

1

The Dynamical Environment about Asteroids: Orbit mechanics of particles and spacecraft

D.J. Scheeres, A. Richard Seebass Chair, The University of Colorado at Boulder

Tuesday, January 15, 2013

What are the Challenges?

- Much work has been focused on the *pathways* to small bodies, but not so much on what to do on arrival...
- ... but that is where things get interesting, as the small body dynamical environment is one of the most perturbed environments found in the solar system
 - -Gravity and rotational effects can destabilize an orbit, causing impact or escape on time scales of less than a day.
 - Solar radiation pressure perturbations can strip a spacecraft out of orbit or cause an impact.
 - -Coupled effects from these perturbations can cause chaotic orbit dynamics.

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

What are the Challenges?

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

View from the Sun

View in the terminator plane

 $a \sim \text{constant}$ in orbit perturbed only by SRP

S/C escapes once body travels too close to the sun

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Significant Forces

- Asteroid gravitational attraction:
 - –Non-spherical mass distributions create a non-Keplerian field
- Rotation of the object
 - -Creates centrifugal forces that act on the asteroid surface
 - -Create resonances between orbital motion and the rotating gravity field
- Solar radiation pressure
 - -Acts on particles and spacecraft to create a drag force
- Solar gravity
 - -Acts on both the particle and the asteroid to create a tidal force

D.J. Scheeres, A. Richard Seebass Chair, The University of Colorado at Boulder

Simple Surface Relationships

• Surface gravity:

$$\frac{4\pi \mathcal{G}}{3}
ho R$$

• Surface speed:

$$\sqrt{\frac{4\pi \mathcal{G}\rho}{3}}R$$

• Surface period:

• R is asteroid radius, ρ is asteroid density

7

Characteristic Values

Asteroid	Mean Radius (km)	Density (g/cm³)	GM (km³/s²)	Surface Gravity (g)	Surface Speed (m/s)	Surface Period (h)
Itokawa	0.162	2	2.4E-09	9E-06	0.12	2.3
	1.0	2	5.6E-07	6E-5	0.75	2.3
Eros	8.97	2.5	5E-04	6E-4	7.5	2.0
Mathilde	26.5	1.3	6.8E-03	IE-3	16	2.8
Vesta	265	3.3	17	2E-2	250	I.8
Earth	6400	~5	4E+05	I	7900	I.4

Surface Gravity vs ...

- Solar Radiation Pressure:
 - Equal when $r_{part} \sim \frac{1E-6}{3R_{ast}}$

Asteroid	Particle	
0.1 km	3 mm	
l km	300 um	
10 km	30 um	
100 km	3 um	

- Solar Gravity:
 - Ratio ~ IE-7, negligible on the surface
- Both relative perturbations scale with distance from asteroid $\propto r^2$

Equations of Motion

• Inertial frame:

$$\ddot{\boldsymbol{r}}_{I} = T \cdot \frac{\partial U}{\partial \boldsymbol{r}} + \frac{\mathcal{G}_{s}}{d^{2}B}\hat{\boldsymbol{d}} + \frac{\mu_{s}}{d^{3}}\left[3(\hat{\boldsymbol{d}}\cdot\boldsymbol{r})\hat{\boldsymbol{d}} - \boldsymbol{r}\right]$$

• Body-Fixed frame:

$$\ddot{\boldsymbol{r}} + 2\tilde{\boldsymbol{\omega}}\cdot\dot{\boldsymbol{r}} + \dot{\tilde{\boldsymbol{\omega}}}\cdot\boldsymbol{r} + \tilde{\boldsymbol{\omega}}\cdot\tilde{\boldsymbol{\omega}}\cdot\boldsymbol{r} = \frac{\partial U}{\partial \boldsymbol{r}} + \frac{\mathcal{G}_s}{d^2B}\boldsymbol{T}^T\cdot\hat{\boldsymbol{d}} + \frac{\mu_s}{d^3}\left[3(\hat{\boldsymbol{d}}\cdot\boldsymbol{r})\boldsymbol{T}^T\cdot\hat{\boldsymbol{d}} - \boldsymbol{r}\right]$$
• Orbit-Fixed frame:

