
Chapter 4

Global Behavior: simple examples

Different local behaviors have been analyzed in the previous
chapter. Unfortunately, such analysis is insufficient if one wants to
understand the global behavior of a Dynamical System. To make precise
what we mean by global behavior we need some definitions.

Definition 4.0.2 Given a Dynamical System (X,φt), t ∈ N or R+, a
set A ⊂ X is called invariant if, for all t, ∅ 6= φ−1

t (A) ⊂ A.

Essentially, the global understanding of a system entails a detailed
knowledge of its invariant set and of the dynamics in a neighborhood
of such sets. This is in general very hard to achieve, essentially the rest
of this book devoted to the study of some special cases.

Remark 4.0.3 We start with some simple considerations in the case
of continuous Dynamical Systems (this is part of a general theory called
Topological Dynamical Systems1) and then we will address more subtle
phenomena that depend on the smoothness of the systems.

4.1 Long time behavior and invariant sets

First of all let us note that if we are interested in the long time behavior
of a system and we look at it locally (i.e. in the neighborhood of a point)
then three cases are possible: either the motion leaves the neighborhood

1Recall that a Topological Dynamical Systems is a couple (X,φt) where X is a
topological space and φt is a continuous action of R (or R+,N,Z) on X.
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4.1. LONG TIME BEHAVIOR AND INVARIANT SETS 71

and never returns, or leaves the neighborhood but eventually it comes
back or never leaves. Clearly, in the first case the neighborhood in
question has little interest in the study of the long time behavior. This
is made precise by the following.

Definition 4.1.1 Given a Dynamical System (X,φt), a point x ∈ X
is called wandering if there exists a neighborhood U of x such that,
for all t ≥ 1, φt(U) ∩ U = ∅. A point that is not wandering is called
non-wandering. The set of non-wandering points is called NW ({φt})
or simply NW if no confusion arises.

Problem 4.1 If φt ∈ C0, then the set NW is closed and forward in-
variant (i.e. φt(NW ) ⊂ NW for each t ≥ 0). If the φt are open maps,
then NW is also invariant.

Problem 4.2 Construct an example of a topological dynamical sys-
tems in which the non-wandering set is not invariant.

Problem 4.3 Show that if A is invariant, then the sets Λ = ∩∞t=0φ
−1
t A

and Ω = ∪∞t=0φt(A) are non- empty, invariant and, more, φ−1
t (Λ) = Λ

and φ−1
t (Ω) = Ω

The relevance for the long time behavior is emphasized by the fol-
lowing lemma.

Lemma 4.1.2 If K ⊂ X is compact and K ∩ NW = ∅, then there
exists T ∈ R such that for all x ∈ K there exists t ∈ [1, T ] such that
φt(x) 6∈ K.

Proof. If all the points in K are wandering, then for each x ∈ K
there exists a neighborhood U(x) such that φtU(x) ∩ U(x) = ∅ for all
t ≥ 1. Clearly {U(x)}x∈K is an open covering of K, hence we can
extract a finite subcover. Let {Ui}Ti=1 be such a subcover. If x ∈ K
then x ∈ Ui for some i ∈ {1, . . . , T}, and φt(x) 6∈ Ui for t ≥ 1. If
φ1(x) ∈ K, then it must belong to another Uj , that will leave forever
for t ≥ 2. It is then clear that φt(x) cannot remain in K for a time
longer than T . �

Theorem 4.1.3 If K ⊂ X is compact and invariant, then NW ∩K 6=
∅.
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Proof. By invariance it follows that if x 6∈ K then φtx 6∈ K for
all t ≥ 0. If NW ∩K = ∅, then the above fact and Lemma 4.1.2 imply
that all the point eventually leave K, hence there exists a T > 1 such
that φT (K) ∩ K = ∅. On the other hand if x ∈ φ−1

T (K) ⊂ K, then
φT (x) ∈ K, thus φ−1

T (K) = ∅ contrary to the hypothesis. �

To see the connection to long time behavior and invariant sets we
need an extra definition

Definition 4.1.4 Given a topological Dynamical System (X,φt), t ∈
I ∈ {R,Z,R+,N}, and x ∈ X we call ω(x) (the ω-limit set of x) the
accumulation points of the set ∪t≥0{φt(x)}. If t belongs to R or Z, then
the α-limit set is defined analogously with t ≤ 0.

Problem 4.4 The ω-limit sets are closed sets that φt(ω) = ω (hence
if φt is invertible then the omega limits are invariant).

Theorem 4.1.5 For each x ∈ X we have ω(x) ⊂ NW . In addi-
tion, if X is a proper metric space,2 then for each z ∈ X either holds
limt→∞ d(φt(x), z) =∞, or limt→∞ d(φt(x), NW ) = 0.

Proof. Let x ∈ X. If z ∈ ω(x), then for each neighborhood U of
z we have {tn} ⊂ R+ such that φtn(x) ∈ U . Thus there exists t and
s ≥ t+ 1 such that φt−sU ∩ U ⊃ {φs(x)} 6= ∅. Hence z ∈ NW .

Let us come to the second part of the Theorem. If the two alter-
natives do not hold, then there exists a compact set (a closed ball)
that contains infinitely many points of the orbit of x all at a finite dis-
tance from NW . This implies that the orbit has an accumulation point
(hence an element of ω(x)) not in NW contradicting the first part of
the Theorem. �

In particular the above Theorem shows that all the interesting long time
dynamical behavior happens in a neighborhood of the non-wandering
set.

2That is, a distance d is defined and the base for the topology is made of the
sets Br(x) = {y ∈ X : d(x, y) < r} (this is called a metric space). A proper metric
space is one in which all the closed balls {y ∈ X : d(x, y) ≤ r} are compact.
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Problem 4.5 Given a discrete topological dynamical system (X,T ),
let A = NW (T ). Since A is forward invariant, one can consider the
restriction S of T to A. Find an example in which NW (S) is strictly
smaller than A.

Definition 4.1.6 Given a Dynamical System (X,φt), a point x ∈ X
is called recurrent if x ∈ ω(x). The set of recurrent points is called
R({φt}), or simply R if no confusions arises.

Problem 4.6 Consider a linear system ẋ = Ax. Show that if A is
hyperbolic, then NW = {0}.

Problem 4.7 Consider a saddle-node bifurcation in one dimension.
Show that in a small neighborhood of the bifurcation point, when two
fixed points x1, x2 are present, NW = {x1, x2}. Show that this may
not be the case in higher dimensions.

Problem 4.8 Consider the ODE ẋ =

(
0 −ω0

ω0 0

)
, ω0 > 0. Show that

NW = R2, while for each x ∈ R2 holds ω(x) = {z ∈ R2 : ‖z‖ = ‖x‖}.

