
Chapter 5

Global behavior: more stuff is out there

Every Dynamical System studied so far exhibited fairly simple mo-
tions, allowing for a detailed understanding of its behavior. Yet, we have not
addressed yet the problem of long time predictions in systems with more than
two dimensions.

Although this is not the proper occasion for an historical excursus, it is
worthwhile to stress that the first Dynamical Systems widely investigated
have been the planetary motions. Not surprisingly the main emphasis in such
investigations was accurate prediction of future positions. Nevertheless, ex-
actly from the effort of predicting accurately future motions stemmed the
consciousness of the existence of very serious obstructions to such a program.
Specifically, in the work of Poincaré [Poi87] appeared for the first time the
phenomena of instability with respect to initial conditions, a central concept
in the understanding of modern Dynamical Systems. In fact, we will see
briefly that such instability phenomena can be already observed in very sim-
ple systems–such as a periodically forced pendulum–that exhibit a so called
“homoclinic tangle” [Mos01, PT93].

The realization that many relevant systems are very sensitive with respect
to the initial conditions dealt a strong blow to the idea that it is always
possible to predict the future behavior of a system,1 yet the work of many
physicist (and we must mention at least Boltzmann) and mathematicians (in
particular, the so called Russian School with people like Kolmogorov, Anosov,
Sinai, but also some western mathematicians, like Birkhoff, Smale, Ruelle and
Bowen, gave important contributions) led to the understanding that, although
precise predictions where not possible, it was possible and, at times, even

1Without going to the extreme of some authors of the eighteen century arguing that,
given the present state of the universe, a sufficiently powerful mind (maybe God) could
predict all the future. Think, more modestly, of an isolated system and imagine to use
some numerical scheme to try to solve the equations of motion for an arbitrarily long time
with an arbitrary precision.
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easy to make statistical predictions. The concept of statistical properties of
a Dynamical System will be addressed in the following chapters This chapter
is dedicated to making precise, in a simple example, the nature of the above
mentioned instability.

5.1 A pendulum–The model and a question

We will study a seemingly trivial example: a forced pendulum. To be more
concrete, let us imagine a pendulum of length l = 1 meter, mass m = 1
kilogram and remember that the gravitational constant (on the earth surface)
is approximately g = 9.8 meters per second squared. The Hamiltonian of the
system reads [Gal83]

H =
1

2l2m
p2 −mgl cos θ, (5.1.1)

where θ is the angle, counted counterclockwise, formed by the pendulum with
the vertical direction (θ = 0 corresponds to the configuration in which the
pendulum assumes the lowest possible position) and p = l2mθ̇ is the associated
momentum. Thus (θ, p) are the coordinates of the pendulum. The phase space
M where the motion takes place consists of T1 × R.

The equations of motion associated to the Hamiltonian (5.1.1) represent
the motion of an ideal pendulum in the vacuum feeling only the force of
gravity. Clearly, this is an highly idealized situation with no counterpart in
realty. Every system interacts with the rest of the universe. Thus the only
hope for the idea of isolated systems to be fruitful is that the interaction with
the exterior does not affect significantly the behavior of the system. Let us
try to see what this can mean in reality.

The first issue is clearly friction. Let us imagine that we have set up the
pendulum in a reasonable vacuum and reduced the friction at the suspension
point so that the loss of energy is negligible on the time scale of few minutes.
Does such a system behaves as an isolated pendulum within such a time
frame? One problem is that the suspension point is still in contact with the
rest of the world. If the pendulum is in a lab not so distant from an street (a
rather common situation), then the traffic will induce some vibrations. It is
then natural to ask: what happens if the suspension point of the pendulum
vibrates?

In fact, nothing much happens for small pendulum oscillations (this is a
consequence of Komogorv-Arnold-Moser theory, an highly non trivial fact),
but if we start close to the vertical configuration it is conceivable that a motion
that would be oscillatory for the unperturbed pendulum could gather enough
energy from the external force as to change its nature and become rotatory,
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this would create a substantial difference between the unperturbed (ideal) and
the perturbed (more realistic) case.

This is exactly the question we want to address:

Question: Can we really predict the motion for a reasonable time if the initial
condition is close to the vertical ?

We will assume that the frequency of vibration ω is of the order of one
hertz2 and the amplitude of the oscillations is very very small. Hence, as
good mathematicians, we will call such an amplitude ε. In other words, the
suspension point moves vertically according to the law ε cosωt.

The Hamiltonian of the vibrating pendulum is then given by (see Problem
5.1)

Hε(θ, p, t) =
1

2l2m
p2 −mgl cos θ − εmω2l cosωt cos θ. (5.1.2)

Accordingly the equation of motion are (see Problem 5.1)3

θ̇ =
∂Hε

∂p
=

p

l2m

ṗ = −∂Hε

∂θ
= −mgl sin θ − εmω2l cosωt sin θ.

(5.1.3)

It is well known that the function H is an integral of motion for the
solutions of (5.1.3) for ε = 0, that is: H computed along the solutions of the
associated equations of motion is constant.4 The physical meaning of H is
the energy of the system. Clearly, the energy Hε is not constant in general
since the vibration can add or subtract energy to the pendulum.

5.2 Instability–unperturbed case

Let us first recall few basic facts about the unperturbed pendulum. The
equation of motions are given by the (5.1.3) setting ε = 0. It is obvious that
there exists two fixed points: (0, 0) which corresponds to the pendulum at
rest and is clearly stable , and (π, 0) which corresponds to the pendulum in
the vertical position and is certainly unstable. Our interest here is to analyze
the motions that start close to the unstable equilibrium and to make more
precise what it is meant by instability.

2One hertz corresponds to one oscillation every second, and it can be the order of
magnitude for the frequency of a vibration transmitted through the ground (R waves) at a
reasonable distance. Thus we are assuming ω = 2π.

3Here we write the Hamilton equations associated to the Hamiltonian, see [Arn99, Gal83]
for the general theory.

4See [Arn99, Gal83] for this general fact or do Problem 5.4 for the simple case at hand.
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5.2.1 Unstable equilibrium

If we want to have an idea of how the motion looks like near a fixed point the
natural first step is to study the linearization of the equation of motion near
such a point. In our case, using the coordinates (θ0, p) = (θ− π, p), they look
like

θ̇0 =
p

l2m
ṗ = mglθ0.

