
NOISE AND CHAOS

CARLANGELO LIVERANI

Abstract. In the common usage there exists a dichotomy between determin-

istic and random behaviour. In this lecturers I will discuss in which sense

random behaviour can arise in a deterministic system. The emphasis will not
be on generalities and philosophy but, rather, on the precise quantitative anal-

ysis of simple, but far from trivial, examples.
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1. Noise

The traditional reductionist approach to study nature consists in identifying the
phenomenon one is interested in and then consider it as an isolated system. A clas-
sical example is provided by Hamiltonian mechanics that describes with remarkable
success an incredibly wide array of systems. However, as we look deeper into the
phenomena, we realise that, on the one hand, the distance between the fundamen-
tal laws that describe a system and the phenomena that we observe keep widening
and, on the other hand, at a more attentive scrutiny the very concept of isolated
system risks to crumble.
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As a trivial instance of these problems consider friction. Friction is not naively
part of Hamiltonian mechanics and it is not obvious how to describe it other than
by some phenomenological rule. In order to start to have an understanding of
how friction might arise (even in the context of Hamiltonian mechanics) one has
to realise that the description of the system is incomplete and other degrees of
freedom (often a huge number of them) have to be taken into consideration. This
has become apparent only with the advent of statistical mechanics which posits
that the the macroscopic behaviour that we witness is the result of the cumulative
effect of an enormous number of degrees of freedom. This counterintuitive fact
(that an enormous number of degrees of freedom on a certain scale can give rise to
fairly simple cumulative behaviour on a larger scale) is often called renormalization.
Renormalization is a very vague word that nevertheless inspires a powerful set of
technical ideas and tools both in physics and in mathematics.

To better understand the problems with the concept of isolated systems, think
of a pendulum. To consider it really isolated one has to worry about the suspension
point, that could vibrate if, for example, a car passes near by. Since such vibrations
go thru the earth, they will have most likely a frequency of a few hertz. Then
one needs to worry about interactions with the air. Even if the air seems still,
just talking will produce vibrations that might interfere with the pendulum, such
vibrations might be in the order of 1000 Hz. Taking the air out will not help: if you
use a cell phone, then you produce electromagnetic oscillations that might interfere
with the pendulum, this time of a frequency around 1010 Hz; then there is light,
this time oscillating around 1014 Hz, and so on. Of course, you might argue that
all these contributions are small, but what it is worrisome is that they seem to be
present at all frequencies, so the cumulative exchange of energy could be enormous.

What is even more worrisome is that even a very small exchange in energy
might create a disaster in the perception that the pendulum is isolated. To get
acquainted with this problem consider the very concrete example of a pendulum
with a vibrating suspension point when the initial condition is close to the unstable
fixed point. If the suspension point vibrates with an amplitude of ε2 at a frequency
comparable with the oscillation frequency of the pendulum, then an initial condition
at a distance ε from the unstable equilibrium point could gather enough energy
in a swing to rotate instead of oscillating at the next passage near the unstable
equilibrium. If this happens or not depends on differences on the initial conditions
of order ε2, so it is very hard to predict.

An even more impressive example is given by two billiards ball of radius R is a
square table of size L with mass one and kinetic energy K. To simplify matters
consider the case in which 2

√
2R < L < 4R so that there exists a length `0 such

that the distance between two collisions of the balls is, at most, `0. Then a change
of the initial condition by ε will create a change of velocities after the next collision
proportional to R−1. Thus the change in the trajectories will grow, at least, like
eN/Rε, where N is the number of collisions among balls. Note that N`0 ≤ T

√
2K,

where T is the time. Thus the change in the trajectory due to a small initial

perturbation grows, at least, like eT
√

2K/R2

ε. Thus, if R = .1 meters e
√

2K = 10
meters per second (36 Km per hour), then the perturbation of the trajectory grows,

at least, like e103T . Accordingly, suppose that you observe two identical systems
and, at a certain point only on one of them acts, for 10−10 seconds a force of size
10−90 newtons. This creates a change in velocity of size 10−100 meters per second
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which, after a tenth of a second, will create a difference in the coordinates of the
same size of the box. Clearly it is very difficult to imagine that such a system can
be isolated.

A standard way of taking into account all the above issues is to add to the system
a small random perturbation. Namely, if you have a system of the type

ẋ = F (x),

where F ∈ C1(Rd,Rd), you might add to it a noise of the form

(1.1) dx = F (x)dt+ εΣ(x)dB

where B is a d dimensional Brownian motion and Σ(x) is a positive symmetric
matrix. We have thus turned a differential equation into a stochastic differential
equation, where the noise is supposed to model the (hopefully small) effect of all
the degree of freedom that have been ignored.

Yet, note that, in some cases, (1.1) could be a bad model. Consider, for example,
the the Hamiltonian system

dq = pdt

dp = −V ′(q)dt+ εσdB

where we put the noise only on the second equation because we think of it as a
random force acting on the system. Note that, setting H(q, p) = 1

2p
2 + V (q), by

Ito’s formula,

dH =
ε2σ2

2
dt+ εσpdB.

Hence,

E(H) =
ε2σ2

2
t.

In other words, the systems heats up indefinitely. If this were a good model for the
influence of the ignored degrees of freedom, then every system should keep getting
hotter and hotter; this is not what we see. The usual fix for this problem is to
consider the equations

dq = pdt

dp = −V ′(q)dt− γpdt+ εσdB,
(1.2)

where we have added a friction to the system. The above is called a Langevin
equation or an Ornstein-Uhlenbeck process. Such a process does now have an
invariant measure. Indeed,1

d

dt

∫
e−βH(q,p)E(ϕ(q(t, q, p), p(t, q, p)))

∣∣
t=0

=

∫
e−βH(q,p)

{
p∂qϕ− [V ′(q) + γp]∂pϕ+

ε2σ2

2
∂2
pϕ

}
=

∫
e−βH(q,p)

{
−βγp2 + γ + ε2σ2β2p2 − βε2σ2

}
ϕ.

Thus the derivative is zero provided γ = ε2σ2β and we obtain the interpretation
that the friction (that can also be interpreted as a drift) is related to the inverse of
the temperature and the diffusivity (this is some sort of Einstein relation).

1 Here E is the expectation with respect to the Brownian motion and q(t, q, p), p(t, q, p) is the
process with initial conditions (q, p).
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Note that, possibly with some work, it might be possible to reduced the effect of
external factors, hence making ε smaller. It is then clear that, in the study of (1.2),
we should be interested only in phenomena that are, in some sense, independent on
ε. Indeed, if some behaviour would be present for some level of noise and not for a
near by level, this would mean that our model is rather useless for applications.

The study of equations of the type (1.1), (1.2) is a wide, currently active, and
interesting branch of mathematics, but will not be our focus. Our focus will be
to try to understand in which way a deterministic dynamics can give rise to a
behaviour similar to the stochastic one.

2. Chaos

I claimed that a simple system like a pendulum can exhibit the phenomena of
strong dependence from initial conditions, colloquially often called chaos. However,
in such an example the set for which we can show a chaotic behaviour is of zero
Lebesgue measure. It is widely believed that such properties holds for a positive
measure set of point, but we are very far from a proof of such a fact. By KAM
theory a positive measure of trajectory have instead a regular behaviour. Thus
we expect, in general, realistic systems to have a mixture of regular and chaotic
motion. Unfortunately, we have no idea how to treat such systems. It is then
natural to start the study from simpler systems in which one of the possibilities is
absent. Here we will concentrate on systems for which all the trajectories have a
strong dependence from the initial conditions. This are called uniformly hyperbolic
systems. Examples of paramount importance are, e.g., geodesic flows on manifolds
of negative curvature, the automorphisms of a two dimensional torus and the billiard
balls systems we previously discussed.

