
Chapter 7

Quantitative Statistical Properties,
a class of 1-d examples

Given a Dynamical System it is in general very hard to study its
ergodic properties, especially if the goal is to have a quantitative under-
standing. To make clear what is meant by a quantitative understanding
and which type of obstacles may prevent it, I devote this chapter to
the study of a simple, but highly non-trivial, class of examples: one
dimensional smooth expanding maps.

7.1 The problem

Recall from Examples 6.4.1 that a one dimensional smooth expanding
map is a map T ∈ C2(T1,T1) such that |DT | ≥ λ > 1.

We know already that such maps have a unique absolutely contin-
uous invariant measure (see sections 6.4.1, 6.5.1 Expanding maps).

We would like first to understand other invariant measures in order
to have a clearer picture of which measurable Dynamical Systems can
be associated to the topological Dynamical System (T1, T ). This is
still at the qualitative level. In addition, we would like to have tools to
actually compute such invariant measures with a given precision, and
this is a first quantitative issue.

Next, we would like to study statistical properties more in depth.
To this end we will restrict to the case (T1, T, µ), where µ is the measure
absolutely continuous with respect to Lebesgue. The type of questions
we would like to address are
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7.2. INVARIANT MEASURES 169

If we make repeated finite time and precision measurements, what
do we observe?

Remember that a measurement is represented by the evaluation
of a function. The fact that the measurement has a finite precision
correspond to the fact that the function has some uniform regularity
(otherwise we could identify the point with an arbitrary precision).
The fact that the measure is made for finite time means that we are
able only to measure finite times averages. In other words we would
like to understand the behavior of

N−1∑
k=0

f ◦ T k

for large, but finite, N .

7.2 Invariant measures

Let M be the set of probability (Borel) measures on T1. We can then
consider the new Dynamical System (M, T ′), where T ′µ(f) = µ◦T for
all f ∈ C0(T1,R). The invariant measures are the fixed points of T ′,
let us call them Fix(T ′). If µ ∈ Fix(T ′) then for each h ∈ L∞(T1, µ),
h ≥ 0, µ(h) = 1, we can consider the new probability measure defined
by µh(f) = µ(hf), for all f ∈ C0(T1,R). Note that

|T ′µh(f)| = |µ(hf ◦ T )| ≤ |h|L∞(µ)µ(|f | ◦ T ) = |h|L∞(µ)µ(|f |).

Hence T ′µh is absolutely continuous with respect to µ and dT ′µh
dµ ∈

L∞(µ). We can then define the operator Lµ : L∞(T1, µ)→ L∞(T1, µ)

by Lµh := dT ′µh
dµ .

Let {Ii} be a partition in interval of T1 such that T |Ii is invertible,
T (Ii) = T1 and ∪iIi = T1. Call Si the inverse of the i-th branch of T .

Then, setting ρi :=
dT ′µ1Ii
dµ

T ′µh(f) =
∑
i

µ(h1Iif ◦ T ) =
∑
i

µ(1Ii(h ◦ Sif) ◦ T )

= µ

([∑
i

ρih ◦ Si

]
f

)
.
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Thus, setting ρ =
∑

i ρi ◦ T1Ii we have

dT ′µh
dµ

=
∑
i

(ρh) ◦ Si =: Lρ(h).

It follows that Lρ(1) = 1 and, for each h ∈ L∞(µ), µ(Lρ(h)) =
T ′µh(1) = µ(h).

Problem 7.1 Compute ρ and Lρ, in the case in which µ is the unique
invariant measure absolutely continuous with respect to Lebesgue.

The relevant fact is that one has the following (partial) converse.

Lemma 7.2.1 For ρ ∈ C0, ρ ≥ 0, let Lρ(h)(x) :=
∑

y∈T−1x ρ(y)h(y).

If there exists λ ∈ R, h ∈ C0, h > 0, such that Lρh = λh, then there
exists a measure µ ∈ M such that µ(Lρf) = λµ(f) for all f ∈ C0 and
there exists an invariant measure absolutely continuous with respect to
µ.

Proof. By continuity there exists γ > 0 such that h ≥ γ > 0.
Thus

|Lnρf | ≤ γ−1|f |∞Lnρh = λnγ−1|f |∞.

Hence, calling m the Lebesgue measure 1
n

∑n−1
k=0 λ

−k(L′ρ)km is a weakly
compact sequence. Accordingly the same arguments used in Krylov-
Bogoliubov Theorem 6.4.2 imply that there exists a measure µ such
that λ−1L′ρµ = µ.

Next, define ν(f) := µ(hf). Clearly ν is a measure absolutely
continuous with respect to µ, in addition

ν(f ◦ T ) = λ−1(L′ρµ)(hf ◦ T ) = λ−1µ(fLρh) = µ(fh) = ν(f).

�

7.3 Absolutely continuous invariant measure:
revisited

We have already seen that there exists a unique invariant measure with
respect to Lebesgue. Here we study this issue by a slightly different
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technique. Although the main idea is always to study the spectrum of
the transfer operator, it is interesting to see how this can be achieved
in many different ways, each way having its own advantages and dis-
advantages. Consider the transfer operator

Lh(x) :=
∑

y∈T−1x

|DyT |−1h(y) (7.3.1)

Problem 7.2 Show that if dµ = hdm, where m is the Lebesgue mea-
sure, then µ(f ◦ T ) = m(fLh).

Problem 7.3 Show that, for each n ∈ N,

Lnh(x) :=
∑

y∈T−nx

|DyT
n|−1h(y)

Notice that, since DT cannot be zero, then its sign is constant. We
limit ourselves, for simplicity, to the case DT ≥ λ.

Problem 7.4 Show that

d

dx
Lnh(x) =

∑
y∈T−1x

(DyT )−2h′(y)−D2
yT (DyT )−3h(y)

= L((DT )−1h′)− L(D2T (DT )−2h)

7.3.1 A functional analytic setting

Let us consider first the Sobolev space W 1,1 and the space L1.1 Then,
for each h ∈ L1(T1,m),∫

T1

|Lh|dm ≤
∫
T1

1 · L|h|dm =

∫
T1

1 ◦ T |h|dm =

∫
T1

|h|dm (7.3.2)

that is L is a bounded operator on L1 and its norm is bounded by one.

1For an open set U ⊂ R, the spaces W p,q(U) are the completion of C∞(U,C)

with respect to the norms
[
|f |qLq + |f ′|qLq + · · ·+ |f (p)|qLq

] 1
q

. Note that they are

all Banach spaces by construction but the W p,2 are also Hilbert spaces (Exercise:
write the scalar product).



172 CHAPTER 7. QUANTITATIVE STATISTICAL PROPERTIES

In addition, remembering Exercise 7.2,∫
T1

| d
dx
Lh|dm ≤ λ−1|h′|L1 +D|h|L1 , (7.3.3)

where D := supD2T (DT )−2.

Problem 7.5 Iterate the (7.3.2), (7.3.3) and prove, for all n ∈ N,

|Lnh|L1 ≤ |h|L1

|Lnh|W 1,1 ≤ λ−n|h|W 1,1 +B|h|L1

where B = 1 + (1− λ−1)−1D.