(5.2.4)

Let ωp =
√

g
l , the general solution of (5.2.4) is

(θ0(t), p(t)) = (αeωpt + βe−ωpt,ml2ωp{αeωpt − βe−ωpt}),

where α and β are determined by the initial conditions. Note that if the
initial condition has the form α(1, ml

√
gl) it will evolve as αeωpt(1, ml

√
gl).

While if the initial condition is of the form β(1, −ml
√
gl) it will evolve as

βe−ωpt(1, −ml
√
gl). In other words the directions (1, ml

√
gl) and (1, −ml

√
gl)

are invariant for the linear dynamics. The first direction is expanded (and be-
cause of this is called unstable direction) while the second is contracted (stable
direction).
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Figure 5.1: Unstable fixed point (phase portrait)

Let us imagine to start the motion from an initial condition of the type
(π + θ0, 0), θ0 ∈ [−δ, δ], where δ ≤ 10−4 represents the precision with which
we are able to set the initial condition (one tenth of a millimeter); what will
happen under the linear dynamics?

Our initial condition correspond to choosing, at time zero, α = β ≤ δ
2 .

As time goes on the coefficient of β becomes exponentially small while the
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coefficient of α increases exponentially, thus a good approximation of the
position of the pendulum after some time is given by

θ0(t) ≈ αeωpt. (5.2.5)

Since ωp ≈ 3.13 seconds−1, it follows that after about 2.5 seconds the position
of the pendulum can be anywhere up to a distance of about 10 centimeters
from the unstable position.

This means that the unstable position is really unstable and if we tray,
as best as we can, to put the pendulum in the unstable equilibrium (always
imagining that the friction has been properly reduced) it will typically fall
after few seconds and it will fall in a direction that we are not able to predict
(since it depend on the sign of δ, our unknown mistake). Nevertheless, after
the ideal pendulum starts falling in one direction the subsequent motion is
completely predictable, as we will see shortly.

An obvious objection to the above analysis is that I did not show that the
linearized equation describes a motion really close to the one of the original
equations. The answer to this question is particularly simple in this setting
and is addressed in the next subsection.

5.2.2 The unstable trajectories (separatrices)

Given the already noted fact that, for ε = 0, H is a constant of motion, the
phase space M is naturally foliated in the level curves of H, on which the
motion must take place. This allows us to obtain a fairly accurate picture of
the motions of the unperturbed pendulum. In fact, the level curves are given
by the equations

p2

2l2m
−mgl cos θ = E

where E is the energy of the motion. It is easy to see that E = −mgl corre-
sponds to the stable fixed point (θ, p) = (0, 0); −mgl < E < mgl corresponds

to oscillations of amplitude arccos
[
E
mgl

]
; E > mgl corresponds to rotatory

motions of the pendulum. The last case E = mgl is of particular interest to
us: obviously it corresponds to the unstable fixed point (π, 0), yet there are
other two solution that travel on the two curves

p = ±ml
√

2lg(1 + cos θ).

This two curves are the ones that separate the oscillatory motions from
the rotatory ones and, for this reasons, are called separatrices. It is very
important to understand the motion along such trajectories, luckily the two
differential equations
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Figure 5.2: Unperturbed pendulum (phase portrait)

θ̇ = ±
√

2
g

l
(1 + cos θ). (5.2.6)

can be integrated explicitly (see Problem 5.5) yielding, for θ(0) = 0,

θ(t) = 4 arctan e±ωpt − π. (5.2.7)

This orbits are asymptotic to the unstable fixed point both at t → +∞
and at −∞ and, for |t| large, agree with the linear behaviour of section 5.2.1.
This situation is somewhat atypical as we will see briefly.

5.3 The perturbed case

5.3.1 Reduction to a map

The motion of the above system takes place on the cylinder M = S1 × R.
By the theorem of existence and uniqueness for the solutions of differential
equations follows immediately the possibility to define the maps φtε :M→M
associating to the point (θ, p) the point reached by the solution of (5.1.3) at
time t, when starting at time 0 from the initial condition (θ, p). In such a way
we define the flow φtε associated to the (5.1.3).

Clearly φ0ε(θ, p) = (θ, p), that is the map corresponding at time zero is the
identity. Moreover, if ε = 0 the system is autonomous (the vector field does
not depend on the time) hence the flow defines a group: for each t, s ∈ R

φt+s0 (θ, p) = φt0(φs0(θ, p)).
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This corresponds to the obvious fact that the motion for a time t+ s can be
obtained first as the motion from time 0 to time s, and then pretending that
the time s is the initial time and following the motion for time t.

Of course, the above fact does not hold anymore when ε 6= 0. In this case,
the maps φtε depend from our choice of the initial time (if we define them by
starting from time 1 instead then time 0, in general we obtain different maps).
Nevertheless, due to the fact that the external force is periodic something can
be saved of the above nice property.

Let us define the map Tε :M→M by

Tε = φ
2π
ω
ε ,

then (see Problem 5.3), for each n ∈ Z,

Tnε = φ
2nπ
ω
ε . (5.3.8)

The interest of (5.3.8) is that, for many purposes, we can study the map Tε
instead than the more complex object φtε. Morally, it means that if we look at
the system stroboscopically, that is only at the times 2π

ω n with n ∈ Z, then it
behaves like an autonomous (time independent) system.5 Another interesting
fact is that the flow φtε (and hence also the map Tε) is area preserving (see
Problem 5.7).6

5.3.2 Perturbed pendulum, ε 6= 0

The situation for the case ε 6= 0 is more complex and no easy way exists to
study these motions.

As a general strategy, to study the behavior of a system (in our case the
map Tε) it is a good idea to start by investigating simple cases and then move
on from there. In our systems the simplest motion consists of the equilibrium
solutions. These are the time independent solutions.7 Because of the special
type of perturbation chosen the fixed points of the system for the case ε = 0
remain unchanged when ε 6= 0 (see Problem 5.8 for a brief discussion of a
more general case).

Next, we can study the infinitesimal nature of the fixed points. It is natural
to expect that the nature of the two fixed points does not change if ε is small,

5This is a very simple case of a very fruitful an general strategy: to look at the system
only when some special event happens–in our case at each time in which the suspension
point has its maximum height. See 6.2 if you want to know more.

