
Chapter 3

Bifurcation Theory (the minimum)

Continuing the analysis of the previous section we would like to
put it on a more systematics ground: we worried only about hyperbolic
fixed points; are more complex situations relevant? To answer to such
questions it is first necessary to understand their meaning, that is:
what does it mean for a scenario to be irrelevant.

3.1 Generic Vector fields

Let us consider a first order autonomous differential equation,

ẋ = V (x) (3.1.1)

where V ∈ C1(Rd,Rd) and x ∈ C1(R,Rd). We are interested in the
typical local behavior of such systems. Unfortunately, before being able
to even address such an issue, it is necessary to give a technical meaning
to the three words typical, local and behavior.

3.1.1 Local behavior

We say that we understand the behavior of a vector field if it is equiva-
lent to a vector field that yields an ODE that can be explicitly solved.

Definition 3.1.1 We say that two vector fields V,W are equivalent
in the open set U , if, for each t > 0, there exists a homeomorphism
F : U → U such that, calling φVt , φWt the flows generated by the vector
fields, holds φvt ◦ F = F ◦ φWt .
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By local understanding in a region K we mean that for each point
x ∈ K we are able to consider some neighborhood of x in which we
understand the solutions of (3.1.1).1

If we could consider only neighborhoods U in which V (x) 6= 0 with,
at most, the exception of one point where the linear part is hyperbolic,
then we understand already the local behavior. In fact, either V (x̄) 6= 0
and then the flow box Theorem tells us that the field has the same local
behavior than a constant vector field; or, if V (x̄) = 0, then Grobmann-
Hartman Theorem tells us that the field has the same local behavior
than its linear part.

Of course, this is not always the case (think of the case V ≡ 0), our
claim is that it is typically.

3.1.2 Typical

Definition 3.1.2 Given a topological space Ω, we say that a set A ⊂ Ω
is generic if it is open and dense. A set is typical if it is the countable
intersection of generic sets (this is also called a residual set).

Now C1(Rd,Rd) is a Banach space hence the topology is trivially de-
termined by the norm.

Problem 3.1 Prove that the finite intersection of generic set is generic.
Prove that a residual set is dense.

Problem 3.2 Give an example of a typical set in R with zero Lebesgue
measure.

Next, for each K ⊂ Rd, let us define

AK := {V ∈ C1(Rn,Rn) : ∀x ∈ K, V (x) = 0 implies ∂xV hyperbolic }

Remark 3.1.3 In the following we will prove that, for K compact, AK
is generic, hence ARd is typical. Note that the same holds for

{V ∈ C1(Rn,Rn) : ∀x ∈ K, V (x) = 0 implies det(∂xV ) 6= 0}.
1Note that, if K is compact, then finitely many such neighborhoods will cover K.

On the other hand if, for example, K = Rd, then countably many neighborhoods
will do the job.
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Yet, the goal is to find the smallest possible generic set (see Problems
3.25, 3.26). This allows to obtain a generic understanding with the
least effort.

Problem 3.3 Prove that, for each compact set K ⊂ Rd, if V ∈ AK ,
then V has only finitely many zeroes in K.

Problem 3.4 Prove that, for each compact set K ⊂ Rd, AK is open.

To prove that AK is generic we need to establish the density, this is
not entirely obvious and we need a result of independent interest.

Theorem 3.1.4 (Sard–baby version) Let F ∈ C1(Rd,Rd), and A =
{x ∈ Rd : det(DxF ) = 0}, then F (A) has zero Lebesgue measure.

Proof. Let Qδ(x) := {z ∈ Rd : |xi − zi| ≤ δ ∀i ∈ {1, . . . , d}},
clearly it suffices to prove that for each x̄ ∈ Rd the Lebesgue measure of
F (A∩Q1(x̄)) is zero. Now, for each n ∈ N and k ∈ {−n, . . . , 0, . . . , n}d =:
Sn, let xk := k

n and ∆k := Q1/2n(x̄ + xk). Clearly Q1(x̄) ⊂ ∪k∈Sn∆k.
We will consider only the ∆k such that ∆k ∩A 6= ∅. For each such ∆k

let us chose ξk ∈ ∆k ∩A.

Next, consider the function Ψ : Q1(x̄)2 → R defined by

Ψ(x, y) :=

{‖F (x)−F (y)−DxF (x−y)‖
‖x−y‖ if x 6= y

0 if x = y

Since F = C1 we have Ψ ∈ C0, hence for each ε > 0 there exists nε ∈ N
such that

sup
‖x−y‖≤n−1

Ψ(x, y) < ε

for each n > nε. Since ξk ∈ A, there exists vk ∈ Rd, ‖vk‖ = 1, such that
〈vk, DξkFw〉 = 0 for all w ∈ Rd. Hence, setting C = ‖DF‖∞ and for n
large enough, F (∆k) ⊂ {F (ξk) + w + tvk ∈ Rd : 〈w, vk〉 = 0; ‖w‖ ≤
Cn−1; |t| ≤ ε

n)}.
Thus, calling λ the Lebesgue measure,

λ(F (∆k)) ≤ 4d−1Cd−1n−d−1 ε

n
= λ(∆k) · 4d−1Cd−1ε.



52 CHAPTER 3. BIFURCATION THEORY (THE MINIMUM)

Thus

λ(F (A ∩Q1(x))) ≤ 4d−1Cd−1
∑
k∈Sn

λ(∆k)ε = 4dCd−1ε,

as announced. �

Problem 3.5 Use Sard’s Theorem to show that, for each compact set
K ⊂ Rd, AK is dense in C1(Rd,Rd). Prove that ARd is typical.

