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Jones Index and Local von Neumann Algebras
Basic notions. H = (complex) Hilbert space

A linear operator A : 'H — H is continuous
w.r.t. the norm topology iff A is bounded,
namely

1Al = sup [[Ag]] < oo
1€1<1

B(H) = algebra of all bounded linear operators
on H.

Algebraic structure:
aA + BB linear structure
AB multiplication

(4+ distributive, associative laws)
— B(H) is an algebra




A — A* involution: (A&, n) = (£ A*p)
— B(H) is a *algebra

Order structure:
A>0:(A8¢€) >0

A > 0 & A = B*B: algebraic structure
determines order structure

Metric structure:

A; — A (in norm): |A — A;l] — O.
B(H) is a Banach algebra: ||[AB]|| < ||Al|||B||

|A||2 = inf{\ > 0: A*A < \I}: algebraic structure
determines metric structure

C* property of the norm:

|A*A|| = ||A||2. B(H) is a C*algebra



Other topologies.
A; — A strongly: ||[A€ — Ai|| — O

A; — A weakly: (A;§,n) — (A§,n). B(H) is a
weakly/strongly closed, it is a von Neumann
algebra

Def. A von Neumann algebra M is a weakly
closed non-degenerate *-subalgebra of B(H).

Example 1. L°°(X,u) ess. bounded function
ONn a measure space:

f€LO(X,u) < My € B(LA(X,pn), M= fg.
Example 2. B(H).

von Neumann density thm. A C B(H) non-
degenerate *-subalgebra

Q[— — Q[//




where / denotes the commutant

A'={T € B(H) : TA= AT VA € A}

weak or strong closure = double commutant:
Double aspect, analytical and algebraic.

M abelian vN algebra <& M ~ L*°(X, u).

von Neumann algebras = NC measure theory

M is a factor if it center M N M’ = C.

2 e 'H is cyclic if MS2 = H; separating if xS2 =
O, zeM — z=0. Q cyclic for M < Q
separating for M.

Example 3. G discrete group,

H=02(G)={¢:G—C st ()2 < oo}

X left regular rep. of G: (M (9)¢)(h) = &(g~1h),
EeH



M = vN(G) = weak closure of lin.span{A(g),g €
G}

G =7 = VN(G) ~ L°°(T) (Fouries series)
G ICC group (e.9. Sc,F>) == M is factor
m(x) = (22,2), x € VN(G), Q2=0g4¢

7 is a trace: 7(xy) = 7(yx)

Proof: r(AM(@)A(h)) = (M(gh)2,Q2) = gp. =
Shge = (A(hg)2,Q2) = 7(A(h)A(g))

Note: €2 is cyclic and separating and the anti-
unitary involution J : £(g) — £(g—1) satisfies

IJMJT =M

where M’ = p(G)", p = right regular represen-
tation.



There are factor with no (even unbounded)
trace, factor of type III.

Def. A C*-algebra is a Banach algebra 2 with
an anti-automorphism involution a — a™ satis-
fying [la*a|| = ||all?.

Example 1. C(X) = continuos functions on a
cmpt space X (|If|| = maxex |f(2)], f*=F).

Example 2. Norm closed *-subalgebras of B('H).

Gelfand-Naimark thm. 3 contravariant func-
tor F between category of (unital) abelian C*-
algebras and category of cmpt topological spaces:

A EiN spec(2)
| |

1
cx) £- x



homomor.
2A ‘B

! !

cont. ma
X - Py

C*-algebras = noncommutative topology

A state w on a unital C*-algebra 2 is a pos-
itive linear functional on A, w(1) = 1 (non-
commutative probability measure).

A representation = of 2 is a homomorphism
7. A — B(H).
GNS construction. w state — (H,w,2)
w(z) = (7(2)2,2), ze,
() = H, i.e. Q cyclic.

Every C*-algebra is isomorphic to a norm closed
*-subalgebras of B(H).



