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Jones Index and Local von Neumann Algebras

Basic notions. H = (complex) Hilbert space

A linear operator A : H → H is continuous

w.r.t. the norm topology iff A is bounded,

namely

||A|| ≡ sup
||ξ||≤1

||Aξ|| < ∞

B(H) = algebra of all bounded linear operators

on H.

Algebraic structure:

αA + βB linear structure

AB multiplication

(+ distributive, associative laws)

−→ B(H) is an algebra



A �→ A∗ involution: (Aξ, η) = (ξ, A∗η)
−→ B(H) is a ∗algebra

Order structure:

A ≥ 0 : (Aξ, ξ) ≥ 0

A ≥ 0 ⇔ A = B∗B: algebraic structure

determines order structure

Metric structure:

Ai → A (in norm): ||A − Ai|| → 0.

B(H) is a Banach algebra: ||AB|| ≤ ||A||||B||

||A||2 = inf{λ > 0 : A∗A ≤ λI}: algebraic structure

determines metric structure

C∗ property of the norm:

||A∗A|| = ||A||2. B(H) is a C∗algebra



Other topologies.

Ai → A strongly: ||Aξ − Aiξ|| → 0

Ai → A weakly: (Aiξ, η) → (Aξ, η). B(H) is a

weakly/strongly closed, it is a von Neumann

algebra

Def. A von Neumann algebra M is a weakly

closed non-degenerate ∗-subalgebra of B(H).

Example 1. L∞(X, µ) ess. bounded function

on a measure space:

f ∈ L∞(X, µ)↔ Mf ∈ B(L2(X, µ)), Mfg = fg.

Example 2. B(H).

von Neumann density thm. A ⊂ B(H) non-

degenerate ∗-subalgebra

A− = A′′



where ′ denotes the commutant

A′ = {T ∈ B(H) : TA = AT ∀A ∈ A}

weak or strong closure = double commutant:

Double aspect, analytical and algebraic.

M abelian vN algebra⇔M� L∞(X, µ).

von Neumann algebras = NC measure theory

M is a factor if it center M∩M′ = C.

Ω ∈ H is cyclic if MΩ = H; separating if xΩ =

0, x ∈ M =⇒ x = 0. Ω cyclic for M ⇔ Ω

separating for M′.

Example 3. G discrete group,

H ≡ �2(G) = {ξ : G→ C s.t.
∑ |ξ(g)|2 < ∞}

λ left regular rep. of G: (λ(g)ξ)(h) = ξ(g−1h),

ξ ∈ H



M= vN(G) = weak closure of lin.span{λ(g), g ∈
G}

G = Z =⇒ vN(G) � L∞(T) (Fouries series)

G ICC group (e.g. S∞, F2) =⇒ M is factor

τ(x) ≡ (xΩ,Ω), x ∈ vN(G), Ω = δg,e

τ is a trace: τ(xy) = τ(yx)

Proof: τ(λ(g)λ(h)) = (λ(gh)Ω,Ω) = δgh,e =

δhg,e = (λ(hg)Ω,Ω) = τ(λ(h)λ(g))

Note: Ω is cyclic and separating and the anti-

unitary involution J : ξ(g) �→ ξ(g−1) satisfies

JMJ =M′

where M′ = ρ(G)′′, ρ = right regular represen-

tation.



There are factor with no (even unbounded)

trace, factor of type III.

Def. A C∗-algebra is a Banach algebra A with

an anti-automorphism involution a → a∗ satis-

fying ||a∗a|| = ||a||2.

Example 1. C(X) = continuos functions on a

cmpt space X (||f || = maxx∈X |f(x)|, f∗ = f̄).

Example 2. Norm closed ∗-subalgebras of B(H).

Gelfand-Naimark thm. ∃ contravariant func-

tor F between category of (unital) abelian C∗-
algebras and category of cmpt topological spaces:

A
F−→ spec(A)

|| ||
C(X)

F−1
←−−− X



A
homomor.−−−−−−−→ B

� �
X

cont. map←−−−−−−− Y

C∗-algebras = noncommutative topology

A state ω on a unital C∗-algebra A is a pos-

itive linear functional on A, ω(1) = 1 (non-

commutative probability measure).

A representation π of A is a homomorphism

π : A → B(H).

GNS construction. ω state −→ (H, π,Ω)

ω(x) = (π(x)Ω, Ω), x ∈ A,

π(A)Ω = H, i.e. Ω cyclic.

Every C∗-algebra is isomorphic to a norm closed
∗-subalgebras of B(H).



