
Appendix A

Fixed Points Theorems
(an idiosincratic selection)

In this appendinx I provide some standard and less standard Fixed poins
theorems. These constitute a very partial introduction to the subject. The
choice of the topics if motivated by the needs of the previous chapters.

A.1 Banach Fixed Point Theorem

Theorem A.1.1 (Fixed point contraction) Given a Banach space B, a
bounded closed set A ⊂ B and a map K : A→ B if

i) K(A) ⊂ A,

ii) there exists σ ∈ (0, 1) such that ‖K(v) − K(w)‖ ≤ σ‖v − w‖ for each
v, w ∈ A,

then there exists a unique v∗ ∈ A such that Kv∗ = v∗.

Proof. Since A is bounded supx,y∈A ‖x−y‖ = L <∞, i.e. it has a finite
diameter. Let a0 ∈ A and consider the sequence of points defined recursively
by an+1 = K(an) and the sequence of sets A0 = A and An+1 = K(An) ⊂ A.
Let dn := supx,y∈An

‖x − y‖ be the diameter of An. Then if x, y ∈ An, we
have

‖K(y)−K(x)‖ ≤ σ‖x− y‖ ≤ σdn.

That is dn+1 ≤ σdn ≤ σnL. This means that, for each n,m ∈ N, an, a0 ∈ A
and am, an+m ∈ Am, hence ‖an+m − am‖ ≤ σmL. That is {an} ⊂ A is a
Cauchy sequence and, being B a Banach space, it must have an accumulation
point v∗ ∈ B. Moreover since A is closed it must be v∗ ∈ A. Clearly

‖Kv∗ − v∗‖ = lim
n→∞

‖Kv∗ − an‖ = lim
n→∞

‖Kv∗ −Kan−1‖

≤ lim
n→∞

σ‖v∗ − an−1‖ = 0.
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Hence, v∗ is a fixed point. Next, suppose there exist u ∈ A, such that Ku = u.
Then

‖u− v∗‖ = ‖K(u− v∗)‖ ≤ σ‖u− v ∗ ‖
implies u = v∗. �

Corollary A.1.2 Given a Banach space B and a map K : B → B with the
property that there exists σ ∈ (0, 1) such that ‖K(v)−K(w)‖ ≤ σ‖v−w‖ for
each v, w ∈ B, then there exists a unique v∗ ∈ B such that Kv∗ = v∗.

Proof. To prove the theorem, for each L ∈ R+ consider the sets BL :=
{v ∈ B : ‖v‖ ≤ L}. Then ‖K(v)‖ ≤ ‖K(v) − K(0)‖ + ‖K(0)‖ ≤ σ‖v‖ +
‖K(0)‖ ≤ σL + ‖K(0)‖. Thus, for each L ≥ (1 − σ)−1‖K(0)‖ we have
that K(BL) ⊂ BL. The existence follows by applying Theorem A.1.1. The
uniqueness follows by the same argument used at end of the proof of Theorem
A.1.1. �

A.2 Hilbert metric and Birkhoff theorem

In this section we will see that the Banach fixed point theorem can produce
unexpected results if used with respect to an appropriate metric: projective
metric.

Projective metrics are widely used in geometry, not to mention the im-
portance of their generalizations (e.g. Kobayashi metrics) for the study of
complex manifolds [IK00]. It is quite surprising that they play a major rôle
also in our situation, [Liv95].

Here we limit ourselves to a few word on the Hilbert metric, a quite im-
portant tool in hyperbolic geometry.

A.2.1 Projective metrics

Let C ∈ Rn be a strictly convex compact set. For each two point x, y ∈ C
consider the line ` = {λx + (1 − λy) | λ ∈ R} passing through x and y. Let
{u, v} = ∂C ∩ ` and define1

Θ(x, y) =

∣∣∣∣ln ‖x− u‖‖y − v‖‖x− v‖‖y − v‖

∣∣∣∣
(the logarithm of the cross ratio). By remembering that the cross ratio is a
projective invariant and looking at Figure A.1 it is easy to check that Θ is
indeed a metric. Moreover the distance of an inner point from the boundary
is always infinite. One can also check that if the convex set is a disc then the
disc with the Hilbert metric is nothing else than the Poincaré disc.