Yet, the study of the above mentioned systems entails quite a bit of technical
difficulties that cloud the main issues. To explain in their simplest form the ideas I
want to put forward in this course it is convenient to consider the simplest possible
example: smooth expanding maps of a circle. We will therefore consider this seem-
ingly ridiculously simple model: the macroscopic degree of freedom is θ ∈ T and
does nothing. The microscopic dynamics is given by an expanding circle map. The
influence of the microscopic variable on the macroscopic one is small. In mathe-
matical terms, such systems are described by maps Fε ∈ Cr(T2,T2), r > 1, defined
as

Fε(x, θ) = (f(x, θ), θ + εω(x, θ))

∂xf ≥ λ > 1; ‖ω‖Cr = 1.
(2.1)

Given some initial condition (x, θ) = (x0, θ0), the time evolution of the system is
described by (xn, θn) = Fnε (x0, θ0).

As mentioned, for ε = 0, θ is a constant of motion. The study of the system
(2.1) for ε 6= 0 has proven rather non trivial and is far from being completed.
Accordingly, here we will just take it as a motivation that points us in a specific
direction of research.

As we have explained, there should be a scale separation between the macroscopic
and the microscopic variables. Here the scale separation is in time and is given by
ε, hence the proper way of thinking is that the macroscopic time is ε slower than
the microscopic time. In other words we should be interested in the behaviour of
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the variable θε ∈ C0([0, T ],T) defined by

θε(t) = θbε−1tc + (ε−1t− bε−1tc)(θbε−1tc+1 − θbε−1tc),

and, first, we should ask ourselves:
Does θε has some limiting behaviour for ε→ 0?
To further simplify the problem, let us start with the case ∂θω = ∂θf = 0. This

is called a skew product. In such a simple situation

(2.2)

∣∣∣∣∣∣θε(t)− ε
bε−1tc−1∑
k=0

ω ◦ fk(x0)

∣∣∣∣∣∣ ≤ C#ε.

Thus our variable is described by an ergodic average. By Birkhoff ergodic theorem,

see A.4, the limε→0 ε
∑bε−1tc−1
k=0 ω◦fk(x0) exists for almost every point with respect

to any invariant measure of f , but what are such invariant measures?

2.1. Invariant measures. Deterministic system often have a lot of invariant mea-
sures (see Appendix A for more informations on this point). In particular, to any
periodic orbit is associated an invariant measure. Given such plentiful possibilities,
we need a criteria to select the invariant measures that we think might be physi-
cally relevant. A common choice is to consider measures that can be obtained by
push forward of measures absolutely continuous with respect to Lebesgue.2 That
is, let dµ = h(x)dx, h ∈ L1(T1,Leb) and define f∗µ(ϕ) = µ(ϕ ◦ f). Note that if µ
is a probability measure (i.e., h ≥ 0 and µ(1) = 1), then also f∗µ is a probability
measure. Then

1

n

n−1∑
k=0

fk∗ µ

is a weakly compact set, hence it has accumulation points. On can easily see that
such accumulation points are invariant measures for f , that is fixed points for f∗
(see Appendix A for details). We would then like to study such fixed points.

A simple change of variables shows that d(f∗µ)
dLeb = Lh where

Lh(x) =
∑

f(y)=x

h(y)

f ′(y)
.

The operator L is called a (Ruelle) transfer operator. Of course an operator, to be
properly defined, must have a well specified domain. Since∫

|Lh(x)|dx ≤
∫
L|h|(x)dx =

∫
|h(x)|dx

it follows that L is a contraction on L1(T,Leb). However, the spectrum of L on L1

turns out to be the full unit disk, not a very useful fact.
Following Lasota-Yorke, we look then at the action of L on W 1,1.

d

dx
Lh = L

(
h

f ′

)
− L

(
h
f ′′

(f ′)2

)
.

The above implies the so called Lasota-Yorke inequalities

‖Lh‖L1 ≤ ‖h‖L1

‖(Lh)′‖L1 ≤ λ−1‖h′‖L1 +D‖h‖L1 .
(2.3)

2 This are often called physical measures.
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Such inequalities imply that L, when acting on W 1,1, has a spectral gap. To give

an idea of the why, let us consider the simple case in which D = ‖ f ′′

(f ′)2 ‖L∞ is small,

more precisely λ−1 +D < 1.
Note that, if Leb(h) = 0, then Leb(Lh) = 0, hence the space V = {h ∈ L1 :

Leb(h) = 0} is invariant under L. Also, if h ∈ V, then, by the mean value theorem
and since in one dimension W 1,1 ⊂ C0, there must exists x∗ such that h(x∗) = 0,
thus

‖h‖L1 =

∫
T
|h(x)| =

∫
T

∫ x

x∗

|h′(y)| ≤ ‖h′‖L1 .

Next, let us define the norm ‖h‖W 1,1 = ‖h′‖L1 +a‖h‖L1 for some a > 0 to be chosen
shortly. Then, for h ∈ V,

‖Lh‖W 1,1 ≤ λ−1‖h′‖L1+(D+a)‖h‖L1 ≤ (λ−1+D+a)‖h′‖L1 ≤ (λ−1+D+a)‖h‖W 1,1 .

We can then choose a such that λ−1 + D + a < 1, and we have that L is a strict
contraction on V. Since L′ Leb = Leb, 1 ∈ σ(L) and we have that there exists
h∗ ∈ L1 such that Lh = h∗ Leb(h)+Qh, where ‖Q‖W 1,1 < 1 and LebQ = Qh∗ = 0.
We have just proven that h∗(x)dx is the only invariant measure of f absolutely
continuous with respect to Lebesgue.3

In fact, the above spectral decomposition, and hence the uniqueness of the in-
variant measure absolutely continuous with respect to Lebesgue, holds in much
higher generality, in particular for each f ∈ C2 such that |f ′| ≥ λ > 1 (see [1] for an
exhaustive discussion or have a look Appendix C, in particular Theorem C.1, for a
quicker discussion sufficient for the present case).

2.2. Back to our problem. By the results of the previous section it follows that,
for lebesgue almost all x,

lim
ε→0

θε(t) = θ̄(t) = t

∫
ω(x)h∗(x)dx =: tω̄.

That is, the limit satisfies the differential equation

(2.4)
d

dt
θ̄ = ω̄.

This is a rather simple example of averaging. In general, any map fθ(x) = f(x, θ)
has a unique invariant physical measure µθ with density hθ and we can define
ω̄(θ) = µθ(ω(·, θ)) and ω̄ = ω − ω̄. The it is possible to prove that the limit
satisfies, see [2] for details,

(2.5)
d

dt
θ̄ = ω̄(θ̄).

We have then seen how a very simple macroscopic behaviour arises form an
complex microscopic behaviour. Remark that (2.5) looks like the equation of an
isolated system, although it describes the evolution of a degree of freedom in contact
with another (microscopic) degree of freedom whose effect has been averaged out.

How can we detect that in reality the system is not isolated? To do that we have
to look at it a bit more closely or for a longer time. In the next section we will do
the former.

3 To make the argument precise use that W 1,1 is dense in L1.
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3. Noise form determinism

To look more closely means, for example, to consider the variable

ζε =
1√
ε

(θε(t)− θ̄(t))

and ask if it has some limiting behaviour when ε → 0. In order to answer to such
a question it is necessary first to discuss which initial conditions are physically
reasonable.

3.1. Initial Conditions. Physically to fix an initial condition is equivalent to
preparing the system in some state. Let us consider, for example, the problem
of preparing a bunch of systems in the “same state”. What can we do?

