(X) in the usual sense iff
X has Q-factorial singularities.

Consequently with this definition in mind for (X,F) a 2-dimensional foliated
algebraic space, KF always has sense in NSm(X) and we may extend definition
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I.1.2, and the notions of being canonical and terminal to any proper 2-dimensional
foliated algebraic space. In this respect one notes,

Fact I.2.15. (X,F) as above, E an exceptional divisor in k(X) then aX,F (E)
is well-defined, and coincides with the previous definition when the foliation is
Q-Gorenstein.

There is, however, in the extended sense one non Q-Gorenstein singularity
which we’ll encounter in III.0.3. A particularly appealing model for it in line
with I.2.1-4 is as the quotient by Z of a neighbourhood of infinity on a bi-disc,
with the foliation being either of the projections. This ‘new’ singularity is almost
single handedly responsible for many of the distinctions between classical surface
classification, and the current discussion.

I.3. Residues

This is a subject of some interest in its own right, and is the only point at
which we even vaguely consider a question which may properly be considered as
dynamical. Indeed residues arise in the context of the Leray spectral sequences
for X → [X/F ], with the presence of singularities giving rise to different spectral
sequences depending on whether we use projective resolutions (smooth forms)
or injective resolutions (distributions), and the difference between these spectral
sequences at the E2 term is the residue. This is discussed at length in [M7]
IV.1-2, but our present considerations are rather more mundane. Indeed, in the
course of doing canonical model theory, there will arise certain configurations
of invariant algebraic curves which we wish to exclude. The most informative
way to exclude these configurations is by calculating the holonomy, in relation to
which the residue calculus that will be employed is a rather poor first order and
numerical vestige. Nevertheless, it will keep everything within the framework of
the sort of numerical argument typical in the theory of algebraic surfaces. For
ease of exposition we’ll work with varieties (X,F) foliated by curves over a field
k, with underlying space X non-singular. We consider the foliation as given by
a short exact sequence,

0 −→ N −→ ΩX −→ KF · IZ −→ 0

where IZ is the ideal of the singular subscheme of F andN is a saturated subsheaf
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of ΩX . In dimension 2, N will be a line bundle.

Firstly let’s consider the (1, 1) part of the cohomology. What interests us is
N1 := Ker {H1,1 → H1(KF )}, which at the (n− 1, n− 1) level is dual to N1 :=
Im{Extn−1(KF · IZ ,KX) → Hn−1,n−1}.

Now suppose f : C → X is an invariant curve with C smooth, then by the
definition of invariance, f∗N maps to zero in ωC , i.e. [f ] ∈ N1. The essential
then of the Residue calculus that will be employed is that if D is a class in N1

the pairing induced by H1,1 with Hn−1,n−1 factors as,

N1 ⊗N1 −→ H0(KF ⊗OZ)⊗ Extn(KF ⊗OZ ,KX) −→ k .

For Z of dimension 0, there isn’t much difference between local and global
duality, and the traditional interpretation in terms of the residue symbol à la [BB]
follows from [Gro] IV.5.4. This is however, fairly unimportant. What interests
us are what are the elements of N1, and when is the pairing over determined.
One obvious class of elements in N1 is invariant divisors, i.e. an effective divisor
OX(D) such that if locally it is given by fα = 0, and ∂a defines the foliation,
then ∂α(fα) ∈ (fα), so that ∂αfα

fα
⊗ ∂∨α − ∂βfβ

fβ
⊗ ∂∨β is a co-boundary for the chern

class of D along F . The other important example is the chern class of N . Since
H1(X, KF ) injects into H1(X\Z,KF ), we can just check this over the smooth
locus. For an affine patch let ωα

1 , . . . , ωα
n be a basis of N , and τα a lifting of ∂∨α ,

then we have for units hαβ ,

ωα
1 ∧ . . . ∧ ωα

n = hαβ ωβ
1 ∧ . . . ∧ ωβ

n .

On the other hand, dωα
i = aα

ij τα ∧ ωα
j (mod N ∧ N ) for functions aij , with

summation convention. Whence on differentiating we have,

(−1)i−1(aα
ii) τα ∧ ωα

1 ∧ . . . ∧ ωα
n =

dhαβ ωβ
1 ∧ . . . ∧ ωβ

n + hαβ(−1)i−1aβ
ii τ

β ∧ ωβ
1 ∧ . . . ∧ ωβ

n .

cancelling the ωβ
1 ∧ . . . ∧ ωβ

n and restricting to KF , we find,

∂hαβ

hαβ
⊗ ∂∨ = (−1)i−1 aα

ii ∂
∨
α − (−1)i−1 aβ

ii ∂
∨
β
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i.e. the chern class restricts trivially in cohomology as claimed. For amusement
therefore we can note the kind of formulae which one obtains.

Example I.3.1. Let f : C → X be the normalisation of an invariant curve of a
foliation by curves F on X over a field k. Suppose f(C) 6⊂ sing(F), and for a point
c ∈ f−1(singF) let x1, . . . , xn be coordinates in the completion of the local ring
at f(c), with the foliation being given by a field ∂ = ai

∂
∂xi

, ai ∈ mf(c), summation
convention. Define, Trf(c)(∂) := ∂ai

∂xi
, and let NF be the normal bundle to the

foliation then,

c1(NF ) · C =
∑

c∈f−1(singF)

Resc


f∗

(
∂
∂ξ

)

f∗∂
f∗Trf(c)(∂) dξ




where ξ is a coordinate in ÔC,c, and the residue is taken in the sense of Grothendieck
(= ordinary sense in characteristic zero) in the field k.

However, as we’ve already said, it’s primarily over determination rather than
explicit formulae which interests us. Over a surface, everything is quite nice.
Indeed canonically N1 = N1, and we suppose that we have a collection of invariant
curves Ci such that the intersection matrix Ci · Cj is invertible in k. Each curve
Ci defines a class in N1 and we have for each connected component z contained
in ∪

i
Ci of the singular locus of F understood with reduced structure, residue

maps,

Resz : N1 −→ KF ⊗Oz
∼−→ k[z] .

We put
∑
z

dimk k[z] = deg(sing(F)∩ ∪
i

Ci) = d, say, and observe that if d <

number of curves Ci, then there are elements λi of k, not all zero, such that,∑
i

λi Ci has no residue, and so lies in,

Im {H1(X,N ) −→ H1,1} .

Consequently we must have
(∑

i
λi Ci

)
· Cj = 0 for any j. This however

contradicts the invertibility of the intersection matrix, and so we have proved,

Fact I.3.2. Notations as above if the intersection matrix Ci · Cj is invertible in
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k (e.g. ∪
i

Ci contractible, and characteristic zero) then,

The number of curves Ci ≤ deg(sing(F)∩ ∪
i

Ci) .

II. Complements to Ekedahl, Miyaoka et al.

II.1. p-closure

T. Ekedahl, [E], and independently Rudakov & Shafarevich, [RS], discovered
that foliations in positive characteristic admit a remarkably rich structure which
under mild hypothesis renders them amenable to a highly algebraic interpretation.
The important new feature which renders this possible is the pth-power map, i.e.
one easily verifies that if ∂ is a derivation in positive characteristic then ∂p is
again a derivation. In particular with notations as in I.1, if (X,F) is a foliation
then there is a map by pth-powers,

T p
F0
→ TX0/TF0

and we call the foliation p-closed if this map is zero. One then has,

Proposition II.1.1. [E] There is a one to one correspondence between,

(a) p-closed foliations with rank of TF = r.

(b) Factorisations X −→
ρ

Y −→
σ

X(1) of (geometric) Frobenius, deg(ρ) = pr.

In this correspondence, given a foliation one obtains Y from the ring of func-
tions {f ∈ OX | ∂(f) = 0, ∂ ∈ TF}, while given a factorisation TF is just the
kernel of ρ∗. Should TF be p-closed, we naturally write X/F for the quotient
Y . There is however some need for caution regarding X/F even if X is non-
singular. Specifically denote by sing(F) the loci where either X is singular or F
is not locally free, then in general X/F is highly singular on ρ (sing(F)). Cer-
tainly an easy calculation shows that X/F is normal but it certainly need not be
Gorenstein, although we do have:

Proposition II.1.2. [E] If X is Q-factorial then X/F is Q-factorial, and:

ρ∗KX/F = (p− 1) KF + KX .
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A representative example of the kind of singularity that one encounters on
X/F comes from the foliation given by ∂ = x ∂

∂x + y ∂
∂y in characteristic p, so

OY = k[xp, xp−1y, . . . , xyp−1, yp], and Y is the cone over a rational normal curve,
which, incidentally, is an étale quotient singularity even in char= p. That up to
minor trivialities this is indeed the general case follows from,

Proposition II.1.3. Let (X0,F0) be a foliation in characteristic zero with canon-
ical singularities and (X,F) → SpecO a model over an affine open subset of a
finitely generated extension of Z such that for all maximal ideals m of O out-
side a Zariski closed subset, (Xm, Fm) is p = char k(m) closed, then at any point
z ∈ sing(F0) we can find formal coordinates x1, . . . , xn, n ≤ dimX, and rational
integers λi such that the foliation is given by a field of the form,

∂ =
n∑

i=1

λi xi
∂

∂xi
∈ Der(ÔX0,z) .

Proof. We use our Jordan decomposition. Indeed quite generally let ∂ be a
derivation of a regular local ring Ô over a field k of positive characteristic. We
can write down a Jordan decomposition ∂ = ∂S + ∂N , of ∂ into semi-simple and
nilpotent parts. An identity of Jacobson, [E] 4.2, gives:

∂p = ∂p
S + ∂p

N +
∑

Sk(∂S , ∂N ) = ∂p
S + ∂p

N

where the last identity follows from the fact that the Sk are Lie polynomials, and
[∂S , ∂N ] = 0. However if the foliation is p-closed then ∂p ∧ ∂ = 0, so:

0 = ∂S ∧ ∂p
S + ∂S ∧ ∂p

N + ∂N ∧ ∂p
S + ∂N ∧ ∂p

N . (∗)

Typically if m is the maximal ideal of Ô, ∂N (m) ⊂ m2, so: ∂p
N (m) ⊂ mp+1.

However p could be close to the dimension etc., so we impose the hypothesis that
our foliation is specialised from characteristic zero. In this case we’re studying
the completion Ô and a derivation ∂ of it and we already know the Jordan
decomposition of ∂ mod md, say, then for p sufficiently large this is the same
as that for the specialisation. Bearing this in mind and that ∂S 6= 0 if the
singularities are canonical we take suitable coordinates in characteristic zero such
that,

∂S = λi xi
∂

∂xi
and ∂N (if it exists) = fi

∂

∂xi
, (f1, . . . , fn) 6≡ 0 (mod md)
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where md is some suitable power of the maximal ideal. Certainly for some e,
independent of p, ∂e

N (m) ⊂ m2, so for p sufficiently large to avoid bad reduction,
∂N (m) ⊂ m[ p

e ]. As ever for p large, we can look at (∗) mod m3, and begin by
supposing ∂ is not semi-simple mod m2. In particular we have a Jordan block of
the form

D =
m∑

i=1

λxi
∂

∂xi
+

m∑

i=k

xi−1
∂

∂xi

for some sub-system of coordinates x1, . . . , xm,m ≥ 2, and all the ∂
∂xi

∧ ∂
∂xj

terms i, j ≤ m occurring in ∗ mod m2 arise from D. Plainly, therefore, λ = 0.
However there is a non-zero eigenfunction xm+1, say, so the nilpotent part is also
zero, as claimed. Continuing to work mod m2, given we have no nilpotent part,
the eigenvalues considered as a point in projective space must be stable under
Frobenius, and so certainly in Fp. Given this for almost all p, the eigenvalues,
modulo multiplication by a suitable unit, are indeed rational integers. Making
such a multiplication we have ∂p

S = ∂S and ∂N ∧ ∂S = 0 (mod md+1) for almost
all p, so in O/md ∂, ∂N is parallel to ∂S . Since d was arbitrary, this proves the
proposition after multiplication by a suitable formal unit.

Having singularities which are formally linearisable with rational eigenvalues
is already a rather strong property, but we can easily go further, for example:

Divertimento II.1.4. Let (X0,F0) be a foliated non-singular surface in char-
acteristic zero such that in the notations of II.1.3, (Xm,Fm) is p-closed for all m

outside a Zariski closed set, then (X0,F0) is given by an infinitesimal formal flat
groupoid.

Proof. The issue here is the flatness. Let ∆ be the diagonal in X ×X, and P the
completion of the latter in the former. Away from the singularities the groupoid
is just the formal scheme F , say, obtained by adding in a germ of the foliation
in the direction of the second factor. If we can complete F over the singularities
then flatness follows. Whence without loss of generality X is affine, and we’re
only worried about an isolated singularity z. Now let’s say the foliation is given
by a vector field ∂ on X, and x, y are generators of m at z. We can make affine
patches Ux, Uy of X∗ = X\z defined as ∂(x) 6= 0 and ∂(y) 6= 0 respectively. Over
Pux and Puy (fibres via the 1st projection) the groupoid is cut out by divisors Dx

and Dy, which a priori do not patch. The problem is that PX∗ has an enormous
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local Picard group. Call D the class so defined in Pic(PX∗). Being in dimension
2, if Pn is the nth-thickening we have an exact sequence,

0 → H1(X∗, SnΩX) → Pic(Pn+1 ⊗OX∗) → Pic(Pn ⊗OX∗) → 0 .

So we need D to be zero in each Pic(Pn ⊗OX∗). However for fixed n, and p suf-
ficiently large the obstruction D just specialises to the obstruction to completing
the groupoid to order n in characteristic p. However, if we have p-closure and
n < p this is trivial – just take the Zariski closure of the inseparable groupoid
over the singularities. Having patched Dx, Dy at the bundle level we now have
F over X∗ defined as the zero locus of a formal function f on PX∗ , and general
local cohomology nonsense extends f to all of PX , as required.

A couple of remarks are probably in order,

Remark II.1.5. (a) The proof of II.1.4 works equally well for codimension 1
foliations in general. For non-codimension 1, flatness would require more special
singularities, however it ought still to be true that p-closure for almost all p forces
the completion of the groupoid in characteristic zero. Indeed, morally (modulo
the flatness) II.1.3 is equivalent to completing the groupoid, but without some
analytic convergence, it seems just a bit weaker.

(b) Even p-closure at infinitely many primes is already a strong condition. Indeed
II.1.4 goes through verbatim to show that under this hypothesis the field ∂ is semi-
simple. In addition, and rather evidently, p-closure can only take place when the
eigenvalues considered as a point of projective space take values in Fp.

Certainly, almost by definition, p-closure is true globally iff it is true formally
at one point. Using the theory of Jordan decomposition we can elucidate this
somewhat by way of a characteristic p Frobenius theorem,

Divertimento II.1.6. Let ∂ be a non-singular derivation of a complete regular
local ring A over an algebraically closed field L of characteristic p > 0 isomorphic
to its residue field then there is a choice of coordinates x, y1, . . . , yn in the maximal
ideal such that up to multiplication by a unit,

∂ =
∂

∂x
+

n∑

i=1

xp−1 fi(xp, y)
∂

∂yi
.

Proof. We can certainly multiply ∂ by a unit, in such a way that for some x ∈ m,
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∂x = 1. Now consider ∂̃ = x∂, and its Jordan decomposition ∂S ⊕ ∂N . Trivially
∂S = x ∂

∂x , in some coordinate system x, y1, . . . , yn. Observe that in our formulae
for the nilpotent part we must have an exponent of x in the monomial (xQ xi) at
least 1, since x | ∂̃, whence the claim.

This is true for any foliation (and incidentally implies the Frobenius theo-
rem in characteristic zero) and the subscheme cut out by the vanishing of the
p-curvature is that defined by the ideal (f1, . . . , fn). In particular it is invari-
ant by the foliation (although this hardly requires special coordinates ∂(∂pyi) =
∂p(∂yi) = ∂p(yj) ∂

∂yj
(∂yi), given ∂x = 1 will do). One should be careful however

since the reduction of this subscheme may not be invariant, e.g. fi(xp, y) = xp.
In any case, the important point, is that the invariant subscheme defined by the
singular locus even when the corresponding reduced subscheme is invariant can
more or less be arbitrarily complicated and certainly does not lift to characteristic
zero. Indeed, for,

∂ =
∂

∂x
+ xp−1(y2 + xp)

∂

∂y

y2 + xp = 0 is an invariant curve, which isn’t even smooth though the foliation
(which is not p closed) is.

II.2. Conditions for p-closure

Truly satisfactory conditions in high dimension require a lot of work in analys-
ing the structure of the subscheme where the p-closure vanishes, so we’ll restrict
ourselves here to dimension 2, with underlying space X non-singular. We’ll use
the notations of II.1.3, i.e. (X0,F0) is a foliation in characteristic zero, and
(X,F) → SpecO a model over an affine open subset of a finitely generated
extension of Z with (Xm,Fm) the reduction at a maximal ideal. The most obvious
condition is,

Lemma II.2.1., [S-B], Let D0 be a nef. divisor on X0 with KF0 ·D0 < 0 then
for p sufficiently large and char k(m) = p, (Xm,Fm) is p-closed.

Of which, an essentially optimal singular variant is,

Lemma II.2.2. Notations as above, and suppose z ∈ sing(F) is a canoni-
cal singularity without nilpotent structure and irrational eigenvalue λ, with ε <

min
{

1
H(λ) , 1

}
where H(λ) is the big height of λ in the Fubini-Study metric, then
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if D0 is effective with its proper transform nef. and KF0 · D0 < ε ordz(D0),
(Xm,Fm) is p-closed for all maximal ideals m of O such that p splits completely
and is sufficiently large.

Proof. What’s at stake is to ask how large is the order of vanishing of the p-
closure map T p

F → NF · IZ around p, where NF is the normal bundle to the
foliation. We make use of I.2.3, and let ∂ be a local generator of TF about z with
∂S ⊕ ∂N a Jordan decomposition. Necessarily for p sufficiently large, we have
∂S = x ∂

∂x + λy ∂
∂y for some suitable coordinates x, y in ÔX,z, and as ever,

∂p = ∂p
S + ∂p

N = ∂S + ∂p
N

so the order of vanishing of the p-closure map is the order of vanishing of, ∂S ∧
∂p

N + ∂N ∧ ∂S + ∂N ∧ ∂p
N . Now ∂p

N ∧ ∂ vanishes at least to order p unless λ = 1 in
k(m) which given it’s irrationality we might as well say doesn’t happen by taking
p sufficiently large.

Consequently we’re reduced to looking at ∂N ∧∂S . The nilpotent part is given
by the conditions of I.2.3 which are of the form q1 λ+q2 = 0 for qi ∈ N∪{0}∪{−1},
and the nilpotent part vanishes to order at least q1 + q2 + 1. Consequently if in
standard coordinates [S, T ], say, on P1 we identify λ with [λ, 1] and Q with the
section γQ = q1 S + q2 T of the tautological bundle then our condition becomes
γQ(λ) = 0, and the order of vanishing is at least the big height of γQ in the
Fubini-Study metric. Even better the pairing (Q,λ) 7→ γQ(λ) just corresponds to
intersecting λ×Q with respect to the diagonal on P1× P1 in the Arakelov sense,
and (O : Z){h(λ) + h(Q)} equals,

∑
m

ordm(γQ(λ)) log(# k(m))−
∑

k(O) ↪→
σ
C

1
2

log
( |q1 λσ + q2|2

(|q1|2 + |q2|2)(1 + |λσ|2)
)

Since λ is irrational, Λ ·Q is not identically zero, whence if λ q1 +q2 = 0 and p

splits completely, p ≤ H(λ) H(Q), which tells us that the nilpotent part vanishes
to order at least p/H(λ), so that in turn the p-curvature at z vanishes to order
at least p min

{
1,H(λ)−1

}
> p ε. Possibly shrinking ε a little, we may assume

D̃m is ample, and as Q divisors pKF +NF −p min
{
1,H(λ)−1

}
Ez, Ez being the

exceptional divisor over z, is effective which enjoys the absurdity of intersecting
D̃m negatively for p sufficiently large.
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Obviously the condition of p being totally split wasn’t really necessary, the
weaker condition k(m) = Fp would have worked equally well provided we took the
worse bound of, min

{
1

(O:Z) H(λ) , 1
}

. What is essential in the proof is that λ is
irrational. One might hope that rational is easier to treat, which is certainly true if
the singularity were linearisable in characteristic zero, then we could actually get
the lemma for ε = 1−δ, any δ > 0, but if it isn’t the p-closure map will only have a
finite order at z independent of p, and the lemma appears hopeless. Nevertheless
the lemma casts a lot of light on some examples discovered by Ekedhal, Shepherd-
Baron, and Taylor, [EST], of which the most interesting from our point of view
is,

Example II.2.3. (Hilbert Modular Surfaces) Let O be the ring of integers in
a real quadratic number field. The group Γ = SL2(O) acts on two copies of the
upper half plane H × H by way of its two natural embeddings in SL2(R). Mod-
ulo ±1, the action is properly discontinuous and the resulting surface H × H/Γ
is quasi-projective (Hilbert-Modular forms give the quasi-projective embedding)
with at worst quotient singularities. Furthermore we can complete things to a
projective surface S0 by adding in finitely many cusps which are elliptic Goren-
stein singularities resolved by elliptic polygons or a rational curve with a node.
The surface S0 is called the Baily-Borel compactification, and its minimal desin-
gularisation ρ : S → S0 is what is usually termed a Hilbert-Modular surface. The
foliations determined by the splitting descend to foliations F0,G0 on S0. Neither
is Q-foliated Gorenstein in the presence of cusps, cf. IV.2.2, but they do have
canonical singularities in the sense of I.2.14. There is a splitting TS0 = TF0 ⊕TG0 ,
and even better if D is the reduced simple normal crossing divisor contracted by
ρ then it is invariant by the induced foliations F and G, and both of these not
only have canonical singularities but, for simplicity, in the absence of quotient
singularities,

Ω1
S(log D) = KF ⊕KG .

In particular KF ,KG are pseudo-effective divisors of numerical Kodaira dimension
1 and Kodaira dimension −∞ (essentially because any section would force the
foliation to be a fibration, cf. IV.5.1) so that for any ε > 0 there is an ample divisor
Hε on the blow up of X in any singularity z, say, of F such that KF · Hε <

ε ordz(Hε) (otherwise KF would have a section cf. IV.5.7). Now consider the
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case where z lies on a polygon. The singularities are exactly the crossings of the
elliptic polygon, and within a polygon the eigenvalue at any one singularity can
be calculated in terms of any other via the residue-formula I.3.1. Actually we’re
in the degenerate case of I.3.2 where the number of curves is exactly the number
of singularities, and the eigenvalues may be computed as continued fractions in
the intersection matrix, cf. IV.2.2. In any case the eigenvalues are thus in one to
one correspondence with the non-principal ideal classes of O, and are certainly
irrational provided S0 has cusps. Whence combining II.2.2 with II.1.3 we see
that for p sufficiently large, (X,F) is p-closed iff p splits completely in O. In
particular, [EST], p closure for infinitely many p does not imply algebraicity of
the leaves in characteristic zero.

II.3. Adjunction

We begin by defining the Segre class along the foliation’s singular subscheme,

Definition II.3.1. Let ΩX → KF · IZ → 0 be a foliation by curves on a non-
singular variety X, and X̃ in π : P(ΩX) → X the closure of the corresponding
section over the smooth locus, then X̃

∼→ BlZ(X) (understood with nilpotent
structure) and if E is the exceptional divisor and L the tautological bundle then
L = π∗KF (−E) and for C in X a curve we define the Segre class sZ(C) of Z

along C to be E · C̃ where C̃ is the proper transform.

Now adjunction for (X,F) a foliation by curves on a non-singular surface
takes two forms either:

(a) C is a curve not invariant by the foliation and we have natural maps,

OC(−C) → ΩX ⊗OC → KF ⊗OC

so (KF + C) · C ≥ 0. Whence, KF · C < 0 ⇒ C2 > 0, i.e. C is big and nef.

(b) C is invariant by the foliation, so for ν : C̃ → C its normalisation,

KF · C = (2g(C̃)− 2) + sZ(C)− Ram
C̃/C

.

On the other hand sZ(C)−Ram
C̃/C

≥ 1 if it’s non-zero so if KF ·C < 0 then C

is a rational curve (smooth if the singularities are canonical) with sZ(C) = 0 or
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1, giving KF · C = −2 or −1 respectively. In the former case by I.3, the normal
bundle NF is flat along C, and the foliation is a (possibly singular) fibration in
rational curves.

Tying things together, particularly in the context of II.2.1, we have:

Lemma II.3.2. (characteristic zero) Let (X,F) be a foliated surface with X

non-singular and C a curve on which KF · C < 0 then either,

(a) C is not invariant, and nef.

(b) C is an invariant rational curve with KF · C ∈ {−1,−2}.

II.4. Miyaoka’s semi-positivity theorem

We now arrive at the main application of p-closure, i.e. Miyaoka’s semi-
positivity theorem, which by virtue of II.3 we’ll render a little tidier, i.e.

Proposition II.4.1. [Mi2] Let (X,F) be a foliation by curves enjoying canonical
singularities on a non-singular surface in characteristic zero with M a nef. R-
divisor and C a curve with KF · C < 0 then for every x ∈ C there is a rational
curve Lx 3 x invariant by F with KF · Lx ≥ −2 and,

M · Lx ≤ 4
M · C
−KF · C .

Proof. Firstly suppose C is invariant, then we take Lx = C, and we’re done by
II.3.1(b). So we’re reduced by II.3.1(a) to C non-invariant and nef, which itself is
just the limiting case of [S-B] 9.0.1, which one proves by combining II.1.2, II.2.1,
and the usual bend & break estimates, cf. op. cit.

Proposition II.4.1 for arbitrary algebraic spaces will involve a more careful
adjunction formula which we postpone until Chapter III. Observe, however,

Corollary II.4.2. Let (X,F) be a foliation on a 2-dimensional algebraic space
with KF · D < 0 for some nef. R-divisor D. Then for any nef. R-divisor M and
x ∈ X there is a rational invariant curve Lx through x, with,

M· Lx ≤ 4
M·D
−KF · D
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where the above intersections are understood in the sense of Mumford.