Since W1,1 controls the L∞ norm,2 then we have that there exists C > 0
such that |Ln1|∞ < C for each n ∈ N.

Using such a fact we can obtain similar inequalities in the Hilbert
spaces L2 and W 1,2. Indeed

‖Lnh‖2L2 =

∫
T1

h(Lnh) ◦ Tn ≤ ‖h‖L2

[∫
T1

(Lnh)2 ◦ Tn
] 1

2

= ‖h‖L2[∫
T1

(Lnh)2Ln1

] 1
2

≤ C
1
2 ‖h‖L2‖Lnh‖L2

Which implies ‖Lnh‖L2 ≤ C
1
2 ‖h‖L2 for each n ∈ N. Hence,

‖ d
dx
Lnh‖L2 ≤ λ−nC

1
2 ‖h′‖L2 +Dn‖h‖L2 .

Iterating as before we have, for all n ∈ N,

|Lnh|L2 ≤ C|h|L2

|Lnh|W 1,2 ≤ Aλ−n|h|W 1,2 +B|h|L2 ,
(7.3.4)

for some appropriate constants A,B,C depending only on the map T .
To prove the existence of an invariant measure absolutely continu-

ous with respect to Lebesgue we can try to mimic the Krylov-Bogolubov
approach, but to do so we need a compactness result to substitute the
weak compactness of the unit ball of the dual of a Banach space. This
takes us in a very interesting detour in some fact of functional analysis.

2If f ∈ C∞, then the mean value theorem asserts
∫
h = h(ξ) for some ξ. Then

h(x) = h(ξ) +
∫ x
ξ
h′(z)dz. Thus |h|∞ ≤ |h|L1 + |h′|L1 = |h|W1,1 . The result extends

then to all elements of W 1,1 by a standard approximation argument.
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7.3.2 Deeper in Functional analysis

Since we are on a circle it is a good idea to use Fourier series. For each
function h ∈ C∞(T,C) let hk be its Fourier coefficients and define

(Anh)(x) =
∑
|k|≤m

hke
2πikx (7.3.5)

Clearly, for all m > 0,

|h− Am|2L2 =
∑
|k|>m

|hk|2 =
∑
|k|>m

|hk|2|k|−2|k|2 ≤ m−2
∑
|k|>m

|(h′)k|2

≤ m−2|h′|2L2 ≤ m−2|h|2W 1,2 .

(7.3.6)

Using the above fact we can prove.

Lemma 7.3.1 The unit ball of W 1,2 is (sequentially) compact in L2.

Proof. Consider a sequence {hm} ⊂ W 1,2, |hm|W 1,2 ≤ 1. Since
Al are all finite rank operators, {Alhm} for l fixed are contained in
a bounded finite dimensional (hence compact) set, thus there exists a
converging subsequence for all l while (7.3.6) shows that the sequences
for fixed m are all convergent. Using the usual diagonalization trick we
can then extract a converging subsequence. �

Consider now hn := 1
n

∑n−1
k=0 Lk1. By the above lemma {hn} is

relatively compact and thus we can extract a subsequence {hnj} con-
verging in L2. Let h∗ be the limit. Note that

∫
hn = 1 for all n ∈ N,

thus h∗ 6≡ 0 and
∫
h∗ = 1.

Problem 7.6 Show that Lh∗ = h∗, that is dµ := h∗dm is an invariant
measure absolutely continuous with respect to Lebesgue and with L2

density.

Of course, at this point it is natural to ask if µ is the only measure
with such a property or there exist others. To answer such a question
we need some more facts.
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7.3.3 Even deeper in Functional analysis

Since we have to do it, let us do in the following general setting.

Consider two Banach space (B, ‖ · ‖) and (B0, | · |) such that B ⊂ B0

and

i. |h| ≤ ‖h‖ for all h ∈ B,

ii. if h ∈ B and |h| = 0, then h = 0.

iii. There exists C > 0 : for each ε > 0 there exists a finite rank
operator Aε ∈ L(B,B) such that ‖Aε‖ ≤ C and |h−Aεh| ≤ ε‖h‖
for all h ∈ B.3

In addition consider a bounded operator L : B0 → B0, constants
A,B,C ∈ R+, and λ > 1, such that

a. |Ln| ≤ C for all n ∈ N,

b. L(B) ⊂ B

c. ‖Lnh‖ ≤ Aλ−n‖h‖+B|h| for all h ∈ B and n ∈ N.

In particular L can be seen as a bounded operator on B.

Theorem 7.3.2 The spectral radius of the operator L ∈ L(B,B) is
bounded by 1 while the essential spectral radius is bounded by λ−1.4

We can now prove our main result.

3In fact, this last property can be weakened to: The unit ball {h ∈ B : ‖h‖ ≤ 1}
is relatively compact in B0. We use the present stronger condition since, on the one
hand, it is true in all the applications we will be interested in and, on the other
hand, drastically simplifies the argument. Note also that, if one uses the Fredholm
alternative for compact operators rather than finite rank ones (Theorem D.0.3),
then one can ask the Aε to be compact instead than finite rank making easier their
construction in concrete cases.

4The definition of essential spectrum varies a bit from book to book. Here we
call essential spectrum the complement, in the spectrum, of the isolated eigenvalues
with associated finite dimensional eigenspaces (which is also called the Fredholm
spectrum).
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Proof of Theorem 7.3.2. The first assertion is a trivial conse-
quence of (c), (a) and (i).

The second part is much deeper. Let Ln,ε := LnAε, clearly such an
operator is finite rank, in addition

‖Lnh−Ln,εh‖ ≤ Aλ−n‖(1−Aε)h‖+B|(1−Aε)h| ≤ A(1+C)λ−n‖h‖+Bε‖h‖.

By choosing ε = λ−n we have that there exists C1 > 0 such that

‖Ln − Ln,ε‖ ≤ C1λ
−n.

For each z ∈ C we can now write

1− zL = (1− z(L − Ln,ε))− zLn,ε.

Since

‖z(L − Ln,ε)‖ ≤ |z|C1λ
−n <

1

2
,

provided that |z| ≤ 1
2C1

λn. Thus, given any z in the disk Dn := {|z| <
1

2C1
λn} the operator B(z) := 1− z(L − Ln,ε) is invertible.5 Hence

1− zL =
(
1− zLn,εB(z)−1

)
B(z) =: (1− F (z))B(z).

By applying Fredholm analytic alternative (see Theorem D.0.3 for the
statement and proof in a special case sufficient for the present purposes)
to F (z) we have that the operator is either never invertible or not
invertible only in finitely many points in the disk Dn. Since for |z| < 1
we have (1 − zL)−1 =

∑∞
n=0 z

nLn, the first alternative cannot hold
hence the Theorem follows. �

7.3.4 The harvest

We are finally in the position to use all the above result to gain a
deep understanding of the properties of the Dynamical Systems under
consideration.

Problem 7.7 Show that Theorem 7.3.2 implies that there exists σ ∈
(0, 1), {θk}pk=1 and L > 0 such that

L =

p∑
k=1

eiθkΠθk +R

5Clearly B(z)−1 =
∑∞
n=0 [z(L − Ln,ε)]n.
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where Πθk and R are operators on W 1,2 such that ΠθkΠθj = δjkΠθk and
RΠθk = ΠθkR = 0. Moreover |Rn| ≤ Lσn.(Hint: Read section 6 of the
Third Chapter of [Kat66] and recall that the operator is power bounded
to exclude Jordan blocks.)