Problem 4.9 In the case of the Hopf bifurcation in two dimensions
when the fixed point O is repelling, and hence the periodic orbit γ is
attracting, show that (in a neighborhood of O for the bifurcation pa-
rameter small enough) NW = {O} ∩ γ.

Remark 4.1.7 We have thus seen examples in which the ω-limit sets
can be a point or a periodic orbit, do other possibilities exists?

This question is going to lead us in a long journey.

4.2 Poincaré-Bendixon

See [HS74].
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4.3 Equations on the Torus

As we have seen a generic family of vector fields in R2 can have a very
limited choice of bounded invariant sets: either a fixed point and the
associated stable and unstable manifolds, or (by Poincaré-Bendixon)
a periodic orbit. Yet one can have a differential equation on different
manifolds, notably the torus T2 = R2/Z2.

Problem 4.10 Consider the vector fields V (x) = ω ∈ R2 on T2 and
show that the orbit of the associated flow can be everywhere dense.

The above problem shows that on T2 it is possible to have a new
ω-limit set: T2 itself! Can such a situation take place for an open set
of vector fields? To understand the situation it is useful to generalize
the setting of Problem 4.10.

Definition 4.3.1 A closed non self-intersecting curve γ ∈ Cr(S1,T2),
r ≥ 1, is called a global (cross) section for the flow associated to V if

a) γ′ is always transversal to V .3

b) for each x ∈ T2 there exists t ∈ R+ such that φt(x) ∈ γ.

Given a cross section γ we can define the return time τ : γ → R+ as
the first t > 0 such that φt(x) ∈ γ and the Poincaré map f : γ → γ as
f(x) = φτ(x)(x).

Problem 4.11 Show that if γ ∈ Cr(S1,T2) is a global cross section and
f is the associate Poincaré map, then f ∈ Cr and (γ, f) is a Dynamical
Systems that describe the dynamics when it returns to γ.

Lemma 4.3.2 (Siegel) Let V ∈ Cr(T2,R2) be a nowhere zero vector
field. If the associated flow has no periodic orbits, then there exists
a global section γ. In addition, if f : γ → γ is the Poincaré map
associated to the flow, then f ∈ Cr(γ, γ).

Proof. The (nice) idea is to construct a section close to an orbit.
Let φt be the flow associated to the vector field V . Let x ∈ NW and
consider an open segment, of length less than 1/2, Σ, x ∈ Σ, transversal

3That is, the vectors {γ′(t), V (γ(t))} span R2 for all t ∈ S1.
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to the vector field (similar to the construction in the Flow Box Theorem
2.1.1). Since x is non-wandering and due to Theorem 2.1.1, there exists
z ∈ Σ, z 6= x, and t ∈ R such that φt(z) ∈ Σ, this being the first return
to Σ. Since there are no periodic orbits z 6= φt(z).

We will construct a global section close to {φs(z)}ts=0 ∪ Σ. Note
that the closed curve that one obtains joining z to φt(z) along Σ cannot
be omotopic to a point. Otherwise the curve would have an interior
homeomorphic to a disk in R2 from which the orbits cannot escape
either in the future or the past. By Poincarè–Bendixon this would
imply the existence of a periodic orbit contrary to the hypothesis. To
properly explain the construction it is convenient to introduce a flow
box type system of coordinates near such an orbit.

For s ∈ [−1/2, 1/2] let ϕ(s) = z + s(x − z)‖x − z‖−1. Clearly
ϕ(0) = z, ϕ(‖x−z‖) = x, and holds ϕ([−1/2, 1/2]) ⊃ Σ. Next, for each
y ∈ Σ let s ∈ [−1/2, 1/2] be the unique number such that y = ϕ(s) and
τ(s) = inf{t > 0 : φt(y) ∈ Σ} be the first return time to the section.
By Theorem 2.1.1 and Corollary 1.1.14 there exists δ ∈ (0, 2‖x − z‖)
such that τ ∈ Cr([−δ, δ],R+). For A := {(s, t) ∈ R2 : s ∈ [−δ, δ], t ∈
[0, τ(s))} let us define the map Ξ : A → T2 by Ξ(s, t) = φt(ϕ(s)).
Note that this map is Cr and invertible (provided δ is chosen small
enough), hence it can be used as a change of coordinates. Note that
this are essentially the coordinates used in the flow box theorem, only
now they are used in a long neighborhood of an orbit.

The next step is to understand how the orbit comes back. Indeed,
if we use standard flow box coordiantes (s′, t′) in a neighborhood of Σ,
then (s, t) = (s′, t′) for t ≥ 0 but for t close to τ(s) we are again in the
neighborhood of Σ corresponding to t′ < 0. The change of coordinates
can then be described by the function θ such that φτ(s)ϕ(s) = ϕ(θ(s)).
Then (s, t) corresponds to (θ(s), t− τ(s)).

Problem 4.12 Let τ0 = τ(0), then 〈x− z, ddsφτ0(ϕ(s))|s=0〉 > 0.4

The above problem means simply that θ′ > 0.

To conclude we must analyze two possibilities: either φτz is closer
to x than z or vice versa. The two cases are treated exactly in the
same way so we discuss only the first, that is θ(0) > 0. We can then

4This is really a consequence of the fact that the torus is orientable, yet it can
be proven directly in several ways.
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chose ε ∈ (0, δ) such that θ(−ε) > 0. Consider a line (ε − 2ετ−1
0 t, t),

t ∈ [0, τ0], obviously it is always transversal to the flow. If we look at
it in the standard flow box coordinates in a neighborhood of Σ we see
that it start as a decreasing curve and, since θ′ > 0, it reappears (for
t′ < 0) as a still decreasing curve. It is then easy to see that it can be
smoothly deformed, in a neighborhood of Σ, into a closed curve that
is always transversal to the flow. We have thus constructed a smooth
transversal section it remains to show that it is global.

Problem 4.13 Consider a piecewise smooth closed curve Γ in T2.
Show that T2 \ Γ is either disconnected (and one connected component
is isomorphic to an open set in R2) or it is isomorphic to a cylinder.

If the above section would not be global, then there would be tra-
jectories that stay forever in a set (either a piece of R2 or a cylinder) to
which Poincaré-Bendixon applies. But this would imply the presence
of a periodic orbit, contrary to the asumption. �

Problem 4.14 Show that, in the setting of the above theorem, the con-
dition f ′ 6= 0 is generic.