Proof. Let p : (Y,G) → (X,F) be a smooth projective resolution with canon-
ical singularities then p∗D and p∗M are still nef. R-divisors, and better still,
KG· p∗D = KF · D < 0 from which the corollary follows.

Corollary II.4.3. (Cone theorem) Let (X,F) be a foliation on a non-singular
algebraic surface then there are finitely many invariant rational curves Li, with
KF ·Li ∈ {−1,−2} (the latter occurring only if the foliation is a pencil of rational
curves) such that,

NE1(X)R = NEKF≥0(X) +
∑

i

R+[Li]

where NE1(X)R is the cone of effective curves, and NEKF≥0 the upper half space
on which KF is positive. Even better every KF negative extremal ray in NE is
of the form R+[Li], for some i.

Proof. Indeed, [K1] III.1.2, this is a formal corollary of II.4.1.

II.5. An alternative approach

An equivalent characterisation of p-closed foliations is that they’re defined
by infinitesimal flat groupoids of height p, which is ultimately why the quotient
exists and leads to the key result of this chapter II.4.1. In characteristic zero,
the formal Frobenius theorem allows one to identify a foliation at it’s smooth
points with an infinitesimal groupoid, and after blowing up in the singularities,
X̃ → X one can define a (very far from flat) infinitesimal groupoid, F ⇒ X̃, with
source and sink s, t, say. Now, the non-flatness not withstanding, given a map
f : C → X not factoring through the singularities from a smooth curve, one lifts
it to f̃ to X̃, and forms the fibre product,

FC := Fs ×f̃
C

which for any Gorenstein foliation is a smooth formal surface with trace C, which
itself is a section of s : FC → C, and NC/FC

= f∗TF . Critically,,

Fact II.5.1. ([BM]) If KF .fC < 0, then the field C(FC) of rational functions on
FC has degree 2.
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Proof. (cf. op. cit. II.1.1) The hypothesis imply that NC/FC
is ample, and one

just counts the number of sections of any line bundle, L, by inductive filtering of
FC . In particular h0(FC , L⊗n) grows at most like n2, so the transcendence degree
is at most 2, but, obviously at least 2 by virtue of the map to X.

The upshot of which is,

Corollary II.5.2. To prove II.4.1 (in any dimension, and supposing only that
the foliation is Gorenstein and C isn’t in the singular locus, which is automatic
in dimension 2) we can actually suppose that our foliation is a map from an
algebraic surface S to C, and the curve in question is a section, around which
the foliation is smooth.

Needless to say, this isn’t terribly difficult, and admits a purely characteristic
zero proof (i.e. for II.4.1 in the hypothesis of II.5.2 see [S1]), although it’s still
true, [S2], that characteristic p is the most elegant way to go from II.5.2 to II.4.1.
Better still, on replacing X by it’s Gorenstein covering stack, this argument works
in maximal generality, i.e. Q-Gorenstein foliations, cf. [M5] II.3. As such, the
question may arise as to why this chapter has placed such emphasis on positive
characteristic and p-closure. That historically Miyaoka’s approach predated [BM]
is one reason, but the deeper one is II.2.2, which is relevant to the deeper aspects
of classification, cf V.5.

III. Minimal models

III.0. KF vs. KX

As observed post I.2.5, a pencil of lines through a point in P2 is a log-canonical
singularity, so we have a foliated surface (X,F) together with a modification
p : (X̃, F̃) → (X,F) obtained by blowing up the singularity with exceptional
divisor E, say, such that KF̃ · E = 1. Hence this singularity is KX -terminal but
we have no desire to blow such curves down if we wish to construct a minimal
model, whence, unless stated otherwise, we suppose,

Hypothesis III.0.1. All foliated surfaces (X,F) appearing in this section will be
assumed to have canonical (KF ) singularities. Any precisions on the singularities
of X will be made according to the situation. For simplicity we will suppose that
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(X,F) is not a fibration by rational curves.

Now we need a few definitions, viz,

Definitions III.0.2. Let (X,F) be a foliated 2-dimensional algebraic space, C

a curve in the smooth locus of X, and ssing(F)(C) as per II.3.1 then,

(a) C is said to be a −1 F -curve (respectively −2 F -curve) if C is a smooth
rational integral sub-curve of F with ssing(F)(C) = 1 (respectively 2).

(b) A −1-chain is a chain of smooth rational F invariant curves of the form,

e1 e2 e3 en−1 en

i.e. the nodes of the weighted dual graph, are starting from the handle on the far
left a −1 F -curve, with the others −2 F -curves. The components will be labelled
Ei, i ≥ 1, starting from the handle, with −ei their self intersection

(c) If there exists an integral sub-curve of F not contained in a −1-chain but
which nevertheless meets the chain then it is called the tail. By I.2.6 if it exists
then such a curve is unique.

(d) A −1-chain is said to be artificial if it may be contracted to a non-singular
point of the underlying space X. If moreover this point is actually a non-singular
point of the foliation then we say that the chain is very artificial.

Notice that by II.3.1, C is a −1 F -curve iff KF · C = −1. Unsurprisingly they
are the correct analogue of −1 in the usual sense. On the other hand −2 F -curves
are a little more subtle, certainly they satisfy KF · C = 0, however, not only is the
converse false but a −2 F -curve need not be contractible- consider, for example,
a product of curves.

Finally we introduce a class of curves without a strict KX analogue, albeit
that they appear in a log-variant, i.e.

Definition III.0.3. Let (X,F) be an algebraic space, a possibly reducible but
reduced curve Z contained in the smooth locus of X is said to be an elliptic
Gorenstein leaf (e.g.l.) if it consists of a contractible cycle of −2 F -curves or
alternatively a contractible rational integral sub-curve with a simple node at a
point of sing(F) without nilpotent structure. If it contains no curves of self-



Canonical Models of Foliations 921

intersection −1, then we say additionally that Z is minimal.

The terminology is easily justified since by I.2.6 there are at most two formal
invariant branches through a canonical singularity. On the other hand after a
series of smooth contractions we can easily assume that our e.g.l. Z is minimal,
and of course has euler characteristic zero. Consequently Z is the fundamental
cycle of a contraction to an elliptic Gorenstein singularity. Now the unfortunate
thing is (cf. IV.2.2) is that Z will not be contractible to a foliated Gorenstein
singularity. The following is standard,

Fact III.0.4. Let π : (X,F) → (Y,G) denote the contraction in the category of
algebraic spaces of a minimal e.g.l. Z to an elliptic Gorenstein singularity p then
Y is Q-foliated Gorenstein at p iff KF |Z is torsion.

Proof. We write Z =
∑
i

Zi, and observe KF · Zi = 0 ∀ i. The only if part is clear,

so all we need do is calculate π∗K⊗n
F for any n ∈ N with OZ(nKF ) ∼−→ OZ . On

the other hand the theorem of formal functions yields,

π∗K⊗n
F = lim←−

k

H0(OZ(k) ,K⊗n
F )

where Z(k) is the k-th thickening of Z, and we have an exact sequence,

H0(OZ(k+1) ,K⊗n
F ) → H0(OZ(k) ,K⊗n

F ) → H1(OZ (nKF − k Z))

where the final group is isomorphic to H0(OZ (k Z)) = 0, and so we conclude
π∗K⊗n

F has a nowhere vanishing section in a neighbourhood of p as required.

III.1. Algebraic spaces and local theory

We work first of all in the category of algebraic spaces in order to compute
what we must necessarily contract later in the projective category. We will freely
use Mumford’s intersection theory, and all identities involving “divisors” should
therefore be understood modulo numerical equivalence in this sense. We proceed
to the required generalisation of II.4.1, beginning with,

Lemma III.1.1. Let p : (X̃, F̃) → (X,F) be a map between foliated 2-dimension-
al normal algebraic spaces contracting an irreducible curve E, and let C in X be
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a curve with C̃ its proper transform then,

(KF + C)·C = (KF̃ + C̃)· C̃ +
(C̃·E)
(−E2)

{(C̃ + KF̃ )·E} .

Proof. Apply the definition of Mumford’s intersection theory.

Now let’s get underway, and suppose (X,F) is as in III.0.1, albeit with X

non-singular, and E a curve with KF · E < 0. As we have seen in II.4.1 it must
be a −1 F -curve, and better still by II.4.1 it is contractible. We wish to contract
it and see what happens. The result is best summarised by,

Proposition III.1.2. Let (X,F) be as above and (Y,G) a foliation on a normal
2-dimensional algebraic space obtained from (X,F) by contracting a −1-chain
with C a curve in Y whose proper transform C̃ meets the chain and KG· C < 0
then C̃ is a −2 F -curve which is in fact the tail of the given chain and as such
fits into a new −1-chain which is itself contractible.

Proof. We make use of the intermediary space obtained by contracting all but the
last curve in the chain. Let’s call this (Z,H) and let C# be the proper transform
of C in Z, then by III.1.1 we have on denoting by E the push-forward to Z of
the last curve in the chain,

(KG + C)·C = (KH + C#)·C# +
(C#

· E)
(−E2)

{(C# + KH)·E} .

Our aim is to show that for C not invariant by G, (KG + C)·C ≥ 0. This will
easily follow by induction if we can show that the hypothesis C#

· E 6= 0 implies
(C#+KH)·E ≥ 0. This latter statement is itself however immediate by induction
on the length of the chain. Consequently if C is not an integral sub-curve of G
then its pull-back to X is a nef. Q-Cartier divisor whose intersection with KF is
KG · C which is negative, so absurd by II.4.2.

Now given C is an integrable sub-curve of G meeting the chain, by I.2.6 this
can only happen if C# meets E in a singular point of H but not of Z, and on E

there is a distinct, possibly singular, point of Z arising from contractions. Not
surprisingly adjunction for H yields,

KH· C# = KF · C̃ = 2g (C̃)− 2 + ssing(H)(C
#)
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while on the other hand,

0 > KG· C = KH· C# +
(KH· E)
(−E2)

.

Better still repeated application of the latter formula shows that if A, say, is
the intersection matrix of the chain used to obtain Z, then,

KH· E =
−1

det (−A)

since det (−A) is a positive integer we must therefore have, KF · C̃ ≤ 0. Given
that C̃ meets sing (F) this can only happen if it is a −1 F -curve or a −2 F -curve.
However the former possibility contradicts I.3.2, and II.4.2.

Remarks III.1.3. The proof establishes a number of additional facts, viz: let
(X,F), (Y,G) be as given with C̃ the tail of the −1-chain if it exists, C its
push-forward to Y , and A the intersection matrix of the chain, then,

(a) KG· C = KF · C̃ − det(−A)−1.

(b) If C̃ is a −2 F -curve then KG· C < 0 and we have a −1-chain obtained by
adding C̃ to the original chain which is itself contractible.

(c) Any two −1-chains of maximal length are disjoint. Otherwise we’d have
the situation eliminated in the proof, i.e. a tail which is a −1F curve.

(d) A −1-chain is contractible.

Finally let us note a fact which will ultimately prove rather useful, viz:

Proposition III.1.4. A contraction of a −1-chain containing no exceptional
curves of the 1st kind inside a foliated surface (X,F) with underlying space X

non-singular cannot be foliated Gorenstein.

Proof. Let π : (X,F) → (Y,G) be the contraction of the chain supported on
E1, . . . , En say, and suppose KG is foliated Gorenstein. A priori we know there
are ai ∈ Q>0 such that,

KF = π∗KG +
∑

i

ai Ei
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as Q-Cartier divisors. Now if KG is Cartier then, a1 = KF · π∗KG − K2
F ∈ Z

furthermore, −1 = a1 E2
1 + a2 so in addition a2 ∈ Z, and one sees easily by

induction that indeed all the ai ∈ Z. Conversely, if d is the discriminant of the
negative of the chain’s intersection matrix then, an = 1/d, which is absurd.

III.2. Contractions

We begin with (X,F) as in III.0.1 with underlying space X non-singular.
If KF is nef. we do nothing. Otherwise there is a −1-chain, and by a usual
Néron-Severi type finiteness argument, any −1-chain is contained in one of max-
imal length, and as observed these are all disjoint. Should there be a −1-chain
which is artificial then we contract it, and so inductively obtain a foliated surface
(X ′,F ′) obtained by contracting on (X,F) with X ′ non-singular which contains
no artificial −1-chains. Thus if KF ′ is not nef. there is a finite disjoint union of
maximal −1-chains none of which is artificial. A priori these can be contracted
simultaneously to normal singularities on an algebraic space, however since they
are chains of rational curves it is standard, cf. [A], that the unique space (Y,G)
obtained by this contraction is a Q-factorial projective variety with rational singu-
larities, so all previous calculations in Mumford intersection theory remain valid
in the Picard group with Q-coefficients. Evidently (Y,G) has canonical singular-
ities, and so we require to prove,

Proposition III.2.1. With (Y,G) as above, KG is nef.

Proof. Without loss of generality, we may, in the above notations, replace (X,F)
by (X ′,F ′). We let C be a curve in Y with KG· C < 0 and C̃ its proper transform
in X. A minor variation of the argument in III.1.2 reduces us to the case that C

is an integral sub-curve of G. Moreover if C is not the tail of any of the −1-chains
that we have contracted then (X,F) is isomorphic to (Y,G) in a neighbourhood
of C and so KG· C = KF · C̃ ≥ 0 which is absurd. Whence let T1, . . . , Tk be the
maximal −1-chains which have C̃ as their tail and d1, . . . , dk ∈ N the determinants
of the negative of the intersection matrices of the appropriate chains, then we
have:

KG· C = KF · C̃ −
k∑

i=1

1
di

.

Better still none of the chains are artificial, and so, KG· C ≥ KF · C̃ − k/2. On
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the other hand we have by adjunction,

KF · C̃ = (2g (C̃)− 2) + ssing(F) (C̃) ≥ 2g (C̃)− 2 + k .

Consequently C is a rational curve, and k ≤ 3. Should k = 1, then by III.1.2,
C̃ is a −2 F -curve which fits into a new −1-chain, whence the absurdity that
our given chain isn’t maximal. Should k = 2, then C̃ is still a −2 F -curve, and
so we are reduced to considering the case k = 3. In this case ssing(F)(C̃) = 3.
Again maximal −1-chains are disjoint, while the singularities Zj , of the foliation,
give local Segre classes of 1 for both C̃ and the chain, so they cannot carry any
nilpotent structure, whence by I.3.2, C2 ≥ 0 contrary to II.4.2.

Remark III.2.2. If we extend the discussion to an invariant C whose proper
transform meets several maximal non-artificial chains and KG· C = 0, then, in
the above notation, k ≤ 4. The case k = 1 is impossible, while k = 3 or 4 imply
by an identical argument to the above that C2 ≥ 0.

As hinted k = 2 merits further discussion. In the above notations this can
only happen if d1 = d2 = 2. Consequently by systematically contracting rational
curves of self-intersection −1 appearing in either chain, we may replace (X,F)
by a smaller model in which the underlying space is still non-singular and both
chains in question consist of a single curve with self-intersection −2. In principle
it might occur that the intersection of C̃ with the singular locus of F , although
3, due to nilpotent structure on sing(F) is supported at only 2 points, but this
is excluded by I.3.1. The remaining case is more delicate, i.e. the singular locus
of F meets C̃ in 3-distinct points, and so there could be an integrable sub-curve
meeting C̃ in the point not determined by the −1-chains. Note, though that
C2 = C̃2 + 1, is an integer. Whence we make,

Definition III.2.3. (b) A curve C̃ of the above form is said to be a bad tail.

III.2.bis. The stack alternative

The whole of the previous discussion is radically clearer if one works system-
atically in the 2-category of algebraic stacks, and indeed the particular features
of small dimension in the previous discussion would allow us to confine our atten-
tion to orbifolds. Specifically, as we’ve said, it follows from a variant of II.5.1/2
that II.4.1/2 is true on the Gorenstein covering stack (X ,F) of any Q-Gorenstein
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foliated normal surface, (X,F). Apart from this, we also need the adjunction
formula II.3.1, which as stated is valid on any Gorenstein variety, and is equally
valid on any Gorenstein stack in the form,

Precision III.2.bis.1. Let f : C → X be a map from a smooth 1-dimensional
stack to a Gorenstein foliated stack not factoring through the singular locus of
the foliation F , and invariant by it, then,

KF .fC = −χ(C) + sZ(C)

where the former is the Euler characteristic of C (equally the orbifold Euler char-
acteristic if C is generically scheme like), and the latter is the Segre class in the
stack sense, i.e. adjusted for non-scheme like points, cf. [M5] I.8.6.

As such, III.1.3 (a), and to a lesser extent III.1.1, are in fact III.2.bis.1.
Consequently, an alternative schema of proof is,

Stack version III.2.bis.2 (cf. [M5] IV) Let (X ,F) be a smooth foliated alge-
braic stack of dimension 2 with canonical singularities and non-scheme like locus
transverse to F , then if the foliation isn’t a pencil of rational (i.e. positive euler
characteristic) stacks we may construct a minimal model by,

(a)If KF is not nef. then as per II.4.3 there is an invariant rational stack L with
KF .L < 0. By II.4.2 L is contractible, and by I.2.6 smooth.

(b)Contracting L yields a terminal singularity, so by I.2.1 at worst a quotient
singularity of the ambient space, i.e., the moduli of the contraction admits a
unique smooth stack structure X1 isomorphic to our initial one outside of L,
while preserving the initial structural hypothesis for the induced foliation F1.

(c) Repeat stage (a), and observe that at each stage Néron-Severi goes down by
one, so as to obtain a minimal model (Y,G). Further all the ‘new’ singularities are
terminal, so, a postiori, by II.2.2, the minimal smooth resolution of Y’s moduli
differs from that of X precisely by finitely many disjoint −1 chains.

This in turn leads to,

Reinterpretation III.2.bis.3. The observations III.1.3 admit, in order, the
following re-interpretation on the Gorenstein covering stack (Y,G) → (Y,G),

(a) The pull-back C̃ of C̃ to Y has one non-scheme like point (where by the way
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the induced foliation is smooth) with stabiliser of order det(−A). By I.2.2, the
stabiliser is in fact cyclic.

(b) An invariant curve C̃ in Y with KG .C̃ < 0 is contractible.

(c) An invariant rational stack C̃ in Y must meet sing(G). Indeed, otherwise
just like a smooth invariant rational curve inside the smooth locus of a foliation
on a smooth variety it (more correctly it’s universal covering) would move, or
alternatively C̃2 = 0 by I.3.2, and apply II.4.2.

The stack approach is therefore numerically much less fastidious, and,

Remarks III.2.bis.4 Furthermore algebraic stacks allow us,

(a) To treat the case of geometric boundaries (pre I.1.10) exactly as one treats
empty boundaries, with the (non algebraic stack) case of weight 1 boundaries,
following from the weight 1

2 case, cf. [M5] IV.9.

(b) They present a better explanation for the termination of contraction than
the decrease of the rank of Néron Severi. Specifically, by II.2.1 the number of
singular points of the foliation decrease under terminal contractions, and this is
why flipping in higher dimension terminates, cf. [M5] IV.7.

(c) Needless to say the schema of proof III.2.bis.1 works for any smooth 2 dimen-
sional algebraic stack, i.e. with no prescriptions on the location of the non-scheme
like points. It also works for log-canonical singularities, not just canonical since
this hypothesis is only used to guarantee the smoothness of the rational stack
that is being contracted. If, however, the rational stack were not smooth then
by I.2.4 we could resolve the log-canonical singularity by a single weighted blow
up, apply the stack version of I.3.2 on the resolution, and deduce from II.4.2 that
our foliation is a pencil of rational curves. Again this is true in all dimensions,
cf. [M5] IV.8.

III.3. Proof of the canonical model theorem

Keeping to the notations of the previous section we start with a foliated
surface (X,F) containing no artificial −1-chains, and contract all non-artificial
−1-chains to obtain a foliated surface (Y,G) with canonical singularities. By
III.1.3 no −2 F -curve can meet a non-artificial chain. Better still the set of
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−2 F -curves is not only finite, but the union of its members is a disjoint union
whether of chains, or cycles and indeed there may be rational integral sub-curves
with a node. Regardless concentrating on the first fact we may freely contract
−2 F -curves with self-intersection −1. This step may be carried out in either X

or Y without changing KF or KG . The former is perhaps preferable, so let us
add to our hypothesis that in X there are no −2 F -curves with self-intersection
−1. We extend the weighted dual graph notation of III.0.2 to chains or cycles of
−2 F -curves in the obvious way. For such graphs, or indeed any connected sub-
graph, we may form the associated quadratic form, which we call contractible if
it is positive definite. Since the possibility of a node of weight one is excluded
if C is a curve corresponding to a positive node then it is contained in a unique
maximal contractible sub-chain or cycle.

With this in mind we now contract once more all −1-chains in (X,F) to get
(Y,G) with KG nef. As ever the appropriate variation of III.1.1 guarantees what
will be the defining property of the canonical model, viz,

Definition III.3.1 A foliated normal surface (Y,G) with canonical singularities
is said to be a canonical model if KG is nef, and, KG· C = 0 ⇒ C2 ≥ 0.

while if C is not a tail yet an integral sub-curve the property holds unless C is a
−2 F -curve or an e.g.l. supported on a rational curve with a node. We wish to
contract these but the possibility of bad tails necessitates two cases.

Let us therefore consider bad tails. Even if they exist they’re either con-
tractible or they’re not, and we conclude to III.3.1 unless either a bad tail in-
tersects a contractible chain of −2 F -curves, or indeed that bad tails intersect
among themselves. Extending the previous conventions on dual graphs to this
situation there are therefore three possibilities in X,
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Now case (a) is simply either contractible or it is not, according to whether
e0 ≥ 2 or not. In any case if it is contractible then it is contractible to a rational
Q factorial singularity as in [A]. Evidently if it’s not completely contractible then
contracting the −1 F curves, and the e1, . . . , en chain gives the defining property.
Turning to cases (b) and (c) we know these cannot be contractible by I.3.2. Now
if both e0, f0 ≤ 1 then we just contract the −1 F curves, and the e1, . . . , en chain
to get the defining property. Otherwise say e0 ≥ 2, and we contract the subgraph
of the form (a) and the remaining −1 F curves to obtain the conclusion.

We have thus shown that a foliated surface (X,F) with underlying space
non-singular admits a map to a canonical model with the given defining char-
acteristics, and rather more generally a minor variant of the same argument
establishes,

Theorem 1. III.3.2 (Canonical model theorem.) Let (X,F) be a 2-dimensi-
onal foliated normal algebraic space with canonical foliation singularities then
there is a proper birational map π : (X,F) → (Y,G) to a canonical model with
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canonical foliation singularities satisfying III.3.1 The underlying space Y has at
worst rational quotient singularities or elliptic Gorenstein singularities, as such
there is a unique minimal desingularisation ρ : (Y ′,G′) → (Y,G) whose structure
over a singular fibre is one of the following mutually exclusive types,

(i) A chain of rational integrable sub-curves represented by its dual graph,

An : , n ≥ 1 

consisting either of a −1-chain (III.0.2), two −1 F -curves of square −2 joined by
a bad tail (III.2.3) or a chain of −2 F -curves (III.0.2).

(ii) Two −1 F -curves of square −2 joined by a bad tail which itself connects to a
chain of −2 F -curves (III.2.3) and forms the dual graph,

, n ≥ 4.Dn : 

(iii) A basic elliptic Gorenstein leaf which is not irreducible, i.e. a cycle of
−2 F -curves forming the fundamental cycle of an elliptic Gorenstein singular-
ity (III.0.3), i.e. the dual graph,

, n ≥ 2.An : 
~

(iv) The irreducible elliptic Gorenstein leaf, i.e. a rational integral sub-curve with
a node which scheme theoretically has Segre class (cf. II.3) precisely two at the
singular locus of G′.

Furthermore the structure of KG′ is of the form, KG′ = π∗KG +
∑

Ei where each
Ei is a divisor whose support is a maximal −1-chain as indicated in (i) above. In
particular there is a Q-factorial model on which KG is nef.

We subordinate/postpone a detailed discussion of uniqueness to classification,
and for the moment content ourselves with,
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Complement III.3.3. If (Y,G), (Y ′,G′) are canonical models of foliated surfaces
and p : (Y ′,G′) → (Y,G) a map between them which is defined everywhere then p

is an isomorphism.

Proof. Since Y , Y ′ are normal, it suffices to check that it is injective. Should
it fail to be injective then some point y ∈ Y has a one-dimensional connected
fibre, F , say. However (Y,G) is canonical, and KG′ is nef. so KG′· E = 0 for
all components E of F , which by the defining property contradicts the negative
definite nature of the intersection form on F .

III.3.bis. The Stack approach

Again, we can profit from the fact that the Gorenstein cover of a minimal
model is a smooth stack, and indeed on any smooth 2 dimensional foliated stack,
(X ,F) with C a non-invariant irreducible curve, one trivially has,

(KF + C).C ≥ 0

Consequently, any curve that we need to contract to guarantee the canonical
model condition III.3.1 is necessarily uniformised by a rational stack by III.2.bis.1.
Such a curve can only meet the singular locus of F in at most two points, so by
I.2.6 the image is either smooth or has a node. Such a curve is either contractible,
or it’s not. If the image is smooth, then after contraction the moduli continues
to admit a smooth stack structure with canonical singularities. Consequently,
the only novelty is the contraction of rational curves with a node. That the
contraction of such curves is a final step, is clear by I.2.6, and the augmentation
of the square of any curve under any contraction. This establishes the existence
of a canonical model for any algebraic stack, which is everywhere smooth outside
the contraction of finitely many egl’s.

A postiori, one can then compare II.2.2 and II.2.4 with III.3.2. Evidently the
contraction of a −1−F chain is just the terminal singularity II.2.2. Two −1−F

curves joined by a bad tail correspond to II.2.4 (e) with an abelian group action,
and the contraction of a chain of −2− F curves is any of II.2.4 (a)-(d). As such
the case of Dn, n ≥ 4, is the resolution of II.2.4 (e) for a non-abelian group action,
while III.3.2 (iii) and (iv) are essentially the same from the stack point of view,
they are nevertheless new since as we’ll see in IV.2.2, they are never Gorenstein.
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In particular, III.3.2 is also an exhaustive list of the minimal resolutions of
canonical foliation singularities on surfaces. Regrettably, a log-canonical analogue
looks rather more involved as I.2.5 indicates since one may have to contract
rational curves with a very large cusp, at which point one is arbitrarily far from
a good technical restriction on the ambient space or stack.