6This also is a special instance of a more general fact: the Hamiltonian nature of the
system, see [Arn99, Gal83] if you want to know more.

7That is, equilibrium solutions for the map Tε. These are periodic solutions for the flows

of period 2π
ω

. In fact, Tεx = x means φ
2π
ω x = x.
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yet to verify this requires some checking. We will discuss explicitly only the
fixed point (π, 0).

The first step is to make precise the sense in which the case ε 6= 0 is a
perturbation of the case ε = 0. This can be achieved by obtaining an explicit
estimate on the size of

Rε = ε−1(T0 − Tε).

Let z(t) = (z1(t), z2(t)) = φt0(x) − φtε(x), then substituting in (5.1.3) and
subtracting the general case to the case ε = 0 it yields

|ż1| ≤
|z2|
ml2

|ż2| ≤ mgl|z1|+ εmω2l.

In order to get better estimates it is convenient to define the new variables
ζ1 = z1 and ml2ωpζ2 = z2. In these new variables the preceding equations
read

|ζ̇1| ≤ ωp|ζ2|

|ζ̇2| ≤ ωp|ζ1|+ ε
ω2

ωpl
.

(5.3.9)

Which implies ‖ζ̇‖ ≤ ωp‖ζ‖ + εmω2l. Taking into account that, in our
situation, ml2ωp > 1, it follows (see Problem 5.9)

‖R‖C0 ≤
mω2

lωp
(e2π

ωp
ω − 1) ≤ 69.

Unfortunately, the above norm does not suffice for our future needs. We
will see quite soon that it is necessary to estimate also the first derivatives of
R, that is the C1 norm.

To do so the easiest way is to use the differentiability with respect to the
initial conditions of the solutions of our differential equation. Fixing any point
x ∈M and calling ξε(t) = dxφ

t
εξ(0) we readily obtain:8

ξ̇ε1 =
ξε2
l2m

ξ̇ε2 = −mgl cos θ ξε1 − εmω2l cosωt cos θ ξε1

(5.3.10)

8The vector ξε(t) is nothing else than the derivative
dφtε(x+sξ(0))

ds
|s=0, the following

equation is then obtained by exchanging the derivative with respect to t with the derivative
with respect to s.
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One can then estimate the C1 norm of R by estimating ‖ξε( 2π
ω )− ξ0( 2π

ω )‖,
since ξε( 2π

ω ) = D(θ,p)Tεξ
ε(0). Doing so one obtains9

‖R‖C1 ≤
2mω2

lωp
e3π

ωp
ω := d1 ≤ 690. (5.3.11)

5.4 Infinitesimal behavior (linearization)

As a first application of the above considerations let us study the linearization
of Tε at xf = (π, 0). From (5.3.10) follows (see Problem 5.12)

DxfT0 =

(
cosh

2πωp
ω

sinh
2πωp
ω

ml2ωp

ml2ωp sinh
2πωp
ω cosh

2πωp
ω

)
DxfTε = DxfT0 +O(d1ε) (5.4.12)

The eigenvalues of DxfTε are then λε = e
2πωp
ω + O(d2ε),

10 λ−1ε , where
d2 = 2d1ωpml

2 ' 4400. In addition, calling vε, 〈vε, v0〉 = 1, the eigenvector
associate to λε, holds true ‖v0 − vε‖ ≤ d3ε, d3 = 4λ−10 ω2

pω
2l4d1 ' 1200.11

Clearly, if ε is sufficiently small, then λε > 1. This means that the hy-
perbolic nature of the unstable fixed point remains unchanged under small
perturbations (see Problem 5.13 for a case when the perturbation is not so
small).12

If one does a similar analysis at the fixed point (0, 0) one finds that the
eigenvalues have modulus one: that is the infinitesimal motion is a rotation
around the fixed point, exactly as in the ε = 0 case.

Hence the comments made at the end of subsection 5.2.1 for the unper-
turbed pendulum hold for the perturbed pendulum as well. Only now the is no
longer an integral of motion (the energy) that controls globally the behavior
of the system.

Imagining that the map is linear (which is clearly false but, as we will
see, qualitatively not so wrong) this would mean that the distance between
two trajectories can be expanded by almost a factor 23 in a second. Initial

9The following bounds are not sharp, working more one can obtain better estimates but
this would not make much of a difference in the sequel.

10In this chapter we will adopt the strict convention that O(x) means a quantity bounded,
in absolute value, by x.

11This follows by the fact that the eigenvalues of Dxf T0 are e±
2πωp
ω ' (23)±1, a simple

perturbation theory of matrices (see Problems 5.10, 5.11) and the already mentioned fact
that the map Tε is area preserving, thus the determinant of its derivative must be one.

12As we will see later in detail, hyperbolicity means that there is a direction in which the
maps expands (the eigenvector vuε associated to the eigenvalue λε) and a direction in which
the map contracts (the eigenvector vsε associated to the eigenvalue λ−1

ε )
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conditions that are δ close at time zero will be about 23δ far apart after 1
second. If such a state of affair could persist (and we will see it may) after one
minute the two configurations would differ roughly by a factor 1080δ, which
means that not even knowing the initial condition plus or minus a quark could
we predict the final one. This is certainly a rather worrisome perspective but
much more work it is needed to decide if this may be indeed the case.

5.5 Local behavior (Hadamard-Perron Theo-
rem)

The next step is to try to go from the above infinitesimal analysis to a local
picture in a small neighborhood of the fixed points.

It is natural to expects that the two fixed points are still stable and un-
stable respectively, yet this is a far from trivial fact.

The stability of the point (0, 0) can be proven by invoking the so called
KAM Theorem (this exceeds the scope of the present book and we will not
discuss such matters, see [Gal83] for such a discussion).13

The study of the local behavior around the point xf is instead a bit
easier and can be performed by applying the Hadamard-Perron Theorem
2.4.2 to conclude that, in a neighborhood of (π, 0), there exists two curves
xuε (s) = (θuε (s), puε (s)), xsε(s) that are invariant with respect to the map Tε.
Namely, there exists δε > 0 such that Tεx

s
ε([−δε, δε]) ⊂ xsε([−δε, δε]) and

T−1ε xuε ([−δε, δε]) ⊂ xuε ([−δε, δε]); this are called the local stable and unstable
manifold of zero, respectively. Essentially δε is determined by the requirement
that the non-linear part of Tε be smaller than the linear part.