It is important to notice that, given a topological Dynamical System
(M,f) and a function τ ∈ C0(M,R+ \ {0}) (called roof function) one
can always see them as a Poincaré section and a return time of a flow.
The resulting object is called a suspension or standard flow and is
constructed as follows.

Consider the set Ω̃ = {(x, s) ∈ M × R+ : s ∈ [0, τ(x)]} with the
topology induced by M × R+ equipped with the product topology.

Problem 4.15 Consider the relation (x, s) ∼ (y, t) iff x = y and s = t
or s = τ(x), t = 0 and y = f(x) or t = τ(y), s = 0 and x = f(y).
Prove that it is an equivalence relation.

One can then consider the space of the equivalence classes Ω = Ω̃/ ∼
with the induced topology, this is the space on which the flow is defined:
let t ≤ inf τ , define

φt(x, s) =

{
(x, s+ t) if t < τ(x)− s
(f(x), t+ s− τ(x)) if t ≥ τ(x)− s

and extend φt by the group property.
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Theorem 4.3.3 Let V ∈ C2(T2,R2) be a nowhere zero generic vector
field with no periodic orbits. Then for each point y ∈ T2, ω(y) = T2.

Proof. By Lemma 4.3.2 we have a smooth global section γ with
a Poincaré map g. Let h : S1 → γ be a parametrization of γ. If we set
f = h−1 ◦ g ◦ h, we can consider the return map as C2 map on the unit
circle such that f ′ 6= 0 at each point. Note that a periodic point for
the map f corresponds to a periodic orbit for the flow, hence f cannot
have periodic orbits. The claim follows then by Lemma 4.5.2 in which
it is proven that a smooth circle map with no periodic orbits has dense
orbits. �

The final natural question is:
In the hypotheses of Theorem 4.3.3, is it possible to con-

jugate the flow to a rigid rotation of the torus, and, if yes, to
which one?

Motivated by the above question and results we will now study
orientation preserving circle maps. It turns out to be interesting and
helpful to study their properties in relations to their increasing smooth-
ness.

4.4 Circle maps: topology

Here , and in the following, we study a Dynamical System (S1, f) where
f is a homeomorphism of S1 (i.e. f is invertible and f(S1) = S1).

We start with some facts that follow from the simple hypothesis of
continuity.

First of all note that one can lift the map f to the universal cover
R of the circle, that is defining π : R → S1 as π(x) = x mod 1, it is
possible to find F ∈ C0(R,R) such that

f ◦ π = π ◦ F.

Problem 4.16 Construct explicitly such an F . Show that F (x+ 1) =
F (x) + 1.

Problem 4.17 If there exists L > 0 such that −L ≤ am+n ≤ an +
am + L for all n,m ∈ N, then the limit limn→∞

an
n exists.
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Lemma 4.4.1 Let f : S1 → S1 an homeomorphism and F ∈ C0(R,R)
a lift of f . Then the limit

τ(f) := lim
|n|→∞

Fn(x)

n
mod 1

exists and is independent both from the point and the lift.

Proof. Applying Problem 4.17 to the sequence Fn(x) the exis-
tence of the limit follows. The other assertions depend on the already
mentioned equality F (x+ 1) = x+ 1. �

Lemma 4.4.2 Show that τ(f) ∈ Q if and only if f has a periodic
orbit.

Proof. If f q(x) = x and F is a lift then it must be F q(x) = x+ p
for some p ∈ N. This immediately implies F kq(x) = x+ kp and hence
τ(f) = p

q ∈ Q. On the other hand, if τ(f) = p
q ∈ Q, we have τ(f q) = p

mod 1 = 0. It thus suffices to prove that τ(f) = 0 implies f has
a fixed point. Let us do a proof by contradiction: we suppose that
f has no fixed points. Note that this is the same than saying that
G(R) ∩ Z = ∅ where G(x) = F (x) − x. Since G is continuous this
implies maxG−minG < 1. Let α = minG, β = maxG. Note that, by
properly choosing the lift F , one can insure tat [α, β] ⊂ (0, 1). Then

Fn(x) = G(Fn−1(x)) + Fn−1(x) ≥ α+ Fn−1(x) ≥ nα

hence τ(f) ≥ α, analogously τ(f) ≤ β which contradicts τ(f) = 0. �

Problem 4.18 Given f ∈ C0(S1, S1), for any interval I ⊂ S1, if
f(I) ⊂ I, then f has a fixed point in I.

Problem 4.19 If τ(f) 6∈ Q, then for each n ∈ N \ {0} and x, y ∈ S1,
{fk(y)}k∈N ∩ [x, fn(x)] 6= ∅.

Problem 4.20 If τ(f) 6∈ Q, then for each x ∈ S1 there exist infinitely
many n ∈ Z such that {fkx}|k|<n ∩ [x, fnx] = ∅.

Lemma 4.4.3 For any homomorpfism f : S1 → S1 with τ(f) 6∈ Q
and any x, y ∈ S1 holds ω(x) = ω(y).
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Proof. If z ∈ ω(x), then there exists {nj} such that limj→∞ f
nj (x) =

z. But then Problem 4.19 implies that for each j ∈ N there exists kj ∈ N
such that fkj (y) ∈ [fnj (x), fnj+1(x)]. Clearly limj→∞ f

kj (y) = z, thus
z ∈ ω(y). Reversing the role of x and y the Lemma follows. �

Problem 4.21 Let f be a homeomorphism of S1 with irrational rota-
tion number show that for each ε > 0 there exists a homeomorphism
fε, ‖f − fε‖∞ ≤ ε, with τ(fε) ∈ Q.

Problem 4.22 Let fλ be a one parameter family of homeomorphisms
such that τ(f0) < τ(f1). Suppose that τ(fλ) is increasing, what can
you say on the possible intervals in which it is not strictly increasing?

4.5 Circle maps: differentiable theory

In this section we assume f ∈ C2(S1, S1) and ln f ′ ∈ C1(S1,R).5

Lemma 4.5.1 If τ(f) 6∈ Q and x0 6∈ ω(x0), then

∞∑
n=0

(fn)′(x0) <∞.