IV. Classification and abundance

IV.0. Definitions

The existence of minimal models leads to our basic objects of study,

Definition IV.0.1. Let (X,F) be a model of a foliated surface with canonical
singularities then we define the numerical Kodaira dimension ν(X,F) to be,

(i) −∞ if KF is not pseudo-effective, i.e. F is a fibration by rational curves.

(ii) Otherwise let π : (X,F) → (Y,G) be a map to a minimal model then modulo
numerical equivalence with Q-coefficients we have,

ν(X,F) = max{i : Ki
G 6= 0}

Despite the possibility of non-uniqueness it is an easy exercise in the use of the
index theorem to prove this is well-defined, and whence a birational invariant.
Similarly we have,

Definition IV.0.2. Let (X,F) be as above then we define the Kodaira dimension
κ(X,F) to be the Kodaira dimension of KF . By standard properties of Kodaira
dimension this is independent of the choice of model provided that it has canonical
singularities, and as such is a birational invariant.

Finally for (X,F) as above we put these both together and say,

Definition IV.0.3. Abundance holds for (X,F) if ν(X,F) = κ(X, F ) ≥ 0.

Before proceeding further, let us for convenience issue,

Warning IV.0.4. From now on we will confine our attention to foliated surfaces
defined over an algebraically closed field of characteristic 0, so, C.
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IV.1. Rationality

Let us understand surface to be a two dimensional algebraic space, and record,

Theorem IV.1.1. Let (X,F) be a foliated surface with canonical singularities
then (X,F) is a fibration by rational curves iff there is a curve C with KF · C <

−1. The if direction holds for arbitrary foliation ingularities, but X non-singular.

The necessity of the condition is obvious if X is non-singular, and whence for
arbitrary canonical singularities by an immediate application of the definition.
The sufficiency is an application of the cases considered in III which imply it
could not be otherwise. Clearly the numerical Kodaira dimension and Kodaira
dimension coincide.

Intuitively one expects that P1-bundles over smooth curves (with their natural
fibration) ought to be the canonical models in this situation with uniqueness up
to flipping fibres. We observe this is indeed so, viz,

Complement IV.1.2. Let (X,F) be as per IV.1.1, with F a fibration by rational
curves, and π : (Y,G) → (X,F) a resolution with canonical singularities, but Y

smooth, then there is a proper birational map p : (Y,G) → (X ′,F ′) where the
latter is the natural fibration on a P1-bundle over a smooth curve.

Proof. Let Γ be the connected curve over one of the finitely many possible singular
points of X. After systematically contracting any artificial −1-chains in Γ, we
observe that the arguments of III.1.2 and III.2.1, thanks to the contractibility
of Γ, go through verbatim to show that contracting all the other −1-chains in Γ
yields a map q : (X,F) → (Z,H) such that q(Γ) is contractible and KH is non-
negative on all integral sub-curves of q(Γ) – note Γ cannot contain leaves since
these are not contractible – so as ever by III.1.1, Γ consists of integral sub-curves.
The quotient space B = X/F , however, exists and is normal, whence a smooth
projective curve. Consequently Γ is contained in a fibre of ρ : X → B. Necessarily
this fibre is singular. Let F1, . . . , Fr be the singular fibres with

∑
i

Fi = ρ∗D, say,

then,

KF = KX − ρ∗ ωB(D) +
r∑

i=1

(Fi)red

whence if C is a general fibre, then KF · C = KX· C = −2. Thus if F is any
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singular fibre then by adjunction (for KX) it contains a rational integral sub-
curve with C2 = −1, so by a sequence of contractions of −1 F - or −2 F -curves we
arrive at (X ′,F ′) provided we always give preference in contracting curves with
C2 = −1 to those that may appear in the push-forward of Γ.

The attentive reader will have noticed that KX intervenes in this proof in an
essential way to guarantee the smoothness of X ′. As it happens this is the only
such intervention of KX , but it’s interesting to note why it happened, i.e. given
a foliation which is a rational pencil with canonical singularities one can aim
to follow the minimal model algorithm in the sense of contracting −1F curves,
and more generally −1F chains. Such a procedure will certainly lead to a model
(Y,G) of (X,F) whose Gorenstein covering stack, Y, is smooth, but Y itself may
not be smooth. Certainly then, there is a map Y → [Y/G], which exhibits Y
as a P1-bundle in the étale topus of a 1-dimensional smooth stack [Y/G], but
this is obviously not as strong as IV.1.2. Plainly this results from the highly
non-unique nature of ‘contracting −1F chains’ in the rational case. Curiously,
however, there is no such problem if there is a singularity which is log-canonical
rather than canonical, i.e.

Curiosity IV.1.3. Let (X,F) be a foliated smooth surface with log-canonical
singularities not all of which are canonical and such that the operation of con-
tracting −1F -chains does not lead to a minimal model then the contraction of
the said chains gives a proper map p : (X,F) → (P(p, q, 1),R), where the latter
is the radial foliation on a weighted projective space, (p, q) = 1.

As one might imagine, the log-canonical singularity in question is px ∂
∂x +

qy ∂
∂y for weighted coordinates X, Y, Z of weights p, q, 1, i.e. a generalisation of

lines through a point in the plane. Again, this is much clearer from the point
of view of the Gorenstein covering stack P → P(p, q, 1), which has two non-
scheme like points where the hyperplane at infinity meets the x, and y-axis with
stabilisers Z/p and Z/q respectively. Consequently the two axis lift to so called
‘bad’ orbifolds with signatures p, and q at infinity respectively, while every other
invariant curve has as normalisation an honest P1. The use of the word ‘bad’ here
is extremely misleading, since what it refers to is simply connected rational stacks.
Necessarily these have moduli P1 and non-scheme like points with stabilisers Z/m

and Z/n, m and n relatively prime integers, where we slightly abusively allow one,
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but not both of m or n to be infinite (as naturally occurs when we look at weight
1 boundaries). We denote such stacks by P1(m.n), and note,

Stacky rationality IV.1.4. (cf. [M5] I.9) Let (X ,F) be a smooth foliated
algebraic stack of, say, dimension 2, to keep us in context, with log-canonical sin-
gularities then if the procedure III.2.bis.2 does not yield a model with Gorenstein
covering stack (Y,G) on which KG is nef., then either,

(a) The singularities are canonical, and Y → [Y/G] exhibits Y as a fibration in
algebraic stacks which is a P1(m,n) bundle in the étale topus of [Y/G].

(b) Not all the singularities are canonical, and (Y,G) is a radial foliation on a
generalised weighted projective stack.

Here we have refrained from defining generalised weighted projective stacks, but
as the words suggest, this is just some stack structure whose moduli is a weighted
projective space, where we continue to allow the possibility of one of the weights
being infinite (cf. op. cit. I.9 and IV.8). A picture, however, is better than a
thousand words, and in this respect one might consider an example very close to
IV.1.3. Indeed if we introduce some geometric weight 1− 1

a at infinity, and replace
our original p, q by a1 = pa, a2 = qa, then the (generalised) contraction of −1F

-chains leads to the weighted projective stack with stabilisers Z/a at the generic
point at infinity, and Z/ai where the axis meet infinity, so that our foliation is,

Independently of any stackiness questions we can combine IV.1.2 with a cel-
ebrated theorem of Bogomolov, [B1], to obtain an amusing corollary (already
noted by M. Brunella, [Br1], in his classification of smooth foliations),
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Corollary IV.1.5. Let (X,F) be a smooth foliated surface (i.e. the underlying
space X is non-singular and F has terminal singularities) then X is minimal un-
less F is the foliation obtained from blowing up the point of common intersection
of a pencil of lines in P2.

Proof. If the numerical Kodaira dimension of (X,F) is −∞, then this immedi-
ately follows by IV.1.2. Otherwise let,

0 → N → Ω1
X → KF → 0

define the foliation, then (X,F) is a minimal model, so in particular KF is nef.
Now suppose X is not a minimal surface and let E be an exceptional curve of
the 1st kind then N·E ≤ −1, whence for any positive rational number ε we have,

(N − εE)2 ≥ 2 ε− ε2 , KF · (N − εE) = c2(X)− εKF · E .

Now suppose further that X is not birational to a P1-bundle over a curve of genus
g, then since X is not minimal c2(X) > 0 so that the above plus Riemann-Roch
imply that for ε-sufficiently small N − εE, and whence N is big, contrary to a
famous estimate of Bogomolov, cf. [B1]. Whence X is a surface of the said type on
which there are exceptional curves of the 1st kind so, c1(X)2 < 2c2(X). However
we have the basic estimate, c1(X2)− 2c2(X) = K2

F ≥ 0 which is absurd.

IV.2. General type ( ν(X,F) = 2)

Certainly abundance and uniqueness holds under the further hypothesis of
general type but the canonical model theorem gives more, viz:

Theorem IV.2.1. Let (X,F) be the unique canonical model of a foliation of
general type and let π : (Y,G) → (X,F) be the resolution of the cusps then there
is an ample Q-divisor H and an effective Q-divisor Z (supported on the minimal)
elliptic Gorenstein leaves such that,

KG = π∗KF = H + Z .

Proof. This is just the index theorem, combined with Kleiman’s criterion.

Of course the presence of e.g.l.s in the above decomposition appears a priori
rather ugly. Certainly one would have hoped for a base point freeness result for
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KF on the canonical model. However eventual freeness of KF be it on X or on
Y , in the above notations, would imply that KF is Q-foliated Gorenstein on the
canonical model, and this in general is impossible. Indeed,

Theorem IV.2.2. Let π : (Y,G) → (X,F) be the contraction of a minimal
elliptic Gorenstein leaf on a foliated algebraic space with canonical singularities
then the contraction is never Q-foliated Gorenstein. Better still the germ of any
such contraction is isomorphic to the germ of the natural foliation on the Baily-
Borel compactification of a Hilbert modular surface.

Proof. The question is completely local, so without loss of generality we may take
Y to be a tubular neighbourhood of the e.g.l., Z, say. We denote by Z1, . . . , Zn

the components of Z and proceed to calculate what it means for the contraction
to be Q-foliated Gorenstein. Fix a component Zi, and cover the smooth locus
of F in a neighbourhood of Zi by polydiscs ∆α. Then the bundle N , say, in
Ω1

Y defining the foliation admits a description of the form, N |∆α= O∆α dzα, for
zα ∈ Γ(∆α) which may in turn be taken as defining O∆α(Z) locally. Consider
the respective transition functions gαβ , hαβ and observe the formulae,

dzα = gαβ dzβ , zα = hαβ zβ ⇒ dzα = hαβ dzβ in Ω1
∆α
⊗OZ .

Consequently in OZ ⊗ O∆α we have gαβ hαβ = 1, and this represents the class
in Pic(Z) of OZ(N + Z). Now the intersection of Z with the smooth locus of G
is just Z minus its singularities. So let p be such a singularity, with xp, yp local
equations for the components (in the strict Henselisation) of Z through p, and
ωp a generator of N at p, then for a suitable polydisc ∆p about p,

dzα = gαp ωp , zα = hαp(xp yp) ⇒ dzα = hαp d(xp yp) in Ω1
∆p
⊗OZ .

Further, we note that ωp is of the form, xp ap dyp +yp bp dxp, where ap(p) bp(p)
6= 0, so without loss of generality ap, bp are invertible over ∆p. Now by virtue of
the fact that the contraction is elliptic Gorenstein KY +Z may be assumed trivial.
Whence (X,F) is Q-foliated Gorenstein by III.0.4 if and only if, N +Z is torsion
in Pic0(Z). So let us suppose that indeed the singularity is Q-foliated Gorenstein
then for some m ∈ N should we put, uαβ = (gαβ hβα)m and similarly for ναp at
the singularities then the corresponding cohomology class ν ∈ H1(Z,O×Z ) must
be trivial. For simplicity let us suppose that Z has more than one component
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then the pull-back of ν to H1(Zi,O×Zi
), for any i, is also trivial, and we denote

the two singularities by p and q. Further let’s say that Zi in a neighbourhood
whether of p or q is given by xp (resp. xq) = 0, then ναp (resp. ναq) is equal to
b−m
p (resp. b−m

q ). Whence if the cohomology class ν is trivial over Zi there are
functions fα, fp, fq invertible on any ∆α, ∆p, ∆q such that ναβ = fα/fβ etc.,
so without loss of generality fα = 1 for all α, and fp = bm

p and fq = bm
q . Now

consider the other curve Zj through p then since the various f ’s may be assumed
to come from Z we obtain in the same way fp = am

p , and so the ratio ap/bp(p)
must be a root of unity. In the case of a rational curve with a node we deduce
the same on considering the two branches through the singularity. At this point
we choose a labelling of the singularities, of which there are n, and let λ1, . . . , λn

be the said ratios, or their inverses as appropriate, and apply the discussion of
I.3 to obtain,

(a)
n∑

i=1
Z2

i =
n∑

i=1
Re

(
λi + 1

λi+1

)
, if n ≥ 2 and λn+1 := λ1, or

(b) −C2 + 2 = Re (λ1 + 1/λ1), if n = 1.

In either case the right hand side has modulus bounded by 2n, which is strictly
smaller than the modulus of the left since Z is basic, whence the first part.

As for the second part, observe that Ω1
Y (log Z) is an extension of KF by N(Z)

and the obstruction to splitting on a formal neighbourhood of Z lies in,

lim←−
m

H1(Zm, N(Z)⊗K∨
F ) = lim←−

m

H1(Zm,K−2
F )

where Zm is the mth-thickening of Z. Since we know that (X,F) is not foliated
Gorenstein then KF is not torsion so this obstruction certainly vanishes, i.e. on
an infinitesimal neighbourhood of Z we have a splitting,

Ω1
Y (log Z) = N(Z)⊕KF .

Call the foliation defined by N(Z), H. The transverse structure will permit us to
conclude that we have a Hilbert-Modular surface. The question is purely local,
so we might as well say that Y is just its own completion in Z, or better an
analytic neighbourhood since we want to consider its universal cover ν : Ỹ → Y .
Necessarily π1(Y ) = π1(Z) = Z, and ν−1(Z) → Z the universal cover of Z is just
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an infinite chain C of rational curves. Now for any compact curve Cα in C there
is an open neighbourhood Uα in Ỹ such that,

(a) The Uα cover Ỹ as Cα varies.

(b) The foliations G and H on Uα are defined by closed forms ωα and τα re-
spectively, with log-poles on C.

Indeed the latter question is local, and Cα is contracible to a Gorenstein canonical
singularity for either of G or H, so this follows from I.2.4 and the irrationality
of the eigenvalues. On the other hand we can index the Cα so that both they
and the Uα form an increasing chain, so that for Uβ ⊂ Uα, ωβ = gαβωα for
some holomorphic transition functions gαβ . The 1-forms in question are, however,
closed so gαβ is invariant by G, whence, since the intersection contains singularities
of G is actually a constant. By construction such a topological co-cycle is a co-
boundary, so G, and by an identical argumentH are defined by closed holomorphic
forms ω and τ on the whole of Ỹ with log-poles along C, and we conclude by
integrating ω and τ over Ỹ \C.

From which it follows,

Corollary IV.2.3 Base point freeness for foliations of general type holds if and
only if the foliation has no egl’s. Moreover, foliations of general type with egl’s
exist, so base point freeness (equivalently finite generation of the canonical ring)
for foliated surfaces of general type fails.

Proof The first assertion is clear by IV.2.2, so it remains to exhibit an example
of a foliation of general type with an egl. To this end consider an egl. Z on a
resolution π : (Y,G) → (X,F) of the elliptic Gorenstein singularities of one of
the natural foliations F on the Baily-Borel compactification of a Hilbert-Modular
surface X. Here as in IV.2.2 we don’t propose to resolve any quotient singularities
on Y , so if one would like Y to be globally smooth, its most expedient to introduce
its Gorenstein covering stack Y. Nevertheless Y is smooth around Z, and since
we’ll be working exclusively around Z we can reasonably assert that we have a
splitting,

Ω1
Y (log Z) = N(Z)⊕KF
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as before. Now denote by Ẑ completion in Z, with, again, Zm the mth infinites-
imal thickening for the standard filtration, and L := KF ⊗N(Z)∨.

With this in mind, observe that Γ(Ẑ, L) is rather large. Indeed we have the
standard exact sequence,

0 −→ L(−nZ)|Z −→ L⊗OZn+1 −→ L⊗OZn −→ 0

for n ∈ N. As such there is even a filtration, Γ(Ẑ, L(−nZ)) ⊂ Γ(Ẑ, L) with
successive quotients,

Γ(Z, L(−nZ))

which, in turn, has dimension −nZ2. Thus, indeed, Γ(Ẑ, L) is large, and,

Γ(Ẑ, L) = Γ(Ẑ, L(−Z)) .

Now choose any section s of this latter group, and consider the foliation Fs on Ẑ

defined by,
id⊕ s : TF −→ TẐ(− log Z) .

A check by local coordinates reveals that Z is invariant by Fs, and the singular
locus, even scheme theoretically, of Fs is the same as that of F , i.e. Z is also an
egl for Fs. On the other hand by the theorem of formal functions, Γ(Ẑ, L) is the
completion at the contraction of Z of π∗L, so we can certainly choose many s

which are meromorphic. Consequently with such a choice Fs extends to a foliation
F̃s, say, on Y admitting Z as an egl. It follows, however, from the classification
theorem IV.5.11 that foliations which are not of general type with egl’s are one
of the natural foliations on a Hilbert-Modular surface. In particular, therefore,
they have no moduli, whence for s generic and algebraic, F̃s is of general type.

IV.3. Vectorial foliations (ν(X,F) = 0)

In this chapter we investigate foliations of numerical Kodaira dimension 0.
Ultimately we’ll see that up to an almost étale covering they are defined by
global vector fields, but first we’ll need to take care of irregular surfaces, i.e.

Lemma IV.3.1. Let (X,F) be a model of a foliated surface with canonical
singularities and ν(X,F) = 0, then abundance holds. Better still if X is smooth
and irregular then in fact h0(KF ) 6= 0 or the foliation is a fibration.
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Proof. The lemma is trivial for surfaces with zero irregularity, so suppose other-
wise and without loss of generality let (X,F) be the minimal desingularisation
of a canonical model, then we have an exact sequence,

0 → N → Ω1
X → KF · IZ → 0

giving rise to the foliation. Observe that by a classical lemma of Castelnuovo
should h0(X, N) ≥ 2 then the foliation is a fibration, while if q(X) = 1 then
h0(KF ) 6= 0 or the foliation is the Albanese fibration. Whence we may suppose
that the quotient π : X → X/F := B exists and factors through the Albanese.
Better still the foliation is certainly an elliptic fibration, so by Kodaira’s canonical
bundle formula we obtain,

KF = π∗
{
(R1 π∗OX)∨

}
(
−

∑

i

(Di)

)

the sum being taken over all fibres Fi such that the underlying space (Fi)red is
singular and Di is a proper effective Cartier divisor contained in Fi. To profit
from this observation observe that by III.3.2 and the fact that π factors through
the Albanese there is a Q-Cartier divisor L of degree 0 on B, and Q-Cartier
divisors Zij supported on −1-chains inside Fi such that,

KF = π∗ L +
∑

ij

Zij

as Q-Cartier divisors. Consequently if p : (X,F) → (X0,F0) is a contraction of
the −1-chains then, p∗(KF⊗π∗ L∨) is torsion and π descends to X0. We may thus
take a cover q : (Y0,G0) → (X0,F0) which is étale in codimension one and such
that KG0 is the pull-back of a Cartier divisor on B which is numerically equivalent
to zero. Now putting p : (Y,G) → (Y0,G0) to be a minimal desingularisation,
profiting from III.1.4, and essentially the arguments of III.3 (although see IV.3.3
et sequel) we see that KG is numerically equivalent to zero as a Cartier divisor.
Nevertheless the foliation is still an elliptic fibration so applying the previous
formula for KF but now to KG we see that Di must be a multiple of Fi by
Zariski’s lemma, so it is Fi and so continuing to denote the quotient by π we
have, deg (R1 π∗OY )∨ = 0. Consequently the only multiple fibres of π : Y → Y/G
are non-singular elliptic curves so the foliation is smooth on Y (otherwise there
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would be a curve intersecting KG positively). Appealing to [BPV] (III.18.3) we
deduce that KF is torsion.

Divertimento IV.3.11/2. Obviously what we’ve done in the course of the proof
is under the hypothesis of positive irregularity with KF not inheriting a global
section from the space of 1-forms is to construct an almost étale cover q : (Y,G) →
(X0,F0) with Y non-singular and π : Y → Y/G an elliptic fibration with R1 π∗OY

torsion. Now if Y/G has positive genus then it’s a theorem (cf. [R] E.5.1) that Y

is a sesquielliptic surface, i.e. Y = C × E/G where G is an abelian group acting
on an elliptic curve E by translations, on C any old how, and the diagonal action
is free. The proof however has no need of this further hypothesis, so putting
Y/G = B let’s give the details since they will arise often enough. The important
point is that Kodaira’s canonical bundle formula gives, q = pg + 1 ≥ g(B) + 1.
Consequently if α : Y → Alb(Y ) is the Albanese, then α cannot factor through
B, and α × π : Y → Alb(Y ) × B expresses Y as a finite cover of a family of
elliptic curves in a fixed abelian variety. Such a family is necessarily constant,
so in fact for some elliptic curve A which is a quotient of Alb(Y ) every fibre Yb

admits a non-constant map to A, which in fact is Galois with abelian group, and
the normalised fibre product Y ×B A is a product as required. Consequently we’ll
use the sesquielliptic terminology even for a base of genus 0, and when we come
across this case again we’ll explicitly note it in the classification.

We now change our notation slightly and denote by (X ′,F ′) the unique min-
imal desingularisation of the canonical model of a foliated surface (X,F). From
IV.3.1 and ν(X,F) = 0 we deduce that (X,F) is in fact Q-foliated Gorenstein,
whence there are no e.g.l.’s. To advance further, we observe,

Lemma IV.3.2. Let (Y,G) be a foliated surface with KG isomorphic to the
structure sheaf in codimension 2, then in fact (Y,G) is foliated Gorenstein and
indeed KG is not just the structure sheaf, but defines an element of H0(TY ).

Proof. Recall that by definition KG is the dual of a saturated subsheaf of TY , so
that this is just an easy exercise in local cohomology, cf. [M1], 2.3.

To apply this, we extract the nth root, Y , of a globally trivialising section of
K⊗n
F , with n minimal, as guaranteed by IV.3.1, so on appealing to I.1.12,

Fact IV.3.3. Let (X,F) be a canonical model of a foliation with ν(X,F) = 0,
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then there is a cyclic Kummer covering, p : (Y,G) → (X,F) étale in codimension
one with canonical singularities defined by a global vector field.

Let us therefore consider the problem of a foliated surface (Y,G) with canon-
ical singularities defined by a saturated global vector field, and put G to be the
connected component of the identity in Aut(Y ) so that,

Fact IV.3.4. Notations as above, T1 G = H0(TY ) .

Also, for any y ∈ Y , we have a map fy : G → Y : g 7→ yg, whose differential
dfy : T1 G → Ty Y is the image of this identification restricted to H0(TY ) in Ty Y .

As to the singularities of the surface Y , these are necessarily fixed points of
G, so that if p : (Y ′,G′) → (Y,G) is a minimal resolution of singularities then
Y ′ is G-equivariant. Moreover as in IV.3.1 essentially the same arguments as in
III.3 shows that KG′ = ρ∗KG + E, where E is a divisor supported on −1-chains
which is not integral. However (Y,G) is foliated Gorenstein so E must be zero
by III.1.4. Now consider the problem of curves E in Y ′ with E2 = −1. By
adjunction these are invariant for any vector field, so they aren’t just invariant
for our foliation G but the whole group G. Since KG

∼→ OY , they can be blown
down with discrepancy 0, and so we obtain a minimal surface S blown down
from Y together with a foliation H. The surface S is G-equivariant, (S,H) has
canonical singularities, and KH

∼→ OS .

Firstly consider the case that G is not transitive, then the general integral
sub-curve is rational or elliptic. By IV.1.1 the former is impossible. As ever the
quotient space B = S/H exists and is a regular curve, and the quotient map
π : S → B is an elliptic fibration. In addition as in IV.3.1,

OS
∼←− KH

∼−→ (R1 π∗OS)∨

and every fibre is thus an elliptic curve, so arguing as in op.cit., we deduce that
sing(H) = ∅, so c2

1(S) = c2(S) = 0, and pg(S) ≥ g(B), the genus of B. Necessarily
then, q(S) ≥ g(B) + 1, so that an étale cover of S is a product E × B for some
fixed elliptic curve E. Indeed more precisely we have,

Case IV.3.5 (a) (Y,G) is the natural elliptic fibration on a sesquielliptic surface
(cf. IV.3.11/2), so essentially just E ×B for E an elliptic curve and B arbitrary,
and the canonical model is unique.
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Before continuing observe that this certainly follows from the above discus-
sion, since (S,H) regular and KG′

∼−→ OY ′ forces S = Y ′. Further Y ′ contains
no −2 F -curves so by III.3.3, Y ′ = Y .

So suppose that the action of G is transitive. The easiest case is if G is
compact, then S is an abelian surface. Thus we either have a fibration by elliptic
curves, and in particular IV.3.5 (a) above, or (S,H) is a Kronecker foliation, i.e.
defined by a global holomorphic one form ω which is necessarily some combination
λω0 +µω1 of a basis of H0(S, Ω1

S) in such a way that no leaf is compact. Similar
considerations to the remarks following the above case, ensure that this case
reduces to,

Case IV.3.5 (b) (Y,G) is a Kronecker foliation on an abelian surface, and the
canonical model is unique.

Otherwise G is an extension of an abelian variety A, say, by an affine linear
group H, and we next consider the possibility that A 6= 0 but G is not compact.
Choose a general point s ∈ S and let N be the normaliser of the stabiliser of s

in G then as in IV.3.4 we have a map, but now injective,

fs : G/N ↪→ S .