3.2 Generic families of vector fields

Our next aim is to consider a situation in which the system has a
control parameter. That is, it is described by the equations

ẋ = V (x, λ) (3.2.2)

where x ∈ Rd and λ ∈ [−2, 2] is the parameter that, in principle, can
be varied. Now by local understanding in a region K we mean that
for each point (x̄, λ̄) ∈ K × [−1, 1] =: K1 we can find a neighborhood
of the form U × (λ− ε, λ+ ε) in which we are able to understand the
behavior of the solutions of (3.2.2).

Let us now try to understand the local picture for typical families
of vector fields. In analogy with the previous section, for any K ⊂ Rd,
let us consider

ĀK := {V ∈ C1 : ∀ (x, λ) ∈ K1, V (x, λ) = 0 implies

∂xV (x, λ) hyperbolic }

Problem 3.6 Prove that if V ∈ ĀK , then for each (x̄, λ̄) ∈ K× [−1, 1]
there exists an open set of the form U × (−ε + λ̄, ε + λ̄) =: U × I
such that either V (x, λ) 6= 0 or there exists X ∈ C1(I,K) such that
V (X(λ), λ) = 0 for each λ ∈ K and there are no other zeroes in U × I.
Then, prove that ĀK is open.

Clearly the above situations can be treated exactly as we did in the pre-
vious section and are therefore locally understandable. Unfortunately,
the above does not exhaust all the possibilities.

Lemma 3.2.1 For each K with non empty interior ĀK is not generic.
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Proof. Since ĀK is open, the problem must be the density. To
see this let us consider, for example, the case d = 1, a compact set K
with interior containing zero and the family

V (x, λ) = λa+ λx+ bx2. (3.2.3)

Now let us consider anyW ∈ C1(R×[−1, 1],R) and look at Ṽ (x, λ, µ) :=
V (x, λ)+µW (x, λ). The claim is that for each µ sufficiently small, then
Ṽ (x, λ, µ) 6∈ ĀK . In fact, there exists (x(µ), λ(µ)) ∈ K such that both
Ṽ (x(µ), λ(µ), µ) = 0 and ∂xṼ (x(µ), λ(µ), µ) = 0. To see this we define
the function F : R3 → R2

F (x, λ, µ) :=

(
λa+ λx+ bx2 + µW (x, λ)
λ+ 2bx+ µ∂xW (x, λ)

)
=

(
Ṽ

∂xṼ

)
, (3.2.4)

clearly we are looking for (x(µ), λ(µ)) such that F (x(µ), λ(µ)) = 0.
Since F (0, 0, 0) = 0 we can apply the implicit function theorem pro-
vided (

0 a
2b 1

)
is invertible, that is if ab 6= 0. We have thus seen that the family has
an open neighborhood disjoint from ĀK , hence the latter set cannot be
dense. �

Thus, to have a generic situation we need to consider a larger set.
Looking at the above example it is natural to ask that ∂λV 6= 0 if

det(∂xV ) = 0. This is a good idea but it does not suffice to have a
nice theory. As we have seen,2 and we will see later on, it is natural
to have some condition on the second derivative. It is then necessary
to consider at least C2 vector fields, since we will see in the following
that higher derivatives can play a role, we will consider Cr vector fields,
r ≥ 2. Accordingly from now on the genericity will be according to the
Cr topology. This would not have changed the previous discussion, see
3.32.

The above can be made precise in many ways. Here is a simple, but
not totally satisfactory, possibility. For K ⊂ Rd let K1 := K × [−1, 1].

BK =

{
V ∈ Cr : ∀ (x, λ) ∈ K1, V (x, λ) = 0 =⇒ rank (∂xV ∂λV ) = d

}
2In applying the implicit function theorem to (3.2.4).
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Let us understand how the vector fields in BK look like.

Lemma 3.2.2 If V ∈ BK and V (x̄, λ̄) = 0, then there exists ε > 0
and a neighborhood U 3 x̄ such that the set of zeroes of the vector field
V (x, λ) in U × (λ̄− ε, λ̄+ ε) consists of a smooth curve.

Proof. First suppose, without loss of generality, that (x̄, λ̄) =
(0, 0).

If det(∂xV (0, 0)) 6= 0, then we can argue as in Problem 3.4. The
implicit function theorem yields ε > 0 a neighborhood U of zero and
x ∈ Cr([−ε, ε],Rd) such that V (x(λ), λ) = 0 are the only zeroes of the
vector fields V (·, λ), λ ∈ [−ε, ε], in U .

On the contrary, if det(∂xV (0, 0)) = 0 then the approach based on
a direct application of the implicit function theorem fails. The problem
is that the curve of the fixed points it is not a graph over λ so one need
to change variables before applying the implicit functions theorem, let
us see how.

The null space of ∂xV (0, 0) must have dimension one, otherwise
rank (∂xV (0, 0) ∂λV (0, 0)) < d, let v ∈ Rd, ‖v‖ = 1, be the unique
vector such that ∂xV (0, 0)v = 0. Consider the change of variables
(λ, x) = Fv(ξ, τ) defined by

x = ξ − τv
λ = 〈ξ, v〉.

(3.2.5)

It is easy to check that F−1
v is defined by

τ = λ− 〈x, v〉
ξ = λv + x− 〈x, v〉v.