Representation theory for C∗-algebras is crucial

(NC Radon measures)

A state (or representation) ω on a von Neu-

mann algebra is normal if it is σ-weakly con-

tinuous; equiv. xi ↗ x =⇒ ω(xi) → ω(x)

(Lebesgue monotone convergence thm. holds).

(Normal) representation theory of vN algebras

is only multiplicity.

NC geometry = ∗-subalgebras of C∗-algebras

+ structure. cf. Connes NC geometry.

Example 3. A = Mat2(C),

A = A⊗ A⊗A⊗ · · ·− (norm completion)

t ∈ (0,1), ϕt the state on A

ϕt

([
a b
c d

])
= ta + (1− t)d



then ϕt⊗ϕt⊗· · · is a state on A with GNS rep.

πt

t = 1/2 =⇒ πt(A)′′ finite factor

t �= 1/2 =⇒ πt(A)′′ type III factor (Powers

factors).

Amenable factors are classified by Connes

and Connes-Haagerup (III1-case).

Tomita-Takesaki theory. M a von Neumann

algebra on H.

Ω ∈ H cyclic for M ⇔ Ω separating for M′.

ω normal faithful state, i.e. ω(x∗x) > 0 ∀x �= 0.

We may assume ω = (·Ω,Ω) with Ω cyclic and

separating (M acts standardly). Set

L∞(M) ≡M, L2(M) = H L1(M) =M∗,



where M∗ is the predual of M (normal lin.

functionals), (M∗)∗ =M.

M x�→x∗−−−−−−→
isometric

M

x→xΩ

⏐⏐⏐�
⏐⏐⏐�x→xΩ

L2(M)
S0:xΩ�→x∗Ω−−−−−−−−−−→

non isometric
L2(M)

S the closure of the anti-linear operator S0,

S = J∆1/2 polar decomposition, thus ∆ =

S∗S > 0 positive selfadjoint, J anti-unitary in-

volution:

∆itM∆−it =M
JMJ =M′

ω → σω
t = Ad∆it canonical “evolution” associ-

ated with ω (modular automorphisms).

NC measure theory is non-trivial and rich; in the

abelian case only one standard, non-atomic

Borel space!



Example. M = Matn(C),

H =M with scalar product (A, B) = Tr(B∗A)

ω faithful state, Tr(T ·) (Riesz lemma), T ≥ 0

GNS: π : M → B(H), π(A)B = AB, Ω =

T1/2 ∈ H, ω(A) = (π(A)Ω,Ω).

S : AT1/2 �→ A∗T1/2, ∆ : A �→ TAT−1,

σω
t (A) = T itAT−it, Jπ(A)J = π′(A∗)

π′(A)B = BA

σ measures the deviation of ω from being a

trace. σ inner iff ∃ a (bounded or unbounded)

trace.

σω is characterized by the KMS condition

ω(yx) = anal.cont.
t→−i

ω(σω
t (x)y), x, y ∈ M,



that characterizes thermal equilibrium states in

Quantum Statistical Mechanics (Haag, Hugen-

holtz and Winnik).

Let N ⊂M be an inclusion of von Neumann. A

conditional expectation ε :M→N is a positive

linear map with ε � N = ι.

Takesaki thm. ω faithful normal state of M.

∃ ω- preserving expectation ε : M → N (i.e.

ω · ε = ω) ⇔ σω
t (N ) = N .

L∞(M)
ε−−−−−→

expect.
L∞(N )

x→xΩ

⏐⏐⏐�
⏐⏐⏐�x→xΩ

L2(M)
e−−−−−−−→

orth. proj.
L2(N ) = NΩ

Jones theory. N ⊂ M inclusion of factors.

M to be finite, namely there exists a (unique)

tracial state ω = (·Ω, Ω) on M. With e the



projection onto NΩ, the von Neumann algebra

generated by M and e

M1 = 〈M, e〉= JMN′JM
is a semifinite factor (∃ unbounded trace).

N ⊂ M has finite index
def
= M1 is finite. The

index is defined as

[M : N ] = ω(e)−1

with ω also denoting the trace of M1.

Jones thm.

[M : N ] ∈
{
4cos2

π

n
, n ≥ 3

}
∪ [4,∞] .

A probabilistic definition of the index was given

by Pimsner and Popa through the inequality

ε(x) ≥ λx, x ∈ M+,

λ = [M : N ]−1 where ε : M → N is the trace

preserving conditional expectation.



N ⊂ M any inclusion of factors, ε : M → N
normal expectation:

[M : N ]ε defined by Popa, Kosaki (e.g. by

Pimsner-Popa inequality)

Minimal index (Hiai, L.)

[M : N ] = inf
ε

[M : N ]ε = [M : N ]ε0

where ε0 is the unique minimal conditional ex-

pectation.