Since S is minimal, it is therefore the natural compactification of an extension
of an elliptic curve E by Ga or Gm, obtained by adding the section at infinity or
sections at zero and infinity. Let π : S → E be the natural map. The foliation
cannot be a fibration by rational curves and so the map,

OS
∼←− π∗ ωE −→ KH Ising(H)

∼←− Ising(H)

is non-zero, whence necessarily the foliation is without singularities, and either
S = P1×E or the connected component of Aut(S) is the said extension. In either
case we have a splitting,

TS = TS/E ⊕ π∗ TE

and the foliation is everywhere transverse to the fibration over E. This excludes
the possibility of rational integral sub-curves and forces the identification (S,H) =
(Y,G). In addition even if S is split we still have natural sections at zero and
infinity (respectively ∞) given by the zero locus of the P1-part of the vector field,
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and the structure group naturally reduces to E × Gm (respectively E × Ga) and
so we obtain,

Case IV.3.5 (c) The necessarily unique canonical model (Y,G) is either,

(i) An elliptic vector foliation, i.e. Y is the natural equivariant compactification of
an extension of E by Ga, and the foliation is defined by a vector field everywhere
transverse to the natural fibration by rational curves, with a unique compact leaf,
the natural section at infinity.

(ii) A semi-abelian foliation, i.e. Y is the natural equivariant compactification
of an extension of E by Gm, the foliation is defined by a vector field everywhere
transverse to the natural fibration by rational curves, and there are two compact
leaves, the natural sections at zero and infinity.

We are thus left with the possibility that the group G is affine and acting
transitively on S, so S is rational. For the moment we ignore the possibility that
S is P2 or P1 × P1 and consider only the cases that π : S = P (1I ⊕H⊗n) → P1,
is a Hizerbruch surface, H the tautological bundle on P1, n ≥ 2. The necessary
generality is however maintained by surreptitiously allowing the possibility that
n = 0 or 1. In any case c2(S) = 4, so if Z is the singular locus of H then deg Z,
counting nilpotents, is 4 (if S = P2, then deg Z = 3, choose a canonical singularity
and blow up in its reduced structure to get the case n = 1, and maintain KH
trivial). For any fibre F of π, we have KH· F = F 2 = 0. However if F contains
a singular point of H and F is not an integral sub-curve then (KH + F ) · F > 0,
so a fibre containing a singularity is an integral sub-curve.

Consequently if we’re on P1 × P1 the situation is nice and clear. Either there
are no saddle nodes and for each direction we have two invariant fibres, giving
an invariant boundary ∂ consisting of 4 fibres with the foliation H defined by an
injection of bundles,

OS ↪→ TS(log ∂) ∼−→ OS ⊕OS

and since it’s not a fibration by rational curves it must be a Kronecker type
foliation (i.e. in standard coordinates given by dx

x + λ dy
y , λ /∈ Q) and everything

is governed by the toric action, i.e. the group in question is Gm×Gm. Otherwise
there is a saddle node, and indeed by a trivial explicit calculation two saddle
nodes, leading to two invariant fibres in one direction, each of which is the weak
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branch of the node, and one invariant fibre in the other direction which passes
through both singular points. In particular we have an invariant boundary ∂

consisting of 3 invariant curves, in a suitable standard coordinate system the
vector field in question is x2 ∂

∂x + λy ∂
∂y , λ ∈ C, and the group in question is

Ga × Gm.

Evidently we wish to obtain the same conclusion in the general case n ≥ 1.
Here there is a canonical section C of π with C2 < 0, which by adjunction is
invariant. There is of course an invariant fibre F , meeting C in a singular point
z, and if the singular locus of H along F has Segre class 1 at z, then there
must be another singularity w on F . We can blow up in w, and blow down F

without changing any of our hypothesis except that n decreases by 1, and so if
this situation persists reduce to the P1 × P1, i.e. n = 0, situation. From which
we deduce that we have at least 3 invariant curves, and a Gm × Gm or Ga × Gm

action according to whether we have a 4th or not. The tricky case is therefore if
the Segre class of H along F is 2, i.e. F is a weak branch of a node. This implies
that we have another singularity w on C, and we might as well say π(z) = 0,
π(w) = ∞ in standard coordinates on P1, so at z we can write the global vector
field defining H as,

∂ = x
∂

∂x
+ g(x)

(
y2 ∂

∂y

)

for y the natural coordinate for the contractible section of a Hizerbruch surface.
If ξ = 1/x then in the transverse coordinate, η = xny, at ∞,

∂ = −ξ
∂

∂ξ
+ nη

∂

∂η
+

(
g

(
1
ξ

)
ξn

)
η2 ∂

∂η
.

So apart from the obvious fact that g has degree at most n, since n 6= 0 there
must be a second singularity on the fibre at ∞, i.e. it cannot also be the weak
branch of a node. Whence if there is only one singularity on F , we can find
another invariant fibre F ′ on which there are two singularities, blow up in the
one off C, and blow down to reduce n, thus arriving in the P1 × P1 situation.
From which we can note the final two cases of the classification,

Case IV.3.5 (d) (i) (Y,G) is a Kronecker foliation on an absolutely minimal
toric variety. In this case the canonical model is not unique, and may be flipped
in its birational equivalence class.
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We justify this deduction as follows. Necessarily (Y ′,G′) is obtained by se-
quentially blowing up (S,H) in zero dimensional strata of the Gm × Gm action,
and (Y,G) is obtained by sequentially blowing down 1-dimensional strata. Con-
sequently (Y,G) is smooth outside of zero dimensional strata. Now it suffices for
the argumentation that has lead us to deduce the nature of (S,H) that (X,F)
contained no −1-chains, so suppose it is such a contraction of (X ′,F ′) rather than
the actual canonical model, which in turn we denote by (X0,F0), and (Y0,G0)
the corresponding cover, then any exceptional divisor whose centre lies over a
singularity of (X,F) has negative discrepancy. However any exceptional divisor
over the pre-image of a singularity in (Y,G) is such a divisor so that by IV.3.3 (or
more precisely its proof) it must have negative discrepancy. Equally by virtue
of our explicit description of (Y,G) the discrepancy for the exceptional divisor
over a zero dimensional stratum is zero, so the covering map is actually étale in a
neighbourhood of the same. Moreover if an irreducible curve of the 1-dimensional
stratum contained a point over a singular point of (X,F) then the image of such
a curve in (X,F) meets the singular locus of the foliation in 2-points on the non-
singular locus of X and also passes through one singular point of the underlying
space, and so by the considerations of III.3 KF has positive intersection with
such a curve, which is absurd. Consequently if T =

∑
Ci is a chain of rational

integrable sub-curves on X contracted by the canonical model procedure, then
the cover is actually étale in a neighbourhood of T . Whence if d is the degree
of the cover then the pre-image of any Ci is d disjoint rational curves, Cij say,
with C2

ij = Ci. Further for reasons of counting singularities the pre-image of T

is thus a disjoint union of d-chains of contractible rational integrable sub-curves,
and the cover (Y0,G0) of (X0,F0) is itself a canonical model as required.

Arguing similarly we obtain,

Case IV.3.5 (d) (ii) (Y,G) is a toric vector foliation, i.e. a foliation of the above
form on an absolutely minimal compactification of Ga × Gm (i.e. no component
of the boundary may be contracted).

Apart from these final cases, one doesn’t get an enormous simplification of
this discussion by appealing to stacks, but there is some elegant clarification
of the geometry. In particular, if we introduce the Gorenstein covering stack
(X ,F) → (X,F) of the canonical model, then, by definition p : Y → X of
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IV.3.3 factors through X , and Y → X is everywhere étale. In particular, (Y,G)
must necessarily satisfy III.3.1, so that by I.1.12, it’s a canonical model defined
by a global vector field, and X is a classifying stack of the form [Y/C], for C

a cyclic group preserving the vector field. Furthermore, the minimal resolution
Y ′ → Y is unique, so C equivariant, and, as before, contains no curves of square
−1, while Y contains no contractible curves whatsoever. Whence if contracted
Hizerbruch denotes a Hizerbruch surface on which the unique contractible curve
is contracted, we may summarise by way of,

Theorem 2 IV.3.6. The Gorenstein covering stack of a canonical model of
a foliation by curves of numerical Kodaira dimension 0 is the fine moduli of
the quotient by a finite cyclic group C acting without pseudo reflections (so, in
particular, the model itself is the course moduli) which preserves the foliation on
any of the following,

Underlying space Y Group of Element of
automorphisms the Lie algebra

Sesquielliptic surface An elliptic curve Any generator
Abelian surface Abelian surface Any irrational field,

i.e. not coming from
an elliptic fibration

Compactification of a Semi-abelian surface Any generator whose
semi-abelian projections to either

surface as a P1-bundle factor is non-trivial
over an elliptic curve by

adding sections at 0 and ∞
Idem, but now a compact- Extension of Idem
ification of an extension of an elliptic curve by Ga

E by Ga by section at ∞
Contracted Hizerbruch, Gm × Ga Idem

P2,P1 × P1

Contracted Hizerbruch, Gm × Gm Any irrational field,
P2,P1 × P1 x ∂

∂x + λy ∂
∂y , λ /∈ Q

Plainly, the models is unique within its birational equivalence class except
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more or less by definition in the cases governed by Gm×Ga or Gm×Gm which as
indicated may be arbitrary contracted Hizerbruch surfaces. Needless to say, one
can identify the group of automorphisms C, and this has been done, [P]. Indeed,
the essential is to note that on the universal cover everything is linear, so that C

must be a cyclic sub-group of GL(Z⊕n), for 1 ≤ n ≤ 4. This implies, cf. op. cit.,
that in the abelian case the cardinality of C can be anything up to 12 except 7,
or 9, while in the penultimate case it is 1 or 2, and in all other cases it’s anything
up to 6 except 5. All of these possibilities, in all of the individual cases can occur.
As such, IV.3.6 is rather optimal, and doesn’t leave much room for,

Generalisations IV.3.7. In the 2 category of algebraic stacks, there are no
essentially new features, and this continues to be true (excepting issues of ratio-
nality) if we even allow log-canonical singularities. Indeed the only new feature
arises when we permit the possibility of boundaries of weight 1, which gives rise
to a ‘sesquitoric’ case, i.e. in the sesquielliptic case we replace elliptic curves by
Gm’s.

IV.4. Kodaira dimension 1

In this section we study foliations whose Kodaira dimension κ(X,F), as op-
posed to its numerical Kodaira dimension, is equal to 1. We begin with,

Lemma IV.4.1. Let (X,F) be a foliated smooth surface with canonical singu-
larities, and κ(X,F) 0 or 1, then it has no egl’s.

Proof. By hypothesis some power of KF , say K⊗m
F , has a global section ω, and

there exists some egl with fundamental cycle Z. Consider the cases:

(a) ω does not vanish on any component of Z.

In consequence if X̂ is the completion of X along Z then K⊗m
F | X̂ has a nowhere

vanishing section, and we’re done by IV.2.2.

(b) ω vanishes on some components of Z.

In this case we write div(ω) = D + W , where W is supported on Z and the
curves in the support of D are distinct from Z. Moreover we can make this
decomposition not just on (X,F) but on (Y,G), say, where (Y,G) is obtained by
contracting the rational singularities of An or Dn type so that KG is nef. The
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Kodaira dimension is however less than 2 so we obtain, KG· D = 0. Whence if C

is a curve in the support of D then C2 ≥ 0. Bearing in mind once again that KG
is not big we obtain in addition that C2 = D2 = D·C = 0, and whence W·D = 0.
Necessarily then K2

G = W 2 < 0, which is absurd.

An immediate application of the lemma and III.3.2 gives,

Corollary IV.4.2. A canonical model with κ(X,F) = 1 is Q-factorial.

Now let us concentrate on canonical foliated surfaces (X,F) of Kodaira di-
mension 1, and let ρ : (X̃, F̃) → (X,F) be the unique minimal resolution of the
underlying space. In addition let two sections of K⊗m

F be given with underlying
divisors D =

∑
i

ai Ci and D′ =
∑
i

a′i C
′
i then, Ci· Cj = Ci· C

′
j = C ′

i· C
′
j = 0, for

all possible combinations of i and j. On the other hand, we can certainly find an
effective divisor E and sub-divisors D0, D′

0 of D and D′ respectively such that,

mKF − E = D0 = D′
0

and since D0· D
′
0 = 0 this implies that |mKF−E| defines a base point free pencil.

Naturally we make,

Definition/Observation IV.4.3 Lπ : (Y,G) → (X,F) a resolution with un-
derlying space Y smoothet π : X → B be its Stein factorisation, then the above
considerations imply that every fibre is an irreducible curve, and for any b ∈ B,
Xb· E = 0, so E itself is contained in a fibre, and whence there is an effective
Q-Cartier divisor K on B such that KF = π∗K.

Let us proceed immediately to the case where the foliation is a pencil. Man-
ifestly the generic fibre Xb is an elliptic curve. By Kodaira’s canonical bundle
formula any elliptic fibration has foliated Kodaira dimension at most 1, and by
IV.3 at least one, unless after an almost étale cover the fibration is a product so
we obtain,

Fact IV.4.4(i) If the foliation is a pencil, then it is an elliptic fibration which is
not an elliptic fibration of product type after an almost étale cover.

At this point, it’s convenient to consider Kodaira’s tabulation of singular
elliptic fibres from the foliated point of view. Specifically,

Proposition IV.4.5. With hypothesis as given the unique minimal desingulari-
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sation ρ : (X̃, F̃) → (X,F) of a canonical foliated surface of Kodaira dimension
1 is an isomorphism in a neighbourhood of an invariant fibre unless the fibration
π : X → B is an elliptic fibration, or the fibre is the special invariant rational
fibre described at the end of the proof.

Proof. In light of the classification of the singularities of X there are only 3
possibilities for a singular fibre which meets an integral sub-curve, viz: −1-chains,
a chain of −2 F -curves, or Dn

2. Let us for the moment call this information of
types I, II and III respectively and let C̃ in X̃ denote the proper transform
of a fibre C through which there is a singularity. Consequently if T1, . . . , Tk

are the maximal −1-chains in X̃ meeting C̃ with discriminants d1, . . . , dk of the
corresponding intersection matrices normalised in a positive sense then as ever
sI ≥ k and di ≥ 2, ∀ 1 ≤ i ≤ k. Furthermore we have the formula,

KF · C = (2g − 2) + s0 + sI + sII + sIII −
k∑

i=1

1
di

where sI, sII, sIII are the multiplicities of the Segre class of C along the singular
locus of F̃ supported at the type I, II and III information respectively, s0 the
Segre class at any singularities of F outside of these, and of course g is the genus
of C. Consequently if k > 0 then certainly g = 0, while if k = 0 then g ≤ 1 and
indeed g = 1 would imply that sII + sIII = 0. This being absurd, we conclude
that C is always of genus 0, and the above formula becomes,

2 +
k∑

i=1

1
di

= s0 + sI + sII + sIII

and we simply tabulate and consider all possibilities. Necessarily k ≤ 4, sI +sII +

2We abuse standard convention, and for obvious reasons consider a “D3” where the central

node has valency 3, with an edge towards a possibly inexistent node, corresponding to a foliation

singularity.
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sIII ≥ 1 and we have:

k s0 sI sII sIII

0 1 0 1 0
0 1 0 0 1
0 0 0 1 1
0 0 0 2 0
0 0 0 0 2
2 0 3 0 0
2 1 2 0 0
2 0 2 1 0
2 0 2 0 1
3 0 3 0 0
4 0 4 0 0

Naturally we begin with k = 0, so that C̃ must be a −2 F -curve, whence
by the construction of the canonical model C̃2 ≤ −2. On the other hand the
intersection matrix of the curves in p−1(C) must be indefinite so we may apply
the classification of integral quadratic forms to conclude that the said intersection
matrix is one of the forms,

arising from the cases sII = 2, sIII = 0 and sII = 0, sIII = 2 respectively. In
addition the fact that C2 = 0 obliges all the nodes to correspond to curves with
self-intersection −2 (i.e. this really is the usual Dynkin diagram rather than
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the dual graph of the fibre) and the corresponding fibre over b = π(c) to be a
multiple of the corresponding root system as indicated. Necessarily then the euler
characteristic of the fibre X̃b is zero as required.

Now let us turn to the case k = 2. The sub-cases sI = 3 and s0 = 1 are a
little awkward, and we will return to them at the end. Regardless we must have
d1 = d2 = 2, and so for sI = 2 the hypothesis that C2 = 0 forces C̃2 ≥ −2, and
permits us to argue as above to conclude that the only possibility for the fibre
X̃b is D̃n, n ≥ 5, corresponding to the case sIII = 1, and that once again π is an
elliptic fibration.

Next we take up the case k = 3, where we have the possible arrangements
for the discriminants (d1, d2, d3) being (2, 3, 6), (2, 4, 4) and (3, 3, 3) respectively.
Now if we consider the case C̃2 <= −2 then the various integrability conditions
impose that the fibre must be a multiple of the root system in the respective
Dynkin diagrams,

E8 
~

E7 
~

E6 
~

3 6 5 4 3 2 1

1 2 3 2 1

1 2 3 4 3 2 1

1

2

2

4

2

where in all cases the curve C corresponds to the unique node of valence 3 and
once again the fibration is elliptic. Otherwise C̃2 = −1. We cannot however
contract it to a canonical singularity of (X,F) although we do observe that the
fibre must arise as the intersection matrix of one of the following graphs, viz:
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2 1 6

3

2 1 4

4

3 1 3

3

where now the weights denote the negative square of the self-intersection of the
curve represented by the given node. In the first case contracting systematically
and in order the curves with weights 1, 2 and 3 yields a rational curve with a
cusp, while in the second case contracting the curves of weight 1 and 2 yields Ã1,
i.e. two rational curves tangent in one point, while in the final case contracting
the curve of weight 1 yields 3 lines meeting in a point. Regardless in all cases we
conclude that π is an elliptic fibration.

So let us now take up the case of k = 4 then we must have that d1 = · · · =
d4 = 2, whence C̃2 = −2 and the fibre is necessarily the Dynkin diagram D̃4, and
in particular forces π to be an elliptic fibration.

Finally let us return to the cases k = 2, sI = 3 or s0 = 1 then C̃2 = −1 and
the two −1-chains meeting C̃ are in fact irreducible rational curves E1, E2 say of
self-intersection −2. Now if sI = 3, then at say the intersection of E1 and C, E1

is the strong branch of a node which by I.3.1 would force E2
1 = 0. Since this is

nonsense we have s0 = 1, and sI = 2. Call the singularity not contained in E1 or
E2, z. Again we can appeal to I.3.1 to see that the local contribution at z to C2

in the residue formula is zero, and this can only happen if C is the strong branch
of a node, i.e. in the Dynkin diagram notation we have,

C

E1

E2

where the free edge corresponds to the weak branch of the node.

All of which is a very a good advertisement for stacks. Indeed by III.3.2
and IV.4.1, there is a smallest smooth stack, p : X → X almost étale over the
canonical model, and we let f : C → X be the normalisation of p−1(C). Appealing
to the stack version of adjunction III.2.bis.1, we see that if f does not meet the
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singular locus of the induced foliation then χC = 0, and, needless to say f is
an isomorphism. On the other hand the moduli of C is rational, so the only
possibilities are that it has 3 or 4 non-scheme like points. Should it be 4 then
all the points have order 2, i.e. D̃4, equivalently an elliptic curve modulo Z/2.
Otherwise, the 3 non-scheme like points have orders one of (2, 3, 6), (2, 4, 4), or
(3, 3, 3). The ambient dimension, however, is 2, so there is only one possibility
for a smooth stack with an isolated non-scheme like point of order 2, and two
possibilities for any of 3,4, 6. In particular the diagrams, Ẽ6, Ẽ7, Ẽ8, correspond
to local group actions of the form,

Z/n× A2 : ζ × (x, y) 7→ (ζx, ζ−1y)

where ζ is a nth root of unity, for n any of 2, 3, 4, 6, with the foliation given
by ∂

∂x , while the diagonal action corresponds to cases where the central node has
weight 1 and square −1 in the minimal smooth resolution of X. Leaving aside the
rational cases for the moment, we may also have the possibility that the image of
f has euler-characteristic zero, but fails to be smooth. Consequently there must
be a node, which is either Gorenstein on X, i.e. Ãn, or non-Gorenstein (with
perhaps a second node), i.e. D̃n, n ≥ 5, cf. I.2.4 (e).

Manifestly, there is a corresponding discussion in terms of stacks for which
f(C) has negative Euler characteristic. A little thought, i.e. not just III.2.bis.1
but also I.2.4 (e), shows that this can only occur if f is an isomorphism, and
C meets the singular locus of the foliation in one or two points, with all such
singularities being Gorenstein. In the latter case, these points could for an arbi-
trary stack be non-scheme like (albeit they must have the same stabiliser since
the generic fibre is P1) but on the canonical model they are in fact scheme like,
essentially because of how curves of square −1 were treated in III.3, cf. IV.1.2.
In the former case, there must also be two non-scheme like points of order 2.
This is almost the case of the special rational curve in IV.4.5, and indeed is this
case as soon as one knows that the singularity is scheme like. That it must be
scheme like is because otherwise, the normal direction would force the stabiliser
to be cyclic, while the non-Gorenstein terminal points imply that the group is
Z/2× Z/n, for n either 2 or 4, which is nonsense. Conversely,

Precision IV.4.6. The special rational curve at the end of IV.4.5 really does
occur, and for P = P1×∆̂, ∆̂ a formal disc, it is the quotient of a foliation defined
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in suitable coordinates by,

∂ = y
∂

∂y
+ x2p ∂

∂x

under the action x 7→ −x, y 7→ y−1, where p ∈ N.

Proof Indeed a formal neighbourhood of the special curve of IV.4.5 certainly has
a Z/2 covering by P , and the foliation is given by a global vector field on P ,
which goes to it’s negative under the action. Some linear algebra, then gives the
required coordinates, with x the base and y the fibre coordinates.

More generally, if the generic fibre of the Kodaira fibration π : X → B is P1,
then there exists a generically scheme like proper one dimensional stack (which
slightly abusively we’ll call a curve) B, such that the moduli of the fibration
σ : X → B is just π, but now σ is a conic bundle since every fibre p−1(Xb) has
an étale covering by P1. Plainly no smooth fibre can be invariant by IV.1, while
every fibre which contains a singularity must be invariant since in neighbourhoods
of fibres the foliation is defined by a vector field. Consequently, the natural
map, ωB → KF vanishes exactly on the singular (equivalently invariant) fibres at
b1, · · · , bn, say, to some orders p1, · · · , pn, so that,

KF = ωB (p1b1 + · · · pnbn)

Outside of these fibres, and in the analytic topology, projecting along a leaf onto
a fibre realises the foliation as a local system of P1(C)’s, so that the foliation
restricted to the complement of the singular fibres is analytically equivalent to a
representation,

r : Γ → PGL2(C)

where Γ is the fundamental group of B\{b1, · · · , bn}. The rather appealing nature
of this description notwithstanding, one should be aware of,

Caveats IV.4.7. Apart from obvious stupidities that we should really talk
about B\{b1, · · · , bn} rather than Γ, it is not true that r determines the foliation.
Indeed,

(a) The representation r could very well be trivial. In fact even Γ could be
trivial, since there are no a priori conditions except,

−χB + (p1deg(b1) + · · ·+ pndeg(bn)) > 0
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and canonical singularities.

(b) As such, there is an issue as to what additional data is required to obtain
(X ,F) given r. Plainly this takes the form of a compactification data about
the singular fibres.

(c) Certainly this compactification data contains the pi’s, which together with
r determine (up to flipping the fibre) the formal isomorphism class of the
completion in the singular fibre. This, however, is radically insufficient to
determine the compactification data.

(d) Nor is the compactification data the analytic isomorphism class of an ana-
lytic neighbourhood of the singular fibre ( which incidentally has dimension
2pi − 3, for pi ≥ 2, cf. [MR]) but rather the analytic isomorphism class of
the pair: an analytic neighbourhood of the singular fibre & an analytic
embedding into the smooth locus.

Let us, therefore, describe this compactification, around an analytic étale neigh-
bourhood, P = P1 ×∆, of a singular fibre at pi, with bi identified to the centre
of the unit disc ∆. Plainly, giving r specifies the analytic equivalence class of
(P |∆× ,F), and even that of (P,F) if pi = 1, up to the unique possibility for
non-uniqueness in the canonical model, i.e. flipping fibres. Indeed, up to the
action of PGL2, we have two cases according to whether r|π1(∆×) is semi-simple
or not. In the later case the foliation is of the form,

Data IV.4.8.i ∂ = y(xny − n) ∂
∂y + x ∂

∂x for any non negative integer n, and, as
will be the case throughout this discussion (y, x) a standard coordinate system
on P . In particular the singular fibre is wholly scheme like.

Similarly, in the semi-simple case, the foliation takes the form,

Data IV.4.8.ii ∂ = λy ∂
∂y + x ∂

∂x , for exp(2πiλ) an eigenvalue of r restricted to a
loop around bi, with λ /∈ Q, and again the fibre is wholly scheme like.

The indeterminacy in λ with respect to r corresponds exactly to the possibility
of flipping fibres, while the canonical model procedure never allows the possibility
that pi = 1, and λ ∈ Q. As such, it’s worth making,

Remark IV.4.9. There may well be loops in B around points other than the
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singularities where r is non-trivial. With the exception of compactification data
related to IV.4.6, these occur iff the fibre is non-scheme like. In particular since
X is scheme like in co-dimension 1, r is necessarily faithful on such loops (whence
r is not quite arbitrary) so that if we have a non-scheme like fibre with local
monodromy n it is simply the foliation, ∂ = ∂

∂x under the action, x 7→ ζx,
y 7→ ζay, for ζ a nth root of unity, and a relatively prime to n. Plainly such
fibres cannot be flipped.

Certainly, therefore, any r can be compactified over the singularities by an
appropriate combination of IV.4.8.i/ii. This is not, however, the unique way to
proceed, and there are a myriad of additional possibilities as soon as pi > 1. Now,
we are interested in describing these possibilities on a fixed bi-rational model X,
i.e. we exclude the possibility that two compactification data are isomorphic
under a bi-rational automorphism of X. As such the compactification data for pi

fixed is the analytic isomorphism class of foliations F on P , everywhere transverse
to P → ∆ except over the origin, where the fibre is singular and invariant, under
the action of the kernel of,

PGL2(∆) → PGL2(C) → 1

In particular, we may, and do assume that the gluing of ∆ to B\{b1, · · · , bn}
implicit in IV.4.7 is by way of the standard embedding of ∆× in ∆. Consequently.