Clearly, for ε = 0 xs0 = xu0 = x0 and it coincides with the homoclinic
orbit of the unperturbed pendulum. In addition, by Hadarmd-Perron and the
estimates of the previous section, we can choose δε such that

‖xuε − x0‖ ≤ 2d3ε‖x0‖. (5.5.13)

and the analogous for the stable manifold. We have so obtained a local picture
of the behavior of the map Tε, yet this does not suffice to answer to our original
question. To do so we need to follow the motion for at least a full oscillation:
this requires really a global information.

13In some sense this implies that we can indeed predict the motion for an extremely long
time if we consider only oscillations close to the configuration (0, 0), so in that case the
assumption that the pendulum is isolated is legitimate. Yet, this depends on the precision
we are interested in and tends to degenerate if the amplitude of the oscillations is rather
large. A complete analysis would be a very complicated matter but we will have an idea of
the type of problems that can arise by considering extremely large oscillations, close to a
full rotation of the pendulum.
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To gain a more global knowledge we can try to construct larger invariant
set for the map Tε. A natural way to do so is to iterate: define Wu =
∪∞n=0T

n
ε x

u([−δε, δε]). Since Tεx
u([−δε, δε]) ⊃ xu([−δε, δε]), it is clear that

each time we iterate we get a longer and longer curve. The set Wu is then
clearly a manifold and it is called the global unstable manifold.14

The global manifold, as the name clearly states, it is a global object:
it carries information on the dynamics for arbitrarily long times. Yet, the
procedure by which it has been defined is far from constructive and the truth
is that, besides the sketchy considerations above, at the moment we know
very little of it. The next step is to gain some more detailed understanding
of a large portion of Wu.

5.6 A more global understanding (the Melnikov
method)

From the above considerations follows that the stable and unstable manifolds
(θsε(s), p

s
ε(s)), (θuε (s), puε (s)), |s| ≤ δε, of Tε at 0, are ε close to the homoclinic

orbit of the unperturbed pendulum, (θ0(t), p0(t)), θ0(0) = 0.
Note, however, that while x0 = (θ0, p0) is invariant under the unperturbed

flow, the same does not apply to (θs,uε (s), ps,uε (s)) under φtε. Indeed the in-
variant object is the time-space surface (τ, xs,uε (s, τ)) := (τ, φτε (θsε(s), p

s
ε(s)))

where (s, τ) ∈ [−δε, δε]× [0, 2πω ] and and τ = t mod 2π
ω .15

Clearly, we can choose freely the parameterization of our curves in such a
surface and some are more convenient than others. The separatrix of the
unperturbed pendulum is most conveniently parametrized by time, hence
φt(θ0(s), p0(s)) = (θ0(s + t), p0(s + t)). We wish to parameterize the per-
turbed manifold in a convenient way, one simple possibility could be to im-
pose θuε (−s) = θ0(−s), θsε(s) = θ0(s), yet this happens to be not very helpful
for our goals. To find a more convenient parameterization it is necessary to
do first some preliminary considerations.

To grow the above manifolds, as explained in the previous section, we can
start from some remote time −Sn := 2πω−1n, n ∈ N, (Sn for the stable) and
then iterate forward the unstable manifold and backward the stable. This is
better done by using the flow and the equations of motion. To this end, it turns

14Applying the above procedure to the unperturbed problem yields the full separatrix.
15A standard way to bring the present non-autonomous setting in the more familiar

autonomous one is to introduce the fake variables (ϕ, η) ∈ S1 × R and the new, time
independent, Hamiltonian H̄ε(θ, p, ϕ, η) := Hε(θ, p, ϕ) + 2π

ω
η. The Hamilton equations

yield ϕ(t) = 2π
ω
t+ϕ(0) and hence the equations for θ, p reduce to (5.1.3). Since H̄ε is now

conserved under the motion we can restrict the system to the three dimensional manifold
H̄ε = 0. In such a manifold we have the weak stable and unstable manifolds (now flow
invariant) (xs,uε (s, ϕ), ϕ,− 2π

ω
Hε((x

s,u
ε (s, ϕ), ϕ)).
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out to be specially smart to first use global coordinates similar to the ones used
to simplify equation (5.3.9) and then to consider local coordinates adapted
to the separatrix of the unperturbed pendulum. Namely, let us introduce
p =: ml2ωpp̃, θ =: θ̃. Note that such a change of coordinate is not symplectic,
hence we have to compute the resulting Hamiltonian in the new coordinates.
It is easy to verify that the Hamiltonian becomes

H̃ε :=
ωp
2
p̃2 − ωp cos θ̃ − ε ω

2

lωp
cosωt cos θ̃ =: H0 + εH1 (5.6.14)

which indeed yields the correct equations of motion:

˙̃
θ = ωpp̃

˙̃p = −ωp sin θ̃ − ε ω
2

lωp
cosωt sin θ̃

(5.6.15)

We will use the vector notation x := (θ̃, p̃).16 In such coordinates we consider
the stable and unstable manifolds xsε(s), x

u
ε (s) for the perturbed pendulum

and the separatrix x0(s) for the unperturbed pendulum and we define

xs,uε (s, t) = φtεx
s,u
ε (s). (5.6.16)

If we call φtε the flow started at the time −Sn (Sn, respectively),17 and we con-
sider t = Sm (t = −Sm), m < n, we obtain new curves that are much longer
than the original ones and still describe the unstable and stable manifolds
(albeit with a different parameterization). Next, we define the vectors

η1(s) :=
ẋ0(s)

‖ẋ0(s)‖
=

J∇x0(s)H0

‖∇x0(s)H0‖
and η2(s) :=

∇x0(s)H0

‖∇x0(s)H0‖
.

This form an orthonormal basis of R2 (see Problem 5.14). We can then
consider the map F (a, b) := x0(a) + bη2(a). One can check that detDF(a,0) 6=
0, hence F defines a change of coordinates in a neighborhood of x0. Note that
in the new coordinates the unperturbed separatrix x0 reads {(a, 0)}.

In analogy with a standard approach to the Hadamard-Perron Theorem
(see 2.4.2) it seems natural to have our curves parametrized so that, in the
new coordinates, they have the same first component. This means that we

16Using such a notation equations (5.6.15) take the more compact form

ẋ = J∇xH̃ε ; J =

(
0 1
−1 0

)
.

