

Exploration of Small Bodies: Asteroids and Comets

D.J. Scheeres

Department of Aerospace Engineering Sciences The University of Colorado at Boulder

Near Earth Asteroids (NEA)

What are NEA?

- Asteroids that have migrated from the Main Belt into the inner solar system
- Source of meteors and meteorites
- Most are relatively small (< few km in size)
- How long do they survive?
 - Orbits evolve rapidly/chaotically due to planetary flybys
 - Have a relatively short life-time (half-life of ~15 Myrs)
 - Some removed by impacts with planets
 - Most removed by impact with the sun
- How are they different from Main-Belt NEA?
 - Recently discovered YORP effect dominates their life
 - At least 15% are binary or ternary systems
 - Are not fundamentally different from small asteroids in the Main Belt

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Rotation Period vs. Diameter, 2010, 3643 Asteroids

Why are we interested in Small Bodies?

Tuesday, January 15, 2013

Why are we interested? Science

- Small bodies are "remnants" of the early solar system.
 - Their retain material that dates back to the solar system's formation.
 - They act as the "tracer particles" that have recorded what all the major planets have done over time.
- They have shaped life on Earth.
 - By delivering water and minerals in the early history of the Earth.
 - By causing occasional wide-spread extinctions due to their impact.

Why are we interested? *Human Exploration*

- Near Earth Asteroids are a natural destination for future human exploration missions.
- A human mission to an asteroid can be a "test run" for a Mars mission.
- Are currently being seriously considered by NASA for human exploration.

Why are we interested? Society

- Small bodies continually impact the Earth (e.g., shooting starts)
- Have caused large-scale extinctions in the past (e.g., the dinosaurs)
- If one were detected on a collision course, could we stop it?

Gravity Tug Spacecraft Concept: Scientific American

What asteroids have we visited?

- Gaspra (Galileo S/C)
- Ida+Dactyl System (Galileo S/C)
- Mathilde (NEAR S/C)
- Eros (NEAR S/C)
- Itokawa (Hayabusa S/C)
- Steins (Rosetta S/C)

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

How do we observe them?

- Spacecraft flybys
- Spacecraft rendezvous
- Radar observations

Near Earth Asteroid Rendezvous

- NASA space science mission
- Visited the asteroid Eros
- Launched 1996
- Arrived at asteroid 2001
- Landed on asteroid 2002

Tuesday, January 15, 2013

Tuesday, January 15, 2013

20 meters

Hayabusa Mission

- Japanese sample return mission to asteroid Itokawa
- Launched 2003, arrived at asteroid in 2005, returned to Earth in 2010 after a long, tortuous odyssey.

Asteroid Itokawa vs ISS

Tuesday, January 15, 2013

Asteroid Itokawa vs ISS

Tuesday, January 15, 2013

View from +X

View from +Y

View from +Z

Toutatis 小行星间隔成像照片

CE-2卫星拍摄

北京时间 2012年12月13日16点30分09秒~24秒 成像距离 93km~240km

■最高分辨率 10m ■相对速度 10.73km/s ■交会距离 3.2km ■ 地球7,000,000km

@新华视点 weibo.com/xinhuashidian

Exploration of a Binary Asteroid...

from Earth

Radar Investigation of Asteroid (66391) 1999 KW4

S.J. Ostro, J.-L. Margot, L. A. M. Benner, J. D. Giorgini, D. J. Scheeres, E. G. Fahnestock, S. B. Broschart, J. Bellerose, M. C. Nolan, C. Magri, P. Pravec, P. Scheirich, R. Rose, R. F. Jurgens, S.

Suzuki, E. M. DeJong

Dynamical Investigation of Asteroid (66391) 1999 KW4

D.J. Scheeres, E. G. Fahnestock, S. J. Ostro, J.-L. Margot, L. A. M. Benner, S. B. Broschart, J. Bellerose, J. D. Giorgini, M. C. Nolan, C. Magri, P. Pravec, P. Scheirich, R. Rose, R. F. Jurgens, S.

Suzuki, E. M. DeJong

November 24, 2006 Issue

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

MAAAS

Raw range-Doppler radar data

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Tuesday, January 15, 2013

Tuesday, January 15, 2013

• Alpha spins just shy of/at its disruption rate:

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Tuesday, January 15, 2013

- Alpha spins just shy of/at its disruption rate
- The "lowest" point on Alpha is at its equator, the furthest point from its center.

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

- Alpha spins just shy of/at its disruption rate
- The "lowest" point on Alpha is at its equator, the furthest point from its center.
- Particles on its surface are just meters or less from being in orbit

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

- Alpha spins just shy of/at its disruption rate
- The "lowest" point on Alpha is at its equator, the furthest point from its center.
- Particles on its surface are just meters or less from being in orbit
- Any loose material spun off of Alpha will be trapped by Beta
 - -Will eventually fall back on Alpha
 - Will transfer angular momentum to the orbit
 - -Will regulate Alpha's spin at its maximum rate

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Comet 67P/Churyumov-Gerasimenko

3-D reconstruction of the nucleus based on March 12, 2003 Hubble Space Telescope observations

Rosetta

Current Exploration

Pole

DAWN at Vesta

Tuesday, January 15, 2013

Case Study: Rosetta at 67P/CG

- Outgassing a possibly dominant perturbation is not discussed.
- Rosetta Spacecraft:
 - Mass ~ 2300 -> 1700 kg
 - Area ~ 77 m²
 - $-B = Mass / Area \sim 30 \rightarrow 22 \text{ kg/m}^2$, we use 26 kg/m²
- Comet 67P/C-G:
 - Mean radius ~ 1.9 km
 - Bulk density ~ 0.37 g/cm^3
 - Spin period ~ 12.55 h
 - Obliquity ~ 138°
 - Orbit:
 - *d* = 1.25 -> 5.69 AU
 - a = 3.468 AU, e = 0.64
 - Shape: From P. Lamy, et al.