Data IV.4.8.iii. If the singular fibre is scheme like, then for r fixed, the iso-
morphism classes of such data are isomorphic to a Zariski open of A3pi−3, and
correspond to foliations defined by fields,

∂ = xpi
∂

∂x
+ (u(x)y2 + v(x)y + w(x))

∂

∂y

where u, v, w have degree at most pi − 1, and are determined in degree pi − 1 by
r. While the Zariski open is v2(0) 6= 4u(0)w(0).

Proof Given that ∆ is fixed, not just up to isomorphism, we can certainly find a
unique field, ∂, generating the foliation such that ∂(x) = xpi , and ∂(y) as above,
except that u, v, w are analytic functions of x. At the same time, whatever the
reduction of the data, i.e. u, v, w, under the group action may be, this data must
patch uniquely to a foliation on P1 × P1 with a singular fibre of order pi over
the origin, and a fibre over ∞ of order 1 (or exceptionally smooth if r is trivial).
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Since bi-rational automorphism of P1 × P1 is excluded, we conclude by a simple
explicit calculation.

We can combine this with IV.4.6 to complete our description of the compact-
ification data, viz:

Data IV.4.8.iv. If the singular fibre is non-scheme like, then the compactifica-
tion is the classifying stack of the P with the foliation given by,

∂ = xpi
∂

∂x
+ (u(x)y2 + v(x2)y + u(−x))

∂

∂y

under the action x 7→ −x, y 7→ y−1. Furthermore, pi = 2qi is even, and u,
v have degrees at most pi − 1, and qi − 1 respectively. As such the moduli of
the compactification data is isomorphic to the Zariski open, v(0)2 6= 4u(0)2 in
A(3qi−1).

Before progressing, let us clarify the relation between the compactification
data and IV.4.7 by way of,

Remark IV.4.9.bis. In IV.4.7. (c) we have stated that the isomorphism class of
the completion in a singular fibre is uniquely determined by r, and pi, as is indeed
easily verified by linear algebra. An aspect of this is allowing formal isomorphisms
of the disc. Nevertheless even if we restrict ourselves to the action of PGL2, the
space of formal compactifications in IV.4.8.iii, given r, is only a Gm × Api−2, so
there is a difference of 2pi − 2 dimensions, while in IV.4.8.iv, the difference is,
2qi − 1 dimensions. Now in IV.4.7. (d), we’ve said that the dimension up to
local analytic isomorphism in IV.4.8.iii is 2pi − 3, but this includes the action of
PGL2(C), so the difference is 2pi − 2, on allowing germs of analytic isomorphism
of the disc. These analytic isomorphism classes are precisely a result of the
obstruction to the analytic convergence of the weak branch of the node, i.e. of an
invariant x-axis, through either of the singularities on the invariant fibre, with the
dimension of the obstruction at either singularity being pi−1. Consequently, the
compactification data in IV.4.8.iii is generically (i.e. there are some subtilties
if r is unipotent) the combination of the formal class with fixed isomorphism
on ∆ and the said obstructions. Similarly, due to the symmetries in IV.4.8.iv,
the dimension of the obstruction to the convergence of one, whence either, weak
branch is 2qi − 1, and the same conclusion holds. An explicit description of the
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local analytic structure, as opposed to the subterfuge of meromorphic extension
in IV.4.8.iii, can be found in [MR].

The discussion on compactification completed, we may summarise all of this
by way of noting it within the classification of foliations of Kodaira dimension 1,
i.e.

Case IV.4.4(ii) (Riccatti foliations) If the generic fibre of the Kodaira fibration
π : X → B̃ is a rational curve, then the foliation (X,F) is the moduli of its
Gorenstein covering stack (X ,F), which in turn is defined by the following data,

(a) A finite map p : B → B of generically scheme like smooth stacks.

(b) A possibly empty collection of closed points b1, · · · , bn of B which are either
scheme like or of order 2, with associated weights p1, · · · , pn ∈ N which are
arbitrary at scheme like points, even otherwise, and satisfy,

p1deg(b1) + · · ·+ pndeg(bn) > χB

(c) A representation r : Γ := π1(B\{b1, · · · , bn}) → PSL2(C) faithful on any
elements of Γ of finite order.

(d) A compactification data of the form IV.4.8.i-iv of the foliated classifying
stack [P1 × U → P1/Γ], where U is the universal (and necessarily scheme
like by (c)) cover of B\{b1, · · · , bn}, with Γ acting diagonally by way of r.
In particular the compactification X → [X/F ] exhibits X as a P1 bundle,
π : X → B in the étale topus of B with moduli the Kodaira fibration.

If this description seems rather lengthy, it is because it is illustrative of the stacky
nature of the theory, and the importance of the Gorenstein covering stack in par-
ticular. In fact, any invariant curve inside the canonical model of a foliation of
general type will have for the specialisation of the foliation to it’s normal cone,
a Riccatti foliation with invariant hyperplane at infinity, so that the complexity
of the description is a reflection of some of the complexity of foliations of gen-
eral type. Furthermore, there is plainly very little difference between Riccatti
foliations in the category of projective varieties, and the 2-category of algebraic
stacks. Indeed the only differences that may occur are rather trivial, i.e. in (a)



Canonical Models of Foliations 961

B need not be generically scheme like, in (b) the bi need not be scheme like, but
the compactification data would remain the same up to a more general notion of
flipping fibres and/or rendering the fibre less scheme like, which could also occur
by dropping the unique condition in (c). As such, we learn that several things
that one might hope to be true are actually false, e.g.

Corollaries IV.4.10. A rather different pattern of behaviour to standard Mori
theory and/or foliated Kodaira dimension 0 emerges, i.e.

(a) The Gorenstein covering stack need not admit an étale covering by a pro-
jective surface.

(b) There is no integer n such that K⊗n
F is a line bundle on X for all Riccatti

foliations (X,F).

(c) On the plus side, however, there is a covering h : S → X of the Gorenstein
covering stack by a smooth algebraic surface with at worst ramification
along an invariant fibre. As such the induced canonical bundle is h∗KF ,
i.e. h is étale in the foliation direction.

Proof Suppose (a) were false, and S → X was an étale cover, then the Kodaira
fibration S → C would give an étale cover of B by an honest curve, which is
nonsense since B is arbitrary. In fact if we take for B the simply connected stack
whose moduli is P1, with a non-scheme like point of order m over the origin and
glue it to a singular fibre at infinity with p = 2, then, as a bundle on B, KF has
degree, 1 − 1

m , which also proves (b). Finally (c) holds because B\{b1, · · · , bn}
has finite étale covers by honest curves.

Should, however, the generic fibre of the Kodaira fibration be elliptic, then
the corresponding discussion is decidedly more straightforward. Again, outside
of any singular and or invariant fibres, the foliation is given by a representation in
the automorphism group of an elliptic curve. As such the conformal structure on
the fibres cannot degenerate, so that no fibre is a canonical model of an Ãn, n ≥ 2,
a D̃n, n ≥ 5, or indeed a rational curve with a cusp. As such the tabulation of
IV.4.5 not only reveals that the Gorenstein covering stack p : X → X is smooth,
but also that the induced foliation (X ,F) is a smooth foliation. Better still to
the Kodaira fibration π : X → B, there corresponds a smooth map of smooth
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stacks, π : X → B with the same moduli. Since, however, fibres of the Kodaira
fibration may now be multiple even if X is smooth, it follows that X → B differs
from X → B both at fibres through singularities of X, and multiple fibres. As
such, π : X → B is an elliptic fibres bundle with typical fibre E, and we have the
exact sequence,

1 −→ E −→ Aut(E) −→ µn −→ 1

where n is 2,4, or 6 (in fact 2 unless E is the curve with automorphic complex
multiplication by µ4, respectively µ6). In particular, any finite cyclic sub-group is
either contained in E, or disjoint from E, so there is a finite étale cover q : C → B
whose fibres over non-scheme like points are either: wholly non-scheme like if the
non-scheme like point on B arises from a multiple fibre, wholly scheme like if it
arose from a singularity of X. Consequently, the étale cover,

S := X ×B C

is a scheme, or, if one prefers: the canonical model (X,F) admits an almost étale
cover, (S,F) → (X,F), by a smoothly foliated smooth surface, and the induced
Kodaira fibration, π : S → C has no fibres whose reduction is singular. Better
still the fact that the foliation F on S is smooth, forces KF to be a bundle on C,
so all multiple fibres are invariant.

This suggests that we move the phenomenon of multiple fibres to the com-
pactification data, since they are contained in the set {c1, · · · , cn} of invariant
fibres, and since KF is a bundle on C, the map ωC → KF vanishes along Sci to
some integral multiple pi of Sci , so that the condition for Kodaira dimension 1
reads,

p1 + · · · pn > χC

While, as before we have a representation,

r : Γ := π1(C\{c1, · · · , cn}) −→ E

To determine the compactification data, at least for non-multiple fibres, we can
have recourse to IV.4.8 on viewing E as a quotient of Gm, so none of the subtleties
of IV.4.9 occur, i.e. formal and analytic data coincide, whence for fixed r, the
data is a Gm × Api−2 (trivial if pi = 1). In the multiple case, we can view
it as a quotient of this case by Z/n for a suitable n, and on computing the
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consequences of the various constraints find that the space of compactification
data is unchanged, which we may as well note by way of,

Data IV.4.11. The isomorphism class of the foliation around a punctured neigh-
bourhood of an invariant fibre of S has for each n ∈ N a compactification by a fibre
of order n, and the space of such compactifications is isomorphic to a Gm×Api−2

(trivial if pi = 1).

All of which may be summarised via its place in the classification, i.e.

Case IV.4.4(iii) (Turbulent foliations) If the generic fibre of the Kodaira fibra-
tion π : X → B is an elliptic curve then (X,F) has an almost étale Kummer
covering, (S,F) → (X,F) by a smoothly foliated smooth surface arising from a
Kummer covering C → B such that the induced foliation is described by,

(a) A possibly empty collection of points c1, · · · , cn of C, with associated weights
p1, · · · , pn satisfying,

p1 + · · · pn > χC

(b) A representation r : Γ = π1(C\{c1, · · · , cn}) → E, where E is an elliptic
curve.

(c) A compactification data of the form IV.4.11 of the foliated classifying stack
[E × U → E/Γ], where U is the universal cover of C\{c1, · · · , cn}.

Better still the Kummer covering is the quotient of this data by a group of
automorphisms isomorphic to Z/n, for n one of 1,2, 3, 4, 6, all of which may
occur, albeit 4 requires j invariant 1728, and 3 or 6, j invariant 0.

In particular, none of the complication of IV.4.10 occurs, and as one might
expect things just keep getting easier as the genus of the generic fibre of the
Kodaira fibration increases. Indeed by IV.4.5, should the genus be at least 2
then the canonical model X is smooth, as is the foliation, nor does the Kodaira
fibration have multiple fibres since a hyperbolic curve cannot be invariant and
have degree 0 along KF . Consequently we may note,

Case IV.4.4(iv) (Final Case) If the generic fibre of the Kodaira fibration π :
X → B is hyperbolic, then (X,F) is a smooth foliation on a smooth surface
everywhere transverse to π. As such KF = π∗ωB, so B is hyperbolic, and after
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a finite étale cover B̃ → B, the induced foliation is a product C × B̃ → C,
with fibres B̃, for some higher genus curve C. Other foliations which are iso-
trivial families of genus at least 2 over non-hyperbolic basis have already been
implicitly noted previously, and occur for empty compactification data of finite
representations.

It should, therefore, be clear, that the natural language for cases IV.4.4.ii-iv,
and to some extent even IV.4.4.i is algebraic stacks. Essentially the full gambit
of additional complication that might occur on studying canonical models of
arbitrary stacks is not substantially greater than IV.4.4.ii. Plainly, the basic
strategy of proceeding via the structure of the generic fibre changes little, with
the only real issue being that there are countably many simply connected 1-
dimensional parabolic stacks, albeit that these can clearly be treated as Riccatti
foliations with extra structure. Indeed this extra structure is often simplifying,
as in the quasi-projective case where there is nothing to add to or list except
for the generic fibre being A1 or Gm, which are just Riccatti foliations with half,
respectively all, of the complication of IV.4.9 removed.

IV.5. Sporadic foliations

We begin with a lemma which shows that we have a stark choice i.e. if
ν(X,F) = 1, where as ever (X,F) is the canonical model of a foliated surface
then either κ(X,F) = 1 or κ(X,F) = −∞. Specifically we prove,

Proposition IV.5.1. Hypothesis as above if κ(X,F) ≥ 0 then in fact κ(X,F) =
1, so that in particular the classification is as per IV.4.4

Proof. Suppose indeed κ(X,F) >= 0, then there is an effective Q-Cartier divisor,∑
ai Ci, say, where Ci are irreducible curves which represents KF , and by IV.4.1

(X,F) is Q-foliated Gorenstein, and C2
i = Ci · Cj = 0 ∀ i, j. Now we consider

various cases.

Firstly suppose some curve C from amongst the Ci is an integral sub-curve of
F . Then either C meets the singular locus of X or it does not. Should C not
meet the locus where the underlying space X is singular then either C is an
elliptic curve or a rational curve with a node. In either case, KX· C = C2 = 0
and C is a divisor of elliptic fibre type. Alternatively C meets sing(X), and we
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may consider the unique minimal smooth resolution ρ : X̃ → X. The argument
of IV.4.5 goes through verbatim to establish that ρ∗C is again of elliptic fibre
type, or the special rational fibre at the end of the proof. However this latter
certainly moves in a 1-dimensional family. However if q(X) > 0 then the rational
fibration determined by C is the Albanese, so certainly in this case k(F) = 1.
Now it is well known that a divisor of elliptic fibre type on a surface of positive,
KX , Kodaira dimension must arise from an elliptic fibration, and so in this case
we may conclude. However, cf. [R], this is probably the least attractive part of
ordinary classification, and in addition is not true for rational surfaces. Whence
we will prove:

Divertimento IV.5.1 (bis) Let D on X̃ be a divisor of elliptic fibre type such
that Dred is invariant by F̃ then KF has Kodaira dimension 1, and the KF -
Kodaira fibration is an elliptic fibration.

Proof. By IV.4.5 it suffices to show that the foliation has Kodaira dimension 1.
We consider cases according to the irregularity. Observe that if the foliation is a
fibration, then by Zariski’s lemma it is an elliptic fibration and so we need only
consider, q(X̃) = 2 and h0(KF̃ ) = 1, q(X̃) = 1 and h0(KF̃ ) = 1, or q(X̃) = 0.
In either of the cases q(X̃) > 0 the divisor D must be a genuine elliptic curve,
and the Albanese map must be to either an abelian surface or an elliptic curve.
Consider the case q(X̃) = 1, then we can suppose without loss of generality
that D is in the support of the map from ω

Alb(X̃)
→ KF . Indeed, we have a

commutative diagram of natural maps,

ωAlb(X)  Dred 
~ ωDred

k   Dred 

2

so the composite diagonal map is zero, and the Albanese fibration is the desired
fibration. Should q(X̃) = 2, we may reduce to the same situation after taking
étale covers, on replacing the Albanese map by the map from Alb (X̃) to the
image of D in the same obtained via Poincaré decomposition.

Thus by Riemann-Roch, we are reduced to studying the case where q(X̃) =
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pg(X̃) = 0. Call the image of Dred in (X,F), C, then for some m,n ∈ N we
must have, mKF = nC. Suppose that m,n have a common factor l, say, then
m = l m0, n = l n0 with m0, n0 ∈ N and, l(m0KF − n0C) = 0. So we may
pass to a cover which is étale in codimension 1, and apply IV.3.3 to conclude
without loss of generality (m,n) = 1. Now consider the cover in V(K−m

F ) defined
in codimension 2, corresponding to a mth-root of nC, and define a scheme Y by
taking OY to be the normalisation of OX in the function field of the same. This
gives us a finite cover ν : Y → X ramified over C, which locally in codimension 2
just corresponds to taking a mth-root of a local equation for C. Whence there is
a Weil divisor C ′ on Y such that, ν∗C = mC ′ as Weil divisors. Better still since
C is an integrable sub-curve on X, KG = ν∗KF , again a priori as Weil divisors,
but a postiori as Q-Cartier divisors since KF is Q-Cartier on X. The proof
of IV.3.3 only required that this identity be satisfied, so (Y,G) has canonical
singularities. Whence modulo passing to yet another cover, this time étale in
codimension 1 to kill any torsion, and appealing to the canonical model theorem
in its full generality for singular spaces we may assume without loss of generality
that, KF = nC.

We now distinguish various cases according to the type of C,

(a) C is an elliptic curve. By adjunction, as applied in IV.4.5, C does not meet
sing (X) and so (X,F) is foliated Gorenstein. Whence by III.1.4, KF̃ = ρ∗KF ,
and Riemann-Roch implies H1(X̃, KF̃ ) = 0. However C is contained in the
smooth locus of the foliation so we conclude to the absurdity that,

c1(C) ∈ Im {H1(X̃, KF̃ )∨ → H1,1(X̃)}

(b) ρ∗C is a rational curve with a node or an elliptic polygon. This is similar
to (a). Again (X,F) is foliated Gorenstein, and KF̃ = ρ∗KF = nD, where D is
the said elliptic divisor, so that once more Riemann-Roch gives H1(X̃, KF̃ ) = 0.
Now in general an elliptic polygon is not in,

Im{H1(X̃, KF̃ )∨ → H1,1}

However in this particular case D is properly the Dynkin diagram Ãn, i.e. all
components have self intersection −2, and an explicit calculation using I.3.1 shows
that this can only happen if the eigenvalue at each singularity is−1. Consequently
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the obstruction posed by the residue map is zero, so we once more have the
absurdity that D is zero in H1,1.

(c) The elliptic divisor D corresponding to the appropriate multiple of ρ∗C is
one of the Dynkin diagrams D̃n, n ≥ 4, Ẽ6, Ẽ7, Ẽ8.

Since every component of D has self intersection −2 and (X,F) is Gorenstein
off D we have KF̃−Dred = ρ∗(KF−C), and D2

red = −2. Consequently Riemann-
Roch gives χ(X̃, KF̃ ) = 0, and whence, h1(X̃, KF̃ ) = 1. As ever consider the
dévissage defining the foliation, i.e.

0 → N → Ω1
X̃
→ KF̃ · IZ → 0

for Z the singular subscheme of F̃ , then we get an exact sequence,

0 → H0(X̃, KF̃ · IZ) → H1(X̃, N) → H1,1 .

Now D is certainly in the image of the last map whether by explicit calculation, or
the fact that the number of curves exceeds the number of singularities. However
h1(X̃, N) = 1, so there must be foliation singularities, say Z ′, other than those
supported in D. The next thing we observe is that for m À 0, H0(X̃, KF̃ +
Dred(−mD)) = 0, so that Riemann-Roch gives H0(X̃, N(−Dred + mD)) 6= 0. In
particular for some effective divisor E, possibly zero, supported off D, mi ∈ Z, and
Ci curves supported in D, N = E+

∑
miCi. However ρ∗KF ·N = 0 = ρ∗KF ·Ci,

so ρ∗KF · E = 0, and E must be supported on −2 F curves. Denoting by X ′

the contraction of the −2 F curves off D, we therefore have that N (−∑
miCi)

is a torsion Q-Cartier divisor on X ′, so modulo an almost étale cover we can
suppose that N (−∑

mi Ci) is Cartier, which obliges any −2 F curve to have self
intersection −2, and E to be zero. Consequently without loss of generality we
have a global meromorphic 1 form ω in N with poles at most on D, so naturally
dω is a 2-form with poles of the said form and the issue is whether it’s zero or
not. Now there are definitely foliation singularities off D on X̃, and by Zariski’s
lemma N is a negative multiple of D, and D comes from H1(X, N), so the residue
of N at every singularity off D is zero. However, quite generally, the image of
c1(N) under the residue map is to 1st order the trace of the linearisation of the
vector field at the singularity, so all the eigenvalues off D must be −1, whence
if dω 6= 0 there is a non-zero effective Cartier divisor E supported off D, and
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mi ∈ Z with as before Ci curves supported in D such that, KX = E +
∑

miCi

and again KF · KX = KF · Ci forces E to be supported on −2 F curves, so
once more modulo an almost étale cover E = 0, which is absurd unless the cover
destroys the foliation singularities off D, which we might as well assume doesn’t
happen, so without loss of generality ω is closed. Given that ω has meromorphic
poles, it’s class in H1

DR(X̃\D) is non-zero, unless we have an elliptic fibration
in which case we’d be done, so without loss of generality (X̃, D) has non-trivial
logarithmic Albanese. However here we have a dévissage of the form,

0 → N(Dred) → Ω1(log Dred) → KF · I ′ → 0

where I ′ is a non trivial ideal with O
X̃

/I ′ supported off D, so in fact h0(X̃, KF
I ′) = 0, and by the closure of global forms with logarithmic poles, the foliation
must again be an elliptic fibration.

(d) Otherwise. There are 3 remaining possibilities for the elliptic divisor D by
IV.4.5. In all of these C̃ is an exceptional curve of the 1st kind, KF̃ = ρ∗(KF +
C)− C̃ so again χ(X̃, KF̃ ) = 0, whence (c) goes through verbatim.

Consequently no curve C from amongst the Ci is an integral sub-curve, and
indeed for any C in the support of KF with ρ : X̃ → X as above, and C̃ its
proper transform we may appeal to the proof of II.4.1 and III.1.1 to conclude
that in fact, (KF̃ + C̃)·C̃ = (KF + C)·C = 0. Better still,

(a) F̃ is smooth in a neighbourhood of C̃.

(b) O
C̃
(−C̃) embeds as a line bundle in Ω1

X̃
⊗O

C̃
, so in fact C̃ is smooth.

(c) KF (C) is Cartier, equivalent to a Q+ multiple of the Q-Cartier divisor C.

In particular (X,F) is foliated Gorenstein iff C is Cartier, which is in fact
iff X̃ is isomorphic to X around C, but all we’ll really use is that the minimum
integer n such that OX(nKF ) or OX(nC) is Cartier is the same for KF and
C. In any case TF (−C) is also Cartier, so for a suitable open cover indexed by
α ∈ A, let ∂α be a local generator for TF (−C) and xα the same for OX(−nC).
Call the respective transition functions gα β and fα β then,

∂α xα

xα
=

∂α fαβ

fαβ
+

∂α xβ

xβ
= gα β

∂β xβ

xβ
(mod IC)

and so ∂α log xα gives a global section of OC(KF + C), which outside of the
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singularities is just n-times the usual section given by adjunction. Consequently
it’s non-zero, and gives an isomorphism OC

∼−→ OC(KF+C) since (KF+C)·C =
0 forces it to be nowhere vanishing. Now for k ∈ N, let Xk be the thickening of
C in X by the kth symbolic power I(k)

C = OC(−kC), and let’s set about proving
by induction that ∂α log xα also gives an isomorphism OXk

∼−→ OXk
(KF + C).

Quite generally we have exponential type sequences,

0 −→ I(k)
C /I(k+1)

C

exp=1+x−→ O∗Xk+1
−→ O∗Xk

−→ 0

H0(O∗Xk
) δ−→ H1(C, I(k)

C /I(k+1)
C ) −→ Pic(Xk+1) −→ Pic(Xk) −→ 0 .

where the latter is deduced from the former. The basic fact to note is,

Fact. Im(δ) is a sub complex vector space of H1(C, I(k)
C /I(k+1)

C ).

Indeed for any ρ ∈ C, and h ∈ OXk+1
congruent to 1 modulo IC , we can define

hρ by the usual Taylor expansion, so that indeed if g is another such function,
(hg)ρ = hρ gρ. On the other hand if h ∈ H0(O∗Xk

) then its restriction to C is a
global unit, so a constant, say λ ∈ C× and δ(h) = δ(h/λ) + δ(λ) = δ(h/λ), so
to calculate δ(h) we can suppose without loss of generality that it’s congruent to
1 modulo C. Lifting h with respect to our cover to O∗Xk+1

gives pα ∈ IC with

h = (1 + pα), and (1 + pα)(1 + pβ)−1 = 1 + pαβ , for pαβ ∈ I(k)
C /I(k+1)

C a 1 cocycle
representing δ(h). However (1 + pα)ρ(1 + pβ)−ρ = (1 + pαβ)ρ = 1 + ρ pαβ , so
δ(hρ) = ρ δ(h), and we’re done.

Now let’s offer the precision that our cover is in the étale topology. For
some positive integers p and q we have that p(KF + C) = q(nC) on X, so our
induction hypothesis gives that for a q-torsion valued cocycle ζαβ and a 1-cocycle
hαβ ∈ I(k)

C /I(k+1)
C we have, fαβ = ζαβ(1 + hαβ). Equally for some function uαβ ,

hn
αβ = uαβ xk

β in OX , so that ∂α xα
xα

= exp
(

k
n hαβ

)
gαβ

∂β xβ

xβ
. Consequently if

L is the bundle with transition functions exp
(
−hαβ

n

)
then, ∂α log xα, gives an

isomorphism OXk+1

∼−→ OXk+1
(KF + C) ⊗ Lk. From which we obtain, Lkp ∼−→

O(−q n C) ∼−→ L−nq, so: (nq + kp)L = 0, and by our vector space fact we’ve
finished our induction. Better still since C is Q-Cartier the symbolic powers are
certainly co-final in the IC-adelic topology, so if X̂ is the completion of X in
C then Pic(X̂) = lim←−Pic(Xk) and so in fact we’ve established that the Hilbert
scheme of X has positive dimension in a neighbourhood of q n C (just consider
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the family 1IqnC = const). Whence there is a curve A, a family of curves ν : Y → A

with nC as a fibre, embedding in X × A, such that the projection µ : Y → X is
dominant, and µ∗KF is an effective Q-Cartier divisor whose intersection with the
generic fibre of A is zero. Whence if Y # and A# are the respective normalisations
of Y and A then KF |Y # is the pull-back of a Q-Cartier divisor on A# so that
KF has Kodaira dimension 1 as required.