The above implies that

Πθ := lim
n→∞

1

n

n−1∑
k=0

e−iθkLk =

{
Πθi iff θ = θj

0 otherwise.
(7.3.7)

Problem 7.8 Using equations (7.3.4) show that, for each h ∈ L2

‖Πθh‖W 1,2 ≤ C‖h‖L2 .

(Hint: prove it first for h ∈W 1,2 and then do a density argument).

Next, note that Exercise 7.6 implies that h∗ = Π01 6= 0, that is one
is in the spectrum on L, this means that the spectral radius of L is
one.

Accordingly, if Πθh = h we have h ∈W 1,2 ⊂ C0 and6

|h| = |Πθh| ≤ lim
j→∞

1

nj

nj−1∑
k=0

Lk|h| = Π0|h| ≤ |h|∞h∗.

This means that all the eigenvectors of the peripheral spectrum are of
the form h = gh∗ with g ∈ C0. Thus, if hi is an W 1,2 orthonormal a base
of the eigenspace associated to an eigenvalue θ, then the eigenprojector
must have the form

Πθh =
∑
i

hi

∫
`i · h,

with `i ∈ L2 and
∫
`ihj = δij . Hence ΠθL = eiθΠθ implies

eiθ
∑
k

hk

∫
`k · h =

∑
k

hk

∫
`k · Lh =

∑
k

hk

∫
`k ◦ T · h.

6Remember that exercise 7.8 implies that the sequence in (7.3.7) converges in
L2, accordingly there exists a subsequence that converges almost everywhere with
respect to Lebesgue.
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That is eiθ`k = `k ◦ T . But then if we set fk := ¯̀
kh∗ ∈ L2, we have

Lfk = eiθL(¯̀
k ◦ Th∗) = eiθ ¯̀

kLh∗ = eiθ ¯̀
kh∗ = eiθfk

By the above facts, this implies Πθfk = fk ∈ W 1,2, that is `k ∈ C0.
But then for each p ∈ N we can set hp := ¯̀p

kh∗ obtaining

Lhp = eipθhp.

Since the the peripheral spectrum consists of finitely many eigenvalues
it follows that there must exist p ∈ N such that p θ = θ mod 2π, that
is the spectrum on the unit circle must be the union of finitely many
cyclic groups. In turn this implies that there exists p̄ ∈ N such that
p̄ θ = 0 mod 2π, hence `p̄k = `p̄k ◦ T . But this implies that if we define
the sets AL := {x ∈ T : |`p̄k| ≤ L}, L ∈ R, they are all invariant. So
if χL is the characteristic function of the set AL, then χL ◦ T = χL
and L(χLh∗) = χLh∗. We can thus produce a lot of eigenvalues of
L, but we know that such eigenvalues form a finite dimensional space.
The only possibility is that only finitely many of the AL are different.
This is like saying that `k takes only finitely many values. But `p̄k is a
continuous function, so it must be constant. Hence `k can assume only
p̄ different values, thus, again by continuity, must be constant. Finally
this implies θ = 0.

The conclusion is that one is the only eigenvalue on the unit circle
and that the associated eigenprojector has rank one. So one is a simple
eigenvalue and h∗ is the only invariant density for the map.

7.3.5 conclusions

If we have any probability measure ν absolutely continuous with respect
to Lebesgue and with density h ∈ W 1,2, then setting dµ = h∗dm, for
each ϕ ∈W 1,2 we have

|µ(ϕ ◦ Tn)− ν(ϕ ◦ Tn)| =
∣∣∣∣∫ ϕLn(h− h∗)

∣∣∣∣ ≤ ‖ϕ‖1,2Cσn‖h− h∗‖1,2
where σ is the largest eigenvalue of modulus smaller than one (or λ−1

is no such eigenvalue exist).
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Remark 7.3.3 The above means that the evolution of the present chaotic
system, if seen at the level of the absolutely continuous measures, be-
comes simply a dynamics with an uniformly attracting fixed point, the
simplest dynamics of all!

7.4 General transfer operators

In the previous sections we have been very successful in studying the
measure absolutely continuous with respect to Lebesgue. We have seen
in §7.2 (crf. Lemma 7.2.1) that to study other invariant measures one
has to analyze more general transfer operators. Here we will restrict
ourselves to studying

Lgh := L(egh)

where L is the usual transfer operator. This are called transfer op-
erators with weight and g is sometime called the potential. We will
consider first the case of g : T1 → C and specialize to real potential
later on.

For convenience, and also for didactical purposes, we will use the
Banach spaces C1 and C0. Hence, form now on, we will assume T ∈
C2(T1,T1) and g ∈ C1(T1,C).

The first step is to compute the powers of Lg and study how they
behave with respect to derivation.

Problem 7.9 Show that, for each n ∈ N, holds true

Lngh = Ln [egnh] ,

where gn =
∑n−1

k=0 g ◦ T k.

Problem 7.10 Show that for each n ∈ N and h ∈ C1 holds true

d

dx
Lngh = Lng

[
h′

(Tn)′
− (Tn)′′

[(Tn)′]2
h+

(gn)′

(Tn)′
h

]
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Note that |Lngh|∞ ≤ |h|∞Ln<(g)1. In addition,7∣∣∣∣ (Tn)′′(y)

[(Tn)′(y)]2

∣∣∣∣ =

∣∣∣∣∣
d
dy

∏n−1
k=0 T

′(T ky)

[(Tn)′(y)]2

∣∣∣∣∣
≤

n−1∑
k=0

∣∣∣∣ T ′′(T ky)

(Tn−k)′(T ky)

∣∣∣∣ ≤ n−1∑
k=0

|T ′′|∞λ−n+k+1 ≤ |T ′′|∞
1− λ−1

.

Analogously, ∣∣∣∣ (gn)′

(Tn)′

∣∣∣∣ ≤ |g′|∞
1− λ−1

.

The above inequalities imply∣∣∣∣ ddxLngh
∣∣∣∣ ≤ λ−nLn<(g)|h

′|+BLn<(g)|h|. (7.4.8)

Which, taking the sup over x, yields∣∣∣∣ ddxLngh
∣∣∣∣
∞
≤ λ−n|h′|∞Ln<(g)1 +B∗|h|∞Ln<(g)1,

Note that the above inequality implies that the spectral radius is bounded

by ρ = limn→∞ ‖Ln<(g)1‖
1
n

C0 while the essential spectral radius is bounded

by λ−1ρ. The reader should notice that for positive potentials the above
bounds are essentially sharp while for non positive, or complex, poten-
tial typically there will be cancellations that induce a smaller spectral
radius. To control exactly such cancellations is, in general, a very hard
problem.

7.4.1 Real potential

In this section we will restrict to the case of g ∈ C1(T1,R), i.e. real
potentials.

If we define the cone Ca := {h ∈ C1 : h > 0 |h′(x)| ≤ ah(x)},
then equation (7.4.8), for h > 0, implies that, for each σ ∈ (0, λ−1),
LgCa ⊂ Cσa provided a ≥ B(σ−λ−1)−1.8 We can then apply the theory
of Appendix A to conclude the following.