17Remember that the flow started at such times is exactly the same than the flow started
at time zero, see subsection 5.3.1.
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would like to have 〈xuε (s)−x0(s), η1(s)〉 = 0. We can obviously arrange such a
property for the original curve at the tine −Sn, but can we keep it thruought
the growth process? A simple possibility is to flow different points for different
times as to maintain the wanted property. That is to look for a τ such that,18

G(s, t, τ) := 〈xuε (s, t+ τ)− x0(s+ t), η1(s+ t)〉 = 0. (5.6.17)

Since, by construction, G(s, 0, 0) = 0 we can apply the implicit function the-
orem, to prove the existence of the wanted function τ(s, t). The necessary
condition to do so is a lower bound on |∂τG|. Next, setting xuε (s, t + τ) =:
x0(s+ t) + εxu1 (s, t, τ),

∂τG(s, t, τ) = 〈J∇xuε (s,t+τ)H̃ε, η1(s+ t)〉
= ‖∇xu0 (s+t)H0‖+ εO(‖D2H̃ε‖ ‖xu1‖+ ‖∇xu0H1‖).

(5.6.18)

By (5.5.13) we have ‖xuε (s)−x0(s)‖ ‖x0(s)‖−1 ≤ 2d3ε, for s ≤ −Tn0
. In addi-

tion, from (5.2.7) and Problem 5.6 follows sin θ̃0(t) = 2
sinhωpt

(coshωpt)2
' 2eωpt, for

t � 0. Moreover p̃0 =
√

2(1 + cos θ̃0) = 2(coshωpt)
−1. Then ‖∇x0(t)H0‖ ≥

ωp√
2
e−ωp|t|.

Accordingly, remembering equations (5.5.13) and (5.6.18) we can apply
the Implicit Function Theorem provided ‖xu1 (s, t, τ)‖ ≤ 4d3e

−ωp|s+t| and ε ≤
(8d3)−1 ' 10−4. Hence the wanted function τ(s, t) is well defined and19

∂τ

∂t
= − ∂tG

∂τG
= O(64d3ε). (5.6.19)

It is then convenient to define

∆u(s, t) = ε−1〈xuε (s, t+ τ)− x0(s, t), ∇x0(s+t)H0〉 = ‖xu1‖ ‖∇x0H0‖.

Using (5.1.3) we can differentiate ∆u with respect to t and since J∇xuεHε =

J∇x0
Hε + εJD2

x0
Hεx

u
1 +O( ε

2

2 ‖D
3H0‖ |xu1 |2), we have

d∆u

dt
(s, t) = ε−1〈J∇xuεHε(1 + τ̇),∇x0

H〉+ 〈xu1 , D2
x0
H0J∇x0

H0〉

=
{
〈J∇x0

H1, J∇x0
H0〉+O(2εωpd3e

ωp(t+s)|∆u
1 |)
}

(1 + |τ̇ |∞)

+O(|τ̇ |∞|∆u
1 |ωp).

(5.6.20)

18Note that, in so doing, we will construct an object different from the starting one
associated to a fixed Poincarè section.

19Indeed, ∂tG = 〈J∇xuε H̃ε − J∇x0H0, η1〉+ ε〈xu1 , η̇1〉 = εO(3ωp‖xu1‖+ ‖∇x0H1‖).
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We can thus integrate the Gronwald type inequality (5.6.20), (if in doubt, see
Problem 5.9), and, assuming 256ωpd3ε < 1 (roughly ε ≤ 10−5),

|∆u(s, t)| ≤ 8ω2

lωp
e2ωp(t+s).

Hence, ‖xu1‖ ≤ 24ω2eωp(t+s)

lω2
p

< 4d3e
−ωp|t+s|, provided it holds true t + s ≤

(2ωp)
−1 ln

[
d3lω

2
p

6ω2

]
=: t0 ' 0.6.

To gain complete control on the stable manifold we need only to discuss
the issue of the time shift. On the one hand, all is needed is to change
t + τ(s, t) to zero ( mod 2π

ω ). On the other hand if ρ ∈ [0, 2πω ], then ζ(ρ) :=

φρε(x)−φρ0(y) can be estimated, slightly refining (5.3.9), by integrating ‖ζ̇‖ ≤
(ωp+ε ω

2

ωpl
)‖ζ‖+ε ω

2

ωpl
|θ0(t+s+ρ)|. This shows that we can extend the unstable

manifold till a neighborhood of x0(−S2) and still keep the an inequality of
the type ‖xuε − x0‖ ≤ 3d3‖x0‖.

Finally, substituting the above estimate in (5.6.20), yields

d∆u

dt
(s, t) = 〈J∇x0H1, J∇x0H0〉+O

(
544 · l−1ω2d3εe

2ωp(t+s)
)
.

Integrating from 0 to Sm, m ∈ N for s+ Sm ≤ t0, yields

∆u(s, Sm) =

∫ Sm

0

{H1(·, t1), H}x0(s+t1)dt1 + ∆u(s, 0) +O
(
εd4e

2ωp(s+Sm)
)

=

∫ 0

−Sm
{H1(·, t1), H}x0(s+Sn+t1)dt1 + ∆u(s, 0) +O

(
εd4e

2ωp(s+Sm)
)

(5.6.21)

where d4 := 272 · ω
2

ωpl
d3 ' 4 ·106 and the curly brackets stand for the so called

Poisson brackets ({f, g}x = 〈J∇xf, ∇xg〉).
The stable manifold can be studied similarly, yet it is faster to define

the transformation Ψ(θ, p) = (−θ, p), and note that φ−tε (Ψ(x)) = Ψ(φtε(x)).
Accordingly, xsε(s,−t) = Ψ(xuε (−s, t)). Also, one easily checks that, call-
ing τs(s, t) the time shift arising from the analogous of (5.6.17), τs(s,−t) =
τ(−s, t). In addition, |τ(s, Sm)| ≤ 65d3εSm.