Next keeping to the hypothesis ν (X,F) = 1, we do the irregular case, i.e.

Lemma IV.5.2. If (X,F) is the canonical model of a foliated surface which is
not a fibration by rational curves and ρ : (X̃, F̃) → (X,F) the unique smooth
resolution, such that the underlying space X̃ has q(X̃) ≥ 1, then κ(X,F) ≥ 0.
Nor can the foliation be a fibration if κ(X,F) = −∞.

Proof. We recall as in IV.3.1 that by restricting global holomorphic 1-forms to KF̃
we see that the lemma is trivial, unless h0(X̃, N) ≥ 2 if q(X̃) ≥ 2 or h0(X, N) = 1
if q(X̃) = 1, where as ever 0 → N → Ω1

X̃
is the saturated map defining the

foliation. In the first case a well-known lemma of Castelnuovo, cf. [B1], implies the
foliation is a fibration while in the second case it must be the Albanese fibration.
In either case the quotient space X̃/F̃ exists by virtue of the singularities being
canonical, and better still the quotient map π : X̃ → B := X̃/F̃ admits a
factorisation through π : X → B where B is equally X/F and of course B is a
smooth curve.

Now if π is an elliptic fibration then we may conclude by IV.3.1 and IV.4,
otherwise the generic fibre has genus g ≥ 2, and we’re basically in the situation
of a theorem of Arakelov, cf. [S2], which even works, and in fact with a simpler
proof, in positive characteristic, albeit that in op.cit. the fibration X → B is
assumed to be semi-stable. This is, however, a limited problem. Indeed consider
a semi-stable reduction of the fibration π, viz:
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X̃ ←−−
ν

Ỹ ↘
π
y π

y Y

B ←−−
ν

C ↙

with induced foliation/fibration G̃, G on Ỹ and Y respectively. The map ν is
ramified only in fibres and is chosen in such a way that blowing down exceptional
curves of the 1st kind in the fibres leads to a non-singular Y fibring over C with
semi-stable fibres. From the foliation point of view Y is the minimal smooth
resolution of the canonical model, and Arakelov’s theorem asserts that K2

G > 0
unless the fibration is isotrivial. The map ν being ramified only in fibres implies
KG̃ = ν∗KF , and (Y,G) has canonical singularities so we know that KG̃ is big, if
the fibration is not isotrivial. Better still bigness is equivalent to strict positivity
on the closed cone of nef. R-divisors, and ν∗ : NS1(X̃)R → NS1(Ỹ )R gives an
injection of the said cone on X̃ into that of Ỹ , so if KG̃ is big then KF̃ is big.
Consequently the fibration is isotrivial. Since KG is Cartier we may appeal to
IV.4.4, to find curves D on Ỹ with KG̃ ·D = 0 = KF · ν∗D, so from what we’ve
classified already X → B isn’t just isotrivial but is a product after an almost
étale cover.

We are therefore left to investigate the possibility of ν (X,F) = 1, and
κ(X,F) = −∞ on regular surfaces. This can indeed happen, i.e.

Example IV.5.3. Let (X,F) be a smooth foliated surface with ν (X,F) = 1
and κ(X,F) = −∞ then X is uniformised by the bi-disc, and indeed the natural
foliation on any smooth surface X which is uniformised by the bi-disc is of this
type unless it is isogenous to a product of curves.

Rather than offer a proof, let’s prepare the way for a singular variant with,

Lemma IV.5.4. Let (X,F) be a foliated smooth surface, and Z a cyclic configu-
ration of smooth rational integral sub-curves or a single rational integral sub-curve
with a node such that KF · Zi = 0 for any component Zi of Z then (X,F) has
canonical singularities in a neighbourhood of Z or (X,F) is a pencil of rational
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curves. In particular in the former case Z is an egl.

Proof. Suppose for simplicity that Z has more than one component. The condi-
tion KF · Zi = 0 forces the support of sing(F) = sing(Z) near Z. Now a canonical
resolution is obtained by blowing up in points of sing(F)(C). If we blow up in such
a point then either the discrepancy is zero, and there is a new cycle consisting
of the proper transform of Z and the exceptional curve which satisfies the same
hypothesis, or the discrepancy is negative. If (X,F) is not a rational pencil this
discrepancy must be −1. We therefore obtain a chain of invariant rational curves
all of which intersected with the canonical class give 0, and curves at either end
intersecting in −1. Manifestly, we may assume that the singularities at either end
are canonical. Blowing up in any singular point not at the ends doesn’t change
this configuration if it has zero discrepancy. Otherwise as before the discrepancy
must be −1, and we can take a sub-chain of the same type. However in doing
this we eventually arrive at the situation of canonical singularities and so we are
done by III.1.2.

Now let us turn to our singular variant,

Example IV.5.5. Let (X,F) be a foliated surface with canonical singularities
and underlying space non-singular on which every singularity is contained in an
elliptic Gorenstein leaf then ν (X,F) = 1 and κ(X,F) = −∞ iff (X,F) is an
almost étale cover of one of the natural foliations on a Hilbert modular surface
(which is not a fibration by algebraic curves).

Proof. Consider a Hilbert-Modular as a quotient of H2 and consider the foliations
arising from the splitting. Now consider the same on the Baily-Borel compact-
ification, and call it (Y0,G0) with ν : (Y,G) → (Y0,G0) an almost étale cover
which kills the quotient singularities, and π : (Y ′,G′) → (Y,G) a resolution of the
cusps, with Z the reduced divisor contracted by π, then Ω1

Y ′(log Z) = KG ⊕M

for some line bundle M , and if (Y,G) is not a fibration then the lemma obliges
the singularities of either foliation to be canonical, and so both KG and M are
nef. However global 1-forms with log-growth are still closed so the Bogomolov-
Castelnuovo lemma can be generalised to oblige neither KG nor M to be big.
In particular therefore K2

G = M2 = 0. So the previous considerations of our
classification imply that κ(Y0,G0) = −∞.
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For the converse we put Z equal to the union of the e.g.l.’s then the hypothesis
force the foliation to be log smooth, i.e. given by an exact sequence,

0 → M → Ω1
X(log Z) → KF → 0 .

Further by a variation of I.3.1 we have M2 = 0, and KF is certainly nef.
We wish to prove, à la IV.1.5, that M is nef. Observe that if for some curve C,
M ·C < 0 then for a suitable ε > 0 we have, (M−εC)2 > 0, and KF ·(M−εC) =
c2(Ω1

X(log Z))− εKF ·C. This will certainly contradict the aforesaid Bogomolov-
Castelnuovo estimates, if we can guarantee c2(Ω1

X(log Z)) = KF ·(KX + Z) =
KF · KX is positive. Suppose otherwise, and observe that by IV.5.2 X is a regular
surface, so we have an exact sequence:

0 → H0(X, KX) → H0(X,OX(KX + Z)) → H0(Z, ωZ) → 0 .

By hypothesis H0(Z, ωZ) ∼−→ H0(Z,OZ) whence KX + Z is effective, and

since KF 6= 0 but nef., we must have OX(KX +Z) ∼−→ OX , so by Riemann-Roch,

χ(X, KF ) = χ(X) > 0, since X is regular, which is absurd. Thus c2(Ω1
X(log Z)) >

0, and M is nef. In particular therefore KX + Z is nef. and for any curve C,
KX + Z·C ≥ KF · C. However if C is not in the support of Z then KF · C = 0
implies C2 ≥ 0, as (X,F) is the minimal resolution of a canonical model, which
would force KF to be effective by the index theorem. Consequently we have,

(a) (KX + Z)·C > 0 for all curves C outside the support of Z.

Furthermore, (KX + Z)2 = 2c2(Ω1
X(log Z)) > 0 and KF · (KX + Z) > 0, so,

(b) KX + Z is big.

Whence by [TY], Ω1
X(log Z) admits a Kahler-Einstein metric, which forces the

decomposition Ω1
X(log Z) = M ⊕KF and the claimed isomorphism.

We now proceed to show that the above examples are all essentially that
may occur, including working in the full generality of Hilbert-Modular surfaces,
where the canonical model has quotient singularities arising from contracting
−1 F chains. As ever ρ : (X̃, F̃) → (X,F) is the unique desingularisation of
a canonical model, with of course ν (X,F) = 1 and κ(X,F) = −∞. In par-
ticular ρ∗KF is a pseudo-effective Q-Cartier divisor, and so by [D], it admits a
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singular metric, such that if ρ∗KF denotes the said divisor with metric then,
c1(ρ∗KF ) ≥ 0 where the inequality is understood in the sense of currents. Now
ν(F) = 1, so K2

F = 0, and c1(ρ∗KF ) 6= 0, so if it were defined c1(ρ∗KF )2 = 0.
This suggests that we can define a foliation or lamination in some real sense as the
kernel of c1(ρ∗KF ), which if it were holomorphic would give a transverse holo-
morphic structure to F . Indeed this is exactly what the Kodaira fibration does –
except in the case of elliptic fibrations where they coincide – and it’s exactly the
interplay between the fibration and the foliation that leads to the classification.
A priori, the suggestion that the kernel of a smooth positive, yet degenerate,
(1, 1) form could lead to a holomorphic structure is somewhat outrageous. Such
things go under the name of Monge-Ampère foliations, and there is a litany of
counterexamples, cf. [Mo]. However if KF were another metricisation, and ev-
erything made sense, then c1(ρ∗KF ) ∩ c1(ρ∗KF ) = 0, so such a kernel ought to
be unique, whence morally at least continuous. Indeed we can even make a good
moral argument for holomorphicity. So let’s do this, starting with,

Definition IV.5.6. Let (X,F) be a foliation by curves on a non-singular variety
X and L = (L, ‖ ‖) a line bundle with metric then we define the Chern class of
L along F to be,

cF (L) =
−1

2π
√−1

∂(∂F log ‖s‖2)⊗ ∂∨F

where s is a local section of L, and ∂F a local generator of TF . If the metric
is smooth cF takes values in A0,1

X ⊗KF , or more generally D0,1
X ⊗KF , i.e. dis-

tributions, or whatever according to the regularity class. Indeed at the level of
Dolbeault cohomology cF (L) is the restriction to H0,1

∂
(KF ) of c1(L) in H1,1

∂
.

Now consider a smooth point of the foliation on (X,F) (let’s say we’re back
to surfaces again for simplicity) then we can find coordinates x, y with ∂F = ∂/∂x

a local generator for the foliation, and whence a non-canonical identification of
dx dx dy dy with dx dy dy ⊗ ∂∨F with respect to which,

c1(L)2 = 1/2 c1(L) ∧ cF (L)

modulo the equation making sense, e.g. c1(L) having L2-coefficients. One can
make a more complicated formula at the singular points, but the important thing
is that a singularity makes the right hand side smaller.



Canonical Models of Foliations 975

To fix ideas let’s suppose momentarily that (X̃, F̃) = (X,F), and that KF
admits a smooth positive semi-definite metric then certainly, c1(KF )∧cF (KF ) =
0 everywhere, and the 1-form defining the hoped for transverse structure is the
conjugate of cF (KF ). We can use the Bochner technique to show holomorphicity.
Siu’s ∂∂ formulation, [Si2], is convenient. Specifically if e−2ϕ is a local weight for
the metric then since cF (KF ) is ∂-closed,

√−1
2π ∂∂(e−2ϕ cF (KF ) ∧ cF (KF )) = −√−1

2π ∂{e−2ϕ cF (KF )∇cF (KF )}
= −√−1

2π e−2ϕ∇cF (KF ) ∧∇cF (KF )

+e−2ϕ cF (KF ) ∧ cF (KF ) c1(KF ).

So if ν(F) = 1, the curvature term should vanish, the left hand side integrates
out to zero and we obtain,

∫

X
e−2ϕ∇cF (KF ) ∧∇cF (KF ) = 0 .

On the other hand, cF (KF )∧c1(KF ) = 0, from which∇cF (KF )∧c1(KF ) = 0.
Now suppose we’re somewhere p, say, on X where c1(KF ) doesn’t vanish and
write c1(KF ) at p as dx dx

−2π
√−1

, with dx dx+dy dy
−2π

√−1
the Kahler form then,

(a) ∇cF (KF ) ∧ c1(KF ) = 0 implies that there is no dy dy term in ∇cF (KF ).

(b) Which in turn says, e−2ϕ∇cF (KF ) ∧∇cF (KF ) > 0 at p, unless ∇cF (KF )
only has a dx dx term.

Putting everything together implies cF (KF ) ∧∇cF (KF ) = 0, and this is the
holomorphicity equation. So what exactly are the problems. Unfortunately they
are legion, namely:

(i) The Bochner formula appears to be unjustifiable without some sort of regu-
larity for the local weight ϕ. At the very least it looks like we need that it’s in
the Sobolev space W2,2 (here Wp,q means pth-derivatives being Lq) and maybe
even W4,2, whereas general nonsense only gives W1,2−ε.

(ii) We need to understand where cF (KF ) (equivalently c1(KF )) vanishes. Indeed
even in a smooth situation if cF (KF ) = f dx + g dy, say, in local coordinates x, y
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and g 6= 0 the holomorphicity equation gives ∂(f/g) = 0. However if both f and
g are zero, there’s some sort of pole that needs to be controlled.

(iii) The holomorphicity equation, cF (KF ) ∧∇cF (KF ) = 0 is non-linear, and as
Gromov pointed out to me it’s invariant under bumping, so it’s trivial to make
sequences of (1, 0) forms ωn converging to some distribution ω with ωn∧∂ ωn → 0
such that ω = 0 does not define a field of holomorphic lines.

(iv) Even if all went well, and the kernel was a well defined holomorphic foliation,
we have to exclude the possibility that it coincides with F .

Leaving (iv) apart, all of which certainly implies that we’re not going to
get anywhere without some a priori regularity. Returning then to the general
situation where ρ : (X̃, F̃) → (X,F) is the minimal smooth resolution of the
canonical model and ν(F) = 1, but κ(F) = −∞, the following observation is
fundamental,

Lemma IV.5.7. Notations and hypothesis as above then ∀x ∈ X̃, the Lelong
number ν (x, c1 (ρ∗KF )) = 0.

Proof. Suppose otherwise. Then for some ε > 0 the set,

Eε = {x ∈ X̃ | ν (x, c1 (ρ∗KF )) ≥ ε} 6= ϕ

and by the celebrated theorem of Siu, cf. [Si], it is in fact a closed analytic subset
of X̃. Whence there are two possibilities dim Eε = 1 or dim Eε = 0. Suppose the
former then by Siu’s decomposition theorem, cf. op.cit., there are real numbers
ν1, . . . , νk ≥ ε, curves C1, . . . , Ck and a positive (1, 1) current Tε such that,

c1 (ρ∗KF ) =
k∑

i=1

νi Ci + Tε

where Ci denotes in this formula the current of integration over the curve. Now
use duality to project everything into NS1(X̃)R, lowering the νi a little to ν ′i to
ensure that they are a rational we obtain a pseudo-effective Q-divisor T , such
that,

ρ∗KF =
k∑

i=1

ν ′i Ci + T
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at which point we may apply Zariski decomposition to T , and use the index
theorem to deduce that ρ∗KF is represented by a positive cycle. Since without
loss of generality X̃ is regular, this is absurd.

Otherwise Eε must have dimension 0, and indeed this must hold ∀ ε > 0, so
the subset, {x ∈ X̃ | ν (x, c1 (ρ∗KF )) > 0} is countable. However by [D], we
must have in this situation,

c1 (ρ∗KF )2 ≥
∑

x∈X̃

ν (x, c1 (ρ∗KF ))2

which establishes the lemma.

Although the vanishing of Lelong numbers represents some sort of regularity
it’s unfortunately very far from forcing the local weight ϕ of the metric to enjoy
anything near the kind of a priori regularity that would be required to force
the Bochner type argument through. Consequently, following Brunella, [Br4], &
[Br5], we look towards the obvious choice for metricising KF , namely the leaf wise
Poincaré metric. This is most naturally defined on the Gorenstein covering tack
X → X, where over the smooth locus U ⊂ X of F with ∂ a local trivialisation of
TF this is defined at x ∈ U by,

eϕ(x) = ‖∂‖(x) = inf
{

1
|R| : f : (∆, 0) → (U , x), f∗

(
∂

∂z

)
= R∂

}

For general nonsense reasons (i.e. everything which is Stein has a Stein neigh-
bourhood) the function ϕ is upper semi-continuous. Indeed, since we would like
ϕ to be pluri-subharmonic, the need for upper semi-continuity precisely demands,
[Br5], that the non-scheme like terminal points of X should be treated as being
smooth points of F , which, of course, they are in the stack sense. If one doesn’t
have recourse to X , then certainly ϕ can be defined on X by way of prescribing
the ramification of discs mapping to terminal points of F where X is singular,
with the ramification given by the determinants of the contracted −1F chains,
but this is somewhat artificial and fails to convey what is going on.

A priori, the Poincaré metric is only defined on U , but the first of the following
two facts permits its extension over the singularities of F ,

Facts IV.5.8. The Poincaré metric has the following critical properties,
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(a) ([Br5]) The local weight ϕ is pluri-subharmonic.

(b) ([M4] V.5.1) If K
X̃
· ρ∗KF > 0 then ϕ is locally bounded outside of finitely

many invariant algebraic curves.

Plainly, in our current context this is just what we need, since we know that
q(X̃) = 0, and so K

X̃
· ρ∗KF > 0 by Riemann-Roch. As it happens, one can

strengthen (b) to continuous, cf. op. cit., which for convenience we’ll suppose.
Further in this metricisation the kernel of c1(ρ∗KF ) has sense, viz:

Fact IV.5.8.bis. ([Br5]) Suppose that globally, K2
F = 0 and ϕ is locally bounded

around x ∈ U , then, around x, c1(KF ) is absolutely continuous.

Now we have a well defined kernel, and observe quite generally, in the nota-
tions of the proof that for any metricised line bundle L, with c1(L) absolutely
continuous and local weight ψ with ψxx 6= 0,

c1(L) =
π
√−1
ψxx

cF (L) ∧ cF (L) +
√−1

π

∆(ψ)
ψxx

dy dy

where ∆(ψ) = ψxx ψyy − |ψxy|2, and the formula is understood as a pointwise
identity of L1-functions. Applying this to KF with the Poincaré metric gives, off
the excluded algebraic set,

c1(KF ) = π
√−1 e−2ϕ cF (KF ) ∧ cF (KF ) .

Consequently if it were defined the Bochner formula would give a pointwise
identity; there being no need to integrate out the left hand side,

e−2ϕ∇ cF (KF ) ∧∇cF (KF ) = 0 .

In terms of local coordinates this amounts to, ∂
∂x

(
ϕyx

ϕxx

)
= 0, which in the pres-

ence of sufficient regularity is the standard holomorphicity equation for Monge-
Ampère foliations. The transverse holomorphicity usually being trivial thanks
to the identity ∂

∂y

(
ϕyx

ϕxx

)
= ϕxy

ϕxx

∂
∂x

(
ϕyx

ϕxx

)
which follows from ∆(ϕ) = 0. Our

strategy then will simply be to push this analysis through by way of appropriate
regularisation. Before getting under way, however, let’s observe that if we succeed
then we’ll get our desired transverse foliation G on all of X. Indeed away from
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the singularities and the algebraic invariant curves through them ϕ−1
xx = e−2ϕ is

still continuous, and G is defined by the 1-form,
ϕyx

ϕxx
dy + dx = 0

so it’s certainly transverse to F and not equal to it. Now consider a suitably
small polydisc ∆ meeting an algebraic invariant curve but not containing the
singularities, then we certainly still have foliation coordinates x, y, with y =
const., the foliation, and on ∆∗ = ∆\{said curve}, G is still given by the same
equation. Better still on ∆∗, e−2ϕ|ϕyx|2 = ϕyy and ϕ is Lp for all p < ∞ by the
vanishing of the Lelong numbers so if dµ is Lebesgue measure,

(∫
∆∗

∣∣∣ϕyx

ϕxx

∣∣∣ dµ
)2
≤ (∫

∆∗ |ϕyx| e−2ϕ dµ
) (∫

∆∗ e−2ϕ dµ
)

≤ ϕyy(1I∆)
∫
∆∗ e−2ϕ dµ < ∞

.

Whence if ϕyx

ϕxx
is holomorphic on ∆∗, it’s at worst meromorphic on ∆ with a

simple pole along the curve in question. Consequently G would be a well defined
foliation on X in codimension 1, and since X is normal, well defined everywhere.

So let’s justify the Bochner technique. Although everything is local it’s conve-
nient to keep the curvature notation c1, cF ,∇ etc., but this time we’ll write c1(ψ),
etc. for ψ a local weight, corresponding to a metric e−2ψ on KF . Furthermore f

will be a positive compactly supported function on a polydisc ∆ not containing
the singularities nor meeting an algebraic invariant curve through them. Ob-
serve, moreover, that the proof of IV.5.8.bis gives quite generally that if ϕk → ϕ

monotone, then, c1(ϕk) ∧ c1(ϕ) −→
w

0. On the other hand we have,

c1(ϕk) = π
√−1

cF (ϕk) ∧ cF (ϕk)
ϕk,xx

+
√−1

π

∆(ϕk)
ϕk,xx

dy dy .

Naturally we introduce λ(ψ) = ψxy

ψxx
, for any ψ, so that our previous observation

is equivalent to,

ϕxx ϕk,xx|λ(ϕ)− λ(ϕk)|2 −→
w

0 and
ϕxx

ϕk,xx
∆(ϕk) −→

w
0 .

In particular for ϕk → ϕ monotone obtained via regularising kernels in the
usual way, ϕk,xx ≥ e2ϕk ≥ e2ϕ so λ(ϕk) −→

w
λ(ϕ) in L2. Now consider the
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connection ∇k on KF corresponding to the metric ϕk
xx =

∥∥ ∂
∂x

∥∥2
. Then,

√−1
2π

∫
∆ f∂∂

{
cF (ϕk) cF (ϕk)

ϕk,xx

}
= −√−1

2π

∫
∆

f
ϕk,xx

∇k cF (ϕk)∇k cF (ϕk)

+
∫
∆ f · c1(log ϕk,xx) cF (ϕk) cF (ϕk)

ϕk,xx
.

Now ϕ−1
k,xx cF (ϕk) cF (ϕk) = 1

π2 ϕk,xx(dx dx + λ(ϕk) dy dx + λ(ϕk) dx dy

+ |λ(ϕk)|2 dy dy), and ϕk,xx → ϕxx in L∞ while λ(ϕk) → λ in L2, so the whole
thing goes weakly to, ϕ−1

xx cF (ϕ) cF (ϕ) which is closed. So in fact,

1
2π

∫

∆

f

ϕk,xx

∣∣∣∣
∂λ(ϕk)

∂x

∣∣∣∣
2

dµ = lim
k

√−1
∫

∆
f c1(log ϕk,xx)

cF (ϕk) cF (ϕk)
ϕk,xx

.

To estimate the integral on the right, observe that log ϕk,xx is monotone
decreasing to ϕ, so c1(log ϕk,xx) ∧ c1(ϕ) −→

w
0. Defining a curvature function,

G(ψ) = e−2ψ ∂2ψ
∂x ∂x for any suitable ψ we can write this as,

e2ϕ G(log ϕk,xx) ϕk,xx |λ(ϕ)− λ(log ϕk,xx)|2 −→
w

0

and
e2ϕ

ϕk,xx G(log ϕk,xx)
∆(log ϕk,xx) −→

w
0

while the integral we’re seeking to estimate is,
∫

∆
fG(log ϕk,xx)|ϕk,xx|2|λ(ϕk)− λ(log ϕk,xx)|2 dµ

π
+

∫

∆
f

∆(log ϕk,xx)
G(log ϕk,xx)

dµ

π

the latter integral easily tends to zero by what we already have, and the former
will also easily be so on obtaining an upper bound for the curvature. Denoting
by Φk(x) = sup

x∈∆
sup {ϕ(y) | ρk(|x − y|) 6= 0} where ρk is the symmetric bump

function giving the convolution, we have,

|G(log ϕk,xx)| ≤ 2 e2Φk

e4ϕ
‖ϕx‖L2 +

e4Φk

e4ϕ

since |ϕxy|2 = ϕxx ϕyy, the Garding inequality implies that ϕx is L2 so indeed
the curvature is bounded above, and whence,

∂

∂x
(λ(ϕ))(f) = lim

k

∫
λ(ϕk) fx dµ = lim

k

∫
∂

∂x
(λ(ϕk)) f dµ = 0 .
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For the transverse direction the basic fact is that c1(ϕ) = π
√−1 cF (ϕ)∧cF (ϕ) e−2ϕ

is closed, which in terms of our test function f gives two sets of equations,
∫

∆
fy λ(ϕ) e2ϕ − fx|λ|2 e2ϕ dµ = 0 and

∫

∆
fy e2ϕ − e2ϕ λ(ϕ) fx = 0 .

Now for notational convenience put λ = λ(ϕ) and take regularising convolutions
ϕk → ϕ, λm → λ, λn → λ (n.b. λm 6= λ(ϕm), it’s just a convolution of λ) then
possibly after subsequencing the 1st of these converges weakly in L∞, the other
two weakly in L2. Certainly (λm)x = 0, and the following limits irrespective of
the ordering in k, m, and n go to zero, viz,

∫
(λm e2ϕk)y f − (λm λn e2ϕk)x f dµ and

∫
(e2ϕk)y f − (e2ϕk λn)x f .

However, (λm e2ϕk)y f−(λm λn e2ϕk)xf =(λm)y e2ϕk f+λm f(e2ϕk)y−λm f(λn e2ϕk)x,
so fixing m and replacing f by λm f in the second integral gives,

lim
m→∞

∫

∆
e2ϕ f(λm)y dµ = 0 .

Now since ϕ is continuous and psh, we may subsequence so that e2ϕk has a weak
limit in W1,2 say e2ϕ by a possible minor abuse of notation, and e2ϕkf −→

w
e2ϕf

again in W1,2 so, ∫

∆
λ(e2ϕf)y dµ = 0 .

Given that f is arbitrary, the space of functions e2ϕf is dense in W1,2 so indeed
λy = 0, and ϕ−1

xx ϕyx is holomorphic on ∆.