Representation theory for C*-algebras is crucial

(NC Radon measures)

A state (or representation) w on a von Neu-
mann algebra is normal if it is o-weakly con-
tinuous; equiv. z; S x = w(x;) — w(x)
(Lebesgue monotone convergence thm. holds).

(Normal) representation theory of vN algebras
IS only multiplicity.

NC geometry = *-subalgebras of C*-algebras
+ structure. cf. Connes NC geometry.

Example 3. A = Mat»(C),

A=ARAR AR ---— (norm completion)
t e (0,1), ¢ the state on A

o[t )=t ao



then p; @ s ®--- is a state on A with GNS rep.

Tt
t=1/2 = m(A)” finite factor

t # 1/2 = m(A)” type III factor (Powers
factors).

Amenable factors are classified by Connes
and Connes-Haagerup (III1-case).

Tomita-Takesaki theory. M a von Neumann
algebra on H.

Q € ‘H cyclic for M <  separating for M.

w normal faithful state, i.e. w(z*z) > 0 Vo %= O.
We may assume w = (-€2,2) with © cyclic and
separating (M acts standardly). Set

LP(M)=M, L*°M)=H L'M)= M,



where M, is the predual of M (normal lin.
functionals), (My)* = M

M _TOTE, M
Isometric
a:—>a:§2l la:—m:Q
Sn:xQ—x*R
L2(M) —2— L2(M)

non isometric
S the closure of the anti-linear operator Sp,
S = JAL/2 polar decomposition, thus A =
S*S > 0 positive selfadjoint, J anti-unitary in-
volution:

AP MATE =M
JMJI =M’

w — o = AdAY canonical “evolution” associ-
ated with w (modular automorphisms).

NC measure theory is non-trivial and rich; in the
abelian case only one standard, non-atomic
Borel space!




Example. M = Mat,(C),
H = M with scalar product (A, B) = Tr(B*A)
w faithful state, Tr(7T-) (Riesz lemma), T'> 0

GNS: 7 : M — B(H), m(A)B = AB, Q =
T2 ¢ H, w(A) = (7(A), Q).
S ATY2 5 A*TY2 A7 A TAT L,

o’ (A) = THAT™",  Jr(A)J = ' (A*)
m'(A)B = BA
o measures the deviation of w from being a
trace. o inner iff 3 a (bounded or unbounded)
trace.
o%” is characterized by the KMS condition

w(yx) = anal.cont.w(of(x)y), =,y € M,

é_,l/



that characterizes thermal equilibrium states in

Quantum Statistical Mechanics (Haag, Hugen-
holtz and Winnik).

Let N C M be an inclusion of von Neumann. A
conditional expectatione : M — N is a positive
linear map with ¢ [ N = ..

Takesaki thm. w faithful normal state of M.
3 w- preserving expectation ¢ : M — N (i.e.
w-e=w) < or(N) =N.

L>(M) - L>®(N)
expect.
a:—>a:§2l la:—m:Q
L2(M) C 5 L2WN)=NQ
orth. proj.

Jones theory. N C M inclusion of factors.
M to be finite, namely there exists a (unique)
tracial state w = (:Q2,2) on M. With e the



projection onto N <2, the von Neumann algebra
generated by M and e

M1 = (M,e) = JN'Jp

is a semifinite factor (3 unbounded trace).

N C M has finite index & My is finite. The

index is defined as

M N] = w(e) !

with w also denoting the trace of Mj.

Jones thm.

M N] € {4C052%,n > 3} U [4, 0] .

A probabilistic definition of the index was given
by Pimsner and Popa through the inequality

e(z) >z, ze€MT,

A= [M: N]1 where e : M — N is the trace
preserving conditional expectation.



N C M any inclusion of factors, ¢ : M — N
normal expectation:

M : N]: defined by Popa, Kosaki (e.g. by
Pimsner-Popa inequality)
Minimal index (Hiai, L.)