$$\ddot{\boldsymbol{r}} + 2\frac{\sqrt{\mu_s p_s}}{d^2} \tilde{\boldsymbol{z}} \cdot \dot{\boldsymbol{r}} - \frac{\mu_s}{d^3} \left[2e_s \sin \nu \tilde{\boldsymbol{z}} + (1 + e_s \cos \nu) \left(\hat{\boldsymbol{x}} \hat{\boldsymbol{x}} + \hat{\boldsymbol{y}} \hat{\boldsymbol{y}} \right) \right] \cdot \boldsymbol{r} = \frac{\mathcal{G}_s}{d^2 B} \hat{\boldsymbol{x}} + \frac{\mu_s}{d^3} \left[3(\hat{\boldsymbol{x}} \cdot \boldsymbol{r}) \hat{\boldsymbol{x}} - \boldsymbol{r} \right] + \boldsymbol{T}_o^T \cdot \boldsymbol{T} \cdot \frac{\partial U}{\partial \boldsymbol{r}}$$

Tide + SRP

- For asteroids, the solar tide effects extend beyond the influence of the body's higher-order gravity fields, allowing us to treat it as a point mass
- Changing the independent parameter in the sunframe orbit to true anomaly and scaling by the sun/ asteroid distance yields a "pulsating" frame model:

$$\mathbf{r}'' + 2\hat{\mathbf{z}} \times \mathbf{r}' + (\hat{\mathbf{z}} \cdot \mathbf{r})\hat{\mathbf{z}} = \frac{1}{1 + e_S \cos \nu} \frac{\partial U}{\partial \mathbf{r}}$$
$$U = \frac{1}{|\mathbf{r}|} + \beta \hat{\mathbf{d}} \cdot \mathbf{r} + \frac{3}{2} \left(\hat{\mathbf{d}} \cdot \mathbf{r}\right)^2$$

• NEAR at Eros has a value of $\beta \sim 1$, Hayabusa and Rosetta have $\beta \sim 30$

Jacobi-like integral

• Due to the pulsating frame (eccentric orbit) a Jacobi integral does not exist for this problem

-Can define a related, non-conserved quantity:

$$\Gamma = 2 \quad U(\mathbf{r}) - (1 + e_S \cos \nu) \left[v^2 + z^2 \right]$$

$$\Gamma' = e_S \sin \nu \left[v^2 + z^2 \right]$$

–Zero-velocity curves can be defined with Γ when z = 0

• Provides a restriction: $\Gamma \leq 2U(r)$ -which can be used to develop necessary conditions for escape

Tide + SRP cont.

• Despite the pulsation, this system has fixed equilibrium points:

$$\begin{aligned} x^* &\sim & \pm \left(\frac{1}{3}\right)^{1/3} - \frac{\beta}{9} \pm \frac{3^{1/3}}{81}\beta^2 + \dots & \text{if } \beta \ll 1 \\ x^* &\sim & \begin{cases} -\frac{1}{3}\beta - \frac{9}{\beta^2} + \dots & x^* < 0 \\ \frac{1}{\sqrt{\beta}} - \frac{3}{2\beta^2} + \dots & x^* > 0 \end{cases} & \text{if } \beta \gg 1 \end{aligned}$$

- The sun-ward equilibrium point can be used as a monitoring site for a comet when passing through perihelion
- -The anti-sun point provides a sufficient condition for escape

Tide + SRP cont.

Dynamics has been studied for gravity-only case by Burns and Hamilton in the early 1990's

SRP only perturbations

- For small asteroids the SRP perturbations can dominate over solar tidal effects
 - -Especially true for spacecraft dynamics at small bodies
 - Preferred frame of analysis is the Inertial frame,
 subsequently transported into the orbit-fixed frame
 - -Can determine limits for captured orbits and perform an averaging analysis:

$$\ddot{\boldsymbol{r}}_{I} = -\frac{\mu}{r^{3}}\boldsymbol{r} + T \cdot \frac{\partial R}{\partial \boldsymbol{r}} + \frac{\mathcal{G}_{s}}{d^{2}B}\hat{\boldsymbol{d}} + \frac{\mu_{s}}{d^{3}}\left[3(\hat{\boldsymbol{d}} \cdot \boldsymbol{r})\hat{\boldsymbol{d}} - \boldsymbol{r}\right]$$

Orbit Mechanics Issues

- -Solar radiation pressure (SRP) can strip a S/C out of orbit
- Impact
 - SRP can cause eccentricity to approach unity, leading to impact
- Coupled perturbations
 - Joint perturbations from asteroid mass distribution and SRP can cause impact or escape
- An understanding of these issues can be described as a function of S/C and system parameters
- This allows the robust design of S/C missions to these bodies

Escape Limits

Maximum semi-major axis for bound orbits: $a_{max} \sim$

Semi-major axis remains constant until $a > a_{max}$ and then escapes. Orbiter traveling towards perihelion can be lost as *d* decreases.