7The quantity estimated here is usually called distortion. In fact, it measure how
much the maps distorts intervals.

8Note that this cone is almost the same than the one in Example 6.5.1, more
precisely is its infinitesimal version.
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Lemma 7.4.1 For each real potential g ∈ C1(T1,R), the transfer oper-
ator Lg has the Perron-Frobenius property, i.e. it has a simple strictly
positive maximal eigenvalue and all the other eigenvalues are strictly
smaller in modulus. In particular, the maximal eigenvalue of Lτg,
τ ∈ R, is analytic in τ .9

7.4.2 Variational principle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.5 Limit Theorems

Given f ∈ C1, n ∈ N and a ∈ R+ let

Aa,n(f) :=

{
x ∈ T1 :

∣∣∣∣∣ 1n
n−1∑
k=0

f ◦ T k(x)− µ(f)

∣∣∣∣∣ ≥ a
}
. (7.5.9)

By the ergodic theorem limn→∞ µ(Aa,n(f)) = 0. A natural question is:

Question 3 How large is m(Aa,n)?

Note that we can write 1
n

∑n−1
k=0 f ◦ T k(x) − µ(f) = 1

n

∑n−1
k=0 f̂ ◦ T k(x)

where f̂ := f − µ(f). So we can reduce the question to the study of
zero average function. A more refined question could be.

Question 4 Does it exists a sequence {cn} such that

1

cn

n−1∑
k=0

f̂ ◦ T k(x)

converges in some sense to a non zero finite object?

9This follows from the fact that the maximal eigenvalue must always be simple
and the results in Appendix C.4.
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7.5.1 Large deviations. Upper bound

Note that it suffices to study the set

A+
a,n(f) :=

{
x ∈ T1 :

1

n

n−1∑
k=0

f ◦ T k(x)− µ(f + a) ≥ 0

}
.

since Aa,n(f) = A+
a,n(f) ∩ A+

a,n(−f). On the other hand, setting f̂ :=
f − µ(f), for each λ ≥ 0 we have

m(A+
a,n(f)) = m({x : eλ

∑n−1
k=0 (f̂◦Tk(x)−a) ≥ 1}) ≤ e−nλam(eλ

∑n−1
k=0 f̂◦T

k
)

= e−nλam(eλ
∑n−1
k=0 f̂◦T

k
).

Accordingly,

m(A+
a,n(f)) ≤ e−nλam(Lnλ1) (7.5.10)

where we have defined the operator Lλg := L(eλf̂g), L being the Trans-
fer operator of the map T .

By Lemma 7.4.1 Lλ has a maximal eigenvalue αλ depending ana-
lytically on λ. Hence by the same argument used in Lemma 7.2.1 there
exists c ∈ R such that

m(A+
a,n(f)) ≤ e−n(λa−lnαλ)+c.

Since λ has been chosen arbitrarily we have obtained

m(A+
a,n(f)) ≤ e−nĨ(a)+c (7.5.11)

where Ĩ(a) := supλ∈R+{λa − lnαλ}. The problem is then reduced
to studying the function I(a) which is commonly called rate function.
Note that Ĩ is not necessarily finite. Indeed if a > ‖f̂‖∞, then clearly
m(A+

a,n(f)) = 0.

To better understand the rate function it is helpful to make a little
digression into convex analysis.

Recall that a function f : Rd → Rd is convex if for each x, y ∈ Rd
and t ∈ [0, 1] we have f(ty + (1 − t)x) ≤ tf(y) + (1 − t)f(x) (if the
inequality is everywhere strict, then the function is stricly convex.
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Problem 7.11 Show that if f ∈ C2(Rd,R), then f is convex iff ∂2f
∂x2 is

a positive matrix.10 Give a condition for strict convexity.

Problem 7.12 If a function f : D ⊂ Rd → R, D convex,11 is convex
and bounded, then it is continuous.

Given a function f : Rd → R let us define its Legendre transform as

f∗(x) = sup
y∈Rd

{〈x, y〉 − f(y)} (7.5.12)

Remark that f∗ can take the value +∞.

Problem 7.13 Prove that f∗ is convex.

Problem 7.14 Prove that f∗∗ ≤ f .

Problem 7.15 Prove that is f ∈ C2(Rd,R) is strictly convex, then the
function h(y) := ∂f

∂y (y) is invertible and f∗ is strictly convex. Moreover,
calling g the inverse function of h, we have

f∗(x) = 〈x, g(x)〉 − f ◦ g(x).

Problem 7.16 Show that if f ∈ C2 is strictly convex, then f∗∗ = f .

Problem 7.17 Show that, for each x, y ∈ Rd, 〈x, y〉 ≤ f∗(x) + f(y),
(Young inequality).

From the above discussion it follows that the rate function is defined
very similarly to the Legendre transform of the logarithm of the maxi-
mal eigenvalue, which is commonly called pressure of f̂ . In fact, setting
I(a) = maxλ∈R(λa− lnαλ) we will se that, for a ≥ 0, I(a) = Ĩ(a). Un-
fortunately, to see that the rate function is exactly a Legendre trans-
form takes some work. Let us start by studying the function αλ.

Lemma 7.5.1 There exists continuous functions Cλ > 0 and ρλ ∈
(0, 1) such that, for λ ≤ 0, Lλ = αλΠλ + Qλ, ΠλQλ = QλΠλ = 0,
‖Qnλ‖C1 ≤ Cλρ

n
λα

n
λ. Also Πλ(g) = hλ`λ(g), `λ(hλ) = 1, `λ(h′λ) =

0. In addition, µλ(·) := `λ(hλ ·) is an invariant probability measure.
Moreover everything is analytic in λ.

10A matrix A ∈ GL(R, d) is called positive if AT = A and 〈v,Av〉 ≥ 0 for each
v ∈ Rd.

11 A set D is convex if, for all x, y ∈ D and t ∈ [0, 1], olds true ty + (1− t)x ∈ D.
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Proof. As we have seen, there exists hλ ∈ C1 and a measure `λ,
both analytic in λ, such that the projection on the maximal eigenvalue
of Lλ reads Πλ(h) = hλ`λ(h). Obviously

Lλhλ = αλhλ, (7.5.13)

and α0 = 1, h0 = h and `0 = m. Notice that hλ and `λ are not uniquely
defined: by Π2

λ = Πλ follows `λ(hλ) = 1 but one normalization can be
chosen freely.

Problem 7.18 Show that the normalization of `λ, hλ can be chosen so
that `λ(h′λ) = 0.

�

Lemma 7.5.2 The functions αλ and lnαλ are convex. Moreover,∣∣∣∣ ddλ lnαλ

∣∣∣∣ ≤ |f̂ |∞.
Proof. Note that

d2

dλ2
lnαλ =

α′′λαλ − (α′λ)2

α2
λ

, (7.5.14)

thus the convexity of lnαλ implies the convexity of αλ.
In view of the above fact we can differentiate (7.5.13) obtaining

L′λhλ + Lλh′λ = α′λhλ + αλh
′
λ. (7.5.15)

Applying `λ yields

dαλ
dλ

= αλ`λ(f̂hλ)) = αλµλ(f̂). (7.5.16)

Thus α′0 = 0. Note that, as claimed,∣∣∣∣ ddλ lnαλ

∣∣∣∣ ≤ |µλ(f̂)| ≤ |f̂ |∞.