Then define the field Ṽ := V ◦ Fv. Since Fv(0, 0) = 0, Ṽ (0, 0) = 0. To
apply the implicit function theorem in the new variable we need ∂ξṼ
to be invertible, but ∂ξṼ (ξ, τ) = ∂xV (x, λ) + ∂λV (x, λ)⊗ v.3 It follows
that ∂ξṼ (0, 0) must be invertible, otherwise there would exists z ∈ Rd
such that, for all η ∈ Rd,

0 = 〈z, ∂ξṼ (0, 0)η〉 = 〈z, ∂xV (0, 0)η〉+ 〈z, ∂λV (0, 0)〉〈v, η〉.
3Given two vectors v, w ∈ Rd, by v ⊗ w we mean the matrix with elements

(v ⊗ w)ij = viwj .
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Choosing η = v follows 〈z, ∂λV (0, 0)〉 = 0 and hence ∂xV (0, 0)T z = 0.
But this would mean that all the column of the rectangular matrix
(∂xV (0, 0) ∂λV (0, 0)) are orthogonal to z contradicting the definition
of BK .

So we can apply the implicit function theorem and obtain (for ξ, τ
in a neighborhood of zero) a C1 function ξ(τ) such that Ṽ (ξ(τ), τ) = 0,
with ξ′(τ) = (∂xV + ∂λV ⊗ v)−1∂xV v. Then, setting (x(τ), λ(τ)) :=
F (ξ(τ), τ) we have a C1 curve and a neighborhood of zero in Rd+1 such
that V (x(τ), λ(τ)) = 0 and no other zero is present in the neighbor-
hood. Note that

x′(τ) =
dx(τ)

dτ
= −(∂xV + ∂λV ⊗ v)−1∂λV. (3.2.6)

To conclude, we note that if λ(τ) were invertible, then we could
have parametrized the curve as (x(λ), λ) without the above change
of coordinates. It is then natural to investigate the points for which
dλ
dτ = 0.

dλ

dτ
= 〈ξ′(τ), v〉 = 〈(∂xV + ∂λV ⊗ v)−1∂xV v, v〉. (3.2.7)

Since ∂xV (0, 0)v = 0, dλ
dτ (0) = 0. �

Problem 3.7 Show that BRd is typical.

We have thus a typical set, yet it contains behaviors that we have
never analyzed: equilibrium points with derivative having a one dimen-
sional kernel and equilibrium points with no kernel but non hyperbolic
derivative. It would be convenient if we could limit the appearance of
such situations to a bare minimum. To do this systematically would
require the development of a formalism beyond the present goals. Yet,
for the case of one parameter families it is still possible to do it naively,
provided one is willing to put up with some boring computations.

Definition 3.2.3 Given V ∈ Cr we call a point (x̄, λ̄) ∈ Rd+1 such
that V (x̄, λ̄) = 0 and V (·, λ̄) 6∈ AU , for a neighborhood U of x̄, a
bifurcation point. Let (x̄, λ̄) be a bifurcation point, we call such point
non degenerate, if rank

(
DV (x̄, λ̄)

)
= d − 1, 〈w,D2V (v, v)〉 6= 0 where

v, w are such that DV v = DV Tw = 0. We call the the bifurcation point
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regular if it is non degenerate or if det
(
DV (x̄, λ̄)

)
6= 0 but there are two

eigenvalues with zero real part and Tr
(
Π0

[
d
dλA(λ)

]
Π0

)
6= 0 where Π0 is

the eigenprojector on the eigenspace associated to the above eigenvalues
and A(λ) = ∂xV (x(λ), λ), where x(λ) is determined by V (x(λ), λ) = 0.

The idea is then to define the new sets

B̃K = {V ∈ BK : all the bifurcation points are regular}.

Let us show that the elements of B̃K enjoy a nice characterization.

Lemma 3.2.4 In B̃K the bifurcation points are isolated.

Proof. Let us start analyzing the case of non degenerate bifur-
cation points, suppose without loss of generality that the bifurcation
point is at (0, 0). By Lemma 3.2.2 we know that the zeroes of V lie
on a curve (x(τ), λ(τ)), with the derivative with respect to τ given by
(3.2.6), (3.2.7). We know that there exists unique normalized vectors
w, v such that ∂xV (0, 0)v = [∂xV (0, 0)]T w = 0. In addition, (3.2.7)
can be written has

dλ

dτ
= 〈ξ′(τ), v〉 = 〈∂xV v, (∂xV T + v ⊗ ∂λV )−1v〉.

Also note that (∂xV (0, 0)T + v ⊗ ∂λV (0, 0))w = v〈∂λV (0, 0), w〉,4 and
that (∂xV (0, 0) + ∂λV (0, 0) ⊗ v)v = ∂λV (0, 0) and remember that we
have a bifurcation point iff dλ

dτ = 0. If the bifurcation point it is not
isolated, then it must be that also the second derivative at zero is zero.5

To show that we have an isolated point it thus suffices to compute the
second derivative and show that it is not zero at zero. Since for τ = 0
we have ∂xV v = 0, remembering (3.2.6) we have

d2λ

dτ2
(0) =

∑
i

〈∂xi∂xV v, (∂xV T + v⊗∂λV )−1v〉x′i =
∑
i

〈∂xi∂xV v,w〉vi
〈∂λV w〉

,

which is different form zero iff 〈∂2
xV (v, v), w〉 6= 0.

4 Remark that this implies w = α(∂xV (0, 0)T + v ⊗ ∂λV (0, 0))−1v and α =
〈∂λV (0, 0), w〉 6= 0 otherwise the vector field would not belong to BK .