At this point we have found our foliation G, and we’ll work on the minimal
smooth resolution ρ : (X̃, F̃) → (X,F). Denote by D the tangency divisor
between F̃ and G̃ which we’ve shown to be F̃ invariant with simple poles, so it
is the same for G̃ and Ω1

X̃
(log D) splits as KF̃ ⊕ KG̃ . Now denote by NF̃ and

NG̃ the respective logarithmic conormal bundles with sF̃ (C), resp. sG̃(C) the
Segre class along sing(F), resp. sing(G), of any curve while for C ∈ D, put
s(C, D) = D · C − C2, i.e. the number of curves in D meeting C, then, for
C ⊂ |D|, we have,

KF̃ · C = −sG̃(C) + s(C, D) ≤ 0

and similarly for KG̃ · C, irrespective of whether the latter has canonical singu-
larities or not. To conclude that we really do have a Hilbert-Modular surface
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with the natural foliations there on, the first step is to show that G̃ has canonical
singularities. Observe any singularity of G̃ is contained in a curve C ⊂ |D|, so
the question is local about D. Furthermore KF̃ · C ≤ 0 for all C ⊂ |D|, so not
only is D contracted by ρ, but it cannot be a Dn, so a connected component Γ
can only be,

Cases IV.5.9.

(a) A (not necessarily maximal) −1 F chain for F̃ .

(b) A (not necessarily maximal) chain of −2 F curves for F̃ .

(c) A cycle of −2 F curves (or a rational curve with a node) for F̃ .

Now as in the proof of the canonical model theorem the basic fact is that for
any foliation with canonical singularities a chain of curves starting and ending in a
−1 F curve which are joined by −2 F curves cannot be contractible, or even easier
an invariant rational curve intersecting the canonical in −2 isn’t contractible
either. So consider firstly case (c), for any C ⊂ Γ, s(C, D) = sG̃(C) = 2, so
KG̃ ·C = 0, and the singularities of G̃ coincide with those of Γ. Suppose, therefore,
that one of these is non-canonical. Blow up in it and call the exceptional divisor
E, then either it’s discrepant or not. If it’s not KG̃ · E = 0 and E2 = −1, so E

is invariant, with sG̃(E) = Γ̃ · E = 2, where Γ̃ is the proper transform of Γ, and
we still have a splitting, i.e. we’ve changed nothing, so we might as well say that
we’ve a priori blown up sufficiently in order to guarantee negative discrepancy.
In which case on blowing up Γ̃ is two −1 F curves for G̃ joined by a (possibly
empty) chain of −2 F curves for G̃ or an invariant rational curve intersecting the
canonical in −2. Of course we still may not have canonical singularities, but the
singularities of the induced foliation, which we’ll still call G̃ to avoid complicating
the notation, still coincide with those of Γ̃. Blowing up in one of those we either
keep a chain with the same properties in the non-discrepant case, or split into
two disjoint chains with the same property. In any case we eventually contradict
the contractibility of D. Case (b) automatically reduces to the latter part of case
(c), while for case (a) the −1 F chain for F̃ is also a −1 F chain for G̃ but in the
opposite sense, i.e. in the following Dynkin diagram for Γ, the KF̃ intersection
numbers are on the bottom, those for G̃ on the top,
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0 0 0 00

0 0 00

− 1

− 10

Here the G̃ and Γ singularities may not a priori coincide on the curve on the
left, say by virtue of a singularity z ∈ sing(G̃)\Γ. However blowing up in z in
the non-discrepant case only adds a node to the left, the pattern of 0’s and −1’s
being the same for the induced foliation, so we can assume that we’re only one
blow up away, and we again conclude by the latter discussion for (c).

Now supposing that G̃ is not a rational fibration, the next step is to consider
what happens to curves Γ contracted by a canonical model map σ : (X̃, G̃) →
(X ′,G′) for G̃. As ever we proceed by cases,

Cases IV.5.10. (a) Γ is a maximal −1 F chain for G̃. Ordering the curves in
the chain in the usual way call them C1, . . . , Cn. Then we have the sub-cases,

(i) C1 ⊂ |D|, and let C1, . . . , Ck be the maximal sub-chain of T in D connected
to C1. Suppose k < n, so in particular n ≥ 2. Now suppose further k + 1 < n,
then Ck+2 ⊂ |D|, and KF̃ · Ck+2 = s(Ck+2, D) − 2. Further there is a maximal
sub-chain of T in D connected to Ck+2, say Ck+2, . . . , Ck+m, m ≥ 2. If m = 2,
s(Ck+2, D) = 0, and Ck+2 isn’t contractible or m ≥ 3 implying KF̃ · Ck+2 =
KF̃ ·Ck+m = −1 and Ck+2, . . . , Ck+m non-contractible, both of which are absurd.
Consequently n = k + 1, and (KF̃ + Cn) · Cn = −sG(Cn) + D · Cn = −1, so by
adjunction Cn is F̃ invariant, so is tangent to F̃ and G̃, i.e. Cn ⊂ |D|, contrary
to hypothesis, implying thus that T is a component of D.

(ii) C1 is not in D. Consequently n ≥ 2, and C2 ⊂ D, with KF̃ · C2 =
−2 + s(C2, D). By the contractibility of C2, s(C2, D) ≥ 1, i.e. n ≥ 3, and we
have a maximal sub-chain, C2, . . . , Ck in D, with k ≥ 3. As ever KF̃ · Ck = −1,
and we have a contradiction.

(b) Γ is a maximal −2 F chain, not meeting any −1 F chain. This cannot happen
since a maximal sub-chain in D has both ends enjoying intersection −1 with KF̃ ,
or −2 if the length is 1.

(c) The Dynkin diagram Dn, as described in III.3, including the degenerate case
D3. Here if n ≥ 4, there is a maximal sub-chain in D of the part of the diagram
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consisting of the −2 F chain, which as in (b) cannot exist. So we’re reduced to
the degenerate case, and if C is the curve with KG̃ · C = 1, then since C2 ≤ −2,
D ·C = 2, so (KF̃ +C) ·C = −1. Whence again C would have to be F̃ invariant,
and find itself in the support of D, which cannot happen.

(d) An elliptic Gorenstein leaf. If the whole leaf isn’t in D, then there is a non-
empty maximal chain of −2 F curves in both T and D, which as above cannot
exist, so indeed the whole leaf is also elliptic Gorenstein for F̃ .

(e) A rational curve with a node is necessarily invariant for F̃ and G̃.

Whence in summary σ can only contract −1 F chains or e.g.l.’s, these are
connected components of D and everything contracted by σ is contracted by ρ.
This was of course under the hypothesis that (X̃, G̃) wasn’t a rational fibration,
however to prove that T was in D used no property of F̃ , so conversely all −1 F

chains contracted by ρ are G̃ invariant. Consequently G̃ is never a fibration since
π : X̃ → B = X̃/G̃ exists in this case by the canonicity of the singularities and we
can find fibres X̃b disjoint from D, so everywhere transverse to F̃ from which the
absurdity KF̃ · X̃b = X̃2

b = 0. A priori σ is not unique since G̃ may have Kodaira
dimension positive. Certainly we have ν(G̃) ≥ 0, and κ(G̃) = 1 is excluded by
Bogomolov’s generalisation of the Castelnuovo trick, i.e. if h0(NF̃ (D)⊗m) ≥ 2,
m ∈ N, we can take roots to show that F̃ is a fibration. Thus it remains to
exclude, ν(G̃) = κ(G̃) = 0. Here we can contract the −1 chains for G̃, which
are likewise for F̃ with the inverse ordering by, say, σ# : (X̃, G̃) → (X#,G#)
so that KG# = NF#(D#), D# = σ#(D), has canonical singularities for F# and
G# and pass via an almost étale cover to obtain positive irregularity, which is
absurd. Thus also for G, κ(G) = −∞, and ν(G) = 1, and whence ρ = σ by the
mutually unique contraction property with respect to either foliation. Whence
finally we’ve got enough to apply [TY] or [KoN], where there is a more detailed
treatment of the quotient singularities, i.e. for σ# as above, and D# = σ#(D)
the elliptic Gorenstein leaves, necessarily in the non-singular locus of X#,

(a) KX# + D# = KF# + KG# is nef, and (KX# + D#) ·C = 0 for C any curve
iff C ⊂ D#.

(b) (KX#+D#)2 = 2 KF# ·KG# = 2 ρ∗KF ·KX > 0, and ρ∗KF ·(KX#+D#) =
ρ∗KF ·KX̃

> 0 so KX# + D# is big.
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Consequently (X̃, F̃) is one of the naturally occurring foliations on a surface
uniformised by the bi-disc, and the uniformisation map itself gives an almost
étale cover ν : (S,H) → (X,F) such that the unique minimal desingularisation
(S̃, H̃) → (S,H) is obtained purely by resolving cusps.

While a large part of this discussion has involved the analytic topology, it
has, nevertheless been motivated by purely algebraic conceptions, i.e. Kodaira
dimensions and abundance, and from this point of view let us summarise IV.4-5
by way of,

Theorem 3 IV.5.11. Let (X,F) be the canonical model of a foliation of nu-
merical Kodaira dimension 1 then either,

(a) Abundance holds, and the Kodaira fibration co-incides with the foliation,
which is thus a non-isotrivial elliptic fibration, IV.4.4. (i).

(b) Abundance holds, but the Kodaira fibration is distinct from the foliation,
so it is either Riccatti, IV.4.4.(ii), or turbulent, IV.4.4.(iii), or an isotrivial
family of hyperbolic curves, IV.4.4.(iv).

(c) Abundance fails, so the Kodaira dimension is −∞, IV.5.1, and the canonical
model is either of the natural foliations on the Baily-Borel compactification
of a Hilbert-Modular surface.

All of which, we’ve proved, except to note that by, [M], a bi-disc quotient nec-
essarily arises from a real quadratic arithmetic structure, and the identity of the
compactification with the canonical model follows from IV.2.2 and I.2.4.(a). The
reader may also have observed that the current section could have been simplified
a little by the systematic use of algebraic stacks, since,

Remark IV.5.12 Technically, IV.5.1.bis is somewhat simpler using algebraic
stacks, especially from the point of view of the stack interpretation of IV.5.4,
although the Riemann-Roch formula is more complicated. The rest of IV.5.1 is,
however, a good bit easier since the intervention of symbolic powers of ideals,
as opposed to powers, is precisely a result of the difference between a stack and
its moduli, while IV.5.9-10 are a one line exercise in the 2-category of stacks.
Such simplifications are, however, technical rather than essential, whereas the



986 Michael McQuillan

use of the Gorenstein covering stack in the definition of the Poincaré metric is a
conceptual necessity.

V. Conformal structure

V.1. Uniform uniformisation

The basic question is to what extent the equivalence of classification by Ko-
daira dimension with the elliptic, parabolic, hyperbolic trichotomy in the uni-
formisation theory of algebraic curves continues to hold for foliations by curves.
As such the key objects are,

Definition V.1.1. Given a complete foliated surface (X,F) or algebraic stack
we denote by HomF (∆, X) the space of invariant maps from discs in the compact
open topology, and by HomF (∆, X) the space of invariant discs with invariant
bubbles where the compact open topology is extended by way of the Hausdorff
metric on graphs. In particular for X → X the Gorenstein covering stack (by
slightly abusive definition identical with X at any egl’s) of the canonical or even
just minimal model of a foliated surface,

H̃omF (∆, X) = HomF (∆,X\sing(F)),

where the closure is taken in HomF (∆,X ). Furthermore for B a proper invariant
sub-variety or stack we say,

(a) (X,F) is hyperbolic modulo B if a sequence (fn) in HomF (∆, X) without
a convergent sub-sequence is arbitrarily close to B, i.e. the image of every
compact is arbitrarily close to B.

(b) The leaves of (X,F) are hyperbolic modulo B if a sequence (fn) in H̃omF
(∆, X) without a convergent sub-sequence is arbitrarily close to B.

As it happens, there are several subtleties about the use of the word invariant
should we wish to extend these definitions to dimension greater than 2, cf. [M7]
VI.4. A further subtlety that might occur without the invariance condition is how
one extends these definitions to a quasi-projective situation, where say X is com-
pactified by way of a boundary D. In such circumstances, already in dimension
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2, one must allow in a non-foliated definition of hyperbolic the possibility that
sequences of discs become arbitrarily close to D unless D is a stable curve. With
the invariance condition, however, there is no practical need to consider anything
other than non-invariant boundaries, so to all intents and purposes (a) and (b)
may be naively extended to the quasi-projective setting. As such the only im-
portant point is the difference between (a) and (b) themselves, or better between
Hom and H̃om. Again, the motivation is the same as that for the Poincaré metric,
i.e. the capacity of ‘leaves’ should have good lower semi-continuity properties.
Better still,

Fact V.1.2 (cf. [Br5] Lemma 0) Suppose that (X,F) is a canonical or minimal
model of a foliated surface with X → X its Gorenstein covering stack then,

H̃omF (∆, X) = HomF (∆,X\sing(F)),

i.e. if a sequence of discs in the latter space converges to a disc with bubbles
then it converges to an honest disc.

Proof The idea of op. cit. is that given a sequence (fn) converging to a disc with
bubbles f ones seeks a holomorphic interpolation of it, i.e. a holomorphic family
ft converging to f or what amounts to the same thing a meromorphic map from
the bi-disc to X which sends non-special fibres over say the first projection to
invariant curves missing the singularities. A foliated version of the bend and break
lemma then implies that either this map is actually holomorphic everywhere or
there are KF negative rational curves. There are, however, some issues about
the existence of such a holomorphic interpolation, cf. [CI], albeit that these may
be comfortably taken care of by way of the principle facts about hyperbolicity
which will follow.

In this context, it is most convenient to work directly on a canonical model
(X,F) of a foliated surface, and to introduce the necessarily proper algebraic
sets,

(a) B of invariant algebraic curves meeting at least one singularity, and,

(b) P the parabolic part of B, i.e. the irreducible components of B whose com-
plement with sing(F) are parabolic Riemann-surfaces, or more generally,
parabolic stacks.
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There is in fact quite an interesting relation between neighbourhoods of com-
ponents of P on foliated surfaces of general type and non-hyperbolic Riccatti
foliations. Let us, however, for the moment observe that a component of P must
either have non-negative square, or pass through a saddle node, so, for example,
on a foliated surface of general type without saddle nodes P is empty, which
should give a little feeling for,

Fact V.1.3. If the (positive) cone generated by KF and KX contains a big divisor
then, (X,F) is hyperbolic modulo B and the leaves are hyperbolic modulo P .

The related statement of the non-Zariski denseness of invariant entire map-
pings to such foliated surfaces is the main theorem of [M1]. Slightly more precisely
the main theorem of op. cit. is only stated for X of general type, but this is only
used to guarantee KF ·KX > 0 if K2

F = 0. The (non-evident) refinement from
op. cit. to V.1.3 is in [M4] V.5.1, albeit that the essential of the method remains
the same, while [DV] affords some simplification.

Now, needless to say, the corollary of V.1.3 that the Poincaré metric is contin-
uous should KF be nef. with Kodaira dimension −∞ has already been employed
in a critical way in the completion of the classification theorem from IV.5.8 on,
which in turn only involves the weaker statement on the hyperbolicity of the
leaves, and it is this type of hyperbolicity that ties in well with classification.
Indeed,

Corollary V.1.4. If the leaves of (X,F) are not hyperbolic modulo P then they
are uniformly parabolic and either,

(a) The foliation has a first integral, and is a fibration in rational or elliptic
curves.

(b) There is an étale covering of the Gorenstein covering stack on which the
foliation is given by a global vector field.

(c) A Riccatti, IV.4.4(ii), or turbulent, IV.4.4(iii) foliation arising from a repre-
sentation of the fundamental group of an orbifold with non-negative Euler
characteristic.

Plainly, there is effectively nothing here to prove, which isn’t covered by V.1.3 and
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the classification theorem. What we do observe, however, is that the classifica-
tion by Kodaira dimension, and the classification by the ellipticity, parabolicity,
or hyperbolicity of the leaves are not quite the same, and, in fact suggests a
refinement in the former which merits a new section.

V.2 Bi-rational vs. Bi-analytic

Quite generally an analytic map between complete normal varieties defined
in co-dimension 1 is actually defined in co-dimension 2 and meromorphic as soon
as it is meromorphic in co-dimension 1. It may, however, be that there are some
essential singularities in co-dimension 1, which suggests we make,

Definition V.2.1. A pair of canonical models (Xi,Fi) of foliated surfaces, or
algebraic stacks, i = 1 or 2, are said to be bi-analytic if there are invariant divisors
Di in Xi and an analytic isomorphism,

(X1\D1,F1) ' (X2\D2,F2),

respecting the foliations.

Now, the very definition of hyperbolicity of the leaves, or more pertinently
their parabolicity, is a property of the Gorenstein covering stack, and whence
is wholly independent of any étale covering of the same as found in IV.3.6 or
IV.4.4.(iii). Nor does it depend on coverings ramified in parabolic leaves. With
this simplification in mind, we can eschew some of the complication in IV.4.4(ii),
to assert that the foliations occurring in V.1.4(c) are bi-analytic to those defined
by global vector fields. Indeed in IV.3.6 there occur 6 types of group varieties,
of which 4 are non-compact. Amongst the 4 non-compact types, there are 2
where the group variety structure is necessarily iso-trivial, viz: Ga × Gm, and
Gm × Gm, and the foliations of IV.3.6 (including only log-canonical ones on the
latter) arising from global vector fields may also be bi-analytically compactified by
the procedure of IV.4.8 (with at least one singularity as per IV.4.8.iii) to Riccatti
foliations of Kodaira dimension 1. The remaining 2 types of group varieties,
i.e. semi-abelian surfaces or vectorial extensions of an elliptic curve, can only
be compactified, by the analogous procedure IV.4.11, to turbulent foliations of
Kodaira dimension 1 when the group structure is iso-trivial, i.e. we have E×Ga

or E × Gm for E an elliptic curve. As such,
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Fact V.2.2. Up to possibly ramified covering in the boundary the uniformly
parabolic foliations V.1.4(c) are bi-analytic to foliations defined by vector fields
on Ga×Gm, or Gm×Gm (Riccatti case), respectively Ga×E, or Gm×E (turbulent
case, E elliptic) which admit bi-rational extensions to global vector fields as found
in IV.3.6. The various open sets where the bi-analytic isomorphism is defined are
Ga × P1, Gm × P1, Ga × E, and Gm × E respectively.

The extremely elegant, and satisfactory, identification of foliations with parab-
olic leaves as found in V.1.4 and V.2.2 should not, however, obscure,

Warning V.2.3. The properties of a foliated variety being hyperbolic and hav-
ing hyperbolic leaves are not synonymous. In particular there exist foliations
(X,F) with hyperbolic leaves modulo P , but, which nevertheless admit invariant
entire curves f : C → X with Zariski dense image. Indeed, consider a generic
representation r of Z2, identified with H1(P1\{0, 1,∞}), in PGL2. For a com-
pactification without saddle nodes there will be precisely 2 parabolic invariant
curves not contracted by the Kodaira fibration. These curves are isomorphic
to P1, so, necessarily algebraic. If, however, we compactify over infinity as in
IV.4.8.iii by saddle nodes such that the weak branches do not converge, which,
cf. IV.4.9, we can certainly do, we will obtain a foliation on a projective surface
whose complement by the fibre at infinity is bi-analytic with the saddle node free
compactification complemented by it’s fibre at infinity, and whence two parabolic
curves. Since, however, there are no convergent weak branches at infinity neither
of these curves can be algebraic. As such, beyond the obvious, i.e. the image
of the Kodaira fibration cannot be a hyperbolic curve, the classification of hy-
perbolic Riccatti and to a lesser extent turbulent foliations is a lot more delicate
than V.1.4, albeit that anything of positive numerical Kodaira dimension which
isn’t hyperbolic modulo the algebraic curves through the singularities must be
Riccatti or turbulent.

Irrespectively hyperbolic or parabolic leaves is a good property from a clas-
sification point of view, and we may further observe that the foliations with
hyperbolic leaves modulo P and not of general type admit an extremely uniform
uniformisation. Indeed for cases of positive Kodaira dimension there is a short
exact sequence,

1 −→ K −→ Γ −→ Aut(F )
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with Γ Fuchsian of the first kind, F an algebraic curve, and K contains no elliptic
elements. This gives us a Riemann surface S on quotienting the disc by K, and
an identification of the foliation with a compactification of the map of classifying
stacks,

[S × F/Γ] −→ [F/Γ0]

where Γ0 is the image of Γ. Should only the numerical dimension be positive
then F can be a disc rather than an algebraic curve, and Γ while a group of
automorphisms of the disc need not be Fuchsian. Nevertheless a quotient of the
corresponding bi-disc is still quasi-projective, albeit that the compactification as
a canonical model is unique. In either case, however, what distinguishes these
foliations with hyperbolic leaves from the general type case is,

Fact V.2.4. If (X,F) is not of general type but has hyperbolic leaves modulo P

(where P includes, slightly abusively the contraction of any egl’s) then there is
an étale covering map ∆×F , where F is a Riemann surface (in fact an algebraic
curve or a disc) to X\P , with the foliation being simply the projection to F .

Alternatively, if one prefers, there is ‘no modular variation of the leaves’,
which merits further elaboration by way of,

V.3 Modular Variation

If we return to the notations of §IV.5, and in particular the Bochner type
formula pre-ceding IV.5.7 with ϕ the Poincaré metric, then an expansion in local
foliation coordinates reveals that,

∫

X
e−2ϕ∇cF (KF ) ∧∇cF (KF )

up to some irritating normalising constant is a measure of the variation from leaf
to leaf of the conformal structure defined by the Poincaré metric. Indeed a varying
family of metrics on a 1-dimensional family of Riemann surfaces determines not
just a tangent direction but a tangent vector in the moduli, and if we were
in a situation where the moduli stack [X/F ] admitted a coarse moduli space
X/F then the above expression would be nothing other than the squared `2

norm of this tangent vector in the Weil-Petersson metric. Evidently, such a
precise identification is not possible for an arbitrary foliation, and this misfortune
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remains true even in the presence of the Fubini theorem of [M6]. Nevertheless
the discussion of IV.5 not only confirms that this expression continues to have
sense even if ϕ is no better than continuous (nor degenerates too rapidly at the
singularities and/or parabolic leaves, which it doesn’t, cf. [M4] V.5.1(b)) but,
moreover, if this expression were too vanish then we would indeed find ourselves
in the situation of V.2.4, i.e. with nil variation of the conformal structure. Better
still, the said Bochner formula continues to hold even for foliations of general type,
so that while no longer enjoying a pointwise sense, it is, nevertheless true, that
the value of the aforesaid “`2-norm” is, again up to some irritating constant, K2

F .

More generally, we could consider a conformal structure/metric (with singu-
larities) eψ on KF arising from the restriction to KF ⊗KF of the curvature form
of a positively metricised bundle L, in fact positive in the leaf direction would be
sufficient, and as a measure of its variation,

∫

X
e−2ϕ∇cF (L) ∧∇cF (L)

but in these circumstances the Bochner formula reveals rather less, so that, up
to a normalising constant this is equal to,

∫

X
c1(KF )c1(L) +

1
2
K(ψ)c1(L)2

where the curvature K(ψ) of eψ along the leaves is normalised in such a way as to
be −1 on the Poincaré metric. As such the transparency that the Poincaré metric
brings to the discussion, and in particular, the interpretation of the invariant K2

F
on the canonical model should be evident.

All of which is more or less true independently of whether one knows that the
variation of the Poincaré metric is psh. In fact what threatens to fail is above
all the definability of our “`2-norm”, and the fact that it really is a norm rather
than a pseudo-norm. Nevertheless, the said pluri-subharmonic variation, or more
correctly aspects of its demonstration sheds yet more light on the question of
modular variation by way of the proof of,

Fact V.3.1 Let f : X → ∆ be a pseudo-convex family of Riemann surfaces over
the disc with S the image of a section σ, i.e. f is proper or there is a psh function
ψ : X → [∞,∞) exhaustive in the fibre direction, then the logarithmic capacity
of the fibres Xb, b ∈ ∆ seen from σ(b) has pluri-sub harmonic variation along S.
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Proof (cf. [Y]) Fix a local equation, s, say, for S, and R < ∞, so that for b there
is a Green’s function gR,b, necessarily admitting an expansion about σ(b) of the
form,

gR,b = log |s|Xb
| − λR.b + 0(|s|Xb

|)
To avoid some pointless, and not in the least illuminating, consideration we will
further suppose that on considering the function,

gR : X(R) := {x : ψ(x) < R} → [−∞, 0] : x 7→ gR,f(x)

we continue to have such an asymptotic expansion in a neighbourhood of S, i.e.
we can just drop the suffix b in the original expansion. Otherwise there is need
for some regularisation argument akin to those in IV.5. Supposing, again for the
sake of convenience rather than necessity, sufficient regularity of gR everywhere,
we see, that understood naively,

(ddcgR)2 ≤ 0

Where, understood naively means take the absolutely continuous part. Shrin-
king ∆ as necessary, and supposing R sufficiently large, we apply, following [Y],
Stoke’s theorem to the integral,

∫ 1

0

dt

t

∫

X(R)∩f−1(∆(t))
(ddcgR)2

where ∆(t) is the disc of radius t. This reveals 3 terms. The first is, up to a
minus sign, what we’re looking for, i.e.

∫ 1

0

dt

t

∫

S(t)
ddcλR

The second admits a further application of Stokes, and comes out as,
∫

∂∆
gRddc(gR)dc log |b|

for b the standard coordinate on ∆. Since in this formula only the absolutely
continuous part of ddc(gR) should be understood, this is necessarily zero by the
harmonicity of the Green’s function in the f direction, and off S. Consequently,
we have the ultimate term,

∫ 1

0

dt

t

∫

∂X(R)∩f−1(∆(t))
dcgRddcgR
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and it’s here that we need the pseudo convexity. Indeed, again supposing sufficient
smoothness for convenience, on ∂X(R)∩f−1(∆(t)), dcψddcψ and dcgRddcgR have
the same sign, which by pseudo-convexity, is non-negative. Whence, putting
everything together, ∫ 1

0

dt

t

∫

S(t)
ddcλR ≤ 0

and letting R go to infinity we conclude.