One possibility is to take one system as the reference system. Start with a lot
of systems, make a measure, and discard all the systems that give a value different
form the reference one. For simplicity, let us consider the system (2.1) and assume
that we can make measures only on the variable θ. Clearly, by consecutive measures
we can get some information also on the variable x, but not very precise.4 Say that
we can determine that x belongs to some interval I, |I| = δ, δ < 1.5

So, we do a measure and we determine that, for the reference system, x ∈ I0 and
we discard all the systems for which x 6∈ I0. We wait a fixed time, say t0 (which
corresponds to the microscopic time n0 = ε−1t0), and repeat the measurement.
What will happen?

Due to the expansivity of the map, after time t0, before the measure we will be
able to say only that x belongs to some interval I ′0, |I ′0| ≥ λn0δ. Most likely it will
be λn0δ > 1, that is we have o idea of where x might be. We perform the measure
and again we are going to discard the systems that differ from the reference one.
How many systems we discard? That depends on how the initial systems were
distributed. Suppose we discard a percentage 1 − Cλ−n0 of systems, that would
mean that originally the systems were distributed not so differently from Lebesgue.

Now we can repeat again the measure. Note that now we are considering systems
that had the same behaviour for some time. We can then ask ourselves if this means
that they will have similar behaviour in the future. That would mean that, next
time, we will discard a smaller percentage of systems. If you consider the previous
discuss you will see that this is unlikely. If the original systems were distributed
not so differently from Lebesgue, then you would expect to keep a percentage λ−n0

of systems every time. In other words, there is no way to determine the variable x
with a precisione larger than δ. Asking for a big grant to built a better measurement
apparatus will not help you much, you will just decrease a bit the value of δ.

What can we then use as an initial condition? Well, if we have done the exper-
iment, and we have seen that every time we keep a percentage λ−n0 of systems,

4 Such a measure would correspond to measuring the istantaneous velocity with which θ

changes.
5 Note that an error in measurements is inevitable, here we are just saying that it is not too

much larger than ε.
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then we can assume that the same will happen in the future and this is tanta-
mount to assume that the variable x is a random variable distributed according to
a probability distribution absolutely continuos with respect to Lebesgue.6

From now on this will be our standing assumption. That is, we consider the
system (2.1) with random initial conditions such that, for each ϕ ∈ C0,

(3.1) E(ϕ(x0, θ0)) =

∫
T
ϕ(x, θ∗)ρ(x)dx

where ρ ∈W 1,1 and θ∗ ∈ T.

Remark 3.1. Technically these initial conditions are a special case of the measures
called standard pairs introduced by Dolgopyat and that are a basic tool to investigate
the statistical properties of systems with some chaoticity.

3.2. Central Limit Theorem. Having explained that we consider (x0, θ0) to be
random variables, it follows that ζε(t) is a random variable as well. It is then
natural to try to compute its distribution. It is well known that, to do so, it suffices
to compute the characteristic function [6], that is7

(3.2) Φ(ξ) = E
(
eiξζε(t)

)
.

For simplicity, let us consider again the case of a skew product (i.e. ∂θω = ∂θf = 0).
Then

(3.3)

∣∣∣∣∣∣ζε(t)−√ε
bε−1tc−1∑
k=0

ω̂ ◦ fk(x0)

∣∣∣∣∣∣ ≤ C#

√
ε,

where ω̂ = ω− ω̄. So, up to a precision of order ε, our problem is equivalent to the
one of studying the characteristic function of the sum.

To study such a sum several approaches are available: martingale approximations
[5], reduction, via standard pairs, to a martingale problem [3] (but see [2] for a
didactical presentatiton) and spectral methods. The latter, when it works, is the
most powerful, yet it needs stronger hypotheses and hence it has a smaller range
of applicability. However, for the current presentation is the simplest one to apply
and it will then be our method of choice.

The basic idea is to compute directly the characteristic function (3.5), that is

E

exp

iξ√ε bε−1tc−1∑
k=0

ω̂ ◦ fk
 .

To this end we define the transfer operator, for each φ ∈ L1,

Lνφ(x) =
∑

f(y)=x

eiνω̂(y)

f ′(y)
φ(y)(3.4)

6 Note hovewer that we could have found out that the percentage of discarded systems is
different, say 1 − Cλ−αn0 , for some α 6= 1, and this would mean that our systems are originally
distributed according to another measure, a measure singular with respect to Lebesgue.

7 If in doubt, see the end of the section to see why this is true in the special case of average of
smooth functions.
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and notice that

(3.5) E

exp

iξ√ε bε−1tc−1∑
k=0

ω̂ ◦ fk
 =

∫
T
Lbε

−1tc
ξ
√
ε

ρ.

The problem is then reduced to studying the properties of the operator (3.4). To
do so we note that L0 = L. Since L has a spectral gap on W 1,1, it makes sense to
try to apply perturbation theory.

Lemma 3.2. There exists ν0 > 0 and continuous functions Cν > 0 and ρν ∈ (0, 1)
such that, for all |ν| ≤ ν0, Lν = eανΠν + Qν , ΠνQν = QνΠν = 0, ‖Qnν‖W 1,1 ≤
Cνρ

n
ν e
ανn. Also Πν(g) = hν`ν(g), `ν(hν) = 1, `ν(h′ν) = 0. In addition, everything

is analytic in ν.

Proof. Note that

‖Lνh− Lh‖W 1,1 ≤ C#|ν|‖ω̂‖C1‖h‖W 1,1 .

By standard perturbation theory, see [4], it follows that there exists ν0 > 0 such
that, for all |ν| ≤ ν0 the operator Lν has a maximal simple eigenvalue and a spectral
gap. Let eαν be the leading eigenvalue, and Πν be the associated eigenprojection,
again by standard perturbation theory they are analytic in ν. Hence also h̄ν =
Πνh∗, ¯̀

ν = Leb Πν and βν = ¯̀
ν(h̄ν) are analytic functions of ν. Moreover, h̄0 = h∗

and ¯̀
0 = Leb, thus we have β0 = 1 and, provided ν0 is small enough, βν 6= 0,

hence Πν = h̄ν ⊗ ˜̀
ν where ˜̀

ν = β−1
ν

¯̀
ν . Note however that there is some freedom:

Πν = hν ⊗ `ν where `ν = γ−1
ν

˜̀
ν and hν = γν h̄ν for any arbitrary non zero function

γν . We can thus impose the condition

0 = `ν(h′ν) = `ν(γ′ν h̄ν + γν h̄
′
ν) = γ−1

ν γ′ν + ˜̀
ν(h̄′ν).

The above equation yields the choice

γν = exp

[
−
∫ ν

0

˜̀
ν′(h̄ν′)dν

′
]
.

We have thus seen that there are analytic hν ∈W 1,1 and `ν ∈ (W 1,1)′, normalised
so that `ν(hν) = 1, `ν(h′ν) = 0 and Πν = hν ⊗ `ν are analytic in ν. Also

(3.6) Lνhν = eανhν ,

and α0 = 1, h0 = h∗ and `0 = Leb. �

Lemma 3.3. Fot all |ν| ≤ ν0, the function αν satisfies α0 = α′0 = 0 and |αν |C3 ≤
C#, α′′0 ≤ 0. Finally, α′′0 = 0 iff there exists g ∈ C0 such that ω̂ = g− g ◦ f ; that is,
only if ω̂ is a C0-coboundary.

Proof. As we mentioned αν is analytic in ν by standard perturbation theory, hence
the bound on the C3 norm.

We can differentiate (3.6) obtaining

(3.7) L′νhν + Lνh′ν = α′νe
ανhν + eανh′ν .