Setting ∆(σ) := ∆u(−s−Sm, Sm)−∆s(s+Sm,−Sm), for all σ ∈ [−t0, t0],
we finally have

‖xuε (−σ − Sm, Sm)− xsε(Sm − σ, Sm)‖ ≤ 64
4πω − p

ω
d3εSm + ∆(σ)

∆(σ) =

∫ ∞
−∞
{H1, H}x0(t+σ)dt+O

(
ε2d4e

2ωp|σ|
)
,

(5.6.22)
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provided m > 2. The integral in (5.6.22) is called Melnikov integral and
provides an expression, at first order in ε, of the distance between the stable
and the unstable manifold. All we are left with is to compute the integrals in
(5.6.22). This turns out to be an exercise in complex analysis and it is left to
the reader (see Problem 5.15), the result is:20

∫ ∞
−∞
{H1(·, t), H}x0(t+σ)dt = 8πml

ω4e
− πω

2ωp

ω2
p(e

πω
ωp − 1)

sinωσ.

We have thus gained a very sharp control on the shape of the above mani-
folds.21 In particular, ∆(±1/4) ' ±76+O(4·107ε) 6= 0 provided ε ≤ 1.5·10−6,
that is the two manifolds intersect. To understand a bit better such an in-
tersection (we would like to know that in the region σ ∈ [−1/4, 1/4] there is
only one transversal intersection) its suffices to notice that (5.6.20) provides
a control on the angle between xuε and x0.

This intersections are called homoclinic intersection and their very exis-
tence is responsible for extremely interesting phenomena as can be readily
seen by trying to draw the stable and unstable manifolds (see Figure 5.3 for
an approximate first idea); we will discuss this issue in detail shortly.22

We have gained much more global information on the map Tε, yet it does
not suffice to answer to our question. The next section is devoted to obtaining
a really global picture. Up to now we have used mainly analytic tools. Next,
geometry will play a much more significant rôle.23

20A simple computation yields:

{H1, H}x0(t+s) = −
ω2

l
p(t+ s) cosωt sin θ(t+ s).

Then, by using (5.2.7) and looking at Problem 5.6, one readily obtains:

{H1, H}x0(t) = 4
ω2

l

cosω(t− s) sinhωpt

(coshωpt)3
.

Finally, use Problem 5.15.
21Note that ε must be exponentially small with respect to ω. In many concrete problems

(notably the so called Arnold diffusion [?]) it happens that this it is not the case. One can
try to solve such an obstacle by computing the next terms of the ε expansion of ∆. In
fact, it turns out that it is possible to express ∆ as a power series in ε with all the terms
exponentially small in ω [?]. Yet this is a quite complex task far beyond our scopes.

22Note that the intersection corresponds to an homoclinic orbit for the map Tε (that is,
an orbit which approaches the fixed point xf both in the future and in the past). This is
what it is left of the homoclinic orbit of the unperturbed pendulum.

23What comes next is the first example in this book of what is loosely called a dynamical
argument.
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��
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−π π

Figure 5.3: Perturbed pendulum

5.7 Global behavior (an horseshoe)

We want to explicitly construct trajectories with special properties. A stan-
dard way to do so is to start by studying the evolution of appropriate regions
and to use judiciously the knowledge so gained. Let us see what this does
mean in practice.

The starting point is to note that we understand the shape of the invariant
manifold but not very well the dynamics on them, this is our next task.
Since points on the unstable manifolds are pulled apart by the dynamics,
the estimate must be done with a bit of care. In fact, we will use a way of
arguing which it typical when instabilities are present, we will see many other
instances of this type of strategy in the sequel.

For each x in the unstable manifold (zero included) let us call Du
xTε :=

DxTεv
u(x), where vu(0) = vu and if x = xuε (t) then vu(x) = ‖ẋuε (t)‖−1ẋuε (t),

that is the derivative of the map computed along the unstable manifold. A
useful idea in the following is the concept of fundamental domain. Define
α : R+ → R+ by xuε (t) = xuε (α(t)). Then [t, α(t)] is a fundamental domain
and has the property that, setting ti := αi(t), the sets αi[t0, t1] intersect only
at the boundary.

Lemma 5.7.1 (Distortion) For each x, y in the same fundamental domain
of the unstable manifold, δ0 > 0, and n ∈ N such that ‖Tnε x‖ ≤ δ0, holds24

e−δ0C2 ≤
∣∣∣∣Du

xT
n
ε

Du
yT

n
ε

∣∣∣∣ ≤ eδ0C2 ,

24This quantity is commonly called Distortion because it measures how much the map
differs from a linear one (notice that if T is linear then DxT

DyT
= 1). Although apparently an

innocent quantity, it is hard to overstate its importance in the study of hyperbolic dynamics.
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where C2 = supt≤0

∣∣∣ α̈(t)α̇(t)

∣∣∣.
Proof. The proof is a direct application of the chain rule:∣∣∣∣Du
xT

n
ε

Du
yT

n
ε

∣∣∣∣ =

n∏
i=1

∣∣∣∣∣Du
T ixTε

Du
T iyTε

∣∣∣∣∣ ≤ Exp

[
n∑
i=1

| log(|Du
T ixTε)− log(|Du

T iyTε|)|

]

≤ Exp

[
n∑
i=1

C2‖T ix− T iy‖

]
= Exp

[
n∑
i=1

C2‖xuε (ti)− xuε (ti−1)‖

]
≤ eC2δ0 .

The other inequality is obtained by exchanging the rôle of x and y. �

Next we would like to consider the evolution of a small box constructed
around the fix point.

Consider the following small parallelogram: Qδ := {ξ ∈ R2 | ξ = avu +
bvs for some a, b ∈ [− δ2 ,

δ
2 ]}, δ � δ0. Next consider the first n ∈ N such that

Tnε Qδ ∩ {θ = 0} 6= ∅. Our first task is to understand the shape of Tnε Qδ near
{θ = 0}. Since a fundamental domain in the latter region is of order one, while
at the boundary of Qε is of order δ, Lemma 5.7.1 implies that the expansion
is proportional to Cδ−1. By the area preserving of the map it follows that
Tnε Qδ must be contained din a Cδ2 neighborhood of the unstable manifold,
see Figure 5.4.