1Remark that u, v can also be ∞.
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Figure A.1: Hilbert metric

The object that we will use in our subsequent discussion are not convex
sets but rather convex cones, yet their projectivization is a convex set and one
can define the Hilbert metric on it (whereby obtaining a semi-metric for the
original cone). It turns out that there exists a more algebraic way of defining
such a metric, which is easier to use in our context. Moreover, there exists
a simple connection between vector spaces with a convex cone and vector
lattices (in a vector lattice one can always consider the positive cone). This
justifies the next digression in lattice theory.2

Consider a topological vector space V with a partial ordering “�,” that is
a vector lattice.3 We require the partial order to be “continuous,” i.e. given
{fn} ∈ V lim

n→∞
fn = f , if fn � g for each n, then f � g. We call such vector

lattices “integrally closed.” 4

2For more details see [Bir57], and [Nus88] for an overview of the field.
3We are assuming the partial order to be well behaved with respect to the algebraic

structure: for each f, g ∈ V f � g ⇐⇒ f − g � 0; for each f ∈ V, λ ∈ R+\{0} f � 0 =⇒
λf � 0; for each f ∈ V f � 0 and f � 0 imply f = 0 (antisymmetry of the order relation).

4To be precise, in the literature “integrally closed” is used in a weaker sense. First, V
does not need a topology. Second, it suffices that for {αn} ∈ R, αn → α; f, g ∈ V, if
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We define the closed convex cone 5 C = {f ∈ V | f 6= 0, f � 0} (hereafter,
the term “closed cone” C will mean that C∪{0} is closed), and the equivalence

relation “∼”: f ∼ g iff there exists λ ∈ R+\{0} such that f = λg. If we call C̃
the quotient of C with respect to ∼, then C̃ is a closed convex set. Conversely,
given a closed convex cone C ⊂ V, enjoying the property C ∩ −C = ∅, we can
define an order relation by

f � g ⇐⇒ g − f ∈ C ∪ {0}.

Henceforth, each time that we specify a convex cone we will assume the corre-
sponding order relation and vice versa. The reader must therefore be advised
that “�” will mean different things in different contexts.

It is then possible to define a projective metric Θ (Hilbert metric),6 in C,
by the construction:

α(f, g) = sup{λ ∈ R+ | λf � g}
β(f, g) = inf{µ ∈ R+ | g � µf}

Θ(f, g) = log

[
β(f, g)

α(f, g)

]
where we take α = 0 and β =∞ if the corresponding sets are empty.

The relevance of the above metric in our coontex is due to the following
Theorem by Garrett Birkhoff.

Theorem A.2.1 Let V1, and V2 be two integrally closed vector lattices; L :
V1 → V2 a linear map such that L(C1) ⊂ C2, for two closed convex cones
C1 ⊂ V1 and C2 ⊂ V2 with Ci ∩ −Ci = ∅. Let Θi be the Hilbert metric
corresponding to the cone Ci. Setting ∆ = sup

f, g∈T (C1)

Θ2(f, g) we have

Θ2(Lf, Lg) ≤ tanh

(
∆

4

)
Θ1(f, g) ∀f, g ∈ C1

(tanh(∞) ≡ 1).

Proof. The proof is provided for the reader convenience.
Let f, g ∈ C1, on the one hand if α = 0 or β = ∞, then the inequality is

obviously satisfied. On the other hand, if α 6= 0 and β 6=∞, then

Θ1(f, g) = ln
β

α

αnf � g, then αf � g. Here we will ignore these and other subtleties: our task is limited
to a brief account of the results relevant to the present context.

5Here, by “cone,” we mean any set such that, if f belongs to the set, then λf belongs
to it as well, for each λ > 0.

6In fact, we define a semi–metric, since f ∼ g ⇒ Θ(f, g) = 0. The metric that we

describe corresponds to the conventional Hilbert metric on C̃.
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where αf � g and βf � g, since V1 is integrally closed. Notice that α ≥ 0,
and β ≥ 0 since f � 0, g � 0. If ∆ = ∞, then the result follows from
αLf � Lg and βLf � Lg. If ∆ <∞, then, by hypothesis,

Θ2 (L(g − αf), L(βf − g)) ≤ ∆

which means that there exist λ, µ ≥ 0 such that

λL(g − αf) � L(βf − g)

µL(g − αf) � L(βf − g)

with ln µ
λ ≤ ∆. The previous inequalities imply

β + λα

1 + λ
Lf � Lg

µα+ β

1 + µ
Lf � Lg.

Accordingly,

Θ2(Lf, Lg) ≤ ln
(β + λα)(1 + µ)

(1 + λ)(µα+ β)
= ln

eΘ1(f, g) + λ

eΘ1(f, g) + µ
− ln

1 + λ

1 + µ

=

∫ Θ1(f, g)

0

(µ− λ)eξ

(eξ + λ)(eξ + µ)
dξ ≤ Θ1(f, g)

1− λ
µ(

1 +
√

λ
µ

)2

≤ tanh

(
∆

4

)
Θ1(f, g).

�

Remark A.2.2 If L(C1) ⊂ C2, then it follows that Θ2(Lf, Lg) ≤ Θ1(f, g).
However, a uniform rate of contraction depends on the diameter of the image
being finite.