M N] = ir;f[j\/l N]e = [M 1 N

where g is the unique minimal conditional ex-
pectation.

Jones tower. One can iterate Jones construc-
tion

M C Ml — <M7€O> C MQ C <M17€1>'”
the projections e;'s satisfy

€65 — €45€4 if |’1, —j| Z 2,

€;i+1€i€i+1 = A&;



If ™1 = [M: N] < 4then g, = qe; — (1 — ¢;)
gives a representation of Artin braid group B,
at+qt+2=X

9i9; = 9i9; If |i —j| = 2,
9i9i+19i = 9i+19i9i41
Evaluating and rescaling with w an element o €

B,, with exponent sum [ gives Jones polynomial
invariant for knots and links:

g+ 1 n-1 lwoz
\/§> (V) w(a)

Joint modular structure. Sectors. N ¢ M
type III factors. Jys and Jy, modular conjuga-
tions of A/ and M.

Vi(q) = (-

Theunitary I' = JyJp implements a canonical
endomorphism of M into N

v(z) = Mxl*, r e M.

Proof. TMIT = JyJyMIp Iy = Iy M Jp C
INNIN = N.




v depends on Jy and Jp, only up to inners of
N, ~ is canonical as a sector of M:

The sectors of M are

Sect(M) = End(M)/Inn(M)

o0, € End(M), p ~ p/ iff there is a unitary
u € M such that p/(z) = up(z)u* for all z € M.

Sect(M) is a *-semiring

Addition (direct sum): Let p1,po € End(M);
then p=p1 P po

p1(z) O
0  pa(x)

naturally up to inners, thus in Sect(M).

p:reM— € Mato(M) ~ M

Composition (monoidal product). Usual com-
position of maps

p1 - p2(z) = p1(p2(x)), r €M



passes to the quotient Sect(M).

Conjugation. With p € End(M), choose a
canonical endomorphism ~, : M — p(M). Then

p=p""

well-defines a conjugation in Sect(M). Thus
have

Yo =p-P

Connes bimodules and sectors. LQ(M) IS a
normal bimodule for M

z,y €M, €€ L*(M) — z€y = 2 Jy*JE
If p € End(M) the bimodule L3(M) is L?(M)
with left-rigth actions
z,y €M, € € L*(M) — p(z)€y = zJy* J¢

All normal bimodules on M arise in this way up
to unitary equivalence (Connes). Representation

concepts make sense.

Bimod(/\/l)/N = Sect(M)




Ind(p) = [M; p(M)].

Prop. p € End(M) irreducible.

Ind(p) <oco<pp=1t & pp =1t

Analytic def. of conjugate = algebraic def. of
conjugate

One may represent objects with non-integral

dimension d(p) = +/Ind(p) as quantum groups,
loop groups, infinite-dimensional Lie algebras,

superselection sectors, ...

The tensor category End(M).

Tensor category = category equipped with mo-
noidal product (internal tensor product) on ob-
jects and arrows (4 natural compatibility con-
ditions).

Tensor C*-category = tensor category + ar-
rows form a Banach space with an involution



reversing Cx property ||T* o T|| = ||T||? (Do-
plicher, Roberts).

M an infinite factor — End(M) is a tensor C*-
category:.

Objects: = End(M)
Hom(p,p') ={a € M : ap(z) = p'(z)a Vx € M}

Composition of intertwiners (arrows). opera-
tor product

C* property: obvious
Tensor product of objects: p® p' = pp’

Tensor product of arrows: o,0’ € End(M), t €
Hom(p, p'), s € Hom(o, o'),

t@s=tp(s) =p(s)t e Hom(p®o,p @) .