@
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@
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@
@
@

Qδ

TnQδ

Figure 5.4: The evolution of the small box Qδ

By the previous section considerations on the shape of the invariant man-
ifolds TnQδ ∩ TnQδ 6= ∅, moreover they intersect transversally.25

25The meaning of transversally is the following: the square Qδ has two sides parallel to
vu (the unstable direction), which we will call unstable sides, and two sides parallel to vs
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Figure 5.5: Horseshoe construction

This is all is needed to construct an horseshoe (see section ???). In partic-
ular, in our case it means that T 2n0Qδ ∩Qδ 6= ∅, in fact the intersection are
transversal and consist of three strips almost parallel to the unstable sides.
One contains zero, and it is the lest interesting for us, the other two cross
above and below the unstable manifold respectively. The with of such strip
is about δ−3. We will discuss in the next chapters all the implications of this
situation, here it suffices to notice that if we have two initial conditions in
T−2n0Qδ ∩ Qδ at a distance h, after 2n0 iterations the two points will be in
Qδ again but at a distance hε−1. Since to decide if after that there will be a
rotation or an oscillation we need to know the final position with a precision of
order δ, we need to know the initial position with a precision O(δε) = O(δ3).

Note that in the above construction we have lost almost all the points, only
the ones that come back to Qδ at time 2n0 are under control. Nevertheless,
we can consider the set Λ := ∪k∈Z

⋂
T 2kn0
ε Qδ. This is clearly a measure zero

set, yet it is far from empty (it contains uncountably many points) and it is
made of points that at times multiple of 2n0 are always in Qδ. When they
arrive in Qδ they will rotate if they are above the separatrices and oscillate
otherwise. Let us call this two subset of Qδ R and O. Given a point ξ ∈ Qδ
we can associate to it the doubly infinite sequence σ ∈ {0, 1}Z by the rule
σi = 1 iff T 2n0iξ ∈ R. The reader can check that the correspondence is onto.

(the stable direction), which we will call stable sides. Then the intersection is transversal
if it consists of a region with again four sides: two made of the image of the unstable sides
and two made of images of stable sides of Qδ.



5.8. CONCLUSION–AN ANSWER 103

5.8 Conclusion–an answer

If ε = 10−6 and δ is a millimeter then we need to know the initial condition
with a precision of 10−9 meters if we want to decide if the point will come
back or rotate when it will get almost vertical again (this will happen in about
6 seconds). By the same token if we want to answer the same question, but
for the second time the pendulum get close to the unstable position, we need
to know the initial condition with a precision of the order 10−15 meters, and
this just to predict the motion for about 12 seconds.26

We can finally answer to our original question:

Answer: NO!

Nevertheless, as we mentioned at the beginning, the above answer it is not
the end of the story. In fact, there exists many other very relevant questions
that can be answered.27 The rest of the book deals with a particular type of
question: can we meaningfully talk about the statistical behavior of a system?

Problems

5.1. Derive the Lagrangian, Hamiltonian and equations of motions for a pen-
dulum attached to a point vibrating with frequency ω and amplitude ε.
(Hint: see [LL76, Gal83] on how to do such things. Remember that two
Lagrangian that differ by a total time derivative give rise to the same
equation of motions and are thus equivalent.)

5.2. Consider the systems of differential equations ẋ = f(x), x ∈ Rn and
f smooth and bounded. Prove that the associated flow form a group.
(Hint: use the uniqueness of the solutions of the ordinary differential
equation)

5.3. Consider the systems of differential equations ẋ = f(x, t), x ∈ Rn and f
smooth, bounded and periodic in t of period τ . Let φt be the associated
flow. Define T = φτ , prove that Tn = φnτ .

26Remark that it is not just a matter of precision on the initial condition, it is also a
matter of how one actually does the prediction. If the method is to integrate numerically
the equation of motion, then one has to insure that the precision of the algorithm is of the
order of 10−15. This maybe achieved by working in double precision but if one wants to
make predictions of the order of one minute it is quite clear that the numerical problem
becomes very quickly intractable.

27For example: which type of motions are possible? This is a qualitative question. Such
type of questions give rise to the qualitative theory of Dynamical Systems [PT93, HK95],
an extremely important part of the theory of dynamical systems, although not the focus
here.
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5.4. Show that the Hamiltonian is a constant of motion for the pendulum.
(Hint: Compute the time derivative)

5.5. Prove (5.2.7). (Hint: Write (5.2.6) in the integral form

t =

∫ t

0

θ̇(s)√
2g
l (1 + cos θ(s))

ds.

Using some trigonometry and changing variable obtain

t =

∫ θ(t)

0

1

2ωp cos θ2
dθ.

and compute it.)

5.6. If θ(t) is the motion obtained in the previous problem, show that

sin θ(t) = 2
sinhωpt

(coshωpt)2
; cos θ(t) =

2

(coshωpt)2
− 1;

cos2
θ(t) + π

4
=

1

1 + e2ωpt
.

5.7. Consider the systems of differential equations ẋ = f(x, t), x ∈ Rn and
f smooth. Suppose further that divf = 0 (that is

∑n
i=1

∂fi
∂xi

= 0). Show
that the associated flow preserves the volume. (Hint: note that this is
equivalent to saying that |det dφt| = 1, moreover by the group property
and the chain rule for differentiating it suffices to check the property
for small t. See that dφt = 1 + Dft + O(t2) = eDft+O(t2). Finally,
remember the formula det eA = eTrA.)

5.8. Let T, T1 : R2 → R2 be a smooth maps such that T0 = 0 and det(1 −
D0T ) 6= 0. Consider the map Tε = T + εT1 and show that, for ε
small enough, there exists points xε ∈ R2 such that Tεxε = xε. (Hint:
Consider the function F (x, ε) = x−Tεx and apply the Implicit Function
Theorem to F = 0.)

5.9. Let x(t) ∈ Rn be a smooth curve satisfying ‖ẋ(t)‖ ≤ a(t)‖x(t)‖ + b(t),
x(0) = x0, a, b ∈ C0(R,R+), prove that

‖x(t)− x0‖ ≤
∫ t

0

e
∫ t
s
a(τ)dτ [a(s)‖x0‖+ b(s)] ds.

