1/25/13 IPython Notebook

A brief Python/IPython crash course

This document will give you a brief tour of the features of the Python programming language and of the capabilities of the IPython notebook.

You can view its contents by scrolling around, or execute each cell by typing Shift-Enter.
The basics
You can use Python as a plain calculator:
In[1]: (1 +1) *3.14/2 -1
Out[1l]: 2.14
NOTE: exponentiation is represented by the ** operator (not the ™ operator):
In [2]: 2%*4
Out[2]: 16

Strings are represented with single ' or double " quotation marks:

In [3]: 'hello world'

Out[3]: ‘'hello world'

In [1]: "hello world"

Out[1l]: ‘'hello world'

Types
Python is a typed language:

In [4]: type(3)

Out[4]: builtins.int

In [5]: type(3.)
Out[5]: builtins.float

In [6]: type('hello world... again')

OQut[6]: builtins.str
When numerical objects of different type interact, type conversions take place:

In [7]: type(3 * 3.0)

Out[7]: builtins.float

Variables, blocks and control structures

Assignment of variables is straightforward:

In [8]: x=5
S 'witty remark here'
print(x)
print(s)

localhost:8888/b4de3eba-a0fc-4a46-9081-a2f814599ddd/print 1/5

1/25/13 IPython Notebook

5
witty remark here

You can assign multiple variables at the same time (even with different types):

In [9]: x,y,z,s =1, 2, 3.2, 'possibly a monty python quote'
print(z)
print(s)

3.2
possibly a monty python quote

Blocks are indicated through indentation, and only through indentation (no BEGINEND or braces). As a convention, from now on we will use four spaces
as indentation marker:

In [10]: x =2
if x <2 or x > 2:
print('no good')
else:
print('0K')

OK

In [11]: x =10
while x >= 0:
print('x is still not negative')
X = x-1

is still not negative
is still not negative
is still not negative
is still not negative
is still not negative
is still not negative
is still not negative
is still not negative
is still not negative
is still not negative
is still not negative

X X X X X X X X X X X

The common way of writing for loops in Python uses the range() function:

In [12]: for i in range(0,5):
print(i)

PWNRHRO

NOTE: the assignment operator is the equal sign =, the equality operator is ==:

In [13]: 3 ==

Out[13]: True
The inequality operator is !=:

In [14]: 3 !'=3

Out[14]: False

Data structures

The most basic data structure in Python is the list:

In [15]: 1 = [1,2,3,4]

localhost:8888/b4de3eba-a0fc-4a46-9081-a2f814599ddd/print

2/5

1/25/13 IPython Notebook
Lists elements are accessed via indices (starting from zero):

In [16]: print(1[0])
print(1[1])
print(1[-1])

1
2
4

Assignment of list elements works as expected:

In [17]: 1[0] = 'another string'
print(1[0])

another string

The length of a list is returned by the len() builtin function:
In [18]: Tlen(l)
Out[18]: 4
Another basic data structure is the dictionary, which is used to map keys to values:

In [19]: d = {'Alice' : 23452532, 'Boris' : 252336, 'Clarice' : 2352525, 'Doris' : 23624643}
d['Alice']

Out[19]: 23452532

In [20]: d['Alice'] = 12345
d['Alice']

Out[20]: 12345

In [21]: Tlen(d)

Out[21]: 4

Functions

Function are defined via the def keyword:

In [22]: def hello universe():
print('witty remark no. 2')

Now the function can be used:

In [23]: hello universe()

witty remark no. 2

Arguments can be specified in the function's definition, return values are specified by the return keyword:

In [24]: def my add(a,b):
result =a+ b
return result

my add(1,2)

Out[24]: 3
Functions define their own scope, i.e., variables defined within a function are not visible outside it:

In [251: result

localhost:8888/b4de3eba-a0fc-4a46-9081-a2f814599ddd/print 3/5

1/25/13 IPython Notebook

NameError Traceback (most recent call last)
<ipython-input-25-a5ble83cd027> in ()
----> 1 result

NameError: name 'result' is not defined

Modules

Apart from the most basic features, functions, types and classes are grouped in separate modules which can be accessed via the import keyword. Let's
import the standard math module:

In [26]: dimport math

Now we can access the functions and contstants defined in math:

In [27]: math.cos(1.23)

Out[27]: 0.3342377271245026

In [28]: math.sqrt(2)

Out[28]: 1.4142135623730951

In [29]: math.pi

Out[29]: 3.141592653589793
Rational numbers can be represented with the help of the standard fractions module:

In [30]: dimport fractions
g = fractions.Fraction(2,3)
print(q)
print(g**5)

2/3
32/243

In order to reduce the typing, it is possible to import selectively:

In [31]: from fractions import Fraction
g = Fraction(8,12)
print(q)

2/3
In [32]: from fractions import Fraction as Frac

g = Frac(8,12)
print(q)

2/3

In addition to the standard modules, there are many Python modules freely available for download. NumPy is a popular package for linear algebra:

In [33]: from numpy import dot, cross
from numpy.linalg import det
dot([1,2,31,[4,5,61)

Out[33]: 32

In [34]: cross([1,2,3]1,[4,5,6])

Out[34]: array([-3, 6, -3])

In [35]: det([[1.2,3.4],[5.6,7.8]1])

localhost:8888/b4de3eba-a0fc-4a46-9081-a2f814599ddd/print 4/5

1/25/13 IPython Notebook

Out[35]: -9.6800000000000015
mpmath is a package for arbitrary precision calculations:

In [36]: from mpmath import mpf, mp, sqrt
sqrt(mpf(2))

Out[36]: mpf('1.4142135623730951")

In [37]: mp.dps = 100
sqrt(mpf(2))

Out[37]: mpf('1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572735")

localhost:8888/b4de3eba-a0fc-4a46-9081-a2f814599ddd/print 5/5