Applying `ν yields

(3.8)
dαν
dν

= i`ν(ω̂hν) =: iµν(ω̂).
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Thus α′0 = 0. Differentiating again yields

(3.9)
d2αν
dν2

= i`′ν(ω̂hν) + i`ν(ω̂h′ν) = i`′ν(ωνhν) + i`ν(ωνh
′
ν).

where ων = ω̂ − µν(ω̂). On the other hand, from (3.7) and (3.8) we have

(1eαν − Lν)h′ν = iLν(ωνhν),

Since, by construction, Πνh
′
ν = 0, the above equation can be studied in the space

Vν = (1−Πν)W 1,1 in which 1eαν − Lν is invertible.

Setting L̂ν := e−ανLνand Q̂ν := e−ανQν we have

(3.10) h′ν = i(1− Q̂ν)−1L̂ν(ωνhν).

Doing similar considerations on the equation `ν(Lν) = αν`ν(g), we obtain

α′′ν = −`ν(ων(1− Q̂ν)−1(1+ Q̂ν)(ωνhν))

= −
∞∑
n=1

`ν(ωνL̂nν (1+ L̂ν)(ωνhν))

= −µν(ω2
ν)− 2

∞∑
n=1

`ν(ωνL̂nν (ωνhν)).

(3.11)

Finally, notice that

`ν(ωνL̂nν (ωνhν)) = `ν(L̂nν (ων ◦ fnωνhν)) = µν(ων ◦ fnων)

and

lim
n→∞

1

n
µν

[n−1∑
k=0

ων ◦ fk
]2
 = lim

n→∞

1

n

n−1∑
k,j=0

µν(ων ◦ fkων ◦ f j)

= µν(ω2
ν) + lim

n→∞

2

n

n−1∑
k=1

(n− k)µν(ων ◦ fkων)

= µν(ω2
ν) + 2

∞∑
k=1

µν(ων ◦ fkων).

(3.12)

The above two facts and equation (3.11) yield8

(3.13) − α′′0 = lim
n→∞

1

n
µ0

[n−1∑
k=0

ω0 ◦ fk
]2
 ≥ 0.

Finally, note that the computations in (3.12) imply that, if α′′0 = 0,

µ0

[n−1∑
k=0

ω0 ◦ fk
]2
 = −2

n−1∑
k=1

k Leb(ω̂ ◦ fkω̂),

and the last quantity, by the decay of correlations, is uniformly bounded. Accord-
ingly,

∑n−1
k=0 ω0 ◦ fk is uniformly bounded, and hence weakly compact, in L2. We

8 This, together with equation (3.11), is a simple instance of the so called Green-Kubo formula.
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can then extract a converging subsequence, let g ∈ L2 be its limit. Then, for each
φ ∈W 1,1,9

Leb (φ(g ◦ f − g)) = lim
j→∞

nj−1∑
k=0

Leb
(
φ[ω̂ ◦ fk+1 − ω̂ ◦ fk]

)
= −Leb(φω̂) + lim

j→∞
Leb(ω̂Lnjφ) = −Leb(φω̂).

Since W 1,1 is dense in L2, it follows that g− g ◦ f = ω̂. The only problem left is to
show that g is regular. Note that, it holds as well g ∈ L2(µ0) and without loss of
generality, we can assume µ0(g) = 0. Then, multiplying by h0 and applying L

Lω̂h0 = Lgh0 − L(g ◦ fh0) = L(gh0)− gh0 = (Q0 − 1)(gh0).

That is gh0 = −(1 − Q0)−1Lω̂h0 ∈ W 1,1 ⊂ C0. On the other hand note that,
since h0 ≥ 0, if there exists x̄ ∈ T such that 0 = h0(x̄) then for all n ∈ N we have

0 = Lnh0(x̄) =
∑
y∈f−n(x̄)

h0(y)
(fn)′(y) . Thus h0 must be zero on all the pre-images of

x̄, but this would imply that h0 ≡ 0. Hence it must be h0 > 0 and then g ∈ C0 as
claimed. �

We can now collect all our work: suppose we would like to do a measure rep-
resented by the function ψε,z(ζε) = ψ((ζε − z)ε−α), where ψ ∈ C∞(R,R+) has
support in the interval [−1, 1] and α ∈ [0, 1/2). This essentially means that we
want to know what is probability to find the variable ζε in a given interval of size
2εα centred at z. Hence, using (3.3) and (3.5) we want, and can, compute10

E(ψε,z(ζε)) = E
(

1

2π

∫
ψ̂ε,z(ξ)e

iξζε

)
=

1

2π

∫
ψ̂ε,z(ξ)E(eiξζε)

=
1

2π

∫
ψ̂ε,z(ξ)

∫
T
Lbε

−1tc
ξ
√
ε

ρ+O(ε
1
2−α)

=
1

2π

∫
√
ε|ξ|≤ν0

εαeiξzψ̂(ξεα)

∫
T
Lbε

−1tc
ξ
√
ε

ρ+O(ε
1
2−α)

+O

(∫
|η|≥ν0εα−1/2

|ψ̂(ξ)|

)
.

Thus, if we set β = min{2α, 1
2 − α} > 0 and σ2 = −α′′0 , we have

E(ψε,z(ζε)) =
1

2π

∫
√
ε|ξ|≤ν0

εαeiξzψ̂(ξεα)e−
t
2σ

2ξ2+O(
√
εξ3)dξ +O(εβ)

=
ψ̂(0)

2π

∫
R
εαeiξze−

t
2σ

2ξ2dξ +O(εβ)

= Leb(ψε,z)
e−

z2

2σ2t

σ
√

2πt
+O(εβ) =

∫
R
ψε,z(x)

e−
x2

2σ2t

σ
√

2πt
+O(εβ).

Of course, since Leb(ψε,z) = O(εα) the above formula is useful only if β > α, thus

we can explore the distribution only till intervals of size ε
1
4 . To have informations

9 Here we are using that the composition with f is a continuous operator in L2, indeed

‖ϕ ◦ f‖L2 = Leb(|ϕ|2L1) ≤ C#‖ϕ‖L2 .

10 Remember that ψ̂(ξ) =
∫
e−iξxψ(x)dx and ψ(x) = 1

2π

∫
e1ξxψ̂(ξ)dξ.
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on smaller scales one must investigate the operators Lν for values of ν beyond the
perturbative regime. This is indeed possible, but outside the scopes of the present
note.

4. But, really, where does probability comes from?

In the last lecture we have seen how random behaviour can arise from a deter-
ministic one. Only some of you might feel that I have been cheating: after all a
system starts form a certain initial condition and does not care if we know it or
not! So, the probability has been introduced as a representation of our ignorance
and why should the system worry about we do or do not know?

To further the discussion along this lines would lead us to argue about the
relation between the frequentist interpretation of probability and the Bayesian view
of probability. Such a discussion could easily go on indefinitely without getting
anywhere. Therefore I’d like to take a different point of view and ask: is it possible
to obtain an almost everywhere results? That is: random behaviour can occur for
almost all initial conditions? Of course, this does not solve completely the problem:
almost all implies a probability, and it remains open the issue of which reference
probability we should consider. But at least it would eliminate the average with
respect to the initial conditions, which is rather unsatisfactory.11

Only, if you fix the initial condition then ζε(t) will be some path, there is no
randomness, so, what can we say? If you think a bit you will see that the same
problem occurs for the Brownian motion itself: if you look only at one realisation,
how do you deicide that the motion is random? There is no probability over there!
This is a problem that experimentalists know very well, they often have at dis-
posal only one system, hence how to compute averages?12 The usual answer is to
look at the system at different time intervals and consider such measures and their
relations. For example, for Brownian motion B(t), the increments should be dis-
tributed according to a Gaussian and should be independent. One can then choose
a time interval h and different times {ti}Ni=1, ti+1− ti ≥ h and study the quantities

1

N

N∑
i=1

ϕ(B(ti + h)−B(ti))

1

N

N∑
i=1

ϕ(B(ti+1 + h)−B(ti+1))g(B(ti + h)−B(ti)).