Zero-Velocity Curves in the Elliptic-Restricted SRP Problem

Zero-Velocity Curves in the Non-Rotating SRP Problem

Escape example due to SRP

View from the Sun

View in the terminator plane

 $a \sim \text{constant}$ in orbit perturbed only by SRP

S/C escapes once $a > a_{max}$ as d decreases

Averaged Orbit Mechanics for SRP

- If $a < a_{max}$ averaging can be applied
 - Semi-major axis *a* is constant on average
 - The secular equations can be solved in closed form, assuming a point mass (Mignard and Henon, 1984 and Richter and Keller, 1995), and generalized to the case of an asteroid orbiting the sun on an elliptic orbit (Scheeres 2009).
 - Solution is simplest to state using the osculating eccentricity and angular momentum vectors

Averaged SRP Equations

• In a frame rotating with the sun-line, with the heliocentric orbit true anomaly as the independent parameter:

$$\begin{bmatrix} \mathbf{e}' \\ \mathbf{h}' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & -\tan\Lambda \\ 0 & 0 & 0 & 0 & \tan\Lambda & 0 \\ 0 & 0 & -\tan\Lambda & -1 & 0 & 0 \\ 0 & \tan\Lambda & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{e} \\ \mathbf{h} \end{bmatrix}$$
$$\tan\Lambda = \frac{3\mathcal{G}_S}{2B}\sqrt{\frac{a}{\mu\mu_{sun}a_{sun}(1-e_{sun}^2)}}$$

- For a strong perturbation, $\Lambda \rightarrow \pi/2$
- For a weak perturbation, $\Lambda \rightarrow 0$
- Hayabusa at Itokawa, $\Lambda \sim 87^{\circ}$ NEAR at Eros, $\Lambda \sim 13^{\circ}$

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Solution to the Eqns

• A Linear, Time Invariant System, its solution can be expressed as:

 $-\Phi \text{ is a 6x6 orthonormal rotation matrix, periodic with period } 2\pi/\cos(\Lambda)$ $\Phi(\psi) = \cos(\psi)I_{6\times6} + \left[1 - \cos(\psi)\right] \begin{bmatrix} \cos^2\Lambda \hat{z}\hat{z} + \sin^2\Lambda \hat{d}\hat{d} & -\sin\Lambda\cos\Lambda\left(\hat{z}\hat{d} + \hat{d}\hat{z}\right) \\ -\sin\Lambda\cos\Lambda\left(\hat{z}\hat{d} + \hat{d}\hat{z}\right) & \cos^2\Lambda \hat{z}\hat{z} + \sin^2\Lambda \hat{d}\hat{d} \end{bmatrix}$ $+\sin(\psi) \begin{bmatrix} -\cos\Lambda \tilde{\hat{z}} & \sin\Lambda \tilde{\hat{d}} \\ \sin\Lambda \tilde{\hat{d}} & -\cos\Lambda \tilde{\hat{z}} \end{bmatrix}$

- Secular motion is periodic in true anomaly with period $2\pi/\cos(\Lambda)$
- Orbital evolution changes drastically as a function of Λ

Tuesday, January 15, 2013

Tuesday, January 15, 2013

SRP Frozen Orbits

• Two types of frozen orbits exist:

Stable Frozen Terminator Orbits

- Orbits lie in the sun-terminator plane
- Orbit radius must be small enough to not be stripped away
- SRP force makes them sun-synchronous
- Very robust and stable above are integrated over an asteroid heliocentric period