Proof. Let U(x0) 3 x0 be the largest open interval not intersect-
ing ω(x0), call K(x0) its closure. First of all we see that the invariance
of the ω-limit set implies {fn(∂K(x0))}∞n=1 ⊂ ω(x0). This implies that
either fnK(x0)∩K(x0) = ∅ or fnK(x0) ⊃ K(x0) but the latter would
imply the existence of a fixed point for fn, which is impossible, hence all
the sets {fnK(x0)}n∈Z must be disjoint. We can now conclude thanks
to a typical distortion estimate: let Kn(x0) := fn(K(x0)), then, setting

D :=
∣∣∣f ′′f ′ ∣∣∣∞,

1 >
∑
n∈N
|Kn(x0)| =

∑
n∈N

∫
K(x0)

(fn)′(x)dx =
∑
n∈N

(fn)′(x0)

∫
K(x0)

(fn)′(x)

(fn)′(x0)
dx

≥
∑
n∈N

(fn)′(x0)

∫
K(x0)

e−
∑n−1
k=0 | ln f

′(fk(x))−ln f ′(fk(x0))|dx

≥
∑
n∈N

(fn)′(x0)

∫
K(x0)

e−
∑n−1
k=0 D|Kk(x0)|dx ≥ |K(x0)|e−D

∑
n∈N

(fn)′(x0).

5These hypotheses can be slightly weakened, see [HK95].
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�

Lemma 4.5.2 If τ(f) 6∈ Q, then, for all x ∈ S1, ω(x) = S1.

Proof. We use the same notation as in Lemma 4.5.1. If the
Lemma is false then there exists x ∈ S1 such that ω(x) 6= S1. But
by Lemma 4.4.3 all the omega limit sets are equal, hence there exists
x0 ∈ S1 such that x0 6∈ ω(x0). Note that if there exists n ∈ N, n 6= 0,
such that fn(x0) ∈ K(x0) then, by the invariance of ω(x0), it must be
fn(x0) 6= ∂K(x0) ⊂ ω(x0) and then Problem 4.19 implies that there
are infinitely many k such that fk(x0) ∈ [x0, f

n(x0)] ⊂ K(x0), but
this is impossible since such an interval does not contain accumula-
tion points of the forward trajectory. Thus, for each n ∈ Z, n 6= 0,
fn(x0) 6∈ K(x0), accordingly there exist δ > 0 such that each interval
[x0, f

n(x0)] has length at least δ.
Next, choose L > 0, by Lemma 4.5.1 there exists m ∈ N such that

(fn)′(x0) < L−1, for all n > m. We can then apply Problem 4.20
to find an |n| > m such that {fkx}|k|<n ∩ [x0, f

n(x0)] = ∅. Suppose
n < 0 and let J− = [x0, f

n(x0)], then for each k ∈ {1, . . . ,−n − 1},
fkJ− = [fkx0, f

n+kx0], since the extreme of such an interval do not
belong to J it follows that fkJ− ∩ J− = ∅ (otherwise the first would
be contained in the second and there would be a fixed point). Thus,
setting J = [x0, f

|n|(x0)], for all k ∈ {1, . . . ,−n−1}, holds fkJ∩J = ∅.
The same result follows, setting J− = [x0, f

−n(x0)] , for n > 0. Finally
we conclude with another distortion argument

|f−|n|J | =
∫
J
(f−|n|)′(x)dx =

1

(f |n|)′(x0)

∫
J

(f |n|)′(f−|n|(f |n|(x0))

(f |n|)′(f−|n|x)
dx

≥ 1

(f |n|)′(x0)

∫
J
e−

∑|n|−1
k=0 D|fkJ |dx ≥ Le−Dδ.

Then choosing L > eDδ−1 leads a length of |f−|n|J | larger than one,
which contradicts the fact that f is an homeomorphism. �

The above fact can be used to prove the following result (due to
Poincaré).

Theorem 4.5.3 If τ(f) = ω 6∈ Q, then f is C0-conjugate to Rω(x) =
x+ ω mod 1.

Proof. See [HK95] Theorem 11.2.7. �
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4.6 Circle maps: smooth theory

We have seen that the qualitative behavior of smooth circle maps with
irrational rotation number is similar to the behavior of the rigid rota-
tion in Problem 4.10. What it is not clear is if the two dynamics can
be smoothly conjugated (i.e. in the spirit of the flow box theorem, but
globally). This latter problem turns out to be extremely subtle and to
require much finer number theoretical consideration than distinguish-
ing between rational and irrationals.

Since we have seen that more smoothness allows to obtain stronger
results, it is natural to start by considering analytic functions.

To make the following easier, we will limit ourselves to the case of
a maps close to the identity. That is maps with a covering F : R→ R
of the form F (x) = x+ ω + f(x), where f(x+ 1) = f(x) is “small”.

4.6.1 Analytic KAM theory

To define the sense in which f is small we assume first that f is
an analytic function. That is f is a restriction to the real axes of
a function, that abusing notation we will still call f , holomorphic
in a strip. Let Dα = {z ∈ C : |=(z)| ≤ α

2π} and consider the
function space Bα = {g ∈ C0(Dα,C) : g(z + 1) = g(z) ∀z ∈
Dα , g holomorphic in

◦
Dα}. This is a Banach space when equipped

with the norm ‖g‖α = supz∈Dα |g(z)|.

Theorem 4.6.1 If there exists α0 ∈ (0, 1) and C0 > 0 such that
‖f‖α0 ≤ 5C0α

3
010−10, and ω > 0 satisfies∣∣∣∣ω − p

q

∣∣∣∣ ≥ C0

q2

for each p, q ∈ N, then there exists h ∈ Bα0/2 such that, setting H(x) =

x+ h(x), ‖h‖α0/2 ≤ 3C
− 1

3
0 ‖f‖

1
3
α0 and, for all x ∈ R,

H−1 ◦ F ◦H(x) = x+ ω. (4.6.1)

A natural question is: do irrational numbers with the above properties
exists? The answer is yes (for example all the quadratic irrational
satisfy such inequalities), but a bit of theory is needed to see it. For a
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quick introduction to these problems solve the Problems 4.27, 4.28,4.29,
4.30, 4.31, 4.32, 4.33.

Remark 4.6.2 The unaware reader can be horrified by the 10−10 in
the statement of the above theorem. Such a ridiculous number is in
part due to the fact that I have privileged readability over optimality,
but in part it comes with the method. Indeed, it is well known among
specialist that to obtain optimal estimates for KAM-type theorems is a
very hard problem and a currently still active field of research.

Proof of Theorem 4.6.1. Note that ifH is invertible, then equa-
tion (4.6.1) is equivalent to, for each z ∈ Dα0/2,

h(z + ω)− h(z) = f(z + h(z)). (4.6.2)

In fact, we are interested to solving the above equation only for real z.
In the following to avoid confusion I will use z for a complex variable
and x for a real one.

It is natural to introduce the linear operator Lωg(x) = g(x+ ω)−
g(x). If such an operator is invertible, then we can write

h = L−1
ω f ◦H, (4.6.3)

that looks like a fixed point problem and hopefully can be studies with
known techniques.