The above discussion is nothing other than the proof of the main theorem of
[Y] re-written without an irksome choice of a square root of −1 and local coor-
dinates. Nevertheless such a re-writing reveals many things such as: op. cit.’s
condition of a Levi-flat, as opposed to pseudo-convex, boundary being over kill,
the topology of the fibres is un-important, and for that matter that the entire
discussion generalises perfectly to Monge-Ampère capacities. More pertinently,
however, we see that a lack of variation of the logarithmic capacity along the sec-
tion S is extremely rare. Supposing that all the fibres of f are hyperbolic then it
almost forces the boundary to be Levi flat, and more surprisingly the vanishing of
(ddcg)2, for g the limit of the gR’s. Consequently, in such circumstances the holo-
morphic 1-forms ∂gb do not admit any variation in b, which, should all the fibres
of f be simply connected, effectively amounts to the existence of a holomorphic
trivialisation of f : X → ∆ as a projection ∆×∆ → ∆ from a bi-disc.

To see the relevance of this discussion to foliations by curves one has to
introduce a couple of groupoids defined over the locus U where the Gorenstein
covering stack of a canonical model of a foliation (X,F) is smoothly foliated.
In the first place there is the usual holonomy groupoid, F ⇒ U which, if one
is worried about set theory problems, is easily checked to be a representable
groupoid in analytic stacks, [M5] A.1. One then replaces the orbits by their fibre
by fibre homotopy cover, and this defines a groupoid with the same orbits, but
potentially radically different stabilisers, i.e. the homotopy groupoid, cf. op. cit.
A.2, H ⇒ U This gives a representable fibration of analytic stacks f : U → [U/H],
so that if we take an étale transversal T → [U/H] then we obtain by base change
a family of simply connected Riemann surfaces,

fT : U ×[U/H] T → T

and it’s to this family that we can apply our considerations and reflections on the
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proof of V.3.1. As it happens, and viewed from this perspective, perhaps neces-
sarily, fT is defined (in a more elementary way) and the study of it’s convexity
is the principal object (where it’s called a covering tube) of [Br5]. As such, what
the introduction of analytic stacks principally achieves is philosophical clarity,
i.e. it really is true,

Fact V.3.2 If f : U → [U/H] is the fibration in analytic stacks of the (small)
homotopy groupoid of the canonical model of a foliated surface (X,F) then (X,F)
has general type iff its leaves are hyperbolic modulo a proper algebraic set, and,
there is non-nil variation of the conformal structure of the hyperbolic leaves.

This is simply a re-capitulation of the above discussion. Regrettably we are
un-able to make any assertion about the extent of the variation, e.g. it would
be extreme optimism (but rather pleasant) if the integrand in our measure of
the conformal variation were non-zero off a proper algebraic set. Necessarily,
however, it must be non-zero on a set of positive Lebesgue measure, since the
integrand is really defined and absolutely continuous once one knows that the
Poincaré metric is continuous.

V.4 Hyperbolicity and abundance

A revealing feature of the previous discussion V.3 is the naturality of the
discussion IV.5. As such, it’s very much true that not only the classification
theorem, but also the identification of foliations of general type with varying con-
formal structure flows from the hyperbolicity theorem V.1.3. Granted, there are
some complications, such as the regularisation arguments of IV.5, or Brunella’s
lemma, [Br5], that the conditions of V.3.1 are verified, but these latter phe-
nomenon are no more difficult in dimension 2 than in arbitrary dimension. Of
course in principle, V.1.3 shouldn’t be specific to dimension 2 either. Since, how-
ever, it plays an even more central role, indeed effectively implies classification
and more, than abundance in classical Enriques-Kodaira theory, it is to be ex-
pected that the difficulty of proving it grows as the ambient dimension increases,
even though the leaf dimension remains fixed. Consequently, one can derive fur-
ther feeling for V.1.3, and exactly how it replaces abundance by a brief over view
of the proof.

Naturally to this end, let’s suppose that V.1.3 were false. As such we sup-
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pose that there is a sequence of discs (fn) divergent in H̃omF (∆, X), which, in
the compact open sense, are not arbitrarily close to the divisors P , or B as ap-
propriate. Now to this data it is a quite general fact, i.e. independent of any
foliation hypothesis, cf. [M2], that we can associate a closed positive current T .
Basically, this current is the weak limit of (a subsequence) defined by integration
over a compact in the nth disc normalised by its (necessarily unbounded in n)
area. More strictly speaking we use a further averaging of the area as found
in Nevanlinna theory, cf. op. cit., which for a suitable choice of origin of each
disc allows us to deduce the extra information that C.T ≥ 0 for every curve C

supported on P , or B as appropriate. Again, this is a general phenomenon, and
an equally general phenomenon is that we can similarly define a derivative T ′,
which is a closed positive current in P(Ω1

X) (or better P(Ω1
X ), for X the minimal

smooth stack structure on a resolution of any elliptic singularities on the canon-
ical model) which pushes forward to T . In particular for L the tautological line
bundle, we have in full generality,

V.4.1 Fact ([M2]) (The tautological inequality) L.T ′ ≤ 0

In a certain sense this could even be taken as a definition of L. Alternatively,
one could think (and indeed one can) repeat the above process with a sequence
of maps fn : Cn → X from smooth compact curves of genus gn of unbounded
degree, in which case, after subsequencing, the analogue of T is,

lim
n→∞

1
H.fnCn

∫

Cn

(fn)∗

while for T ′ we replace fn by it’s derivative f ′n, so that,

L.T ′ ≤ lim
n→∞

(2gn − 2)
H.fnCn

The role of the quantity on the right for sequences of discs is to ask that the discs
become more and more parabolic, so for the algebraic version, closer and closer
to rational or elliptic, i.e. the right hand side goes to zero. All of which is a bit
of a tautology since the left hand side is, manifestly, the average of the (negative)
euler characteristic for our sequence.

More specifically to our foliation situation, however, we observe that the f ′n,



Canonical Models of Foliations 997

must factor through,

X̃ = BlZ(X) = Proj(
∞∑

n=1

K⊗n
F In

Z) ↪→ P(Ω1
X)

where the quotient Ω1
X → KFIZ → 0, with Z the singular locus of the foliation,

defines the very foliation itself, as in II.3.1. Consequently, if as per op. cit., E

is the exceptional divisor then T ′ is a closed positive current on X̃, and V.4.1
becomes,

KF .T ≤ E.T ′

. All of which is very much true for an arbitrary foliation by curves, and what is
crucial is,

Fact V.4.2 ([M4] V.4.4) (Refined Tautology) Hypothesis as above on the (fn),
i.e. they are not arbitrarily close to P or B as appropriate, then provided the
singularities of (X,F) are canonical,

KF .T ≤ 0

Despite appearances, it is critical to understand that V.4.1 and V.4.2 are
very different. The best way to see this is not to suppose that the discs diverge.
As such, V.4.1 may be formulated as a tautological identity, cf. [M2], with an
appropriate negative euler characteristic on the right, and has nothing to do with
foliations, i.e. it becomes the very definition of holomorphic sectional curvature
in integrated form. Whence, what V.4.2 says, in its stronger form as a refined
identity, is that in the presence of canonical singularities (and if we’re considering
all invariant discs only in the presence of canonical singularities) KF measures
the curvature along the leaves. A perfectly good example of this already occurs
for algebraic Gorenstein curves C considered as foliations C →pt. Manifestly,
there is no difficulty in constructing examples such that ωC (i.e. KF for this
example) is ample, which if ωC truly reflected the curvature ought to imply that
C is negatively curved, but we may make examples whereby C is so singular that
it is actually rational, i.e. anything but negatively curved.

With this important caveat in mind, let us review the principle why canonical
singularities yield V.4.2, leaving the details to op. cit. As such, consider the
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typical picture of a canonical singularity,

y

x

and let us put ourselves in the situation that our invariant discs are not arbi-
trarily close to B. We require to bound E.T ′ by 0 as defined prior to V.4.2.
Morally (though not quite precisely) such an intersection can only occur if our
discs happen to pass along the x or y axis in our picture. Therefore p times the
intersection is not governed by an intersection with the ideal (x, y)p (or more
correctly its blow up) but (x, yp)(xp, y) whose co-dimension in the local ring at
the origin grows like p as opposed to p2. Furthermore, up to some irrelevant
constants, for H ample,

Γ(X, H
√

p(x, yp)(yp, x))

has lots of sections, so if our discs avoid at least one of these,

E.T ′ ≤ 1√
p
H.T

which plainly goes to zero as p goes to infinity. With a little further work, one
shows that for p sufficiently large, the linear systems in question have base locus
B, while a slightly more subtle calculation proper to the case of hyperbolic leaves
reduces the problem to P under this more restrictive hypothesis.

This sketch of the proof of V.4.2 indicates why the theorem is not asserted
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for a log-canonical singularity,

y

x

since, plainly, the conditions of vanishing along the foliation to order p at the
origin, and vanishing to order p at the origin are no different. Nevertheless, it
isn’t simply a question that the proof doesn’t work, but there is, in fact, absolutely
no difficulty in constructing counterexamples to V.4.2 for such a singularity.

Now, as it happens, all of the above discussion continues to have sense in
a context much wider than foliations by curves, which we may think of as a
fibration X → [XF ] of X over its classifying stack. Indeed there is an analogy
of all of the above for a variety X considered as foliated/fibred by way of a map
X →pt from X to a point. Thus, while the details have only been checked in
these two cases, one could reasonably imagine that all of the above holds in some
massive generality such as possibly not even representable maps f : Y → S of
analytic stacks with relatively canonical singularities. As such what is specific
to the situation of foliation by curves is not V.4.1 or even V.4.2 (functorially
understood) but,

Fact V.4.3 Our closed positive current T is, in fact, a transverse invariant
measure. Indeed, functorially understood, there is a measure dµ[X/F ] on the
classifying stack [X/F ] whose pull-back is T .

According to a classical definition of transverse invariant measure, V.4.3 is
immediate. A better definition, [M6], in terms of Borel functions with compact
support as a co-Cartesian functor would take us rather too far out of our way.
Whence we’ll simply reference the latter part of V.4.3 to op. cit., although it may
be useful to note that op. cit. permits one to re-interpret dµ[X/F ] as a Radon
measure on a certain space, and even to integrate along the foliation, so that
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we obtain a rather instructive application of a wholly general Fubini theorem
whereby,

KF .T =
∫

[X/F ]
dµ[X/F ]

∫

F
c1(KF )

where we view a metricisation KF of KF as a family of conformal structures
parametrised by [X/F ]. Which, again, should hopefully clarify the difference
between V.4.1 and V.4.2.

Irrespectively, if we further put ourselves in the situation where (X,F) is
a canonical or even just minimal model, then by V.4.2 we must actually have
KF .T = 0. Furthermore in the situation of V.1.3 this is impossible if K2

F > 0, e.g.
apply IV.2.1, so in fact we find ourselves immediately reduced to the hypothesis
required for classification, i.e. KF .KX > 0, and K2

F = 0, cf. IV.5.8. As it
happens, there is no harm in making the wholly general hypothesis that the discs
fn are not arbitrarily close to any divisor so T is nef., although it actually happens
that this follows from V.4.3 and the definition of B. Irrespectively, the Hodge
index theorem yields,

Fact V.4.4. Suppose V.1.3 is false, then there is a canonical model of a foliation
(X,F) satisfying exactly the hypothesis IV.5.8 critical to classification, i.e. K2

F =
0 and KF .KX > 0, such that in co-homology KF is parallel to a transverse
invariant measure dµ[X/F ].

The measure in question is of course T , but from now on we’ll employ the
measure notation to emphasise exactly what’s going on, i.e.

Rephrasing V.4.5. If a situation whereby the rather general considerations of
V.3 (as detailed towards the end of IV.5) were not to yield that foliations with
ν(F) = 1 and κ(F) = −∞ are extremely special then KF (which we cannot hope
to represent by a divisor) would be represented not by any old positive current,
but, in fact, a transverse invariant measure.

As it happens, in arbitrary dimension m, one finds, under conditions analo-
gous to V.1.3, that Km−1

F is represented by a transverse invariant measure, by
way of a higher dimensional index theorem, cf. [M7] II.2. More, immediately,
however, let us see why this representative is special. Observe that where the
topus of [X/F ] is étale, K[X/F ] is well defined, and a line bundle on [X/F ], and
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since this holds away from the singularities of F and X is normal, it extends to
a line bundle on X satisfying,

KX = KF + K[X/F ]

Applying V.4.4, we therefore deduce that under the hypothesis of the same,

K[X/F ].dµ[X/F ] > 0

Now morally, this is impossible since dµ[X/F ] is a class in the top dimension on
[X/F ] while K[X/F ] is a class in (real) co-dimension 2. The only flaw in this
argument results at points where the topus of [X/F ] is not étale, i.e. at the
singularities, where it may be no better than smooth, and around which K[X/F ]

fails to satisfy a descent datum. As it happens a similar objection on some
substantially bigger site (the essentially quasi finite site, cf. [M6]) could be posed
in respect of whether dµ[X/F ] is really a measure on [X/F ] or just the étale part.
In this latter case, however, we can talk about Radon measures on the étale part
of finite mass, so there is, in fact, a well defined extension by zero across the
singularities. Regardless, the conclusion of this discussion is,

Fact V.4.6 The intersection of K[X/F ] with dµ[X/F ] is given by a residue around
the singularities of F , i.e. there is a one form (in fact many) ω smooth outside
the singularities such that,

K[X/F ].dµ[X/F ] = lim
ε→0

∫

S(ε)
ωdµ[X/F ]

where S(ε) is the boundary of a small ball around the singularities.

Plainly, this residue is simply a very slight generalisation of those appearing
in I.3. It is, however, much more difficult to compute. Functorially understood,
the winding number of a measure around the singularities is just the Le-long
number, and so one might hope for,

Fact V.4.7 If the Le-long number of dµ[X/F ] at every singularity of F is zero
then the residue symbol in V.4.6 vanishes.

That this leads to a contradiction is exactly the argument of IV.5.7 given
V.4.4. Better still, V.4.7 is easily seen to be trivial except for saddle nodes,
so let’s conclude this section with a proof of V.4.7 in this case which explicitly
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profits from the small ambient dimension, so unfortunately, only generalises to a
particular category of isolated log-canonical singularities. Irrespectively, we may
write our node as,

∂ = yp+1 ∂

∂y
+ (x+?)

∂

∂x

where ? indicates some stuff which is of order at least 2, and wholly irrelevant
to our current considerations, and, of course p ∈ N. By the very definition
of Le-long number, and the comportment of saddles under blowing up, we can
further suppose that y = 0 is the local equation for an exceptional divisor E in
X obtained by way of some initial blowing up, and E.dµ[X/F ] = 0. An inspection
of the ω occurring in V.4.6 shows that it is more than sufficient to show,

lim
ε→0

∫
|y|=ε
|x|≤ε

dc|y|
|y|p+1

dµ[X/F ] = 0

In fact, this is equivalent to showing that the residue of any bundle defined
purely locally on the étale part of [X/F ] around the node was zero. Now, our
various hypothesis imply (rather trivially) that the residue of dc log |y| around
the singularity is zero, or equivalently,

lim
ε→0

∫
|y|=ε
|x|≤ε

dc|y|
|y| dµ[X/F ] = lim

ε→0

1
2π

∫
|x|=ε
|y|≤ε

Im(yp dx

x
) dµ[X/F ]+?(ε)

where ?(ε) is some un-important error, of strictly smaller order in ε than the main
term. The right hand side, however, is, by the vanishing of the Le-long number,
a function of the form εpΘ(ε), where Θ(ε) goes to zero with ε, so, indeed, the
desired residue is zero.

V.5 Is there another way

The final chapter of [R], when reflecting on the classical Enriques-Kodaira
theory of algebraic surfaces displays an odd dislike for Enriques lemma that a
divisor of elliptic fibre type on a surface of numerical Kodaira dimension 1 must
move, and asserts, without actually providing an answer, that there must be a
better way to proceed. In the present foliated context, one might assert that
the truth of all of V.3, and most of V.4 in all dimensions and it’s very precise
relation to abundance, or much more accurately establishing that non-general
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type foliations are truly special renders such a question irrelevant. To do so,
however, would be to pass over the fact that the absolutely critical V.4.7 is
achieved by a trick which is very particular to surfaces (or more generally certain
types of isolated singularities, [M7] IV.3). As we’ve remarked in the introduction
it was this very evident peculiarity in so much as it pertained to the proof of
V.1.3, and the hope of eliminating it, that motivated a systematic study of foliated
surfaces by Kodaira dimension to begin with. On the other hand, a wholly general
approach to the higher dimensional variants of V.4.7 (which bears absolutely no
relation to the above trickery) has now been provided, [M6] & [M7], so, it’s
certainly true that the question is less pressing.

It’s also true that there’s absolutely no reason to believe that the basic philos-
ophy encapsulated by V.4.4/5 isn’t completely optimal, i.e. there may be details
that one can improve on, but the intervention of the transverse dynamic as in
V.4.7, or something similar, may very well be un-avoidable. To see this, following
an initial enquiry of Bogomolov, let’s consider what becomes of the arguments of
V.4, and for that matter, V.1.3, in mixed characteristic. To begin with, we have,

Fact V.5.1 Let S be finite over an open of SpecZ, and π : (X,F) → S a family
of foliated projective surfaces with canonical singularities at the generic point,
then for every ε > 0, there is a proper sub-scheme Zε such that for any separable
map f : C → X ⊗ k(s) from a smooth curve invariant by F ⊗ k(s), s ∈ S, not
factoring through Zε ⊗ k(s),

KF .fC ≤ (2g(C)− 2) + εH.fC

where H is relatively ample, i.e. V.4.2 continues to hold in mixed characteristic.

I’ve communicated a proof of this to Bogomolov, and in principle it ought
to appear somewhere as part of a larger project for studying rational curves on
surfaces. The curious reader who would like a proof now should look to how
one proves V.4.2 in characteristic zero and dimension 3, and observe that the
fundamental problem ain’t that much different, i.e. there may be a countable set
of s such that the singularities of F ⊗ k(s) are only log-canonical, then fill in a
few details which are similar to II.1.3. Whence as a corollary,

Fact V.5.2 Hypothesis as in V.5.1, and suppose further that the generic fibre
is a foliated surface of general type, then for all but finitely many s, the curves



1004 Michael McQuillan

of genus g on X ⊗ k(s) invariant by F ⊗ k(s) are bounded in moduli and this
bound is uniform in s, i.e. a part of V.1.3 but with KF big remains true in mixed
characteristic, e.g. for all but finitely many s the invariant rational curves arise
from specialisation of finitely many of the same at the generic point.

Now as it happens, the very fact that a huge set of fibres may have only log-
canonical singularities, when viewed from the perspective of V.4.2 and its caveats,
makes this pretty interesting of itself. It is however, even more instructive, to
consider what happens to the remaining part of V.1.3. As ever, we may suppose
that the generic fibre is a canonical, or even just minimal model, and generically
we’ll have our conditions K2

F = 0, KF .KX > 0 which lead to the hyperbolicity
theorem V.1.3. Consequently, let’s suppose that our corollary V.5.2 fails, so
there would be a Zariski dense sequence of separable maps from smooth curves
fn : Cn → X ⊗ k(sn) invariant by F ⊗ k(sn) such that,

(2g(Cn)− 2)
H.fnCn

→ 0 as n →∞

Next we’ll want to mimic the construction of dµ[X/F ] as a limit of cycles, but our
possibilities for doing this are much less. For example, we can view the Cn via
duality as, not necessarily effective, classes in the NS1(X ⊗ K(S)), i.e. Néron-
Severi on the generic fibre, and normalise by the degree, and subsequence, so as
to obtain a limit, T , in NS1(X ⊗K(S))⊗R which, by the way, is necessarily nef.
Slightly better, we could perform the same procedure (use the crystaline Gysin
map) in HDR(X/S) ⊗ C after choosing an embedding of the generic point in an
archimedean field, so as to conclude,

Fact V.5.3 Suppose as described above a mixed characteristic variant of V.1.3
fails then there is a canonical model of a foliation (X,F) satisfying exactly the
critical hypothesis of classification IV.5.8, i.e. K2

F = 0, KF .KX > 0 such that the
class of KF in HDR(X/S)⊗C is parallel to a closed T arising from a normalised
limit of invariant curves in positive characteristic, i.e. morally V.4.4 and its
re-phrasing V.4.5 would appear to continue to hold.

The appearance however is more imagined than real, however, since in-fact,

Caveat V.5.4 Actually, unless a Zariski dense set of the curves fn : Cn →
X⊗k(sn) employed in the definition of T occur at primes where F ⊗k(sn) is not
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just p-closed, but pm closed for all m ∈ N, then apart from not actually being
re-presented by a transverse invariant measure, it may not even be true that T

even looks like a foliated class in co-homology, i.e. without very strong hypothesis
general crystaline apparatus does not allow us to conclude that T is in the image
of Ext1(IZ ,K[X/F ]), for Z the singular sub-scheme of the foliation, cf. I.3., and
even if it were, since it needn’t be represented by an invariant meaure, T could
be very far from enjoying the special properties of its characteristic 0 analogue
in V.4.4/5.

On, the other hand, the very hypothesis of V.5.3, irrespective of the existence
of T , lead us by the classification theorem to deduce that our foliation must actu-
ally be one of the two naturally occurring foliations on the quotient of a bi-disc,
so we can proceed to consider this mixed characteristic variant of V.1.3 rather
explicitly. For simplicity of illustration let us suppose that X is the quotient by
a full SL2(O) for O the ring of integers in a real quadratic field (the general case
will be absolutely parallel), then in fact S will be a localisation of SpecO, and
the set of primes p naturally divide according to,

(a) p remains prime in O, and neither of the natural foliations are p-closed,
while for p sufficiently large the specialised singularities, should they exist,
will be canonical.

(b) p splits as ππ, and both of the natural foliations aren’t just p-closed but
pm-closed for all m ∈ N, and p sufficiently large, although the specialised
singularities, should they exist, will only be log-canonical.

The behaviour of the singularities here, although we know that it can’t be im-
portant by V.5.1 (and general nonsense always implies that its irrelevant to V.4.7
provided a log-canonical resolution exists) nevertheless serves to illustrate the
optimality of our discussion, since in fact,

Fact V.5.5 Indeed, as implied by V.5.4, the invariant curves of genus g on
either of the natural foliations at primes p of type (b) are, for p sufficiently large,
uniformly bounded in moduli as p varies. For primes of type (a), however, the
locus where the section of Kp

F ⊗K∨
[X/F ] defined by the pth power map vanishes,

cf. II.1, is supported on invariant rational curves, and the degree of these curves
is unbounded in p.
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As a result, we are perfectly justified in making,

Summary V.5.6. The intervention of the transverse dynamic of the foliation
in the proof of V.1.3 as found in V.4.7, or similar, would appear to be absolutely
necessary. In addition, supposing V.4.1, or any other ‘Schwarz type lemma’ that
one might care for such as the considerably stronger V.4.2, it is impossible to
conclude to V.1.3 by way of any first order statement involving sections of jet
bundles, or even, what is substantially stronger, sections of KF and powers there
of, i.e. one cannot prove V.1.3 by looking in the direction tangent to the foliation
alone.

The impossibility indicated by V.5.6 is simply the consequence of V.5.5, and
the fact that any first order statement would necessarily hold for all p sufficiently
large, and not just those of type (b). Indeed,

Alternative V.5.7 The so called Lang conjecture about rational curves on vari-
eties of general type is false in mixed characteristic, i.e. there are surfaces whose
generic fibre has general type, but on which the rational curves are Zariski dense.

All of which, largely settles, in the negative, any question as to whether there is
a better way to prove V.1.3. It doesn’t, however, settle whether the classification
theorem could be proved in another way without V.1.3. Before even addressing
this issue let us observe,

Further Caveats V.5.8 It isn’t at all obvious that the classification theorem is
even a first order statement, i.e. the Lefschetz principle may well not apply. The
basic reason for this doubt is that there is no bound on the integer n such that
K⊗n
F is Cartier away from the egl’s, cf. IV.4.4 (ii)(c), so that the classification

theorem may well be a countable bunch of 1st order statements. Even worse,
the classification theorem is a priori weaker than V.1.3, and although it would
suffice for proving that the leaves were hyperbolic modulo P , it doesn’t obviously
imply the stronger statement of hyperbolicity modulo B that is necessary for
things such as the Green-Griffiths conjecture. In fact, even for Hilbert-Modular
surfaces with singularities, the proof of the full V.1.3 still follows the schema of
V.4, except that the singularities are so explicit that V.4.7 becomes trivial.

Consequently, if one is motivated primarily by hyperbolicity questions an al-
ternative proof of classification not passing by V.1.3 is of limited value, albeit that
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the simplification that it brings to the transverse dynamics should by no means
be underestimated. Irrespectively, plainly the intervention of the archimedean
topology, and in particular of the Bochner formula, invites a parallel with Kodaira
vanishing, and suggests that any other proof is likely to pass by way of positive
characteristic. From this point of view II.2.2 is very much in the right direction,
since under the usual hypothesis of IV.5.8, it would indeed imply p-closure for
infinitely many p if one knew that one singularity admitted an irrational eigen-
value. Unfortunately, this eigenvalue hypothesis, while a postiori true for cases
of IV.5.8 not covered by IV.5.3, doesn’t seem to admit an a priori proof. What’s
worse, is that it’s far from clear that the p-closure statement (which incidentally
would imply exactly the same simplifications to the proof of V.1.3 as the full
classification theorem) is of itself sufficient to prove classification. Nevertheless,
that the direction is correct follows from the classification of families of curves
in positive characteristic as found in [S2], where the argument employed would
actually generalise to foliations in characteristic zero if one had pm-closure for
all m, and certainly it works if one has infinitely many such p, albeit one might
actually be enough.

Such, final considerations on alternative strategies for proving the classifica-
tion theorem have for many years now been a favourite topic of conversation
between Fedya and myself. Unfortunately, we’ve never quite been able to make
it work, and the contents of this final section are, at least from what I have un-
derstood, a summary of these conversations, which may well be worth presenting
to a wider audience in the (unlikely) event that we may have over looked some
thing. I fear, though, that the very difficulty of V.1.3 demands that even if a
characteristic p-alternative exists, it’s likely to be anything but soft.
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