Terminator vs. Non-Terminator Orbit

View in asteroid orbit plane

Looking down on asteroid orbit plane

D.J. Scheeres, A. Richard Seebass Chair, The University of Colorado at Boulder

View from the sun

Terminator Orbit in above propagated over 100 days

Terminator vs. Non-Terminator Orbit

Tuesday, January 15, 2013

1

Mixed Regime: Interactions between SRP and Gravity Fields

- Orbits about real bodies will have a lower bound on radius for orbit stability due to mass distribution effects
 - Joint perturbations between SRP and non-spherical gravity terms are generally destabilizing
 - Limiting radius determined by size of frozen eccentricity and magnitude of inclination oscillations
- Destabilization due to two effects:
 - Oblateness causes precession of orbit plane out of terminator orbit
 - Causes oscillation in eccentricity that leads to stronger interactions with the gravity field
 - Ellipticity causes fluctuations in orbit semi-major axis, eccentricity and inclination
 - Causes orbit to migrate away from frozen orbit
 - Subsequent motion becomes chaotic and can lead to impact or escape

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Influence of Oblateness

• Perturbation equations for a terminator orbit about an asteroid with obliquity β and right ascension α :

$$e = \cos \Lambda + \delta e; \Omega = \pm \pi/2 + \delta \Omega \qquad \omega = \mp \pi/2 + \delta \omega; i = \pi/2 + \delta i$$
$$\frac{d\delta e}{d\nu} = -\frac{\sin^2 \Lambda}{\cos \Lambda} \delta \Omega$$
$$\frac{d\delta \Omega}{d\nu} = \frac{1}{\sin^2 \Lambda \cos \Lambda} \delta e \pm \frac{3}{4\dot{\nu}} \frac{n(I_a - I_t)}{a^2 \sin^4 \Lambda} \sin 2\beta \sin \alpha$$
$$\frac{d\delta \omega}{d\nu} = \frac{1}{\cos^2 \Lambda} \delta i + \frac{3}{4\dot{\nu}} \frac{n(I_a - I_t)}{a^2 \sin^4 \Lambda} \left[5 - 3 \sin^2 \beta \sin^2 \alpha\right]$$
$$\frac{d\delta i}{d\nu} = -\delta \omega + \frac{3}{4\dot{\nu}} \frac{n(I_a - I_t)}{a^2 \sin^4 \Lambda} \sin^2 \beta \sin 2\alpha$$

Tuesday, January 15, 2013

Influence of Ellipticity

• Resonant interactions between the orbit and the rotating gravity field can induce chaotic dynamics

From: Weiduo Hu & D.J. Scheeres, Planetary and Space Science 52: 685-692, 2004

Bounds on effects

• Shape Oblateness causes fluctuations in eccentricity from the frozen orbit value:

$$|\delta e| < \frac{3n}{2a^2} (I_a - I_t) \frac{\cos^2 \Lambda}{\sin^4 \Lambda} \frac{\sin 2\beta \sin \alpha}{\sqrt{\mu_{sun} P}} d^2$$

• Shape Ellipticity causes chaotic variations in orbit when the orbit period is within a 1.5 resonance radii:

$$a < \frac{3}{2} \left(\frac{T^2 \mu}{4\pi^2} \right)^{1/3}$$

D.J. Scheeres, A. Richard Seebass Chair, The University of Colorado at Boulder

Mixed Perturbations

- Smaller orbit sizes can lead to destabilizing interactions between SRP and gravity field perturbations
- RHS, larger initial semi-major axis – stable against gravity and SRP
- LHS, smaller semi-major axis
 - -orbit precession induces unstable motion

Case Study: Hayabusa at Itokawa

- Could the Hayabusa S/C have orbited the asteroid Itokawa?
 - -Mission took a hovering approach, due to sampling technique and uncertainty of true asteroid mass
 - An orbital analysis was performed with the estimated asteroid mass and shape, and the S/C mass and projected area
 - An orbital mission was possible, but with tight constraints on semi-major axis:

1.0 km < a < 1.5 km

D.J. Scheeres, A. Richard Seebass Chair, The University of Colorado at Boulder

Possible Hayabusa Orbits at Itokawa

Larger or smaller orbits are unstable and escape

Tuesday, January 15, 2013

D.J. Scheeres, A. Richard Seebass Chair, The University of Colorado at Boulder

Possible Hayabusa Orbits at Itokawa

2

D.J. Scheeres, A. Richard Seebass Chair, The University of Colorado at Boulder

Tuesday, January 15, 2013

Motion "Close" to the Asteroid

• If the asteroid is large or the particle is relatively massive, and we orbit close to the asteroid we can further restrict our equations of motion:

$$\ddot{\boldsymbol{r}} + 2\tilde{\boldsymbol{\omega}}\cdot\dot{\boldsymbol{r}} + \dot{\tilde{\boldsymbol{\omega}}}\cdot\boldsymbol{r} + \tilde{\boldsymbol{\omega}}\cdot\tilde{\boldsymbol{\omega}}\cdot\boldsymbol{r} = \frac{\partial U}{\partial \boldsymbol{r}} + \frac{\mathcal{G}_s}{d^2B}\boldsymbol{T}^T\cdot\hat{\boldsymbol{d}} + \frac{\mu_s}{d^3}\left[3(\boldsymbol{d}\cdot\boldsymbol{r})\boldsymbol{T}^T\cdot\hat{\boldsymbol{d}} - \boldsymbol{r}\right]$$

- If not uniformly rotating, EOM are time periodic
- If uniformly rotating, a Jacobi integral exists:

$$J = \frac{1}{2}\dot{\boldsymbol{r}}\cdot\dot{\boldsymbol{r}} - \frac{1}{2}\omega^2\left(x^2 + y^2\right) - U(\boldsymbol{r})$$

- This is a non-integrable problem distinct from, and more difficult than, the R3BP

Motion "Close" to the Asteroid

• If the asteroid is large or the particle is relatively massive, and we orbit close to the asteroid we can further restrict our equations of motion:

$$\ddot{\boldsymbol{r}} + 2\tilde{\boldsymbol{\omega}}\cdot\dot{\boldsymbol{r}} + \dot{\boldsymbol{\omega}}\cdot\boldsymbol{r} + \tilde{\boldsymbol{\omega}}\cdot\tilde{\boldsymbol{\omega}}\cdot\boldsymbol{r} = \frac{\partial U}{\partial \boldsymbol{r}} + \frac{\mathcal{G}_s}{d^2B}\boldsymbol{T}^T\cdot\hat{\boldsymbol{d}} + \frac{\mu_s}{d^3}\left[3(\boldsymbol{d}\cdot\boldsymbol{r})\boldsymbol{T}^T\cdot\hat{\boldsymbol{d}} - \boldsymbol{r}\right]$$

If uniformly rotating

- If not uniformly rotating, EOM are time periodic
- If uniformly rotating, a Jacobi integral exists:

$$J = \frac{1}{2}\dot{\boldsymbol{r}}\cdot\dot{\boldsymbol{r}} - \frac{1}{2}\omega^2\left(x^2 + y^2\right) - U(\boldsymbol{r})$$

- This is a non-integrable problem distinct from, and more difficult than, the R3BP

Gravity Regime

- Mass distribution and rotation state dominates motion.
- Use of classical analytical theories is challenging:
 - At Eros, the secular effect of J_2 is **200** times stronger than at Earth, high order zonal and tesseral coefficients are relatively even larger.
 - Convergent series for analytical descriptions must extend to much higher orders, incorporate many more effects.
 - Resonant interactions with the rotating gravity field causes orbital motion to become chaotic – cannot be described by analytical theories.
- Alternate tools for stable orbit design are needed and include:
 - Averaging to identify first-order effects
 - Periodic orbits to delineate regions of stability
 - Hill stability to guarantee no-impact with the body (Lagrange stability)
 - Semi-analytic evaluations to identify conditions for instability

Averaging for understanding

First-order averaging analysis suggests stable orbit designs and identifies the controlling, fundamental dynamical effects.

Orbit plane "dragging" by mass distribution, predicted by averaging theory.

Stable orbit viewed in asteroidfixed frame, identified using averaging analysis for motion about a non-uniform rotator.

