
Chapter 2

Local behavior

y local behavior we mean the study of the motion in a neigh-
borhood of a point. As we have seen in the linear case, the motion can
leave the neighborhood in a fixed time but it is also possible that it
stays in the neighborhood for an unlimited time. In the latter case we
will have the first example of how to tackle one of our stated goals: the
study of the motion for long times. We start with a trivial case.

2.1 Flow box theorem

Let us consider the di↵erential equation

ẋ = V (x) (2.1.1)

where V 2 C2(Rd,Rd). By the results of the previous chapter there ex-
ist ��, �+ : Rd ! R

+

and � : {(z, t) 2 Rd⇥R : t 2 (���(z), �+(z))} =:
D ! Rd such that �(z, t) is the solution of (2.1.1) with initial condition
z. We would like to study the solution in a neighborhood of a point
x
0

2 Rd such that V (x
0

) 6= 0.

Theorem 2.1.1 (Flow box Theorem) In the hypotheses above there
exists a neighborhood U of x

0

and a change of variables ⇥ 2 C1(U,Rd)
such that ⇥(�(x, t)) = ⇥(x)+ t(0, . . . , 0, 1), for each x 2 U , (x, t) 2 D.

Proof. Let S = {x 2 Rd : hx� x
0

, V (x
0

)i = 0} and {ei}d�1

i=1

⇢ S
the an orthonormal base.1 For r > 0 small enough let Dr = {z 2

1That is he
i

, e
j

i = �
ij

.
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Rd | kzk  r}. Then define ⌅ : Dr ! U by ⌅(⇠) = �(x
0

+
Pd�1

i=1

⇠iei, ⇠d).
Note that ⌅ is invertible since if ⌅(⇠) = ⌅(⇠0), ⇠0d  ⇠d, it would be

�(x
0

+
d�1

X

i=1

⇠iei, ⇠d � ⇠0d) = x
0

+
d�1

X

i=1

⇠0iei.

That is there would be x 2 S and ⌧ = ⇠d � ⇠0d 2 (0, 2r) such that
�(x, ⌧) 2 S. But hV (x

0

),�(x, 0)i = hV (x
0

),�(x, ⌧)i = 0 by definition
and, for t 2 [0, 2r],

hV (x
0

),�(x, t)i
dt

= hV (x
0

), V (�(x, t))i > 0

provided that r is chosen small enough. Hence ⇠d = ⇠0d and, conse-
quently, ⇠ = ⇠0. We can then define ⇥ = ⌅�1 and, for each x = ⌅(⇠),

⇥(�(x, t)) = ⇥(�(�(x
0

+
d�1

X

i=1

⇠iei, ⇠d), t) = ⇥(�(x0 +
d�1

X

i=1

⇠iei, ⇠d + t))

= ⇥(⌅(⇠ + (0, . . . , 0, t))) = ⇠ + (0, . . . , 0, t)

= ⇥(x) + (0, . . . , 0, t).

⇤

2.2 Behavior close to a fixed point

In this section we will consider a more interesting situation: the study
of the solutions of (2.1.1) in a neighborhood of a point x

0

such that
V (x

0

) = 0 and det(Dx0V ) 6= 0.

Problem 2.1 Note that the condition det(Dx0V ) 6= 0 can always be
achieved by a small C1 change of the vector field. On the contrary, the
existence of a zero of the vector field cannot be avoided by small C1

changes of the vector field: prove that if W is a vector field C1 close to
V , then there exists a x⇤ close to x

0

such that W (x⇤) = 0, and Dx⇤W
is close to Dx0V . In this sense we will say that the above conditions
are generic (more on this concept later).

It is then necessary to understand the behavior of the equation in
the vicinity of the point x

0

. First of all, by a translation, we can assume
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without loss of generality x
0

= 0. Then we can develop V by the Taylor
formula to obtain

ẋ = Ax+R(x) (2.2.2)

where kR(x)k  Ckxk2 and kDxRk  Ckxk, for all kxk  1.