(4.1)

Then, by Birkhoff ergodic theorem, the first quantity, for N →∞, should converge
to the average of ϕ with respect to a Gaussian, and the second should converge to
the product of the averages of ϕ and g, for almost all the trajectories.

If an experimentalist would measure the quantities (4.1) and find out the above
behaviour, then she would be rather satisfied that she is observing a genuine Brow-
nian motion. It is then natural to ask: in the model we are discussing what happens

11If you want to make a theory that explains how to boil eggs, you should be weary of one
that tells you that doing such and such the average egg will be properly boiled: it could be that
half of the eggs are burned and the other half frozen!

12 This is particularly true, e.g., in cosmology as we have only one universe at our disposal
from which to draw data.



NOISE AND CHAOS 13

to the analogous of (4.1), that is to

1

N

N∑
i=1

ϕ(ζε(ti + h)− ζε(ti))

1

N

N∑
i=1

ϕ(ζε(ti+1 + h)− ζε(ti+1))g(ζε(ti + h)− ζε(ti)).

(4.2)

Let us analyse the first quantity, the second being similar. We have seen in the
previous lecture that the convergence of the random variables is implied by the
convergence of the characteristic function. Hence we would like to show that,
Lebesgue almost surely,

lim
N→∞

lim
ε→0

1

N

N∑
i=1

exp [iξ(ζε(ti + h)− ζε(ti))] = E(eiξ(ζε(h)−ζε(0)))

= exp

[
−ξ

2σ2h

2

]
.

(4.3)

To this end, let us start computing

lim
ε→0

E

∣∣∣∣∣ 1

N

N∑
i=1

exp [iξ(ζε(ti + h)− ζε(ti))]− exp

[
−ξ

2σ2h

2

]∣∣∣∣∣
2


= lim
ε→0

1

N2

N∑
i=1

N∑
i=j

E [exp [iξ {(ζε(ti + h)− ζε(tj))− (ζε(tj + h)− ζε(ti))}]]

− exp
[
−ξ2σ2h

]
.

Recalling (3.3), we have, setting ∆i,j = (ζε(ti + h)− ζε(tj))− (ζε(tj + h)− ζε(ti)),∣∣∣∣∣∣∆i,j −
√
ε

bε−1(ti+h)c−1∑
k=bε−1tic

ω̂ ◦ fk(x0) +
√
ε

bε−1(tj+h)c−1∑
k=bε−1tjc

ω̂ ◦ fk(x0)

∣∣∣∣∣∣ ≤ C#

√
ε.

We can then introduce again the transfer operators

Lh(x) =
∑

f(y)=x

1

f ′(y)
h(y); Lνh(x) =

∑
f(y)=x

eiνω̂(y)

f ′(y)
h(y),

and write, if i > j,

E
[
eiξ∆i,j

]
= E

[
Lh/ε
ξ
√
ε
L[ti−tj−h]/εLh/ε−ξ√εL

ti/ερ
]

+O(
√
ε)

= exp
[
−ξ2σ2h

]
+O(

√
ε+ e−c#h/ε)

while, if i = j, then E [iξ∆i,j ] = 1 +O(
√
ε). Thus, for h� ε,

lim
ε→0

E

∣∣∣∣∣ 1

N

N∑
i=1

exp [iξ(ζε(ti + h)− ζε(ti))]− exp

[
−ξ

2σ2h

2

]∣∣∣∣∣
2


= lim
ε→0

E

[
1

N2

N∑
i=1

{
1− exp

[
−ξ

2σ2h

2

]}]
= O

(
h

N

)
.
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Then, by Chebyshev’s inequality, setting SN = 1
N

∑N
i=1 exp [iξ(ζε(ti + h)− ζε(ti))],

we have

P
[{∣∣∣∣SN − exp

[
−ξ

2σ2h

2

]∣∣∣∣ ≥ δ}] ≤ C#h

δ2N
.

On the other hand

|SN+m − SN | ≤ C#
m

N
.

Hence, for k ∈ N and j,m ≤ 2k/2,

|S2k+j2k/2+m − S2k+jk| ≤ C#2−k/2.

Accordingly, for N ≥ C# ln δ−1,

P
[{

sup
n≥N

∣∣∣∣Sn − exp

[
−ξ

2σ2h

2

]∣∣∣∣ ≥ 2δ

}]

≤
∑

k≥ln2N

2k/2−1∑
j=0

P
[{∣∣∣∣S2k+j2k/2 − exp

[
−ξ

2σ2h

2

]∣∣∣∣ ≥ δ}]
≤

∑
k≥ln2N

2−k/2δ−2 ≤ C#h√
Nδ2

,

which proves equation (4.3).

Remark 4.1. Note that if we choose ti+1 − ti = 2h, then the time average takes
place in a time T = 2hN . Also it is interesting to choose δ = h1+α/2, otherwise the
error is larger than the difference form the exponential and one. Then the error in
the equation above reads

C#√
Th

1
2 +α

.

Accordingly, to obtain a small error, it is necessary to take an average for a macro-
scopic time much larger than h−

1
2 . Note however that a better estimate could be

obtained by estimating higher moments.

Appendix A. Invariant measures and Von Neuman Theorem

First of all we need a useful characterization of invariance.

Lemma A.1. Given a compact metric space X and map T continuous apart from
a compact set K,13 a Borel measure µ, such that µ(K) = 0, is invariant if and only
if µ(f ◦ T ) = µ(f) for each f ∈ C0(X).

Proof. To prove that the invariance of the measure implies the invariance for con-
tinuous functions is obvious since each such function can be approximate uniformly
by simple functions–that is, sum of characteristic functions of measurable sets–for
which the invariance it is immediate.14 The converse implication is not so obvious.

The first thing to remember is that the Borel measures, on a compact metric
space, are regular [RS80]. This means that for each measurable set A the following
holds15

13This means that, if C ⊂ X is closed, then T−1C ∪K is closed as well.
14This is essentially the definition of integral.
15This is rather clear if one thinks of the Carathéodory construction starting from the open

sets.
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(A.1) µ(A) = inf
G⊃A
G=

◦
G

µ(G) = sup
C⊂A
C=C

µ(C).

Next, remember that for each closed set A and open set G ⊃ A, there exists
f ∈ C0(X) such that f(X) ⊂ [0, 1], f |Gc = 0 and f |A = 1 (this is Urysohn Lemma
for Normal spaces [Roy88]). Hence, setting BA := {f ∈ C(0)(X) | f ≥ χA},

(A.2) µ(A) ≤ inf
f∈BA

µ(f) ≤ inf
G⊃A
G=

◦
G

µ(G) = µ(A).

Accordingly, for each A closed, we have

µ(T−1A) ≤ inf
f∈BA

µ(f ◦ T ) = inf
f∈BA

µ(f) = µ(A).

In addition, using again the regularity of the measure, for each A Borel holds16

µ(T−1A) = inf
U⊃K
U=

◦
U

µ(T−1A\U) ≤ inf
U⊃K
U=

◦
U

sup
C⊂T−1A\U

C=C

µ(T−1(TC))

≤ inf
U⊃K
U=

◦
U

sup
C⊂A
C=C

µ(T−1C) ≤ sup
C⊂A
C=C

µ(C) = µ(A).

Applying the same argument to the complement Ac of A it follow that it must be
µ(T−1A) = µ(A) for each Borel set. �

Proposition A.2 (Krylov–Bogoluvov). If X is a metric compact space and T :
X → X is continuous, then there exists at least one invariant (Borel) measure.

Proof. Consider any Borel probability measure ν and define the following sequence
of measures {νn}n∈N:17 for each Borel set A

νn(A) = ν(T−nA).