Jones tower. One can iterate Jones construc-

tion

M⊂M1 = 〈M, e0〉 ⊂ M2 ⊂ 〈M1, e1〉 · · ·

the projections ei’s satisfy

eiej = ejei if |i− j| ≥ 2,

ei±1eiei±1 = λei



If λ−1 = [M : N ] < 4 then gi = qei − (1 − ei)

gives a representation of Artin braid group B,
q + q−1 + 2 = λ:

gjgi = gigj if |i− j| ≥ 2,

gigi+1gi = gi+1gigi+1

Evaluating and rescaling with ω an element α ∈
Bn with exponent sum l gives Jones polynomial
invariant for knots and links:

VL(q) =

(
−q + 1
√

q

)n−1

(
√

q)lω(α)

Joint modular structure. Sectors. N ⊂ M
type III factors. JN and JM modular conjuga-
tions of N and M.

The unitary Γ = JNJM implements a canonical
endomorphism of M into N

γ(x) = ΓxΓ∗, x ∈ M.

Proof. ΓMΓ = JNJMMJMJN = JNM′JN ⊂
JNN′JN = N .



γ depends on JN and JM only up to inners of

N ; γ is canonical as a sector of M:

The sectors of M are

Sect(M) = End(M)/Inn(M)

ρ, ρ′ ∈ End(M), ρ ∼ ρ′ iff there is a unitary

u ∈ M such that ρ′(x) = uρ(x)u∗ for all x ∈ M.

Sect(M) is a ∗-semiring

Addition (direct sum): Let ρ1, ρ2 ∈ End(M);

then ρ ≡ ρ1 ⊕ ρ2

ρ : x ∈ M→
[
ρ1(x) 0

0 ρ2(x)

]
∈Mat2(M) �M

naturally up to inners, thus in Sect(M).

Composition (monoidal product). Usual com-

position of maps

ρ1 · ρ2(x) = ρ1(ρ2(x)), x ∈ M



passes to the quotient Sect(M).

Conjugation. With ρ ∈ End(M), choose a
canonical endomorphism γρ :M→ ρ(M). Then

ρ̄ = ρ−1 · γρ

well-defines a conjugation in Sect(M). Thus
have

γρ = ρ · ρ̄

Connes bimodules and sectors. L2(M) is a
normal bimodule for M

x, y ∈ M, ξ ∈ L2(M) �→ xξy ≡ xJy∗Jξ

If ρ ∈ End(M) the bimodule L2
ρ(M) is L2(M)

with left-rigth actions

x, y ∈ M, ξ ∈ L2(M) �→ ρ(x)ξy ≡ xJy∗Jξ

All normal bimodules on M arise in this way up
to unitary equivalence (Connes). Representation
concepts make sense.

Bimod(M)/∼ = Sect(M)



Ind(ρ) ≡ [M; ρ(M)].

Prop. ρ ∈ End(M) irreducible.

Ind(ρ) < ∞⇔ ρρ̄ � ι & ρ̄ρ � ι

Analytic def. of conjugate = algebraic def. of
conjugate

One may represent objects with non-integral

dimension d(ρ) =
√

Ind(ρ) as quantum groups,
loop groups, infinite-dimensional Lie algebras,
superselection sectors, . . .

The tensor category End(M).

Tensor category = category equipped with mo-
noidal product (internal tensor product) on ob-
jects and arrows (+ natural compatibility con-
ditions).

Tensor C∗-category = tensor category + ar-
rows form a Banach space with an involution



reversing C∗ property ||T ∗ ◦ T || = ||T ||2 (Do-

plicher, Roberts).

M an infinite factor → End(M) is a tensor C∗-
category:

Objects: = End(M)

Hom(ρ, ρ′) ≡ {a ∈ M : aρ(x) = ρ′(x)a ∀x ∈ M}

Composition of intertwiners (arrows): opera-

tor product

C∗ property: obvious

Tensor product of objects: ρ⊗ ρ′ = ρρ′

Tensor product of arrows: σ, σ′ ∈ End(M), t ∈
Hom(ρ, ρ′), s ∈ Hom(σ, σ′),

t⊗ s ≡ tρ(s) = ρ′(s)t ∈ Hom(ρ⊗ σ, ρ′ ⊗ σ′) .



If ρ is irreducible (i.e. ρ(M)′ ∩M = C) and has

finite index, then ρ̄ is the unique sector such

that ρρ̄ contains the identity sector.