5Just compute the limit defining the derivative along a sequence of zeroes of λ
that converge to zero.
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We are left with the case det(∂xV (x̄, λ̄)) > 0 but with an eigenvalue
which has a zero real part. This means that we have two purely imagi-
nary eigenvalues. Let Π0 be the eigenprojection associated to such two
eigenvalues. By perturbation theory (see Appendix C) it follows that
there exists a projector family Π(x, λ) such that Π∂xV = ∂xVΠ and
Π(x̄, λ̄) = Π0.

Problem 3.8 Show that a two by two real matrix has purely imaginary
eigenvalues iff its trace is zero and the determinant positive.

Then we have Tr(Π0∂xV (x̄, λ̄)Π0) = 0. Now, let x(λ) be the curve of
the zeroes of V , then

d

dλ
Tr(Π∂xVΠ)

∣∣∣∣
λ=0

= Tr

(
Π0

[
d

dλ
∂xV

]
Π0

)
since Π2 = Π implies Π

(
d
dλΠ

)
Π = 0.6 This concludes the argument.

�

Problem 3.9 Show that B̃K is still generic.

Thus, to achieve a typical local understanding of the behavior of
one parameter families of vector fields we have to worry only about
families with, at most, one regular bifurcation point. Let us suppose,
without loss of generality, that the regular bifurcation point is at (0, 0),
then by Taylor expansion

V (x, λ) = a(λ) +A(λ)x+
1

2
〈x,B(λ), x〉+R(x, λ), (3.2.8)

where B is a vector of d×d symmetric matrices and a(0) = 0, R(0, λ) =
∂xR(0, λ) = ∂2

xR(0, λ) = 0.

Due to the previous discussion we need to consider only the follow-
ing cases

a) AT (0) has one, and only one, zero eigenvalue w and 〈w, a′(0)〉 6= 0;

b) A(0) has two purely imaginary conjugated eigenvalues.

6 Indeed, Tr(Π′∂xVΠ) = Tr(ΠΠ′∂xVΠ) = Tr((ΠΠ′Π∂xV ) = 0. Analogously,
Tr(Π∂xVΠ′) = 0.
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3.3 One dimension

In the one dimensional case (b) cannot take place. Then in (3.2.8) we
have a = a(0) 6= 0, A(0) = 0, c = B(0) 6= 0. Then V (x, λ) = 0 has
no solutions if ac > 0, while for ac < 0 there are the two solutions

x = ±
√
−λb
B +O(λ). We have therefore the generic picture: either two

points collide and kill each other or there is a creation of two zeroes of
the vector field.

Problem 3.10 Study the solutions of

ẋ =
B

2
x2 + g(x)

near zero when g(0) = g′(0) = g′′(0) = 0.

Problem 3.11 Prove that the two equilibrium points of the vector field
(3.2.8) are one attractive and the other repulsive.

The above scenario is called a saddle-node bifurcation.
A natural question is if there exists a simpler standard form of the

above bifurcation. Indeed, we can try to kill some of the terms in 3.2.8
by a change of variable.

Problem 3.12 Show that with a change of variables of the type x =
αλ+ ρz, one can change the vector field (3.2.8) to the from Ṽ (z, λ) =
λ+ bz2 +O(λ2) + o(z2).

The above is the normal form of the saddle node bifurcation. This
type of reduction can be made for each bifurcation and gives rise to
the large field of normal form theory which, unfortunately, goes beyond
the scopes of the present notes.

3.4 Two dimensions

3.4.1 A zero eigenvalue

In this case the vector field must have the form (possibly after a linear
change of variable to put ∂Vx(0, 0) in diagonal form)

V (x, λ) =

(
0 0
0 ν

)
x+ bλ+

1

2

(
〈x,B1x〉
〈x,B2x〉

)
+ λCx+O(λ2) + o(‖x‖2),

(3.4.9)
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with b1, B1 6= 0. It easy to show that the scenario is exactly the same
than in the one dimensional case. We leave the details to the reader.

3.4.2 Two purely imaginary eigenvalues: Hopf bifurca-
tion

In this case the vector field must have the form (possibly after a linear
change of variable to put ∂Vx(0, 0) in chosen form, see Problem 3.33)

V (x, λ) = Ax+R(x, λ), (3.4.10)

with A =

(
0 −ω0

ω0 0

)
for some ω0 > 0, R(0, 0) = ∂xR(0, 0) = 0 and

Tr(∂xxR(0, 0)A−1∂λR(0, 0)− ∂xλR(0, 0)) 6= 0.
In the above situation no new fixed point can appear, yet one ex-

pects something to happen. We will see that, depending on λ, a pe-
riodic orbit circling the fixed point is created. This is called an Hopf
bifurcation.

To see how such an orbit is created some work is needed. To mini-
mize it, we start by performing some changes of variables that reduces
the ODE to a simpler one.

Problem 3.13 Show that, with a change of coordinates of the type x =
ξ+α(λ), the remainder R in (3.4.10) can be made to satisfy R(0, λ) = 0,
for each λ small enough, ∂ξR(0, 0) = 0 and Tr(∂ξλR(0, 0)) 6= 0.

Problem 3.14 Show that with a further change of variables x = D(µ)z,
λ = µρ(µ) one can put (3.4.10) in the form

ż = [ω(µ)J + µ1] z +R(z, µ), where J =

(
0 −1
1 0

)
, (3.4.11)

with ω(0) = ω0 and R(0, µ) = ∂zR(0, µ) = 0.

Problem 3.15 Find the solutions of (3.4.11) in the case R ≡ 0.

Given that the solutions of the linear part of (3.4.11) rotate around
zero almost in circles, it may occur the idea to treat the problem in
polar coordinates. In fact this point of view is quite advantageous and
we will adopt it. The reader who wants to appreciate the advantages
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of this choice is invited to try to do the following analysis in Euclidean
coordinates.