Differentiating again yields

d2αλ
dλ2

= αλµλ(f̂)2 + αλ`
′
λ(f̂ghλ) + αλ`λ(f̂h′λ). (7.5.17)
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On the other hand, from (7.5.15) we have

(1αλ − Lλ)h′λ = Lλ(fλhλ),

where fλ = f̂ − µλ(f̂). Since, by construction, Πλh
′
λ = Πλ(fλhλ) = 0,

the above equation can be studied in the space Vλ = (1 − Πλ)C1 in
which 1αλ − Lλ is invertible.

Setting L̂λ := α−1
λ Lλ, we have

h′λ = (1− L̂λ)−1L̂λ(fλhλ). (7.5.18)

Doing similar considerations on the equation `λ(Lλ) = αλ`λ(g), we
obtain

α′′λ = αλµλ(f̂)2 + αλ`λ(fλ(1− L̂λ)−1(1 + L̂λ)(fλhλ))

= αλµλ(f̂)2 + αλ

∞∑
n=1

`λ(fλL̂nλ(1 + L̂λ)(fλhλ))

=
(α′λ)2

αλ
+

[
µλ(f2

λ) + 2
∞∑
n=1

`λ(fλL̂nλ(fλhλ))

]
αλ.

(7.5.19)

Finally, notice that

`λ(fλL̂nλ(fλhλ)) = `λ(L̂nλ(fλ ◦ Tnfλhλ)) = µλ(fλ ◦ Tnfλ)

and

lim
n→∞

1

n
µλ

[n−1∑
k=0

fλ ◦ T k
]2
 = lim

n→∞

1

n

n−1∑
k,j=0

µλ(fλ ◦ T kfλ ◦ T j)

= µλ(f2
λ) + lim

n→∞

2

n

n−1∑
k=1

(n− k)µλ(fλ ◦ T kfλ)

= µλ(f2
λ) + 2

∞∑
k=1

µλ(fλ ◦ T kfλ).

(7.5.20)

The above two facts and equations (7.5.14), (7.5.19) yield

d2

dλ2
lnαλ = lim

n→∞

1

n
µλ

[n−1∑
k=0

fλ ◦ T k
]2
 ≥ 0. (7.5.21)

�
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Note that equation (7.5.16) implies α′0 = 0, hence α′λ ≥ 0 for λ ≥ 0.
Since the maximum of λa − lnαλ is taken either at αλa = α′λ or at

infinity (if a > supλ>0
α′λ
αλ

), it follows that

Ĩ(a) = sup
λ≥0

(λa− lnαλ) = sup
λ

(λa− lnαλ) = I(a)

as announced. In fact, more can be said.

Lemma 7.5.3 Either the rate function I is strictly convex, or there
exists β ∈ R, φ ∈ C0 such that f − β = φ− φ ◦ T .

Proof. By Problem 7.15 it suffices to prove that lnαλ is strictly
convex. On the other hand equations (7.5.14) and (7.5.21) imply that
if the second derivative of lnαλ is zero for some λ, then

µλ

[n−1∑
k=0

fλ ◦ T k
]2
 = n

[
µλ(f̂2) + 2

n−1∑
k=1

n− k
n

µλ(fλ ◦ T k fλ)

]

= −2n
∞∑
k=n

`λ(fλL̂kλ(fλ hλ))− 2
n−1∑
k=1

k`λ(fλL̂kλ(fλ hλ))− αλµλ(f̂)2

≤ C(λ)

[
nρnλ +

∞∑
k=0

kρkλ

]

Accordingly, the sequence
∑n−1

k=0 fλ ◦ T k is bounded in L2(T1, µλ) and

hence weakly compact. Let
∑nj−1

k=0 fλ ◦ T k a weakly convergent sub-
sequence,12 that is there exists φλ ∈ L2 such that for each ϕ ∈ L2

holds

lim
j→∞

µλ(ϕ

nj−1∑
k=0

fλ ◦ T k) = µλ(ϕφλ).

It follows that, for each ϕ ∈ C1,

µλ(ϕ[fλ − φλ + φλ ◦ T ]) = µλ(ϕfλ) + lim
j→∞

nj−1∑
k=0

µλ(ϕfλ ◦ T k+1 − ϕfλ ◦ T k)

= lim
j→∞

µλ(ϕfλ ◦ Tnj ) = lim
j→∞

`λ(fλL̂
nj
λ (ϕhλ))

= µλ(ϕ)µλ(fλ) = 0.

12Such a subsequence always exists [LL01].
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thus, since C1 is dense in L2, it follows

fλ = φλ − φλ ◦ T , µλ − a.s. (7.5.22)

A function with the above property is called a coboundary, in this case
an L2 coboundary since we know only that φλ ∈ L2(T, µλ). In fact,
this it is not not enough to conclude the Lemma: we need to show, at
least, that φλ ∈ C0.

First of all notice that, since for each β ∈ R we have fλ = φλ + β−
(φλ+β)◦T , we can assume without loss of generality µλ(φλ) = 0. But
then

L̂λ(fλ hλ) = L̂λ(φλ hλ)− φλ hλ = −(1− L̂λ)φλ hλ.

Hence
φλ = h−1

λ (1− L̂λ)−1L̂λ(fλ hλ) ∈ C1.

�

Remark 7.5.4 The above result is quite sharp. Indeed, it shows that
if I is not strictly convex, then for each invariant measure ν holds
ν(f) = β = µ(f). So it suffices to find two invariant measures for
which the average of f differs (for example the average on two periodic
orbits) to infer that I is strictly convex.

Problem 7.19 Set σ := α′′(0). Show that, for a small, I(a) = a2

2σ +
O(a3). Show that if a > |f |∞, then I(a) = +∞.

The above discussion allows to conclude

m(A+
a,n(f)) ≤ m(Lnλ−h) ≤ Ce−

a2

2σ2 n+O(a3n).

Since similar arguments hold for the set A+
a,n(−f), it follows that we

have an exponentially small probability to observe a deviation from the
average. Moreover, the expected size of a deviation is of order n−

1
2 , to

see if this is really the case we a lower bound.

7.5.2 Large deviations. Lower bound

Let I = (α, β), fix c ∈ (0, β−α2 ) and let us consider a λ ∈ R such that

µλ(f̂) ∈ (α + c, β − c) = Ic. Let Sn =
∑n−1

k=0 f̂ ◦ T k, then µλ(Sn) =
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nµλ(f̂) and, by (7.5.20)

µλ

[n−1∑
k=0

f̂ ◦ T k − nµλ(f̂)

]2
 ≤ Cλn,

where Cλ depends continuously by λ. Thus, setting An,I = {x ∈ T1 :
1
nSn(x) ∈ I},

µλ(Acn,I) ≤ µλ

({∣∣∣∣∣
n−1∑
k=0

fλ ◦ T k
∣∣∣∣∣ ≥ cn

})

≤ c−2n−2µλ

∣∣∣∣∣
n−1∑
k=0

fλ ◦ T k
∣∣∣∣∣
2
 ≤ Cλc−2n−1.