We have thus to study the operator Lω. The best is to compute it
in Fourier series:

Lωg(x) =
∑
k∈Z

e2πikx(e2πiωk − 1)gk

where g(x) =
∑

k∈Z e
2πikxgk. Thus

L−1
ω g(x) =

∑
k∈Z

e2πikx gk
e2πiωk − 1

.

Thanks to the fact that ω 6∈ Q, the formula is well defined. Yet the
coefficients can be very large since,6∣∣∣e2πiωk − 1

∣∣∣ ≥ 2 inf
p∈N
|ωk − p| ≥ 2C0|k|−1.

6Note that |eix − 1| ≥ | sinx| ≥ 2x
π

, provided x ∈ [0, π/2]. On the other hand if
x ∈ [π/2, π], then |eix − 1| ≥ |1− cosx| ≥ 1. Hence we can use the simple, but not
very sharp, estimate |e2πix − 1| ≥ infp∈Z 2|x− p|.
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This is the main difficulty of the present problem: the infamous small
divisors. Clearly, due to the small divisors L−1

ω is not a bounded op-
erator. This makes it very hard to study directly (4.6.3), we need an
idea.

The idea that we will use if due to Kolomogorov and goes as follows:
instead of solving (4.6.3) consider the change of variables H0(x) =
x + h0(x) where h0 = L−1

ω f . Of course such a change of variable it is
not the right one, yet one can try to write

H−1
0 ◦ F ◦H0(x) = x+ ω + f1(x)

and hope that f1 is much smaller that f . If this is the case one can
iterate the procedure and hope that it converges to a limiting change
of variables that is the one we are looking for.

To implement the above idea the first thing we need is to connect
the analysis via Fourier series to the analytic properties of the functions.

Consider the norm

|g|α :=
∑
k∈Z

eα|k||gk|.

Let us call Bα the Banach space of the periodic functions (of period
one) on R equipped with the above norm.

Note that, for β < α,7

|L−1
ω g|β ≤

∑
k∈Z

|k|
2C0

eβ|k||gk| ≤
|g|α
2C0

sup
k∈Z
|k|e−(α−β)|k|

≤ |g|α
2eC0(α− β)

(4.6.4)

7Here we use that, for each n ∈ N and σ > 0,

sup
k∈N

kne−σk ≤ sup
x∈R+

xne−σx =
(n
σ

)n
e−n ≤ e−1σ−nn!.

The last inequality is an application of Stirling formula. If you do not remember it,
here is the baby version used above,

n! = e
∑n

k=1 ln k ≥ e
∫n
1 ln xdx = en lnn−n+1 = nne−n+1.
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Thus L−1
ω : Bα → Bβ is a bounded operator for each α > β.

The point is that there is a connection between the above Banach
spaces, namely we can define Ξ : Bβ → Bα, by Ξg(x) = g(x), for all
x ∈ R.8 To see the relation between the norms, let us compute the
Fourier coefficients

[Ξg]k =
1

i

∫ 1

0
e2πikxg(x)dx

Problem 4.23 Show that |[Ξg]k| ≤ e−α|k|‖g‖α.

Hence, for α > β, ‖Ξ‖Bα→Bβ ≤ 2(1 − eβ−α)−1. Note also that we can
easily define the inverse: if g ∈ Bα, then define

Ξ−1g(z) =
∞∑
n=0

1

n!

dng

dxn
(<(z))(z −<(z))n.

Problem 4.24 Verify that the above is really the inverse of Ξ.

If g ∈ Bα, then (see footnote 7)∣∣∣∣dngdxn

∣∣∣∣
∞
≤
∑
k∈Z

(2π|k|)n|gk| ≤ (2π)n|g|α sup
k∈Z
|k|ne−α|k|

≤ (2π)nα−nnne−n|g|α ≤ (2π)ne−1α−nn!|g|α.
(4.6.5)

By (4.6.5) it follows that

‖Ξ−1g‖α ≤
∞∑
n=0

∑
k∈Z

(2π|k|)n|gk|
( α

2π

)n
≤
∑
k∈Z

eα|k||gk| ≤ |g|α.

Thus ‖Ξ−1‖Bα→Bα ≤ 1.

Problem 4.25 Show that, for each α > β, α − β < 2, setting h0 =
Ξ−1L−1

ω Ξf , holds

‖h0‖β ≤
4‖f‖α

C0(α− β)2

‖h′0‖β ≤
64π

C0(α− β)3
‖f‖α.

8In other work we simply take the restriction of the function to the real axis.
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The point of introducing the spaces Bα is that the equation for f1

reads

f1(x) = h0(x)− h0(x+ ω + f1(x)) + f(x+ h0(x)). (4.6.6)

To study such equation in Bα is highly non trivial, while Bα is much
better suited to estimate the norms of composition of functions.

To study (4.6.6) in Bα the first step is to verify that it makes sense.
Obviously one can see it as the restriction to the real axes of an equation
involving functions defined on the complex plane, yet it is necessary to
check that the composition is well defined, that is we have to carefully
analyze domains and ranges of the various functions. For later use we
carry out the needed estimates in the following Lemma.

Lemma 4.6.3 Given functions f ∈ Bα and h ∈ Bβ, α > β > α/2

such that ‖f‖α ≤ α−β
2π , h satisfies (4.6.2) with ‖h‖β ≤ α−β

8π , ‖h′0‖β ≤ 1
2 ,

there exists a function f1 ∈ Bγ such that, setting F (z) = z + ω + f(z),
H(z) = z+h(z), H is invertible, H−1 ∈ Bγ, γ = 2β−α, ‖f1‖γ ≤ 1

2‖f‖α
and

H−1 ◦ F ◦H(z) = z + ω + f1(z).

Proof. First of all H is invertible when restricted to the real axis
since H ′0 ≥ 1

2 . Let H−1
0 (z) = z + ψ(z), clearly

ψ(z) = −h(z + ψ(z)).

So the inverse is the fixed point of the operator K(ψ)(z) = −h(z+ψ(z))
which is well defined on the set A = {ψ ∈ Bγ : ‖ψ‖γ ≤ α−β

2π }. It is
easy to verify that such a fixed point exists and is unique.

Note that the function f1 must satisfy equation (4.6.6). To solve
(4.6.6) we must look for a fixed point for the operator K(ϕ)(z) = h(z)−
h(z+ω+ϕ(z))+f(z+h(z)) on the set A = {ϕ ∈ Bγ : ‖ϕ‖γ ≤ 1

2‖f‖α}.
Let us check that K(A) ⊂ A.