The reader can easily see that νn ∈M1(X), the sets of the probability measures.
Indeed, since T−1X = X, νn(X) = 1 for each n ∈ N. Next, define

µn =
1

n

n−1∑
i=0

νi.

Again µn(X) = 1, so the sequence {µi}∞i=1 is contained in a weakly compact set
(the unit ball) and therefore admits a weakly convergent subsequence {µni}∞i=1; let
µ be the weak limit.18 We claim that µ is T invariant. Since µ is a Borel measure it

16Note that, by hypothesis, if C is compact and C ∩K = ∅, then TC is compact.
17Intuitively, if we chose a point x ∈ X at random, according to the measure ν and we ask

what is the probability that Tnx ∈ A, this is exactly ν(T−nA). Hence, our procedure to produce

the point Tnx is equivalent to picking a point at random according to the evolved measure νn.
18This depends on the Riesz-Markov Representation Theorem [RS80] that states that M(X)

is exactly the dual of the Banach space C0(X). Since the weak convergence of measures in this
case correspond exactly to the weak-* topology [RS80], the result follows from the Banach-Alaoglu

theorem stating that the unit ball of the dual of a Banach space is compact in the weak-* topology.
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suffices to verify that for each f ∈ C0(X) holds µ(f ◦ T ) = µ(f) (see Lemma A.1).
Let f be a continuous function, then by the weak convergence we have19

µ(f ◦ T ) = lim
j→∞

1

nj

nj−1∑
i=0

νi(f ◦ T ) = lim
j→∞

1

nj

nj−1∑
i=0

ν(f ◦ T i+1)

= lim
j→∞

1

nj

{
nj−1∑
i=0

νi(f) + ν(f ◦ Tnj )− ν(f)

}
= µ(f).

�

Theorem A.3 (Von Neumann). Let (X,T, µ) be a Dynamical System, then for
each f ∈ L2(X, µ) the ergodic average converges in L2(X, µ).

Proof. We have already seen that it can be useful to lift the dynamics at the level
of the algebra of function or at the level of measures. This game assumes different
guises according to how one plays it, here is another very interesting version.

Let us define U : L2(X,µ)→ L2(X,µ) as

Uf := f ◦ T.
Then, by the invariance of the measure, it follows ‖Uf‖2 = ‖f‖2, so U is an L2

contraction (actually, and L2-isometry). If T is invertible, the same argument
applied to the inverse shows that U is indeed unitary, otherwise we must content
ourselves with

‖U∗f‖22 = 〈UU∗f, f〉 ≤ ‖UU∗f‖2‖f‖2 = ‖U∗f‖2‖f‖2,
that is ‖U∗‖2 ≤ 1 (also U∗ is and L2 contraction).

Next, consider V1 = {f ∈ L2 | Uf = f} and V2 = Rank(1 − U). First of all,
note that if f ∈ V1, then

‖U∗f − f‖22 = ‖U∗f‖22 − 〈f, U∗f〉 − 〈U∗f, f〉+ ‖f‖22 ≤ 0.

Thus, f ∈ V ∗1 := {f ∈ L2 | U∗f = f}. The same argument applied to f ∈ V ∗1
shows that V1 = V ∗1 . To continue, consider f ∈ V1 and h ∈ L2, then

〈f, h− Uh〉 = 〈f − U∗f, h〉 = 0.

This implies that V ⊥1 = V2, hence V1⊕V2 = L2. Finally, if g ∈ V2, then there exists
h ∈ L2 such that g = h− Uh and

lim
n→∞

1

n

n−1∑
i=0

U ig = lim
n→∞

1

n
(h− Unh) = 0.

On the other hand if f ∈ V1 then limn→∞
1
n

∑n−1
i=0 U

if = f . The only function on
which we do not still have control are the g belonging to the closure of V2 but not
in V2. In such a case there exists {gk} ⊂ V2 with limk→∞ gk = g. Thus,

‖ 1

n

n−1∑
i=0

U ig‖2 ≤ ‖
1

n

n−1∑
i=0

U igk‖2 + ‖g − gk‖2 ≤ ‖
1

n

n−1∑
i=0

U igk‖2 +
ε

2
,

19Note that it is essential that we can check invariance only on continuous functions: if we
would have to check it with respect to all bounded measurable functions we would need that µn
converges in a stronger sense (strong convergence) and this may not be true. Note as well that
this is the only point where the continuity of T is used: to insure that f ◦ T is continuous and
hence that µnj (f ◦ T )→ µ(f ◦ T ).
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provided we choose k large enough. Then, by choosing n sufficiently large we obtain

‖ 1

n

n−1∑
i=0

U ig‖2 ≤ ε.

We have just proven that

lim
n→∞

1

n

n−1∑
i=0

U i = P

where P is the orthogonal projection on V1. �

Next, we state, without proof, a slightly more refined, and more useful, result.

Theorem A.4 (Birkhoff). Let (X, T, µ) be a dynamical system, then for each
f ∈ L1(X, µ)

lim
n→∞

1

n

n−1∑
j=0

f(T jx)

exists for almost every point x ∈ X. In addition, setting

f+(x) = lim
n→∞

1

n

n−1∑
j=0

f(T jx),

it holds true ∫
X

f+dµ =

∫
X

fdµ.

Finally, next Lemma is part of the usual magic of the ergodic theory.

Lemma A.5. Let (X, T, µ) be an invertible dynamical system and, for some f ∈
L1(µ), let f+ be the ergodic average with resect to T and f− the one with respect to
f−. Then f+ and f− coincide µ-almost everywhere.

Proof. Let
A+ = {x ∈ T2 | f+(x) > f−(x)};

by definition A+ is an invariant set, hence∫
A+

[f+(x)− f−(x)] dµ(x) =

∫
A+

f(x)dµ(x)−
∫
A+

f(x)dµ(x) = 0

which implies µ(A+) = 0 and f+ ≤ f− µ-almost everywhere. The same argument,
this time applied to the set A− = {x ∈ T2 | f−(x) > f+(x)}, implies the converse
inequality. �

Appendix B. Ergodicity

Definition 1. A measurable set A is invariant for T if T−1A ⊂ A.
A dynamical system (X, T, µ) is ergodic if each invariant set has measure zero

or one.

The definition for continuous dynamical systems being exactly the same.
Note that if A is invariant then µ(A\T−1A) = µ(A) − µ(T−1A) = 0, moreover

Λ = ∩∞n=0T
−nA ⊂ A is invariant as well. In addition, by definition, Λ = TΛ, which

implies Λ = T−1Λ and µ(A\Λ) = 0. This means that, if A is invariant, then it
always contains a set Λ invariant in the stronger (maybe more natural) sense that
TΛ = T−1Λ = Λ. Moreover, Λ is of full measure in A. Our definition of invariance
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is motivated by its greater flexibility and the fact that, from a measure theoretical
point of view, zero measure sets can be discarded.

In essence, if a system is ergodic then most trajectories explore all the available
space. In fact, for any A of positive measure, define Ab = ∪n∈N∪{0}T−nA (this
are the points that eventually end up in A), since Ab ⊃ A, µ(Ab) > 0. Since
T−1Ab ⊂ Ab, by ergodicity follows µ(Ab) = 1. Thus, the points that never enter in
A (that is, the points in Acb) have zero measure. Actually, if the system has more
structure (topology) more is true (see Problem 1).

The reader should be aware that there are many equivalent definitions of ergod-
icity, see Problems 5, 7, 8.

A stronger, and often more useful property of a dynamical systems is mixing.

Definition 2. A Dynamical System (X, T, µ) is called mixing if for every pairs of
measurable sets A, B we have

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B).

B.1. Examples.