If p is irreducible (i.e. p(M) N M = C) and has
finite index, then p is the unique sector such
that pp contains the identity sector.

p,p € End(M) are conjugate as sectors iff 3
isometries v € Hom(¢, pp) and v € Hom(e, pp)
such that

(?_)* & 1/5) : (1/5@?)) = 1_)*,5(1)) =

Y

(vV*'®1p) - (1,®0) =v p(v) =

Y

Q||

for some d > O.

The minimal d is the dimension d(p); it is re-
lated to the minimal index by

[M : p(M)] = d(p)*

(tensor categorical definion of the index)

d(p1 @ p2) = d(p1) + d(p2)



d(p1p2) = d(p1)d(p2)
d(p) = d(p).
Every subset of End(M) having finite-index gen-

erate (by composition, subobjects, diret sum)
a C*-tensor category with conjugates.

Example 1. (Connes) G discrete (or locally
compact) group,

7 finite-dimensional unitary rep. of G on 'H
A ® 7 acts on the left on 2(G) @ H
p® . acts on the right on ¢2(G) ® H

A®7 ~ X (absorbing propery of \) = (2(G)®
H is a VN(G) bimodule with dimension dim™H.



Tensor product of reps. « tensor product of
sectors.

Example 2. (Cuntz) Let V7, V5,...V, be isome-
tries with final projections forming a partion of
I:

n
V=1, Y ViV =1

H = Lin.span{V;} is a Hilbert space: (X,Y)I =
XY

C*-algebra generated by the V;’'s is universal,
it depends only on H: the Cuntz algebra Oy,.

U € Op, unitary — Ay € End(Op), \y : V; — UV,

W multiplicative unitary on H ® H (Baaj and
Skandalis)

Wi1oWi13Wo3 = WozWio



< Hopf algebra (in particular all finite groups
arise in this way!)

R = WF, F flip symmetry of H ® H. R €
H-H-H-H— Re Oy,

(On a weak closure) dimAgp = dim. of Hopf
algebra,

tensor category generated by A\p = rep. tensor
category of Hopf algebra.

Embedding an abstract tensor C*-category 7T .
(Roberts, L.)

For each finite-dimensional object p there is an
associated von Neumann algebra M,

!/
: n m
(llma Hom(p", p ))

n,Mm



and a tensor functor F : 7, — End(M,). F is
full if p is rational or amenable following Popa:

End(M) “universal” tensor C* tensor category

Haag-Kastler nets in QF T. Minkowski space-
time: R* with metric (x,y) = m% —x% — 25 — x%

JIC family of regions (say double cones)

A(O): von Neumann algebra generated by the
observables localized in O in a QFT. The net

O — A(O)

satisfies :
isotony. O1 C O = A(0O71) C A(O»);

locality. O1 C 0/2 = A(01) C A(0O5), with
O'={x:{x,y) <0 Vye O}



Haag duality: A(O") = A(O), O € K;

Poincaré covariance: 3 unitary rep. U of Poincaré
group P_TI_ on ‘H with
U(9)AO)U(9) " = A(g0), g€ PL, 0 e k.

Positive energy. The generator of time trans-
lation is positive: H > 0.

Vacuum: 3! U-invariant vector €2, cyclic for the
quasi-local C*-algebra

A= UoercA(O)™
(norm closure)
Representations. A superselection sector (Wick,

Wightman and Wigner), i.e. a label for quan-
tum “charges’”, is an equivalence class of physical

representations of 2.

What subset of Rep4l is physical?



Borchers: 4 a positive-energy representation
U, of the universal covering group 75_T|_ s.t. VX €

>1l
2, g€73_|_

Up(9)p(X)Un(9) "t = p(U(9)XU(g)™ 1),

DHR: localized representation

Buchholz-Fredenhagen thm.. positive energy
—= |ocalization

We shall see a converse with above methods.

Doplicher-Haag-Roberts theory.

7 DHR rep. of A & 7191(0") ~ L12A(0)

VO e K.

Lemma. Given O e K, dp € End(R), p~ 7

pIA(O") =id



p is a localized endomorphism of 2.