K(ϕ)(z) = h(z)− h(z + ω) + h(z + ω)− h(z + ω + ϕ(z)) + f(z + h(z))

= f(z + h(z))− f(z) + h(z + ω)− h(z + ω + ϕ(z))

Thus, using the estimate in Problem 4.34,

‖K(ϕ)‖γ ≤ ‖f ′‖β‖h‖γ + ‖h′‖β‖ϕ‖γ ≤
1

4
‖f‖α +

1

2
‖ϕ‖γ ≤

1

2
‖f‖α.
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Thus, by the usual contraction argument, exists f1 ∈ A such that
K(f1) = f1. �

Since we need to restrict the domain several time it is convenient to
do it in a systematic fashion. Let ρn := e−nτ0α, and apply Lemma 4.6.3
with β = ρ2 and γ = ρ3. Setting ε0 = ‖f‖α the Lemma applies pro-

vided ε0 ≤ min{ τ0απe ,
C0τ30α

3

16eπ }.
9 We then choose τ0 = α−1e[16πC−1

0 ε]
1
3 =:

C1α
−1ε

1
3 , hence min{ τ0απe ,

C0τ30α
3

16eπ } =
C0τ30α

3

16eπ provided ε ≤ 4
e3π
√
C0

.

We can thus implement an iterative procedure by setting: f0 = f ,

hn(z + ω)− hn(z) = fn(z) , Hn(z) = z = hn(z) , Fn(z) = z + fn(z),

H−1
n ◦ Fn ◦Hn(z) = z + ω + fn+1(z).

In addition, we set α0 = α, αn+1 = e−3τnαn, εn+1 = εn
2 and τn =

C1α
−1
n ε

1
3
n . Note that this choices imply that Lemma 4.6.3 can be applied

to each stage of the iteration. Now, if αn ≥ 1
2α0, holds εn = 2−nε, τn ≤

2C1α
−1
0 2−n/3ε

1
3 . This implies αn = α0e

−3
∑n−1
k=0 τk ≥ e−30C1α

−1
0 ε

1
3 α0

which is larger than α0/2 provided ε ≤
[
α0 ln 2
30C1

]3
which is implied by

ε ≤ 5C0α
3
010−10.

We have thus a sequence of changes of variables Hn(z) = z+hn(z),
the next question is if it exists H(z) = limn→∞H0 ◦H1 ◦ · · · ◦Hn(z).
It suffices to prove that the sequence is uniformly bounded on Dα0/2

|H0 ◦H1 ◦ · · · ◦Hn(z)− z| ≤
n∑
k=0

‖hk‖αk ≤
n∑
k=0

τk
4π
αk

≤
∞∑
k=0

2k/3ε
1
3
C1

4π
≤ ε

1
3

5C1

4π
≤ 4C

− 1
3

0 ‖f‖
1
3
α0

Similarly it follows that the Hn form a Chauchy sequence, hence they

have a limit H ∈ Bα0/2 with ‖id−H‖α0/2 ≤ 4C
− 1

3
0 ‖f‖

1
3
α0 . From this it

follows also (see Problem 4.34)

‖1−H ′‖α0/4 ≤
32π‖f‖

1
3
α0

C
1
3
0 α0

≤ 1

2
, (4.6.7)

9Just use Problem 4.25 and the fact that 1 − e−x =
∫ x
0
e−ydy ≥ e−1x, for

x ∈ (0, 1), to check the hypotheses of the Lemma.
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Hence H is invertible. �

4.6.2 Smooth KAM theory

The final question is: do similar results hold assuming less smoothness?
The answer is yes, yet to explore the optimal results it is not an easy
task. Here we content ourselves with a partial result.

Theorem 4.6.4 For each r > 3, if ‖f‖Cr ≤ 10−18C0e
−(r−3)−1

and
ω > 0 satisfies ∣∣∣∣ω − p

q

∣∣∣∣ ≥ C0

q2

for each p, q ∈ N, then there exists h ∈ C1 such that, setting H(x) =
x+ h(x), H is invertible and

H−1 ◦ F ◦ H(x) = x+ ω.

Proof. The basic idea is to write f =
∑∞

m=0 f̃m where f̃m(x) =∑
em≤|k|<em+1 fke

2πikx. The basic idea is that one can apply Theorem

4.6.1 to each f̃m. Indeed, let αm = (m + 1)e−a(m+1) where a > 0 is a
parameter to be chosen later,10 then

‖f̃m‖αm ≤
∑

eam≤|k|<ea(m+1)

|fk|eαm|k| ≤
∑

eam≤|k|<ea(m+1)

|f |Cr(2π)−re−armem+1

≤ |f |Cre−(ar−2)m.

If |f |Cr is small enough, we can apply Theorem 4.6.1 to f̃0. Hence there
exists h̃0 such that, setting H̃0(z) = z = h̃0(z) and F̃0(z) = z + f̃0(z),

H̃−1
0 ◦ F̃0 ◦ H̃0(z) = z + ω =: Rω(z).

The obvious next step is to compute f̃1,k such that

H̃−1
0 ◦ (Rω +

n∑
k=0

f̃k) ◦ H̃0(z) = z + ω +

n∑
k=1

f̃1,k(z).

10This choice it is not optimal, yet it makes the latter computations simpler.
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This can be done is |f |Cr is small enough. We can then iterate the
above procedure by applying Theorem 4.6.1 to f1,1 and so on. We have
then an iterative scheme where, setting f̃0,k = f̃k,

H̃−1
n ◦

(
Rω + f̃n,n

)
◦ H̃n = Rω

H̃−1
n ◦

(
Rω +

m∑
k=n

f̃n,k

)
◦ H̃n = Rω +

m∑
k=n+1

f̃n+1,k

(4.6.8)

It follows that the f̃n+1,k, k ≥ n+ 1, satisfy the equations

f̃n+1,k(z) = f̃n,k(z + h̃n(z)) + h̃n(z + ω)− h̃n(z + ω+ f̃n,k(z)). (4.6.9)

While, setting Hn(z) := H̃0 ◦ H̃1 ◦ · · · H̃n−1(z) =: z+ hn(z), H0(z) = z,

H−1
n ◦

(
Rω +

m∑
k=0

f̃k

)
◦ Hn = Rω +

m∑
k=n

f̃n,k (4.6.10)

Next, let us assume by induction that there exists A > 1 such
that, for each n ∈ N and k ≥ n, ‖f̃n,k‖αk ≤ A‖f̃k‖αk . Then Theorem
4.6.1 implies that the solution to the first of the (4.6.8) exists provided
‖f̃n,n‖αn ≤ C∗α3

n, with C∗ = 3C010−13. This is implied by ‖f̃n‖αn ≤
C∗A−1α3

n which, in turns is implied by

|f |Cre−(ar−2)n ≤ C∗A−1e−3a(n+1).