The polar coordinates can be written as x = ρv(θ), where ρ ∈ R+,
θ ∈ R and v(θ) := (cos θ, sin θ).

Remark 3.4.1 Note that such a change of coordinates is singular for
ρ = 0. In addition, it is not globally one-one. Yet, to consider θ in
the universal cover of S1 rather than in S1 will be very useful in the
following.

If we substitute such coordinates in (3.4.11), we obtain

ρ̇v(θ) + ρn(θ)θ̇ = µρv(θ) + ω(µ)ρn(θ) +R(ρv(θ), µ),

where n(θ) := (− sin θ, cos θ). That is

ρ̇ = µρ+ 〈v(θ), R(ρv(θ), µ)〉 =: µρ+ a(θ, ρ, µ)

θ̇ = ωµ + ρ−1〈n(θ), R(ρv(θ), µ)〉 =: ω(µ) + b(θ, ρ, µ),
(3.4.12)

where a(θ, 0, µ) = ∂ρa(θ, 0, µ) = b(0, µ) = 0. In addition, note for later
use that, ∂2

ρa(θ, 0, 0) and ∂ρb(θ, 0, 0) are homogeneous trigonometric
polynomials of degree three, while ∂3

ρa(θ, 0, 0) and ∂2
ρb(θ, 0, 0) are of

degree four. By Problem 3.35 it follows that we can write a(θ, ρ, µ) =
a0(θ, µ)ρ2 + a1(θ, ρ, µ)ρ3 and b(θ, ρ, µ) = b0(θ, µ)ρ + b1(θ, ρ, µ)ρ2. Fi-
nally, the reader can easily verify that a ∈ Cr, while b ∈ Cr−1.

Note that the equation (3.4.12) is well defined also for ρ = 0
but in such a case, instead of a fixed point, it has the periodic or-
bit (ρ(t), θ(t)) = (0, ω0t). Thus in polar coordinates for ρ = 0 we have
a rotation, this captures the behavior of the system much better than
the fixed point in Euclidean coordinates.

Problem 3.16 Solve (3.4.12) in the case b = 0, a = ρ2. Do it for
b = 0, a = µρ2 + ρ3.

Since for small ρ we have θ̇ > 0, it is convenient to use θ rather
than t to parameterize the motion (here is now evident the advantage
of using the universal cover of S1). Calling again ρ the distance from
the origin as a function of θ we have

dρ

dθ
=
µρ+ a(θ, ρ)

ω + b(θ, ρ)
=:

µ

ω
ρ+ β(θ, µ)ρ2 + γ(θ, ρ, µ)ρ3, (3.4.13)
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where

β(θ, µ) = ω−1a0(θ, µ)− µω−2b0(θ, µ)

γ(θ, 0, µ) = µω−3b20 + a0b0ω
−2 − µb1ω−2 + a1ω

−1.

Note, that β(θ, 0) is a trigonometric homogeneous polynomial of third
degree while γ(θ, 0, 0) is the sum of two monomial, one of degree four
and one of degree six.

It is now convenient to perform a last change of variables: ρ = νr,
µ = ±ν2, ν ≥ 0.7 Under such changes of variables (3.4.13) becomes

dr

dθ
= ± ν2

ω(±ν2)
r + β(θ,±ν2)νr2 + ν2γ(θ, νr,±ν2)r3, (3.4.14)

Remark 3.4.2 The reader my wonder what is going on: if the coeffi-
cients would not depend on θ, then the periodic orbit would be circular
and would correspond to a zero in the above vector field. Such a zero
would occur for r = O(ν−1βγ−1), thus it seems that I have just done
the wrong scaling. The point is that the above naive analysis is correct
only if we consider the average (with respect to θ) of the coefficients,
but the average of β is zero! This is a very simple instance of a general
theory called averaging.

Remark 3.4.3 In the following we will choose the case in which µ > 0,
hence the change of variable with the plus is selected. The computations
for µ < 0 are completely analogous and are left to the reader.

Let us call r(θ, ξ, ν) the solution of (3.4.14) with initial condition ξ
and parameter ν.

Problem 3.17 Prove that, for each θ ∈ [0, 2π] the function r(θ, ·, ·)
are Cr−1.

We are finally ready to prove the existence of a periodic orbit.
Clearly, an orbit is periodic if and only if r(0, ξ, ν) = r(2π, ξ, ν). In
other words, if we look at the motion only when it crosses the {θ = 0

7In fact, we have two different changes of variable according to the sign of µ.
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mod 2π} line, then we see the orbit always at the same point. We have
thus another instance of a Poincaré section.

In concrete, if we consider the map S : R2
+ → R+ defined by

S(ξ, ν) := r(2π, ξ, ν), then the periodic orbits of the flow correspond to
the fixed points of the maps S(·, ν).8

Our last task is thus to study such a maps. The right idea is to
develop them in power series of ν. Note that r(θ, ξ, 0) satisfies the
Cauchy problem

dr

dθ
= 0

r(0, ξ, 0) = ξ.

Thus S(ξ, 0) = ξ. To compute the derivative we must compute η :=
∂νr(θ, ξ, ν). Such a derivative satisfies the equation obtained by differ-
entiating (3.4.14) (see Theorem 1.1.13)

dη

dθ
=

2ν

ω
r − 2ν3ω′

ω2
r +

ν2

ω
η + βr2 + 2νrηβ + 2ν2r2∂ν2β

+ 2νγr3 + 3ν2r2ηγ + 2ν3r3∂ν2γ + ν3r3(r + νη)∂νrγ

η(0, ξ, ν) = 0.