It follows that there exists nλ ∈ N such that, for all n ≥ nλ, µλ(An,I) ≥
1
2 . We can then write

1

2
≤ `λ(An,Ihλ) ≤ C#e

−(n+m) lnαλ`λ
(
Ln+m
λ (1An,I )

)
. (7.5.23)

To conclude we must analyze a bit the characteristic function of An,I .
First of all, notice that if |Tnx− Tny| ≤ ε then for each z ∈ [x, y]

|DxT
n −DzT

n| ≤ |DxT
n| · (e

∑n−1
k=0 | lnDTkxT−lnD

Tkz
T | − 1)

≤ |DxT
n|(eC#

∑n−1
k=0 λ

−kε − 1) ≤ C#|DxT
n|.

By a similar estimate follows |DxT
n − DzT

n| ≥ C#|DxT
n| as well.

Moreover,

|Sn(x)− Sn(y)| ≤
n−1∑
k=0

|f |C1C#λ
−kε ≤ C#ε.

We can then write An,I ⊃ ∪lJl ⊃ An,Ic where Jl are disjoint intervals
such that |TnJl| ≤ ε. Choosing ε small enough it follow that the
oscillation of Sn on each Jl is smaller than c. Moreover

‖Ln1Jl‖BV = sup
|ϕ|∞≤1

∫
Jl

ϕ′ ◦ Tn ≤ sup
|ϕ|∞≤1

∫
Jl

d

dx

[
(DTn)−1ϕ ◦ Tn

]
+B|Jl|

≤ 2 sup
x∈Jl
|DxT

n|−1 +B|Jl| ≤ C#|Jl|.
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We can then continue our estimate started in (7.5.23),

1

2
≤ C#e

−(n+m) lnαλ+nλβ+mC#
∑
l

`λ
(
Ln+m(1Jl)

)
= C#e

−(n+m) lnαλ+nλβ+mC#
∑
l

`λ (m(Jl)(1 +O(ρm))))

≤ C#e
−n(lnαλ−λβ)m(An,I),

where we have chosen m large but fixed. The above computations
imply that, for each L > 0,

m(An,I) ≥ CLe−JL(I)n

where JL(I) = max{λ≤L : µλ(f)∈Ic} λa − lnαλ. Note that, if f is not a
coboundary and hence lnαλ is strictly convex, the maximum of λa −
lnαλ is attained at some finite value, hence, for L large enough, JL(I) =
sup{λ∈R : µλ(f)∈Ic} λa− lnαλ. This implies that

m(A+
a,n) ≥ C#e

−J(a)n

where J(a) = sup{λ : µλ(f)>a} λa− lnαλ.
The surprising fact is that the upper and lower bound are essentially

the same. To see this a little argument is needed.

7.5.3 Large deviations. Conclusions

In fact, it is possible to give a variational characterization of the rate
function in the spirit of general Large deviation theory [Var84, Str84,
DZ98].

Lemma 7.5.5 Let MT be the set of invariant probability measures
invariant with respect to T . Then

I(a) = − sup
{ν∈MT : ν(f)≥a}

hν(T ) = J(a).

Proof. By section 7.4.2 we have that, for each ν ∈ MT , lnαλ =
supν∈MT

{hν(T ) + λν(f)} = hµλ(T ) + λµλ(f). Thus for each ν ∈ MT

such that ν(f) ≥ a, we can write

I(a) ≤ max
λ≥0
{λ(a− ν(f))− hν(T )} = −hν(T ).
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On the other and

I(a) = sup
λ≥0
{λ(a− µλ(f))− hµλ(T )}.

If a > supµλ(f), then I(a) = +∞, otherwise let λ∗ be such that
µλ∗(f) = a,13 then

I(a) ≥ −hµλ∗ (T ) ≥ − sup
{ν∈MT : ν(f)≥a}

hν(T ).

Finally, since µλ and hµλ depend smoothly from λ,

J(a) = sup
{λ : µλ(f)>a}

λa− λµλ(f)− hµλ(T ) = I(a).

�

7.5.4 The Central Limit Theorem

We can now address the second question we have posed. From the
above discussion is clear that we must chose cn =

√
n.

Let f ∈ BV and set f̂ := f − µ(f), then

lim
n→∞

1

n

n−1∑
k=0

f̂ ◦ T k(x) = 0 m− a.e.

Let us set Ψn := 1√
n

∑n−1
k=0 f̂ ◦ T k. We can consider Ψn a random

variable with distribution Fn(t) := µ({x : Ψn(x) ≤ t}). It is well
known that, for each continuous function g holds14

µ(g(Ψn)) =

∫
R
g(t)dFn(t)

13Actually one must show that the sup is a max.
14If g ∈ C1

0 , then∫
R
gdFn = −

∫
R
Fn(t)g′(t)dt = −

∫
R
dt

∫
T1

dxχ{z : Ψn(z)≤t}(x)g′(t).

Applying Fubini yields∫
R
gdFn = −

∫
T1

dx

∫
R
dtχ{z : Ψn(z)≤t}(x)g′(t) = −

∫
T1

dx

∫ ∞
Ψn(x)

g′(t)dt =

∫
T1

dxg(Ψn(x)).
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where the integral is a Riemann-Stieltjes integral. It is thus clear that if
we can control the distribution Fn, we have a very sharp understanding
of the probability to have small deviations (of order

√
n) from the limit.

From the work in the previous section it follows that there exists δ > 0
such that, for each |λ| ≤ δ

√
n,

ϕn(λ) := µ(eiλΨn) = µ(Lniλ/√nh) = (1− σ2λ2

2n
+O(λ3n−

3
2 + ρn)‖f‖BV )n

= e−
σ2λ2

2 (1 +O(λ3n−
1
2 + nρn)‖f‖BV ).

(7.5.24)

The above quantity is called characteristic function of the random vari-
able and determines the distribution (at continuity points) via the for-
mula

Fn(b)− Fn(a) = lim
Λ→∞

1

2π

∫ Λ

−Λ

e−iaλ − e−ibλ

iλ
ϕn(λ)dλ,

as can be seen in any basic book of probability theory.15

Formula (7.5.24) means in particular that

lim
n→∞

m(eλΨn) = e−
σ2λ2

2 =: ϕ(λ).

What can we infer from the above facts? First of all a simple compu-
tation shows that

g(t) =
1

2π

∫
R
e−itλϕ(λ)dλ =

1√
πσ

e−
t2

2σ2

a random variable with such a density is called a Gaussian random vari-
able with zero average and variance σ. Accordingly, formula (7.5.24)
can be interpreted by saying that there exists a Gaussian random vari-
able G such that

1

n

n−1∑
k=0

f̂ ◦ T k ∼ 1√
n
G(1 +O(n−

1
2 ))

15In the case when there exists a density, that is an L1 function fn such that
Fn(b)− Fn(a) =

∫ b
a
fn(t)dt, then the formula above becomes simply

fn(t) =
1

2π

∫
R
e−itλϕn(λ)dλ,

and follows trivially by the inversion of the Fourier transform.
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in distribution. But what does this means concretely. Actual estimates
are made difficult by the fact that the distribution under study not
necessarily have a density, thus we are Fourier transforming function
that behave quite badly at infinity. To overcome such a problem we
can smoothen the quantities involved.