This is satisfied provided |f |Cr ≤ C∗A−1e−3a and r > 3 + 2a−1. By
Theorem 4.6.1 we have then

‖h̃n‖αn/2 ≤ 3C
− 1

3
0 ‖f̃n,n‖

1
3
αn ≤ 3C

− 1
3

0 A
1
3 e−

1
3

(ar−2)n|f |
1
3
Cr ≤

αn
4
.

Note that if a > ln 8, then αn/4 > αn+1. In addition, note (see Problem
4.34) that

‖h̃′n‖ 3
8
αn
≤ 48π(n+ 1)e−a(n+1)C

− 1
3

0 A
1
3 e−

1
3

(ar−2)n|f |
1
3
Cr

=: C∗1A
1
3 e−

a
3

(r−3−2a−1)n|f |
1
3
Cr ≤

1

2
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provided |f |Cr ≤ 1
8A
−1(C∗1 )−3. To solve equation (4.6.9) it is then

necessary that ‖f̃n,k‖αk ≤ 1
8αn for all k ≥ n which is implied by |f |Cr ≤

[8eA]−1. It follows (by the usual application of the fixed point theorem)

‖f̃n+1,k‖αk ≤
[
1− C∗A

1
3 e

a
3

(3+2a−1−r)k|f |
1
3
Cr

]−1

‖f̃n,k‖αk

≤ e2C∗A
1
3 e

a
3 (3+2a−1−r)k|f |

1
3
Cr ‖f̃n,k‖αk

≤ e2C∗A
1
3 [1−e

a
3 (3+2a−1−r)]−1|f |

1
3
Cr ‖f̃k‖αk ≤ e

4C∗A
1
3 |f |

1
3
Cr ‖f̃k‖αk

provided a > (r− 3)−1. Next, note that if |f |Cr ≤ (8C∗1 )−3, then there

exists A ≤ 8 such that e4C∗A
1
3 |f |

1
3
Cr ≤ A, hence proving the induction

hypotheses. To conclude we must prove that the change of coordinate
Hn is convergent. Note that

|H′n(x)| ≤
n∏
k=0

‖H̃ ′k‖ 3
8
αk
≤

n∏
k=0

eC
∗
1A

1
3 e−

a
3 (r−3−2a−1)k|f |

1
3
Cr

It is then easy to see that the Hn form a Chauchy sequence in C1.
The theorem follows by collecting all the above inequalities and setting
a = 3 + (r − 3)−1. �

Problems

4.26. If M is a Cr manifold, f ∈ Cr(M,M) is a diffeomorphism and
τ ∈ Cr(M, (0,∞)), show that the associated suspension flow is
defined on a Cr manifold and is Cr.

4.27. Consider the Dynamical System ([0, 1], T ) where

T (x) =
1

x
−
⌊

1

x

⌋
=

1

x
mod 1

(bac is the integer part of a). This is called the Gauss map. Prove
that for each x ∈ Q ∩ [0, 1] holds limn→∞ T

n(x) = 0.
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4.28. Prove that any infinite continuous fraction of the form

a0 +
1

a1 +
1

a2 +
1

a3 + ...

with ai ∈ N defines a real number.

4.29. Prove that, for each a ∈ N,

x =
1

a+
1

a+
1

a+ ...

=
−a+

√
a2 + 4

2
.

4.30. Prove that, for all s > 2, for Lebesgue almost all numbers x ∈
[0, 1] there exists C > 0 such that11∣∣∣∣x− p

q

∣∣∣∣ ≥ C

qs

for all p, q ∈ N.

4.31. Let fa(x) = 1
a+x . Given a sequence [a0, a1, . . . , an] show that

fa0 ◦ · · · ◦ fan(x) =
1

a0 +
1

a1 + ... 1

an + x

=
pn + pn−1x

qn + qn−1x
,

where pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1, p−1 = 0,
q−1 = 1, p0 = 1, q0 = a0. In addition, show that, for all n ∈ N,
pnqn−1−qnpn−1 = (−1)n and decude that pn, qn have no common
divisor different from one. Finally, verify that

fa0 ◦ · · · ◦fan(x)−fa0 ◦ · · · ◦fan+1(x) =
(−1)n+1[x2 + an+1x− 1]

(qn + qn−1x)(qn+1 + qnx)
.

11The composition below is often called iterated function system, it can be natu-
rally viewed as a time dependent dynamical system.
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4.32. Let ω ∈ [0, 1). Show that there exists infinitely many p, q ∈ N
such that ∣∣∣∣ω − p

q

∣∣∣∣ ≤ 1

q2
.

4.33. Let ω ∈ [0, 1) have the continuous fraction expansion given by
[a0, a1 . . . ]. Suppose that infn an > 0 and supn an < ∞.12 Show
that there exists a constant c > 0 such that for all p, q ∈ N∣∣∣∣ω − p

q

∣∣∣∣ ≥ c

q2
.

4.34. For each ϕ ∈ Bα and β < α show that ‖ϕ′‖β ≤ 2π‖ϕ‖α
α−β .

4.35. Let us consider an holomorphic function f : U ⊂ C → C where
U is an open set containing zero. Assume that f(0) = 0, f ′(0) =
e2πiω. Prove that, if ω is Diophantine, then it is possible to
find an open set D ⊂ U on which f is conjugated to the map
fω(z) = e2πiωz.

Hints to solving the Problems

4.2 Consider a system ([0, 1], T ) such that T is piecewise linear, it
has an unstable fixed point at x0 and an attracting fixed point
at z ∈ (0, x0) so that the set [z, x0] is forward invariant. Finally
arrange so that T (0) = x0 and T (x) ≤ x0 for x near zero.

4.10 The equation ẋ = ω = (ω1, ω2) on T2 has the solution x(t) =
(x1(t), x2(t)) = x0 + ωt mod 1. If one looks at the flow only at
the times τn = nω−1

1 , then x(nτ) = x0 + (0, αn) mod 1 where
α := ω2

ω1
. One can then consider the circle map f : S1 → S1

defined by f(z) = z + α mod 1. Clearly, if the orbits of such a
map are dense in S1 the original flow will be dense in T2. The
density follows in the case α 6∈ Q. In fact this implies that f
has no periodic orbits. Then {fn(0)} is made of distinct points
and contains a converging subsequence (by compactness) hence
for each ε > 0 exists n̄ ∈ N such that |z − f n̄(z)| ≤ ε, that is f n̄

12Such numbers ω are called of constant type.
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is a rotation by less than ε. Hence the orbit {fkn̄(z)} enters in
the ε-neighborhood of each point of S1.