(3.4.15)

Setting ν = 0 in the above equation yields η(θ, ξ, 0) = ξ2
∫ θ

0 β(ϕ, 0)dϕ.
Accordingly, ∂νS(ξ, 0) = 0 (see Problem 3.36).

To conclude we need to compute the second derivative at ν = 0.
Setting ζ(θ, ξ) = ∂νη(θ, ξ, 0) and differentiating (3.4.15), yields

dζ

dθ
=

2

ω0
ξ + 4βξη(θ, ξ, 0) + 2γ(θ, 0, 0)ξ3

ζ(0, ξ, 0) = 0.

which yields

ζ(θ, ξ) =
2θ

ω0
ξ + 4ξ

∫ θ

0
β(ϕ, 0)η(ϕ, ξ, 0)dϕ+ 2ξ3

∫ θ

0
γ(ϕ, 0, 0)dϕ.

8I mean the non trivial ones, since zero is always a trivial fixed point by con-
struction.
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Next, note that dη(ϕ,ξ,0)
dϕ = ξ2β(ϕ, 0), hence

∫ θ

0
β(ϕ, 0)η(ϕ, ξ, 0)dϕ =

η(θ, ξ, 0)2

2ξ2
=
ξ2

2

(∫ θ

0
β(ϕ, 0)dϕ

)2

.

Thus, setting γ̄ =
∫ 2π

0 γ(ϕ, 0, 0)dϕ, we have9

S(ξ, ν) = (1 +
2π

ω0
ν2)ξ + ξ3γ̄ν2 + ν3ξΓ(ξ, ν) (3.4.16)

To study the solution of S(ξ, ν) = ξ for ν 6= 0 and ξ 6= 0 it is convenient
to introduce the function F (ξ, ν) = ν−2ξ−1(S(ξ, ν) − ξ) = 2π

ω0
+ ξ2γ̄ +

νΓ(ξ, ν).
If γ̄ > 0, then F (ξ, 0) has no solutions different from zero and the

same must hold for small ν.
If γ̄ < 0, then ξ0 =

√
− 2π
ω0γ̄

is the only positive solution of F (ξ, 0) =

0. We can then apply the implicit function theorem since F (ξ0, 0) = 0
and

∂ξF (ξ0, 0) =
2π

ω0
+ 3ξ2γ̄ = −4π

ω0
6= 0.

As a conclusion we have a unique ξ(ν) = ξ0+O(ν) such that S(ξ(ν), ν) =
ξ(ν) for ν 6= 0.

Problem 3.18 Compute, in terms of the Tailor coefficients of V , what
it means γ̄ = 0 and shows that it is not possible for V ∈ B̃R2.

3.5 The Hamiltonian case

It is important to note that non generic situations may appear due to
symmetries or other type of constraints. To give an example of such a
situation let us consider an Hamiltonian vector field, that is a vector
field of the type V (x, p) = (∂pH,−∂xH) for some function H(x, p). In
this case

DV =

(
∂xpH ∂ppH
−∂xxH −∂xpH

)
.

Note that the trace of DV is always zero. Hence if V (x, p) = 0 and
detDV 6= 0 either the fixed point is hyperbolic or is has two purely

9Since S(0, ν) = 0, the coefficient of ν3 must have the form ξΓ.
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imaginary eigenvalues. This means that having two purely imaginary
eigenvalues is generic for Hamiltonian vector fields, contrary to the
general ones. Analogously the situation for a one parameter family,
already when (x, p) ∈ R2 is more complex. For example, at a generic
bifurcation point the vector field will have two, not one, zero eigenval-
ues.

In fact, for mechanical systems, the Hamiltonian has often the
form H(x, p) = 1

2p
2 + U(x), for some function U . Hence, V (x, p) =

(p,−∂xU), which means that the zeroes of the vector field are the crit-
ical points of U . Let us discuss Hamiltonian systems in which the
Hamiltonian is of the above type.

We start with the so called one degree of freedom, i.e. x, p ∈ R.

Problem 3.19 Show that if U has a minimum, then the fixed point is
a center, while if U has a maximum, then the corresponding fixed point
is hyperbolic.

We have thus a new phenomena: a center that is stable under small
perturbations!

Let us consider the case in which a one parameter family of po-
tentials U(x, λ) has a degenerate minimum at zero, i.e. U(0, λ) =
0, ∂xU(0, λ) = 0, ∂2

xU(0, 0) = 0. This means that U(x) = λx2 +
a(λ, x)x3 and

V (x, λ) = (p, 2λx+ a1(x, λ)x2)

Problem 3.20 Show that in the above family we have the collision of
two fixed point (a center and a saddle) that collide and exchange type.

This means that the zeroes of the vector fields are p = 0, x(λ) = 0
and x(λ) ∼ − 2λ

a1(0,0) . We then have a new phenomena: two fixed point

that cross and exchange type.10

Even more singular situations may happen if more constraints are
present. Consider, for example the above situation when, for some
reason, the Hamiltonian is constrained to being symmetrical: H(x, p) =
H(−x, p). Then it would have the form U(x) = λx2 + a(λ, x)x4.

10Hence the set of fixed points no longer forms a smooth curve in the x, λ space.
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Problem 3.21 Show that in the above case one has one fixed point
that evolves into three fixed points. Moreover show that if when only
one fixed point is present, the fixed point is unstable, then of the three
fixed point two are unstable and one stable. This is called a peach fork
bifurcation.