Near-Surface Environment

- Comet 67P/CG has 4 relative equilibria (synchronous 1:1 orbits) due to gravitation and rotation alone
 - All are unstable and do not have direct application
 - Can be used to characterize impact limits

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Orbital Results for 67P/C-G

Ran a series of orbits to test predictions of the theory

- Full detailed gravity field, rotation state, heliocentric orbit
- Consistent initial comet true-anomaly of -125°
- Runs propagated for 1000 days (unless impact occurs)

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

OF

Terminator Orbits

Outer and Inner orbits are unstable

Outer orbits are stripped by SRP force when comet comes close to perihelion Inner orbits are destabilized by interactions with the nucleus gravity field

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Terminator Orbits

• Semi-Major axis evolution through perihelion:

Close Orbit Stability

- Due to the instability of the equilibrium points close to the body and due to SRP far from the body, all direct orbits are highly unstable
- At best can be controlled over short time spans.

Close Orbit Stability

- Only retrograde orbits "close" to the nucleus are stable:
 - Orbits of radius 5 km and less are strongly stable, but will be very susceptible to outgassing jets

- Retrograde Orbits about the nucleus.
- Inner orbit is stable, corresponds with the limiting member of a stable periodic orbit family (neglecting SRP).
- Larger orbit is stable, but is strongly perturbed by SRP forces (due to larger semi-major axis).
- Increase in orbit size will lead to instability.

Close Orbit Stability

• Orbits of size 7.5 km and larger are destabilized by SRP

urbed Environments

-date treatment of a very new

olume a wide range of engineering material; tical problem in orbital ed through careful or classical problems and s;

ission design problems and trate the practical solutions missions.

Scheeres

ORBITAL MOTION IN STRONGLY PERTURBED ENVIRONMENTS

ORBITAL MOTION IN STRONGLY PERTURBED ENVIRONMENTS

Description Springer

Applications to Asteroid, Comet and Planetary Satellite Orbiters

Future Exploration OSIRIS-REx Asteroid Sample Return Mission

Dante S. Lauretta – Principal Investigator

THE UNIVERSITY OF ARIZONA • NASA GODDARD SPACE FLIGHT CENTER • LOCKHEED MARTIN

Tuesday, January 15, 2013

sion

Return

Sample

steroid

What is OSIRIS REx?

- **OSIRIS REx is a sample return mission** that returns at least 60 g (and as much as 2 kg) of **pristine carbonaceous regolith** from asteroid 1999 RQ36
- Currently in Phase B:
 - -Launch in 2016
 - -Rendezvous with 1999 RQ36 in 2020
 - -Return to Earth in 2023

•OSIRIS REx is an acronym

- -Origins
 - provide pristine sample to reveal the origin of volatiles and organics that led to life on Earth

-Spectral Interpretation

• provide ground truth for ground-based and space based spectral observations of B-type carbonaceous asteroids

-Resource Identification

• identify carbonaceous asteroid resources that we might use in human exploration

-Security

• quantify the Yarkovsky Effect on a potentially hazardous asteroid, thus providing a tool to aid in securing the Earth from future asteroid impacts

- Regolith Explorer

• Explore the regolith at the sampling site *in situ* at scales down to sub-millimeter

OSIRIS-REx Provides Exceptional Science Return

- For the **first time in spaceexploration history**, a mission will return a large, pristine sample of a carbonaceous asteroid, a unique time capsule from the birth of our Solar System.
- •Samples of 1999 RQ36 are critical to understand the initial stages of planet formation and the origin of life.
- The geological context is critical to linking the chemical and physical nature of the sample to the bulk properties of 1999 RQ36 and the **broader asteroid population**.

OSIRIS-REx ushers in a New Era of Planetary Exploration

- The team will apply **key flight experience** from NEAR & Hayabusa navigation to perfect **essential operational capabilities** in small-body proximity operations.
- •OSIRIS-REx executes precise S/C navigation to acquire samples of 1999 RQ36 with no time critical events.
- These operational capabilities are **essential as humanity explores near- Earth space** to increase our understanding of Solar System bodies and develop *in situ* resource utilization processes.

OSIRIS-REX ADDRESSES THE IMPACT HAZARD

- 1999 RQ36 is the *most* Potentially Hazardous Asteroid known.
- It is not particularly hazardous now, but...
 - Its orbit evolves to intersect Earth ~150 years from now
 - Impact odds are 1 in 1800 in 2182
- OSIRIS-REx serves as a "transponder mission."
- It has the dual objectives of refining the orbit to ascertain whether an impact is impending and characterizing the object to facilitate a possible deflection mission.

OSIRIS-REX CONTINUES NASA EXPLORATION OF THE SOLAR SYSTEM THROUGH SAMPLE RETURN

Apollo

- Revealed the magma-ocean stage of lunar history
- Developed the Giant-Impact Hypothesis for the origin of the Earth and Moon

Genesis

• Revealed the chemical & isotopic composition of the Sun

Stardust

• Provided convincing evidence for aqueous activity on comets

OSIRIS-REx

 Delivers samples of the early Solar System never before analyzed in laboratories on Earth...

NASA's Sample Return Legacy

Goals of the Lectures

- Introduction to the modeling and mechanics at asteroids
 - Focus on mechanics and dynamics
 - Tools and concepts to work with data
- Mechanics of asteroids
 - Celestial Mechanics of rubble pile asteroids
 - Formation and evolution of asteroid systems
- Motion about and on small bodies
 - Space missions to small bodies
 - Environment on the surfaces of small bodies
 - Binary asteroid dynamics and evolution

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