In particular, if an operator maps a convex cone strictly inside itself (in
the sense that the diameter of the image is finite), then it is a contraction in
the Hilbert metric. This implies the existence of a “positive” eigenfunction
(provided the cone is complete with respect to the Hilbert metric), and, with
some additional work, the existence of a gap in the spectrum of L (see [Bir79]
for details). The relevance of this theorem for the study of invariant measures
and their ergodic properties is obvious.

It is natural to wonder about the strength of the Hilbert metric compared
to other, more usual, metrics. While, in general, the answer depends on the
cone, it is nevertheless possible to state an interesting result.
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Lemma A.2.3 Let ‖ · ‖ be a norm on the vector lattice V, and suppose that,
for each f, g ∈ V,

−f � g � f =⇒ ‖f‖ ≥ ‖g‖.

Then, given f, g ∈ C ⊂ V for which ‖f‖ = ‖g‖,

‖f − g‖ ≤
(
eΘ(f, g) − 1

)
‖f‖.

Proof. We know that Θ(f, g) = ln β
α , where αf � g, βf � g. This

implies that −g � 0 � αf � g, i.e. ‖g‖ ≥ α‖f‖, or α ≤ 1. In the same
manner it follows that β ≥ 1. Hence,

g − f �(β − 1)f � (β − α)f

g − f �(α− 1)f � −(β − α)f

which implies

‖g − f‖ ≤ (β − α)‖f‖ ≤ β − α
α
‖f‖ =

(
eΘ(f, g) − 1

)
‖f‖.

�

Many normed vector lattices satisfy the hypothesis of Lemma 1.3 (e.g.
Banach lattices7); nevertheless, we will see that some important examples
treated in this paper do not.

A.2.2 An application: Perron-Frobenius

Consider a matrix L : Rn → Rn of all strictly positive elements: Lij ≥ γ > 0.
The Perron-Frobenius theorem states that there exists a unique eigenvector
v+ such that v+

i > 0, in addition the corresponding eigenvalue λ is simple,
maximal and positive. There quite a few proofs of this theorem a possible
one is based on Birkhoff theorem. Consider the cone C+ = {v ∈ R2 | vi ≥ 0},
then obviously LC+ ⊂ C+. Moreover an explicit computation (see

Problem A.1 shows that

Θ(v, w) = ln sup
ij

viwj
vjwi

. (A.2.1)

7A Banach lattice V is a vector lattice equipped with a norm satisfying the property
‖ |f | ‖ = ‖f‖ for each f ∈ V, where |f | is the least upper bound of f and −f . For this
definition to make sense it is necessary to require that V is “directed,” i.e. any two elements
have an upper bound.
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Then, setting M = maxij Lij , it follows that

Θ(Lv,Lw) ≤ 2 ln
M

γ
:= ∆ <∞.

We have then a contraction in the Hilbert metric and the result follows from
usual fixed points theorems. Note that, since Θ(v, λv) = 0, for all λ ∈ R+,
the fixed point v+ ∈ Rn is only projective, that is Lv+ = λv+ for some λ ∈ R;
in other words, we have an eigenvalue.

Remark that L∗ satisfies the same conditions as L, thus there exists w+ ∈
C+, µ ∈ R+, such that L∗w+ = µw+. Next, define ρ1(v) = |〈w+, v〉| and
ρ2(v) = ‖v‖. It is easy to check that they are two homogeneous forms of
degree one adapted to the cone.

In addition, if ρ1(v) = ρ2(v), then ρ1(Lnv) = ρ1(Lnw). Hence, by Lemma
A.2.3

‖Lnv − Lnw‖ ≤
(
eΘ(Lnv,Lnw) − 1

)
min{‖Lnv‖, ‖Lnw‖}

≤ KΛn min{‖Lnv‖, ‖Lnw‖},
(A.2.2)

for some constant K depending only on v, w. The estimate A.2.2 means that
all the vectors in the cone grow at the same rate. In fact, for all v ∈ intC,

‖λ−nLnv − λ−nLnw‖ ≤ KΛn.

Hence, limn→∞ λ−nLnv = v+.
Finally, consider V1 = {v ∈ V | 〈w+, v〉 = 0}. Clearly LV1 ⊂ V1 and

V1 ⊕ span{v+} = V. Let w ∈ V1, clearly there exists α ∈ R+ such that
αv+ + w ∈ C,8 thus

‖Lnw‖ ≤ ‖Ln(αv+ + w)− αLnv+‖ ≤ LΛnλn.

This immediately implies that L restricted to the subspace V1 has spectral
radius less that λΛ. In other words, λ is the maximal eigenvalue, it is simple
and any other eigenvalue must be smaller than λΛ. We have thus obtained
an estimate of the spectral gap between the first and the second eigenvalue.

Notes

For more details on Hilbert metrics see [Bir79], and [Nus88] for an overview
of the field.

8this is a special case of the general fat that any vector can be written as the linear
combination of two vectors belonging to the cone.