Proof. U unitary s.t. #n(X) = UXU* VX €
A(0O).

p=U*r()U.
o(X) =X if X e A(0)).
Y € A(0), X e A(0O)) = YX — XY =0 thus

p(Y)X=Xp(Y) = p(Y)p(X)—p(X)p(Y) = p(Y X -
XY)=0

thus p(Y) € A(0") = A(O) (Haag duality)
thus pl 40y € End(A(O)) and p € End(2).

DHR endom. form a tensor C*-category.

Statistics. p localized in O € K



Choose p; ~ p localized in O1 C O": p;
up()u*™ with u € .

pp1 = p1p gives e = u*p(u) € p2(A)’

€ = pi—l(e)a i € N,

feiz =1,
§€ic; = €56 i i —j| > 2,

(€i€i4-1€F — €,F1€€41
unitary representation of So, the statistics of
p.

There is an expectation € : A — p(2).

p irreducible: statistics parameter A\, = e(e)

1 1
Ap=0,+1,+=,+= ...
2'73

and classifies the statistics.

Ap = “p/dDHR(P) with dpyr(p) > 0 and Kp € T.



dpur(p) is the statistical dimension of p;

dpHr(p) € NU oo

(dpur(p) is an “index") and k, is the univa-
lence of p.

Index-statistics theorem (L.). Natural con-
nection between the Jones index and QFT

Ind(p) = dpur(p)°.

Here Ind(p) is Ind(p|A(O)), the minimal index
(A(O) is a III-factor for certain regions).

Passing to quotient one obtains a natural em-
bedding

Superselection sectors — Sect(M).

Subfactor theory contains all local information.

Low dimensional Quantum Field Theory.
DHR analysis is not entirely valid if the space-
time dimension = 2. Reason: O’ has two con-
nercted components.



Low dimensional statistics was analysed inde-
pendently by Fredenhagen-Rehren-Schroer and
L..

(7 # 1,
(€ic; = €56 i i —j| > 2,

(€1€+1€; — €4+16€641
thus So — Boo

braid group statistics.

Index-statistics thm. gives:

d(p) € {2cos%,n > 3} U [2,].

2 =p1 DD pp irred. decomposition.

n < 3, in particular for “small” index, statis-
tics is classified by the braid group representa-
tion of Jones or Birman-Wenzl-Murakami, i.e.
knot and link polynomial invariants of Jones
and Kauffman.




In particular
2
4 <d(p)c <6
= d(p)2 =5,5.049...,5.236...,5.828...

(Rehren, L.) while Jones index values D [4, co)!.

Relativistic invariance and the particle-anti-
particle symmetry. Reeh-Schlieder thm: 2 is
cyclic and separating for any A(O), O € K.

Bisognano-Wichmann thm. (in a Wightman
frame)

A, = U(Ay(27t))

‘cosht sinht

0
sinht cosht O
0

O O

— Buchholz-Summer geometric modular ac-
tion, Guido-L. modular covariance

= O O O




Sewell black hole themodynamical interpreta-
tion:

Bisognano-Wichmann thm.

I

KMS for boosts

I

temperature for unif. accelerated observer

l

Hawking-Unruh effect

Let p be a localized endomorphism. In the
above setting (strong additive nets)

Thm. (Guido, L.)

p Poincaré covariant < dconjugate sectorp

Proof. Algebraic conjugate p = analytic con-
jugate p.

algebraic conjugation is preserved under restric-
tion O > O



— consistency relations for analytic conjugate

— consistency relations for modular conjuga-
tions

— symmetries (by geom. meaning of modular
objects).

Algebraic spin-statistics theorem. The index-
statistics theorem provides a new understand-
ing of the absolute value of A\,, but also

kp = phase(A))
is intrinsic (see above).

Thm. Algebraic version of the spin-statistics
theorem (Guido, L.).