ρ, ρ̄ ∈ End(M) are conjugate as sectors iff ∃
isometries v ∈ Hom(ι, ρρ̄) and v̄ ∈ Hom(ι, ρ̄ρ)

such that

(v̄∗ ⊗ 1ρ̄) · (1ρ̄ ⊗ v) ≡ v̄∗ρ̄(v) =
1

d
,

(v∗ ⊗ 1ρ) · (1ρ ⊗ v̄) ≡ v∗ρ(v̄) =
1

d
,

for some d > 0.

The minimal d is the dimension d(ρ); it is re-

lated to the minimal index by

[M : ρ(M)] = d(ρ)2

(tensor categorical definion of the index)

d(ρ1 ⊕ ρ2) = d(ρ1) + d(ρ2)



d(ρ1ρ2) = d(ρ1)d(ρ2)

d(ρ̄) = d(ρ).

Every subset of End(M) having finite-index gen-

erate (by composition, subobjects, diret sum)

a C∗-tensor category with conjugates.

Example 1. (Connes) G discrete (or locally

compact) group,

π finite-dimensional unitary rep. of G on H

λ⊗ π acts on the left on �2(G)⊗H

ρ⊗ ι acts on the right on �2(G)⊗H

λ⊗π ∼ λ (absorbing propery of λ) =⇒ �2(G)⊗
H is a vN(G) bimodule with dimension dimH.



Tensor product of reps. ↔ tensor product of

sectors.

Example 2. (Cuntz) Let V1, V2, . . . Vn be isome-

tries with final projections forming a partion of

I:

V ∗i Vi = I,
n∑

i=1

ViV
∗
i = I

H = Lin.span{Vi} is a Hilbert space: (X, Y )I ≡
X∗Y

C∗-algebra generated by the Vi’s is universal,

it depends only on H: the Cuntz algebra On.

U ∈ On unitary → λU ∈ End(On), λU : Vi �→ UVi

W multiplicative unitary on H ⊗ H (Baaj and

Skandalis)

W12W13W23 = W23W12



⇔ Hopf algebra (in particular all finite groups

arise in this way!)

R ≡ WF , F flip symmetry of H ⊗ H. R ∈
H ·H · H̄ · H̄ → R ∈ On

(On a weak closure) dimλR = dim. of Hopf

algebra,

tensor category generated by λR = rep. tensor

category of Hopf algebra.

Embedding an abstract tensor C∗-category T .

(Roberts, L.)

For each finite-dimensional object ρ there is an

associated von Neumann algebra Mρ⎛
⎝lim−→

n,m
Hom(ρn, ρm)

⎞
⎠′′



and a tensor functor F : Tρ → End(Mρ). F is

full if ρ is rational or amenable following Popa:

End(M)“universal” tensor C∗ tensor category

Haag-Kastler nets in QFT. Minkowski space-

time: R4 with metric 〈x,y〉 = x2
0− x2

1 − x2
2 − x2

3

K family of regions (say double cones)

A(O): von Neumann algebra generated by the

observables localized in O in a QFT. The net

O → A(O)

satisfies :

isotony: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2);

locality: O1 ⊂ O′2 ⇒ A(O1) ⊂ A(O2)
′, with

O′ ≡ {x : 〈x,y〉 < 0 ∀y ∈ O}



Haag duality: A(O′)′ = A(O), O ∈ K;

Poincaré covariance: ∃ unitary rep. U of Poincaré

group P↑+ on H with

U(g)A(O)U(g)−1 = A(gO), g ∈ P↑+, O ∈ K.

Positive energy. The generator of time trans-

lation is positive: H ≥ 0.

Vacuum: ∃! U-invariant vector Ω, cyclic for the

quasi-local C∗-algebra

A = ∪O∈KA(O)−

(norm closure)

Representations. A superselection sector (Wick,

Wightman and Wigner), i.e. a label for quan-

tum “charges”, is an equivalence class of physical

representations of A.

What subset of RepA is physical?



Borchers: ∃ a positive-energy representation

Uρ of the universal covering group P̃↑+ s.t. ∀X ∈
A, g ∈ P̃↑+

Uρ(g)ρ(X)Uρ(g)
−1 = ρ(U(g)XU(g)−1),

DHR: localized representation

Buchholz-Fredenhagen thm.: positive energy

=⇒ localization

We shall see a converse with above methods.

Doplicher-Haag-Roberts theory.

π DHR rep. of A
def⇔ π�A(O′) � ι�A(O′)

∀O ∈ K.

Lemma. Given O ∈ K, ∃ρ ∈ End(A), ρ � π

ρ�A(O′) = id



ρ is a localized endomorphism of A.

Proof. U unitary s.t. π(X) = UXU∗,∀X ∈
A(O′).

ρ ≡ U∗π(·)U.