(Hint: Note that ‖x(t)− x0‖ ≤
∫ t
0
‖ẋ(s)‖ds. Transform then the differ-

ential inequality into an integral inequality. Show that if z(t) ≤ 0 and

z(t) ≤
∫ t
0
z(s)ds, then z(t) ≤ 0 for each t. Use the last fact to compare

a function satisfying the obtained integral inequality with the solution
of the associated integral equation.)
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5.10. Given two by two matrices A,B such that A has eigenvalues λ 6= µ,
show that the matrix Aε = A+ εB, for ε small enough, has eigenvalues
λε, µε analytic as functions of ε. Show that the same holds for the
eigenvectors. (Hint:28 consider z in the resolvent of A, that is (z−A)−1

exists. Then (z − Aε) = (z − A)(1 − ε(z − A)−1B). Accordingly, if
ε is small enough, (z − Aε)−1 =

{∑∞
n=0 ε

n
[
(z −A)−1B

]n}
(z − A)−1.

Finally, if γ, γ′ are curves on the complex plane containing λ and µ,
respectively, verify that

Πε :=
1

2πi

∫
γ

(z −Aε)−1dz Π′ε :=
1

2πi

∫
γ′

(z −Aε)−1dz

are commuting projectors and Aε = λεΠε + µεΠ
′
ε. Finally verify that

λεΠε :=
1

2πi

∫
γ

z(z −Aε)−1dz µεΠ
′
ε :=

1

2πi

∫
γ′
z(z −Aε)−1dz.

The statement follows then from the fact that the right hand side of the
above equalities is written as a power series in ε.29)

5.11. Given two by two matrices A,B such that A has eigenvalues λ 6= µ,
show that the matrix Aε = A + εB has eigenvalues λε, µε such that
|λε − λ| ≤ Cε‖B‖ and |µε − µ| ≤ Cε‖B‖ . Compute C. (Hint: By
Problem 5.10 we know that λε, µε are differentiable function of ε and
the same holds for the corresponding eigenvector vε, ṽε. Let us discuss
λε since the other eigenvalues can be treated in the same way. One
possibility is to use the above formula for λεΠε to obtain the wanted
estimates.

In alternative, let v, w, 〈w, v〉 = 1 and ‖v‖ = 1, be the eigenvectors of A,
with eigenvalue λ and of A∗, with eigenvalue λ̄, respectively. Hence Π0 =
v⊗w and ‖Π0‖ = ‖w‖. Normalize vε such that 〈vε, w〉 = 1. Differentiate
then the above constraint and the defining equation (A+ εB)vε = λεvε
obtaining (the prime refers to the derivative with respect to ε)

Av′ε +Bvε + εBv′ε = λ′εvε + λεv
′
ε

〈v′ε, w〉 = 0.

Multiplying the first for w yields λ′ε = 〈w,Bvε〉 + ε〈w,Bv′ε〉. Setting
Ã := A− λΠ0 we have

v′ε = (λ− Ã)−1 [Bvε + εBv′ε − λ′εvε − (λ− λε)v′ε] .
28Of course for matrices one could argue more directly by looking at the characteristic

polynomial. Yet the strategy below has the advantage to work even in infinitely many
dimensions (that is, for operators over Banach spaces).

29This is a very simple case of the very general problem of perturbation of point spectrum,
see [Kat66] if you want to know more.
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Next, consider ε0 such that, for ε < ε0 holds

‖v′ε‖ ≤ 4‖(λ− Ã)−1‖ ‖B‖ ‖w‖ = 4‖(λ− Ã)−1‖ ‖B‖ ‖Π0‖ =: C0,
(5.8.23)

then ‖vε− v‖ ≤ εC0 and |λ′ε| ≤ ‖B‖ ‖w‖(1 + 2εC0). If 4ε0C0 < 1, then,
indeed, (5.8.23) holds true. )

5.12. Compute D0T . (Hint: solve (5.3.10) for ε = 0, θ = π, p = 0 and t = 2π
ω .)

5.13. Compute D0Tε and see that, if ω is sufficiently large, the eigenvalues
have modulus one (the unstable point becomes stable!). (Hint: setting

ξ := ξ1 equation (5.3.10) yields ξ̈ = ω2
pξ + εω

2

l cosωtξ. It is then conve-

nient to write ξ := ξ̄+εη+ε2ζ where ¨̄ξ = ω2
p ξ̄ and η̈ = ω2

pη+ ω2

l cosωt ξ̄.
One can look for a solution of the latter equation of the form

η̄ = Aeωpt cosωt+Beωpt sinωt+ Ce−ωpt cosωt+De−ωpt sinωt.

This allows to compute D0Tε(α, β) = (ξ1( 2π
ω ), ξ2( 2π

ω )) + O(ε2), where
(ξ1(0), ξ2(0)) = (α, β). Finally one can verify that, for ε small and ω
large enough the eigenvalues of D0Tε are imaginary, hence the equilib-
rium is linearly stable. )

5.14. Given an Hamiltonian H : R2 → R, for each solution x(t) of the associ-
ated equations of motion show that 〈∇x(t)H, ẋ(t)〉 = 0.

5.15. Compute the following integrals (5.6.22):∫
R
eiat(cosh t)−n sinh t dt,

a ∈ R and n ∈ N, n > 1.30 (Hint: By a change of variable one can
consider only the case a > 0. Consider the integral on the complex
plane, show that the integral on the half circle Reiφ, φ ∈ [0, π], goes

30The result, for a > 0, is:∫
R
eiat(cosh t)−n sinh t = 2πi

∞∑
k=0

φ
(n−1)
n,k (i 2k+1

2
π)

(n− 1)!
,

where

φn,k(z) = eiza sinh z

(
z − i 2k+1

2
π

cosh z

)n
.

For n = 3 the above formula yields∫
R
eiat(cosh t)−3 sinh t = πa2e−

π
2
a(1− e−πa)−1.
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to zero as R → ∞, then check that the poles of the integrand, on the
complex plane, lie on the imaginary axis, finally use the residue theorem
to compute the integrals.)

5.16. Do the same analysis carried out for the pendulum with a vibrating
suspension point in the case of a pendulum subject to an external force
ε cosωt and in presence of a small friction −ε2γθ̇.

Notes

As already mentioned in the text, the first to realize that the motions arising
from differential equations can be very complex was probably Poincaré [Poi87].
At the time the main problem in celestial mechanics (the famous n-body
problem) was to find all the integral of motion. Dirichlet and Weierstrass
worked on this problem, but Poincaré was the first to rise serious doubt on the
existence of such integrals (which would have implied regular motions). For
more historical remarks see [Mos01]. In fact, all the content of this chapter is
inspired by the more sophisticated, but more qualitative, analysis in [Mos01].