Let j ∈ C∞(R,R+) such that
∫
R j(t)dt = 1, j(t) = j(−t), and

j(t) = 0 for all |t| > 1, for each ε > 0 defined then jε(t) := ε−1j(ε−1t)
and

Fn,ε(t) :=

∫
R
jε(t− s)Fn(s)ds. (7.5.25)

A simple computation shows that, for each a, b ∈ R, holds

Fn(b+ ε)− Fn(a− ε) ≥ Fn,ε(b)− Fn,ε(a) ≥ Fn(b− ε)− Fn(a+ ε)

that is: if the measurements have a precision worst than 2ε, then Fn,ε
is as good as Fn to describe the resulting statistics. On the other
hand calling ϕn,ε the characteristic function associated to Fn,ε, holds
ϕn,ε(λ) = ϕn(λ)ĵ(ελ), where ĵ is the Fourier transform of j. Since now
Fn,ε is the law of a smooth random variable it has a density fn,ε and

fn,ε(t) =
1

2π

∫
R
e−iλtϕn(λ)ĵ(ελ)dλ

since j is smooth it follows that there exists C > 0 such that |ĵ(λ)| ≤
C(1 + λ2)−2. We can finally use formula (7.5.24) to obtain a quantita-
tive estimate

fn,ε(t) =
1

2π

∫ ε
√
n

−ε
√
n
e−iλtϕn(λ)ĵ(ελ)dλ+O(ε−5n−

3
2 )

=
1

2π

∫ ε
√
n

−ε
√
n
e−iλtϕ(λ)ĵ(ελ)dλ+O(ε−5n−

3
2 + n−

1
2 )

= g(t) +O(ε+ ε−5n−
3
2 + n−

1
2 ) = g(t) +O(n−

1
2 )

provided we choose n−
1
2 ≥ ε ≥ n−5. Which, as announced, means that,

if the precision of the instrument is compatible with the statistics, the
typical fluctuations in measurements are of order 1√

n
and Gaussian.

This is well known by sperimentalists who routinely assume that the
result of a measurement is distributed according to a Gaussian.16

16Note however that our proof holds in a very special case that has little to do
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7.6 Perturbation theory

To answer the questions posed at the beginning we need some per-
turbation theorems. Few such results are available (e.g., see [Kif88],
[BY93] or [Bal00] for a review), here we will follow mainly the theory
developed in [KL99, GL06] adapted to the special cases at hand.

For simplicity let us work directly with the densities and in the
case d = 1. Then L is the transfer operator for the densities. We will
start by considering an abstract family of operators Lε satisfying the
following properties.

Condition 1 Consider a family of operators Lε with the following
properties

1. A uniform Lasota-Yorke inequality:

‖Lnεh‖BV ≤ Aλ−n‖h‖BV +B|h|L1 , |Lnεh|L1 ≤ C|h|L1 ;

2.
∫
Lh(x)dx =

∫
h(x)dx ;

3. For L : BV → BV define the norm

|||L||| := sup
‖h‖BV ≤1

|Lf |L1 ,

that is the norm of L as an operator from BV → L1. Then we
require that there exists D > 0 such that

|||L − Lε||| ≤ Dε.

Condition 1-(3) specifies in which sense the family Lε can be con-
sidered an approximation of the unperturbed operator L. Notice that
the condition is rather weak, in particular the distance between Lε and
L as operators on BV can be always larger than 1. Such a notion of
closeness is completely inadequate to apply standard perturbation the-
ory, to get some perturbations results it is then necessary to drastically

with a real experimental setting. To prove the analogous statement for a realistic
experiment is a completely different ball game.
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restrict the type of perturbations allowed, this is done by Conditions 1-
(1,2) which state that all the approximating operators enjoys properties
very similar to the limiting one.17

To state a precise result consider, for each operator L, the set

Vδ,r(L) := {z ∈ C | |z| ≤ r or dist(z, σ(L)) ≤ δ}.

Since the complement of Vδ,r(L) belongs to the resolvent of L it follows
that

Hδ,r(L) := sup
{
‖(z − L)−1‖BV | z ∈ C \Vδ,r(L)

}
<∞.

By R(z) and Rε(z) we will mean respectively (z−L)−1 and (z−Lε)−1.

Theorem 7.6.1 ([KL99]) Consider a family of operators Lε : BV →
BV satisfying Conditions 1. Let Hδ,r := Hδ,r(L); Vδ,r := Vδ,r(L),
r > λ−1, δ > 0, then, if ε ≤ ε1(L, r, δ), σ(Lε) ⊂ Vδ,r(L). In addition,
if ε ≤ ε0(L, r, δ), there exists a > 0 such that, for each z 6∈ Vδ,r, holds
true

|||R(z)−Rε(z)||| ≤ Cεa.

Proof.18 To start with we collect some trivial, but very useful
algebraic identities.

17Actually only Condition 1-(1) is needed in the following. Condition 1-(2) simply
implies that the eigenvalue one is common to all the operators. If 1-(2) is not
assumed, then the operator Lε will always have one eigenvalue close to one, but the
spectral radius could vary slightly, see [LMD03] for such a situation.

18This proof is simpler than the one in [KL99], yet it gives worst bounds, although
sufficient for the present purposes.
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For each operator L : BV → BV and n ∈ Z holds

1

z

n−1∑
i=0

(z−1L)i(z − L) + (z−1L)n = 1 (7.6.26)

R(z)(z − Lε) +
1

z

n−1∑
i=0

(z−1L)i(Lε − L) +R(z)(z−1L)n(Lε − L) = 1

(7.6.27)

(z − Lε)
[
Gn,ε + (z−1Lε)nR(z)

]
= 1− (z−1Lε)n(Lε − L)R(z)

(7.6.28)[
Gn,ε + (z−1Lε)nR(z)

]
(z − Lε) = 1− (z−1Lε)nR(z)(Lε − L),

(7.6.29)

where we have set Gn,ε := 1
z

∑n−1
i=0 (z−1Lε)i.

Let us start applying the above formulae. For each h ∈ BV and
z 6∈ Vr,δ holds

‖(z−1Lε)n(Lε − L)R(z)h‖BV ≤ (rλ)−nA‖(Lε − L)R(z)h‖BV +
B

rn
|(Lε − L)R(z)h|L1

≤ [(rλ)−nA2C1 +Br−nDε]Hr,δ‖h‖BV < ‖h‖BV

Thus ‖(z−1Lε)n(Lε − L)R(z)‖BV < 1 and the operator on the right
hand side of (7.6.28) can be inverted by the usual Neumann series.
Accordingly, (z − Lε) has a well defined right inverse. Analogously,

‖(z−1Lε)nR(z)(Lε−L)h‖BV ≤ (rλ)−nA‖R(z)(Lε−L)h‖BV +Br−n|R(z)(Lε−L)h|L1 .