ρ(X) = X if X ∈ A(O′).

Y ∈ A(O), X ∈ A(O′) =⇒ Y X −XY = 0 thus

ρ(Y )X−Xρ(Y ) = ρ(Y )ρ(X)−ρ(X)ρ(Y ) = ρ(Y X−
XY ) = 0

thus ρ(Y ) ∈ A(O′)′ = A(O) (Haag duality)

thus ρ�A(O) ∈ End(A(O)) and ρ ∈ End(A).

DHR endom. form a tensor C∗-category.

Statistics. ρ localized in O ∈ K



Choose ρ1 ∼ ρ localized in O1 ⊂ O′: ρ1 =

uρ(·)u∗ with u ∈ A.

ρρ1 = ρ1ρ gives ε = u∗ρ(u) ∈ ρ2(A)′

εi ≡ ρi−1(ε), i ∈ N,⎧⎪⎪⎨
⎪⎪⎩

ε2i = 1,

εiεj = εjεi if |i− j| ≥ 2,

εiεi+1εi = εi+1εiεi+1

unitary representation of S∞, the statistics of

ρ.

There is an expectation ε : A→ ρ(A).

ρ irreducible: statistics parameter λρ = ε(ε)

λρ = 0,±1,±1

2
,±1

3
, . . .

and classifies the statistics.

λρ = κρ/dDHR(ρ) with dDHR(ρ) > 0 and κρ ∈ T.



dDHR(ρ) is the statistical dimension of ρ;

dDHR(ρ) ∈ N ∪∞
(dDHR(ρ) is an “index”) and κρ is the univa-
lence of ρ.

Index-statistics theorem (L.). Natural con-
nection between the Jones index and QFT

Ind(ρ) = dDHR(ρ)2.

Here Ind(ρ) is Ind(ρ|A(O)), the minimal index
(A(O) is a III-factor for certain regions).

Passing to quotient one obtains a natural em-
bedding

Superselection sectors −→ Sect(M).

Subfactor theory contains all local information.

Low dimensional Quantum Field Theory.
DHR analysis is not entirely valid if the space-
time dimension = 2. Reason: O′ has two con-
nercted components.



Low dimensional statistics was analysed inde-

pendently by Fredenhagen-Rehren-Schroer and

L.. ⎧⎪⎪⎨
⎪⎪⎩

ε2i �= 1,

εiεj = εjεi if |i− j| ≥ 2,

εiεi+1εi = εi+1εiεi+1

thus S∞ → B∞

braid group statistics.

Index-statistics thm. gives:

d(ρ) ∈ {2cos
π

n
, n ≥ 3} ∪ [2,∞].

ρ2 = ρ1 ⊕ · · · ⊕ ρn irred. decomposition.

n ≤ 3, in particular for “small” index, statis-

tics is classified by the braid group representa-

tion of Jones or Birman-Wenzl-Murakami, i.e.

knot and link polynomial invariants of Jones

and Kauffman.



In particular

4 < d(ρ)2 < 6

⇒ d(ρ)2 = 5, 5.049 . . . ,5.236 . . . ,5.828 . . .

(Rehren, L.) while Jones index values ⊃ [4,∞)!.

Relativistic invariance and the particle-anti-

particle symmetry. Reeh-Schlieder thm: Ω is

cyclic and separating for any A(O), O ∈ K.

Bisognano-Wichmann thm. (in a Wightman

frame)

∆it
W = U(ΛW(2πt))

ΛW(t) =

⎡
⎢⎢⎢⎣
cosh t sinh t 0 0
sinh t cosh t 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦

→ Buchholz-Summer geometric modular ac-

tion, Guido-L. modular covariance



Sewell black hole themodynamical interpreta-

tion:

Bisognano-Wichmann thm.

�
KMS for boosts

�
temperature for unif. accelerated observer

�
Hawking-Unruh effect

Let ρ be a localized endomorphism. In the

above setting (strong additive nets)

Thm. (Guido, L.)

ρ Poincaré covariant⇐⇒ ∃ conjugate sector ρ̄

Proof. Algebraic conjugate ρ̄ = analytic con-

jugate ρ̄.

algebraic conjugation is preserved under restric-

tion Õ ⊃ O



→ consistency relations for analytic conjugate

→ consistency relations for modular conjuga-

tions

→ symmetries (by geom. meaning of modular

objects).

Algebraic spin-statistics theorem. The index-

statistics theorem provides a new understand-

ing of the absolute value of λρ, but also

κρ = phase(λρ)

is intrinsic (see above).

Thm. Algebraic version of the spin-statistics

theorem (Guido, L.).

κρ = Uρ(2π).