4.13 Suppose that there exists ϕ(r, s), ϕ ∈ C0([0, 1]×T1,R), such that
ϕ(1, ·) is a parametrization of Γ and ϕ(0, s) = y for some fixed
y ∈ T2 (i.e. Γ is homotopic to y).

4.12 First of all notice that if ξ(t) is the derivative with respect to the
initial condition and ξ(0) = λV (x(0)), for some λ, then ξ(t) =
λV (x(t)) for all t. Define then ω(x, y) = x1y2 − x2y1 and verify
that x, y 6= 0 and ω(x, y) = 0 imply that there exists λ ∈ R such
that x = λy.13 This means that ω(ξ(t), V (x(t))) cannot change
sign. Hence the result.

4.17 Let lim infn→∞
an
n = a > −∞, then for each ε,m > 0 exists

n̄ ∈ N, n̄ > m, such that |an̄ − an̄| ≤ εn̄. Let l ∈ N, l > n̄, and
write l = kn̄+ r, r < n̄, then

a− ε ≤ al
l
≤ kan̄ + kL+ ar

l
≤ kn̄(a+ ε) + kL+ ar

l

= a+ ε+
L

m
+
ar
l
.

From which the claim follows.

4.18 Stetting I = [a, b] note that g(x) = f(x)− x has a zero in I.

4.19 This is the same than saying
⋃
k∈N f

−k[x, fn(x)] = S1. If not
consider f−kn[x, fn(x)], this are contiguous intervals. If they do
not cover all S1, then their length must go to zero and f−knx
must have an accumulation point, call it z. Then

z = lim
k→∞

f−kn(x) = lim
k→∞

f−kn(fn(x)) = fn(z).

Hence f must have a fixed point contradicting τ(f) 6∈ Q.

13By the way, ω is a symplectic form and its existence implies that the manifold
is orientable.
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4.27 If x = p0
q0

, p0 ≤ q0, then q0 = k1p0 + p1, with p1 < p0, and

T (x) = p1
p0

. Let q1 = p0 and go on noticing that pi+1 < pi.
14

4.28 Note that if you fix the first n {ai}, this corresponds to specify-
ing which elements of the partition {[ 1

i+1 ,
1
i ]} are visited by the

trajectory of {T ix}, T being the Gauss map. By the expansivity
of the map readily follows that x must belong to an interval of
size λ−n for some λ > 1.

4.29 Note that T (x) = x, where T is the Gauss map. Study periodic
continuous fractions of period two.

4.30 To see it consider the sets Ip,q := [pq − Cq
−s, pq − Cq

−s]. If p ≤
q, then Ip,q ⊂ [0, 1]. Clearly if α 6∈ Ip,p for all q ≥ p ∈ N,
then α satisfies the Diophantine condition. But

∑
q≥p | Ip,q| ≤

C
∑∞

q=1 q
−s+1 which converges provided s > 2 and can be made

arbitrarily small by choosing C small. Accordingly, almost all
numbers are Diophantine for any s > 2.

4.31 By induction.

4.32 The result is trivial for rational numbers. By Problem 4.28, ω =
limn→∞ fa0 ◦ · · · ◦ fan(0). Moreover, fa([0,∞)) ⊂ [0, a−1]. Thus
for each n ∈ N there exists xn ∈ [0, a−1

n+1] such that ω = fa0 ◦
· · · ◦ fan(xn). Thus, be the monotonicity of the fa it follows
that either ω ∈ [fa0 ◦ · · · ◦ fan(0), fa0 ◦ · · · ◦ fan+1(0)] or ω ∈
[fa0◦· · ·◦fan+1(0), fa0◦· · ·◦fan(0)]. One can then use the equalities
of Problem 4.31 to conclude all the rationals fa0◦· · ·◦fan(0) satisfy

|ω − fa0 ◦ · · · ◦ fan(0)| ≤ 1

an+1q2
n

.

14This is nothing else that the Euclidean algorithm to find the greatest common
divisor of two integers [Euc78, Elements, Book VII, Proposition 1 and 2]. The great-
est common divisor is clearly the last non-zero pi. This provides also a remarkable
way of writing rational numbers: continuous fractions

p0
q0

=
1

k1 +
1

k2 + ...
+

1

kn

.
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You did not like this argument? Here is an interesting alternative.
Problem 4.31 implies that

fa0 ◦ · · · ◦ fan(0) =
n∑
k=0

(−1)k

qkqk−1
.

Since the odd and even partial sum of an alternating series form
monotone sequences that converge to the limit from opposite
sides, it follows that

|ω − fa0 ◦ · · · ◦ fan(0)| ≤ |fa0 ◦ · · · ◦ fan(0)− fa0 ◦ · · · ◦ fan+1(0)|

≤ 1

an+1q2
n

.

4.33 As we have argued at the end of the hint of Problem 4.33, ω ∈
[fa0 ◦ · · · ◦ fan(0), fa0 ◦ · · · ◦ fan+1(0)] =: In. Note that if q < qn
then ∣∣∣∣pq − pn

qn

∣∣∣∣ ≥ 1

qnq
;

∣∣∣∣pq − pn
qn

∣∣∣∣ ≥ 1

qn+1q
.

But |In| = 1
qnqn+1

so it cannot contain any rational number with

denominator strictly less than qn. Accordingly, p
q 6∈ In and thus

|ω− p
q | ≥

1
qn+1q

> 1
qn+1qn

. In other words the fraction determined

by [a0, . . . , an] are the best approximation of ω among all the
numbers with denominator smaller than qn. Since,

|ω − fa0 ◦ · · · ◦ fan(0)| ≥ |fa0 ◦ · · · ◦ fan(0)− fa0 ◦ · · · ◦ fan+2(0)|

≥ 1

(an+1 + 2)q2
n

.

the result follows by simple computations.

4.34 Since ϕ is holomorphic by Rienmann formula we have

ϕ′(z) =
1

2πi

∫
γ

ϕ(ζ)

(z − ζ)2
dζ

where γ is a simple closed curve in Dα surrounding z ∈ Dβ. For

γ we chose the curve {z + α−β
2π e

iθ}θ∈[0,2π]. Hence

‖ϕ′‖β ≤
1

2π

∫ 2π

0

2π|ϕ|α
α− β

dθ =
2π|ϕ|α
α− β

.

4.35 Mimic Theorem 4.6.1.
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Notes

Lemma 4.3.2 is due to Siegel [Sie45], see [NZ99] for a detailed treat-
ment of flows on surfaces. A detailed treatment of circle rotations can
be found in [Her83, Her86]. A general treatment of KAM theory for
Hamiltonian Systems, with an emphasis on concrete applications, can
be found in [CC95].