Next let us consider the case of two degree of freedom, i.e. x, p ∈ R2.
Limited to the case of a minimum. In such a situation, at the point of
minimum, we have

∂xV (x, p) =

(
0 1

−∂2
xU 0

)
. (3.5.17)

where ∂2
xU is a positive symmetric matrix, let ω2

1, ω
2
2 be its eigenvalues.

Problem 3.22 Show that the eigenvalues of ∂xV , at the fixed point,
are ±ωi.

Another surprise: a stable situation with four imaginary eigenvalue
(an higher dimensional center).

Problem 3.23 Consider the linear equation (obtained by the matrix
(3.5.17) after a change of variables)

ẋ = p

ṗ =

(
−ω2

1 0
0 −ω2

2

)
x

Show that p2
i + x2

i are invariant of the motion, i.e. the motion takes
place on two-dimensional tori.

Remark 3.5.1 Contrary to the case of one degree of freedom, in which
the conservation of the Hamiltonian implies that the center is stable for
the full motion, in higher dimension it is not clear if the center is stable
or not for the full dynamics. Indeed this is a rather complex matter at
present not completely clarified. Part of the answer is the subject of the
so called KAM theory. We will discuss some aspects of KAM theory in
the following.
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Problems

3.24. Compute Ṽ = V ◦ F where V is given by (3.2.3) and F by
(3.2.5), i.e. F (ξ, τ) = (ξ − τ, ξ). Show, by direct computation,
that Ṽ (ξ, τ) = 0 has solution ξ(τ) = − b

aτ
2 +O(τ3).

3.25. Prove that the set {A ∈ GL(n,R) : det(A) 6= 0} is generic with
respect to the topology induced by the norm.

3.26. Prove that the set {A ∈ GL(n,R) : A is hyperbolic} is generic.

3.27. Prove that {A ∈ C0([−1, 1], GL(n,R)) : rank(A(λ)) ≥ n −
1 ∀λ ∈ [−1, 1]} is generic.

3.28. Prove that the set {A ∈ GL(n,R) : A is hyperbolic and has only
simple eigenvalues} is generic (i.e. Jordan blocks are atypical).

3.29. Show that if A ∈ GL(2,R) and its eigenvalues have zero real part,
then Tr(A) = 0.

3.30. If A ∈ C1([−1, 1], GL(n,R)) and Π ∈ C1([−1, 1], GL(n,R)) is an
eigenprojector, show that d

dλ Tr(ΠA) = 2 Tr(Π d
dλA).

3.31. Show that the set {A ∈ C1([−1, 1], GL(n,R)) : at most two
eigenvalues have zero real part} is generic.

3.32. Prove that the set

AK := {V ∈ Cr(Rn,Rn) : V (x) = 0 implies ∂xV hyperbolic ∀x ∈ K}

is generic in the Cr topology.

3.33. Show that any matrix A ∈ GL(2,R) with two eigenvalue with
zero trace and positive determinant is conjugate to a matrix of
the form (

0 −ω
ω 0

)
for some ω > 0.

3.34. Let f ∈ Cr(Rd+1) and write the elements of Rd+1 as (ξ1, . . . , ξd, t).
If f(ξ, 0) = ∂kt f(ξ, 0) = 0 for all k ≤ s < r, then there exists
g ∈ Cr−s such that f(ξ, t) = tsg(ξ, t).
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3.35. Let f ∈ Cr(Rd+1) and write the elements of Rd+1 as (ξ1, . . . , ξd, t).
Then, for all s < r, there exists g ∈ Cr−s such that f(ξ, t) =∑s−1

k=0 f
k(ξ, 0)tk + tsg(ξ, t).11

3.36. Show that if p(θ) is a product of an odd number of functions
equal either to sin θ or cos θ, then

∫ 2π
0 p(θ) = 0.

Hints to solving the Problems

3.3 Let x̄ ∈ K such that V (x̄) = 0. Then, by assumption Dx̄V is
invertible, so V (x̄+ ξ) = 0 can be written as

Dx̄V
−1(Dx̄V ξ − V (x̄+ ξ)) = ξ.

Since Dx̄V ξ − V (x̄+ ξ) = o(‖ξ‖), it follows that the above equa-
tion has the unique solution ξ = 0 in a sufficiently small neigh-
borhood of zero. Hence there exists a neighborhood of x̄ in which
there are no other zeroes. Next, for each point in K consider a
neighborhood as follows: if the V is different from zero at such
a point, then consider a neighborhood for which the vector field
is different from zero. If the vector field is zero at the point then
consider the above neighborhood in which the point is the only
zero. In such a way we have a covering of K, we can then extract
a finite subcover hence proving the statement.

3.4 Let V ∈ AK and {xi}Mi=1 be the zeroes of V . Then for each
vector field W ∈ C1(Rd,Rd), ‖W‖ ≤ 1, consider the family
V (x, µ) := V (x) + µW (x). For each i ∈ {1, . . . ,M}, use the
implicit function theorem to show that there exists εi, δi > 0 and
Xi ∈ C1([−εi, εi],Rn)→ Rd, Xi(xi) = 0, such that V (Xi(µ), µ) =
0 and V (x, µ) = 0, ‖x−xi‖ ≤ δi, |µ| ≤ εi implies that x = Xi(µ).
Verify (using perturbation theory) that, for µ small enough ∂xV (X(µ), µ)
is hyperbolic. Next, set δ = min δi and ρ := inf |x−xi|≥δ ‖V (x)‖.
Clearly V (x, µ) 6= 0 if |x− xi| ≥ δ and µ < ρ. Hence a neighbor-
hood of V of size min{εi, ρ} belongs to AK , hence AK is open.