30 km orbit with 135° inclination over 10 days

Projection into Eros Equatorial Plane

Projection Normal to Eros Equatorial Plane

Periodic Orbits as Stability Probes

Periodic Orbit Family Deg Stability Defines Transitions between Stable and Unstable regions of phase space

Lara & Scheeres (2002)

Stable Periodic Orbits at Toutatis

Periodic Orbit Stability at Eros

• Stability limits can be determined using periodic orbits and noting stability transitions

D.J. Scheeres, A. Richard Seebass Chair, The University of Colorado at Boulder

Non-Planar Orbit Stability

• Analysis can be extended to orbital stability vs inclination via resonant periodic orbits (*M. Lara & D.J. Scheeres, JAS 2002*):

D.J. Scheeres, A. Richard Seebass Chair, The University of Colorado at Boulder

Initially Polar ~29 km Orbit Radius is plotted after 10, 25, and 60 days

Tuesday, January 15, 2013

Tuesday, January 15, 2013

Orbit Fluctuations

- Such strongly varying dynamics cannot be easily understood using classical perturbation theory
 - Example: we have developed a "discrete" perturbation theory that can compute changes in significant quantities each orbit:
 - G is angular momentum
 - *C* is Keplerian energy
 - $H = G \cos(i)$ $\Delta G = -6C_{22}\sqrt{\frac{\mu}{p^3}}$ $[\cos^4(i/2)\sin 2(\omega + \Omega)I_2^1 + \sin^4(i/2)\sin 2(\omega - \Omega)I_{-2}^1]$ $\Delta H = -6C_{22}\sqrt{\frac{\mu}{p^3}} \left[\frac{1}{2}\sin^2 i \sin 2\Omega I_0^1 + \cos^4(i/2)\sin 2(\omega + \Omega)I_2^1 - \sin^4(i/2)\sin 2(\omega - \Omega)I_{-2}^1\right]$ $\Delta C = -6C_{22}\omega_E\sqrt{\frac{\mu}{p^3}} \left[\frac{1}{2}\sin^2 i \sin 2\Omega \left\{I_0^1 - (1 - e)^3 I_0^{-2}\right\} + \cos^4(i/2)\sin 2(\omega + \Omega) \left\{I_2^1 - (1 - e)^3 I_0^{-2}\right\} - \sin^4(i/2)\sin 2(\omega - \Omega) \left\{I_{-2}^1 - (1 - e)^3 I_0^{-2}\right\}\right]$ • The I_i^j are Hansen Coefficients and are only a function of a and e

Transient Motion and Chaoticity

- The clearest example of the strength of orbital perturbations can be shown using orbital uncertainties
 - In the following we initiate an orbit with uncertainties of 10 meters in position and 1 cm/s in velocity about the asteroid Eros
 - -We use 1000 points randomly drawn from a Gaussian distribution
 - The orbit and distributions are propagated for three full orbits about the asteroid passages
- The strongly non-Gaussian distribution of final orbit states indicates the difficulties associated with S/C navigation at small bodies

65

• *NEAR at Eros*: Gravity dominated, controlled by avoiding resonances with the rotating mass distribution

Retrograde orbits with inclination $> 135^{\circ}$ are stable to minimal radii

• *NEAR at Eros*: Gravity dominated, controlled by avoiding resonances with the rotating mass distribution

Tuesday, January 15, 2013

What Operations are Feasible?

• *Hayabusa at Itokawa*: Solar radiation pressure dominated, controlled through a hovering operations approach

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

What Operations are Feasible?

• OSIRIS-REx at 1998 RQ36: Mixed perturbations dominated, will combine a mixture of slow flybys with terminator orbits

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

What Operations are Feasible?

• OSIRIS-REx at 1998 RQ36: Mixed perturbations dominated, will combine a mixture of slow flybys with terminator orbits

X, [km]

Conclusions

- The main issues involved with orbital mechanics of a particle in orbit about an asteroid can be identified:
 - -Limits for bounded orbits
 - -Criterion for destabilization of orbits
 - -Characterization of coupled perturbations
- Additional study is still needed, as the dynamical systems involved are non-integrable
 - -Improved theories for coupled perturbations
 - -Orbit lifetimes for extended missions
 - -Stripping criterion for dust on the surface
 - -Landing trajectories

urbed Environments

-date treatment of a very new

olume a wide range of engineering material; tical problem in orbital ed through careful or classical problems and s;

ission design problems and trate the practical solutions missions.

Scheeres

ORBITAL MOTION IN STRONGLY PERTURBED ENVIRONMENTS

ORBITAL MOTION IN STRONGLY PERTURBED ENVIRONMENTS

Description Springer

Applications to Asteroid, Comet and Planetary Satellite Orbiters