B.1.1. Rotations. The ergodicity of a rotation depends on ω. If ω ∈ Q then the
system is not ergodic. In fact, let ω = p

q (p, q ∈ N), then, for each x ∈ T T qx = x+ p

mod 1 = x, so T q is just the identity. An alternative way of saying this is to notice
that all the points have a periodic trajectory of period q. It is then easy to exhibit an
invariant set with measure strictly larger than 0 but strictly less than 1. Consider [0, ε],

then A = ∪q−1
i=1T

−i[0, ε] is an invariant set; clearly ε ≤ µ(A) ≤ qε, so it suffices to
choose ε < q−1.

The case ω 6∈ Q is much more interesting. First of all, for each point x ∈ T we
have that the closure of the set {Tnx}∞i=0 is equal to T, which is to say that the orbits
are dense.20 The proof is based on the fact that there cannot be any periodic orbit.
To see this suppose that x ∈ T has a periodic orbit, that is there exists q ∈ N such
that T qx = x. As a consequence there must exist p ∈ Z such that x + p = x + qω
or ω ∈ Q contrary to the hypothesis. Hence, the set {T k0}∞k=0 must contain infinitely
many points and, by compactness, must contain a convergent subsequence ki. Hence,
for each ε > 0, there exists m > n ∈ N:

|Tm0− Tn0| < ε.

Since T preserves the distances, calling q = m− n, holds

|T q0| < ε.

Accordingly, the trajectory of T jq0 is a translation by a quantity less than ε, therefore
it will get closer than ε to each point in T (i.e., the orbit is dense). Again by the
conservation of the distance, since zero has a dense orbit the same will hold for every
other point.

Intuitively, the fact that the orbits are dense implies that there cannot be a non
trivial invariant set, henceforth the system is ergodic. Yet, the proof it is not trivial
since it is based on the existence of Lebesgue density points [Roy88] (see Problem 11).
It is a fact from general measure theory that each measurable set A ⊂ R of positive

20A system with a dense orbit called Topologically Transitive.
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Lebesgue measure contains, at least, one point x̄ such that for each ε ∈ (0, 1) there
exists δ > 0:

m(A ∩ [x̄− δ, x̄+ δ])

2δ
> 1− ε.

Hence, given an invariant set A of positive measure and ε > 0, first choose δ such
that the interval I := [x̄− δ, x̄+ δ] has the property m(I ∩A) > (1− ε)m(I). Second,
we know already that there exists q,M ∈ N such that {T−kqx}Mk=1 divides [0, 1] into
intervals of length less that ε

2δ. Hence, given any point x ∈ T choose k ∈ N such that

m(T−kqI ∩ [x− δ, x+ δ]) > m(I)(1− ε) so,

m(A ∩ [x− δ, x+ δ]) ≥ m(A ∩ T−kqI)−m(I)ε

≥ m(A ∩ I)−m(I)ε ≥ (1− 2ε)2δ.

Thus, A has density everywhere larger than 1− 2ε, which implies µ(A) = 1 since ε is
arbitrary.

The above proof of ergodicity it is not so trivial but it has a definite dynamical flavor
(in the sense that it is obtained by studying the evolution of the system). Its structure
allows generalizations to contexts whit a less rich algebraic structure. Nevertheless, we
must notice that, by taking advantage of the algebraic structure (or rather the group
structure) of T, a much simpler and powerful proof is available.

Let ν ∈M1
T , then define

Fn =

∫
T
e2πinxν(dx), n ∈ N.

A simple computation, using the invariance of ν, yields

Fn = e2πinωFn

and, if ω is irrational, this implies Fn = 0 for all n 6= 0, while F0 = 1. Next, consider
f ∈ C(2)(T1) (so that we are sure that the Fourier series converges uniformly), then

ν(f) =

∞∑
n=0

ν(fne
2πin·) =

∞∑
n=0

fnFn = f0 =

∫
T
f(x)dx.

Hence m is the unique invariant measure (unique ergodicity). This is clearly much
stronger than ergodicity (see Problem 5)

B.2. Some easy, and not so easy, Problems.

(1) A topological Dynamical System (X,T ) is called Topologically transitive, if
it has a dense orbit. Show that if (Td, T,m) is ergodic and T is continuous,
then the system is topologically transitive.

(2) Give an example of a system with a dense orbit which it is not ergodic.
(3) Give an example of an ergodic system with no dense orbit.
(4) Give an example of a Dynamical Systems which does not have any invariant

probability measure.
(5) Show that a Dynamical Systems (X,T, µ) is ergodic if and only if there does

not exists any invariant probability measure absolutely continuous with respect
to µ, beside µ itself.

(6) Prove that Birkhoff theorem implies Von Neumann theorem.
(7) Prove that if (X,T, µ) is ergodic, then all f ∈ L1(X,µ) such that f ◦ T = f

are a.e. constant. Prove also the converse.
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(8) For each measurable set A, let

FA,n(x) =
1

n

n−1∑
i=0

χA(T ix).

be the average number of times x visits A in the time n. Show that there exists
FA = limn→∞ FA,n a.e. and prove that, if the system is ergodic, FA = µ(A).

(9) Prove that the Lebesgue measure is invariant for the rotations on T.
(10) Consider a rotation by ω ∈ Q, find invariant measures different from Lebesgue.
(11) Prove Lebesgue density theorem: for each measurable set A, m(A) > 0, there

exists x ∈ A such that for each ε > 0 exists δ > 0 such that m(A∩ [x− δ, x+
δ]) > (1− ε)2δ.

Appendix C. Some Functional analysis

Consider two Banach space (B, ‖ · ‖) and (B0, | · |) such that B ⊂ B0 and

i. |h| ≤ ‖h‖ for all h ∈ B,
ii. if h ∈ B and |h| = 0, then h = 0.

iii. There exists C > 0 : for each ε > 0 there exists a finite rank operator
Aε ∈ L(B,B) such that ‖Aε‖ ≤ C and |h− Aεh| ≤ ε‖h‖ for all h ∈ B.21

In addition consider a bounded operator L : B0 → B0, constants A,B,C ∈ R+,
and λ > 1, such that

a. |Ln| ≤ C for all n ∈ N,
b. L(B) ⊂ B
c. ‖Lnh‖ ≤ Aλ−n‖h‖+B|h| for all h ∈ B and n ∈ N.

In particular L can be seen as a bounded operator on B.

Theorem C.1. The spectral radius of the operator L ∈ L(B,B) is bounded by 1
while the essential spectral radius is bounded by λ−1.22

We can now prove our main result.

Proof of Theorem C.1. The first assertion is a trivial consequence of (c), (a) and
(i).

The second part is much deeper. Let Ln,ε := LnAε, clearly such an operator is
finite rank, in addition

‖Lnh− Ln,εh‖ ≤ Aλ−n‖(1− Aε)h‖+B|(1− Aε)h| ≤ A(1 + C)λ−n‖h‖+Bε‖h‖.
By choosing ε = λ−n we have that there exists C1 > 0 such that

‖Ln − Ln,ε‖ ≤ C1λ
−n.

For each z ∈ C we can now write

1− zL = (1− z(L − Ln,ε))− zLn,ε.

21In fact, this last property can be weakened to: The unit ball {h ∈ B : ‖h‖ ≤ 1} is relatively

compact in B0. We use the present stronger condition since, on the one hand, it is true in all the
applications we will be interested in and, on the other hand, drastically simplifies the argument.
Note also that, if one uses the Fredholm alternative for compact operators rather than finite rank

ones (Theorem C.2), then one can ask the Aε to be compact instead than finite rank making easier
their construction in concrete cases.