11Essentially this is Taylor formula where one controls the smoothness of the
remainder. This issue is relevant in the applications, but often not investigated in
standard textbooks.
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3.5 If ZK = {z ∈ K : det(DxV ) = 0}, then V (ZK) is a zero measure
set by Sard’s Theorem. Let Z ⊂ Rd be a zero measure set and,
for each v ∈ Rd, define Z(v) = {z ∈ Rd : z − v ∈ Z}. Show that
for each ε > 0 there exists v ∈ Rd, ‖v‖ ≤ ε, such that 0 6∈ Z(v).
Given V ∈ C1(Rd,Rd), use this to show that for each ε > 0
there exists v ∈ Rd, ‖v‖ = 1 such that Vε(x) := V (x) + εv has
the property that det(DxVε) = det(DxV ) = 0 implies Vε(x) 6=
0. An application of the implicit function theorem then shows
that the zeroes of Vε are isolated. Finally, construct Ṽε, ‖Vε −
Ṽε‖C1 ≤ ε, such that the zeroes are unchanged but the derivative
is hyperbolic, hence Ṽε ∈ AK . This last step can be performed
locally so it suffices to show how to perform it around one single
point. First of all note that, by continuity, there exists α > 0
such that Vε(x) = 0 implies ‖(DxVε)

−1‖ ≤ α−1. Next, let x0 ∈ K
such that Vε(x0) = 0. Then Vε(x) = Dx0Vε(x − x0) + o(x − x0).
Thus there exists δ > 0 such that, for all ‖x− x0‖ ≤ δ,12

‖Vε(x)‖ ≥ α

2
‖x− x0‖.

Finally, consider the vector field Ṽt(x) = Vε(x)+t(x−x0)ϕ(x−x0).
Where ϕ ∈ C1(Rd,R) is some fixed function such that the support
of ϕ is contained in the ball of radius δ, ϕ(0) = 1, ∇ϕ(0) = 0 and
‖ϕ‖∞ ≤ 1. Then

‖Ṽt(x)‖ ≥ (
α

2
− t)‖x− x0‖

so if t < α
2 , the filed Ṽt(x) has the same zeroes than Vε. Moreover,

Dx0 Ṽt = Dx0Vε + t1 which is hyperbolic and

‖Vε − Ṽt‖C1 ≤ 2tδ + t‖ϕ‖C1

which can be made smaller than ε by choosing t sufficiently small.

3.7 It suffices to show that BK is generic for each compact K ⊂ Rd.
The openness comes from the fact that a small perturbations can-
not change the condition on the rank. For the density, consider

12Note that, by the uniform continuity of the derivative on K, δ can be chosen
independent on the point.
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the set Ω := {(x, λ) ∈ K1 : rank(∂xV ∂λV ) < d}. Using the same
strategy as in Theorem 3.1.4 show that V (Ω) has zero Lebesgue
measure.13 This means that, for each ε > 0 there exists v ∈ Rd,
‖v‖ ≤ ε, such that for each (x, λ) ∈ K1 such that V (x, λ) = −v
holds rank(∂xV ∂λV ) = d. We can then consider the vector field
Vε = V + v and argue as in the first part of Problem 3.5.

3.13 We know from the discussion Lemma 3.2.2 that there exists x(λ)
such that V (x(λ), λ) = 0, we can then set α(λ) = x(λ). We
get then the wanted equation with the new remainder given by
R(ξ+x(λ), λ)−R(x(λ), λ). The other properties ofR are obtained
by direct computation.

3.14 Remember that the change of variable must be performed on the
equation ẋ = V (x, λ), so the vector field changes as D−1V (Dz).
In addition, since ∂ξR(0, 0) = 0, Problem 3.35 implies that we
can write ∂ξR(0, λ) = C(λ)λ for some Cr−1 matrix C. Choose
D(λ) = D0(λ)(1 + D1(λ)). Since we do not want to change the
form of ∂xV at first order in λ we impose [D0, A] = 0. Show that

this implies D0(λ) =

(
1 −a(λ)

a(λ) 1

)
. Show that one can choose

a such that

D−1
0 ∂xV (0, λ)D0 = A+ λH(λ)

withH11 = H22 ≥ 0. Note then thatHii(0) 6= 0 since TrH(0) 6= 0

by hypothesis. Next, choose D1 =

(
0 0
0 λb(λ)

)
. Show that b can

be chosen so that

(1 +D1)−1D−1
0 ∂xV (0, λ)D0(1 +D1) = A+ λH̃(λ)

with H̃ii = Hii and H̃12 = −H̃21. The problem is then solved by
choosing ρ.

3.30 Using a “dot” to mean differentiation holds d
dλ Tr(ΠA) = Tr(Π̇A+

ΠȦ). If B is the portion of spectrum associated to Π(0) and γ a

13In fact, this is nothing else than another special case of the general Sard Theo-
rem.
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curve surrounding it and no other part of the spectrum, then

Π̇(0) =
1

2πi

∫
γ
(z −A(0))−1Ȧ(0)(z −A(0))−1dz

Thus

Tr(Π̇A) = Tr(ΠȦ) +
1

2πi

∫
γ
zTr

(
(z −A(0))−1Ȧ(0)(z −A(0))−1

)
dz

= Tr(ΠȦ) +
1

2πi

∫
γ
zTr

(
(z −A(0))−1Ȧ(0)

)
dz = Tr(ΠȦ).

Notes

The present discussion is intended only to give a flavor of the subject
and of how it can be systematically developed. For a more complete
(and advanced) treatment of bifurcation theory see [Arn83, CH82].