This time to continue we need some informations on the L1 norm of
the resolvent. Let g ∈ BV , then equation (7.6.26) yields

|R(z)g|L1 ≤
1

r

n−1∑
i=0

|(z−1L)ig|L1 + ‖R(z)(z−1L)ng‖BV

≤ 1

rn(1− r)
|g|L1 +Hδ,rA(rλ)−n‖g‖BV +Hδ,rBr

−n|g|L1

≤ r−n(Hδ,rB + (1− r)−1)|g|L1 +Hδ,rA(rλ)−n‖g‖BV
Substituting, we have

‖(z−1Lε)nR(z)(Lε − L)h‖BV ≤ {(rλ)−nAHδ,r2C1[1 +Br−n]

+Br−2n[Hδ,rB + (1− r)−1]Dε}‖h‖BV < 1,
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again, provided ε is small enough and choosing n appropriately. Hence
the operator on the right hand side of (7.6.29) can be inverted, thereby
providing a left inverse for (z−Lε). This implies that z does not belong
to the spectrum of Lε.

To investigate the second statement note that (7.6.27) implies

R(z)−Rε(z) =
1

z

n−1∑
i=0

(z−1L)i(Lε−L)Rε(z)−R(z)(z−1L)n(Lε−L)Rε(z).

Accordingly, for each ϕ ∈ BV holds

|R(z)ϕ−Rε(z)ϕ|L1 ≤ {r−n(1−r)−1ε+Hδ,r(λr)
−n2AC1+Hδ,rBε}‖Rε(z)ϕ‖BV .

�

7.6.1 Deterministic stability

The Lε are Perron-Frobenius (Transfer) operators of maps Tε which are
C1–close to T , that is dC1(Tε, T ) = ε and such that dC2(Tε, T ) ≤M , for
some fixed M > 0. In this case the uniform Lasota-Yorke inequality is
trivial. On the other hand, for all ϕ ∈ C1 holds∫

(Lεf − Lf)ϕ =

∫
f(ϕ ◦ Tε − ϕ ◦ T ).

Now let Φ(x) := (DxT )−1
∫ Tεx
Tx ϕ(z)dz, since

Φ′(x) = −(DxT )−1D2
xTΦ(x) +DxTε(DxT )−1ϕ(Tεx)− ϕ(Tx)

follows∫
(Lεf−Lf)ϕ =

∫
fΦ′+

∫
f(x)[(DxT )−1D2

xTΦ(x)+(1−DxTε(DxT )−1)ϕ(Tεx)].

Given that |Φ|∞ ≤ λ−1ε|ϕ|∞ and |1 − DxTε(DxT )−1|∞ ≤ λ−1ε, we
have∫

(Lεf−Lf)ϕ ≤ ‖f‖BV λ−1|ϕ|∞ε+|f |L1λ−1(B+1)ε|ϕ|∞ ≤ D‖f‖BV ε|ϕ|∞.
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By Lebesgue dominate convergence theorem we obtain the above in-
equality for each ϕ ∈ L∞, and taking the sup on such ϕ yields the
wanted inequality.

|Lεf − Lf |L1 ≤ D‖f‖BV ε.

We have thus seen that all the requirements in Condition 1 are satisfied.
See [Kel82] for a more general setting including piecewise smooth maps.

7.6.2 Stochastic stability

Next consider a set of maps {Tω} depending on a parameter ω ∈ Ω. In
addition assume that Ω is a probability space and consider a measure
P on Ω. Consider the process xn = Tωn ◦ · · · ◦ Tω1x0 where the ω
are i.i.d. random variables distributed accordingly to P and let Eµ be
the expectation of such process when x0 is distributed according to µ.
Then, calling Lω the transfer operator associated to Tω, we have

E(f(xn+1) | xn) = LP f(xn) :=

∫
Ω
Lωf(xn)P (dω).

Then if
|Lωh|BV ≤ λ−1

ω |h|BV +Bω|h|L1

integrating yields

|LPh|BV ≤ E(λ−1
ω )|h|BV + E(Bω)|h|L1

And the operator LP satisfy a Lasota-Yorke inequality provided that
E(λ−1) < 1 and E(B) <∞.

In addition, if for some map T and associated transfer operator L,

E(|Lωh− Lh|) ≤ ε|h|BV

then we can apply perturbation theory and obtain stochastic stability.

7.6.3 Computability

If we want to compute the invariant measure and the rate of decay of
correlations, we can use the operator Pt defined in (7.3.6) and define
Lt,m = PtLm. By the estimates in Lemma ?? it follows

|Lt,mh|BV ≤ 4dσm|h|BV +B|h|L1 .
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We can then chose the smallest m so that 4dσm = σ1 < 1. Moreover,
we also saw that

|Lt,mh− Lh| ≤ t−1|h|BV .
So we are again in the realm of our perturbation theory and we have
that the finite dimensional operator Lt,m has spectrum close to the one
of the transfer operator. We can then obtain all the info we want by
diagonalizing a matrix.

7.6.4 Linear response

Linear response is a theory widely used by physicists. In essence it
says the follow: consider a one parameter family of systems Ts and the
associated (e.g.) invariant measures µs, then, for a given observable f
one want to study the response of the system to a small change in s,
and, not surprisingly, one expects µs(f) = µ0(f)+sν(f)+o(s). That is
one expects differentiability in s. Yet differentiability is is not ensured
by Theorem 7.6.1. Is it possible to ensure conditions under which linear
response holds? The answer is yes (for example if holds if the maps
are sufficiently smooth and the dependence on the parameter is also
smooth in an appropriate sense). To prove it one need a sophistication
of Theorem 7.6.1 that can be found in [GL06].

7.6.5 The hyperbolic case

One can wonder is the previous approach can be applied to uniformly
hyperbolic systems and partially hyperbolic system. The answer is yes
although the work in this direction is still in progress and the price to
pay is the need to consider rather unusual functional spaces (space of
anysotropic distributions). Just to give a vague idea let us look at a
totally trivial example: toral automorphisms.

Then one can consider the norms:

‖f‖p,q :=
∑

k∈Z2d\{0}

|fk|
|k|p

1 + |〈vs, k〉|p+q
+ |f0|,

where fk are the Fourier coefficients of f and vs is the unit vector in
the stable direction. Then

‖[Lf‖p,q ≤ C1‖f‖p,q,
‖[Lnf‖p,q ≤ C3µ

n‖f‖p,q +B‖f‖p−1,q+1.
(7.6.30)
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we have thus the Lasota-Yorke inequality. Moreover on can easily check
the relative compactness of {‖f‖p,q ≤ 1} with respect to the topology
induced by the norm ‖ · ‖p−1,q+1, hence our previous theory applies
almost verbatim.

To have a more precise idea of what can be done, see [GL06, BT07].

Hints to solving the Problems

7.18 Let `λ, hλ be analytic. Let us define zλ = e−
∫ λ
0 `ξ(h

′
ξ)dξ, define

ĥλ = zλhλ and ˆ̀
λ = z−1

λ `λ and check that they are normalized as
required.

Notes

Large deviations are taken from Lai-Sang article and Keller book.
The stochastic stability is reasonably well understood (Cowienson)

but what about the smooth dependence from a parameter (linear re-
sponse)? Counterexamples in d = 1 but unknown in higher dimensions.
The uniformly hyperbolic case is well understood but not much is know
on how to apply the present ideas to the partially hyperbolic case and
to the case of systems with discontinuities, although a concentrated
effort is taking place to extend the theory in such directions.