22The definition of essential spectrum varies a bit from book to book. Here we call essential
spectrum the complement, in the spectrum, of the isolated eigenvalues with associated finite

dimensional eigenspaces (which is also called the Fredholm spectrum).
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Since

‖z(L − Ln,ε)‖ ≤ |z|C1λ
−n <

1

2
,

provided that |z| ≤ 1
2C1

λn. Thus, given any z in the disk Dn := {|z| < 1
2C1

λn} the

operator B(z) := 1− z(L − Ln,ε) is invertible.23 Hence

1− zL =
(
1− zLn,εB(z)−1

)
B(z) =: (1− F (z))B(z).

By applying Fredholm analytic alternative (see Theorem C.2 for the statement and
proof in a special case sufficient for the present purposes) to F (z) we have that
the operator is either never invertible or not invertible only in finitely many points
in the disk Dn. Since for |z| < 1 we have (1 − zL)−1 =

∑∞
n=0 z

nLn, the first
alternative cannot hold hence the Theorem follows. �

Here we give a proof of the Analytic Fredholm alternative in a special case.

Theorem C.2 (Analytic Fredholm theorem–finite rank).24 Let D be an open con-
nected subset of C. Let F : C → L(B,B) be an analytic operator-valued function
such that F (z) is finite rank for each z ∈ D. Then, one of the following two
alternatives holds true

• (1− F (z))−1 exists for no z ∈ D
• (1− F (z))−1 exists for all z ∈ D\S where S is a discrete subset of D (i.e.
S has no limit points in D). In addition, if z ∈ S, then 1 is an eigenvalue
for F (z) and the associated eigenspace has finite multiplicity.

Proof. First of all notice that, for each z0 ∈ D there exists r > 0 such that
Dr(z0)(z0) := {z ∈ C : |z − z0| < r(z0)} ⊂ D, and

sup
z∈Dr(z0)(z0)

‖F (z)− F (z0)‖ ≤ 1

2
.

Clearly if we can prove the theorem in each such disk we are done.25 Note that

1− F (z) =
(
1− F (z0)(1− [F (z)− F (z0)])−1

)
(1− [F (z)− F (z0)]).

Thus the invertibility of 1 − F (z) in Dr(z0) depends on the invertibility of 1 −
F (z0)(1− [F (z)− F (z0)])−1. Let us set F0(z) := F (z0)(1− [F (z)− F (z0)])−1.

Let us start by looking at the equation

(C.1) (1− F0(z))h = 0.

Clearly if a solution exists, then h ∈ Range(F0(z)) = Range(F (z0)) := V0. Since
V0 is finite dimensional there exists a basis {hi}Ni=1 such that h =

∑
i αihi. On the

23Clearly B(z)−1 =
∑∞
n=0 [z(L − Ln,ε)]n.

24The present proof is patterned after the proof of the Analytic Fredholm alternative for
compact operators (in Hilbert spaces) given in [RS80, Theorem VI.14]. There it is used the fact

that compact operators in Hilbert spaces can always be approximated by finite rank ones. In

fact the theorem holds also for compact operators in Banach spaces but the proof is a bit more
involved.

25In fact, consider any connected compact set K contained in D. Let us suppose that for each
z0 ∈ K we have a disk Dr(z0)(z0) in the theorem holds. Since the disks Dr(z0)/2(z0) form a

covering for K we can extract a finite cover. If the first alternative holds in one such disk then, by
connectness, it must hold on all K. Otherwise each S ∩Dr(z0)/2(z0), and hence K ∩ S, contains

only finitely many points. The Theorem follows by the arbitrariness of K.
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other hand there exists an analytic matrix G(z) such that26

F0(z)h =
∑
ij

G(z)ijαjhi.

Thus (C.1) is equivalent to

(1−G(z))α = 0,

where α := (αi).
The above equation can be satisfied only if det(1−G(z)) = 0 but the determinant

is analytic hence it is either always zero or zero only at isolated points.27

Suppose the determinant different from zero, and consider the equation

(1− F0(z))h = g.

Let us look for a solution of the type h =
∑
i αihi + g. Substituting yields

α−G(z)α = β

where β := (βi) with F0(z)g =:
∑
i βihi. Since the above equation admits a solu-

tion, we have Range(1− F0(z)) = B, Thus we have an everywhere defined inverse,
hence bounded by the open mapping theorem.

We are thus left with the analysis of the situation z ∈ S in the second alternative.
In such a case, there exists h such that (1− F (z))h = 0, thus one is an eigenvalue.
On the other hand, if we apply the above facts to the function Φ(ζ) := ζ−1F (z)
analytic in the domain {ζ 6= 0} we note that the first alternative cannot take place
since for |ζ| large enough 1 − Φ(ζ) is obviously invertible. Hence, the spectrum
of F (z) is discrete and can accumulate only at zero. This means that there is a
small neighborhood around one in which F (z) has no other eigenvalues, we can
thus surround one with a small circle γ and consider the projector

P :=
1

2πi

∫
γ

(ζ − F (z))−1dζ =
1

2πi

∫
γ

[
(ζ − F (z))−1 − ζ−1

]
dζ

=
1

2πi

∫
γ

F (z)ζ−1(ζ − F (z))−1dζ.

By standard functional calculus it follows that P is a projector and it clearly
projects on the eigenspace of the eigenvector one. But the last formula shows
that P must project on a subspace of the range of F (z), hence it must be finite
dimensional. �

References

[1] V.Baladi, Positive transfer operators an decay of correlations, World scientific, Singapore

(2000).

26To see the analyticity notice that we can construct linear functionals {`i} on V0 such that

`i(hj) = δij and then extend them to all B by the Hahn-Banach theorem. Accordingly, G(z)ij :=

`j(F0(z)hi), which is obviously analytic.
27The attentive reader has certainly noticed that this is the turning point of the theorem: the

discreteness of S is reduced to the discreteness of the zeroes of an appropriate analytic function:
a determinant. A moment thought will immediately explain the effort made by many mathemati-

cians to extend the notion of determinant (that is to define an analytic function whose zeroes
coincide with the spectrum of the operator) beyond the realm of matrices (the so called Fredholm
determinants).



NOISE AND CHAOS 23

[2] Jacopo De Simoi, Carlangelo Liverani, The Martingale approach after Varadhan and Dol-

pogpyat . In ”Hyperbolic Dynamics, Fluctuations and Large Deviations”, Dolgopyat, Pesin,

Pollicott, Stoyanov editors, Proceedings of Symposia in Pure Mathematics, 89, AMS (2015).
[3] Dmitry Dolgopyat. Averaging and invariant measures. Mosc. Math. J., 5(3):537–576, 742,

2005.

[4] Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-
Verlag, Berlin, 1995. Reprint of the 1980 edition.

[5] Carlangelo Liverani, Central Limit Theorem for Deterministic Systems, International Con-

ference on Dynamical Systems, Montevideo 1995, a tribute to Ricardo Ma e, Pitman Re-
search Notes in Mathemaics Series, 362, editori F.Ledrappier, J.Levovicz, S.Newhouse,

(1996).

[Roy88] H. L. Royden. Real analysis. Macmillan Publishing Company, New York, third edition,
1988.

[RS80] Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Academic
Press Inc. [Harcourt Brace Jovanovich Publishers], New York, second edition, 1980. Func-

tional analysis.

[6] Varadhan, S. R. S. Probability theory. Courant Lecture Notes in Mathematics, 7. New York
University, Courant Institute of Mathematical Sciences, New York; American Mathematical

Society, Providence, RI, 2001. viii+167 pp.

[7] Varadhan, S. R. S. Stochastic processes. Courant Lecture Notes in Mathematics, 16. Courant
Institute of Mathematical Sciences, New York; American Mathematical Society, Providence,

RI, 2007. x+126 pp.

Carlangelo Liverani, Dipartimento di Matematica, II Università di Roma (Tor Ver-
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