Problem 2.2 Show that, by a linear change of variable, one can trans-
form A in its Jordan canonical form. Show then that, by an arbitrary
small C1 change of the vector field one can eliminate all the Jordan
blocks and insure that all the eigenvalues have real part di↵erent from
zero: this is called the hyperbolic case.

For now, in view of Problem 2.2, we will limit our considerations
to the hyperbolic case.

We will start by considering the case in which all the eigenvalue of
A have real part strictly smaller than zero.

Problem 2.3 Prove that if A is diagonal with eigenvalues with real
part strictly smaller than zero, then there exists � > 0 such that, for
all x 2 Cn,2

hx, (A+A⇤)xi  ��hx, xi
Prove that if A has only simple (that is with algebraic multiplicity one)
eigenvalues, then there exists a positive matrix B (that is B⇤ = B and
hx,Bxi > 0 for all x 6= 0) such that

hx,B(A+A⇤)xi  ��hx,Bxi
Prove the same for a general matrix A with all the eigenvalues with
real part strictly smaller than zero.

It is well known that the linear part of (2.2.2) has solutions that
tend to zero exponentially fast, the question is: does the same holds
true for the solutions of the equation (2.2.2)?

To see it, consider z := hx, xi,
d

dt
z = hx,Ax+R(x)i+ hAx+R(x), xi
= hx, (A+A⇤)xi+O(kxk3)  ��z +O(z

3
2 ).

2As usual hx, yi := P
n

i=1 x̄i

y
i

where ā is the complex conjugate of a. Moreover
by A⇤ we mean the adjoint of A.
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If we assume kxk  �
2

, then we have

d

dt
z  ��

2
z

which implies that also the solutions of (2.2.2) tend exponentially fast
to zero.3

Yet, the above result is far from being satisfactory: it is possible to
tend to zero in many di↵erent ways and it would be nice to understand
better how this happens.

Let us start with a very simple example: x 2 R, A = �1, R(x) =
bx2. Then the equation reads

ẋ = �x+ bx2. (2.2.3)

If we consider the change of variables

z =  (x) =
x

1� bx

we have

ż =
�x+ bx2

1� bx
+

bx(�x+ bx2)

(1� bx)2
= � x

1� bx
= �z.

We have just seen that in a neighborhood of size smaller than b�1

of zero we have a di↵eomorphism that conjugate the solution of (2.2.3)
with its linear part.

One can then suspect that this is always the case. This is not so:
consider

ẋ = �2x+ cy2

ẏ = �y
(2.2.4)

3What we have just seen is that, locally, F (x) := hx, xi is a Lyapunov function for
(2.2.2). Given a di↵erential equation like (2.1.1), where 0 is a fixed point, a Lyapunov
function is any C1 function L such that L(0) = 0, L � 0 and hr

x

L, V (x)i < 0 for
all x 6= 0. This implies that, for each solution x(t) of (2.1.1) holds

dL(x(t))
dt

= hr
x(t)L, V (x(t))i < 0.

This readily implies that lim
t!1 x(t) = 0. (Prove it !).
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Let us consider a change of variables

z = x+ ↵x2 + �xy + �y2 + q(x, y)

⌘ = y + p(x, y)

where q is of third order and p of second. Substituting in (2.2.4) one
can see that it is always possible to choose p ⌘ 0, while the first of the
(2.2.4) yields

ż = �2x+ cy2 � 2x(2↵x+ �y)� y(�x+ 2�y) +O(3)

where by O(3) we designate third order terms. If we try to impose
the right hand side of the above equation equal to �2z (up to second
order) we obtain

�2↵x2 � 2�xy � 2�y2 = �4↵x2 � 3�xy � (2� + c)y2

that does not admit any solutions if c 6= 0.
So there is no hope to find a smooth conjugation.
What can be salvaged?

2.2.1 Grobman–Hartman

One can look for a less regular change of variables. This may not make
sense for the o.d.e. itself but it is meaningful for the associated flows.

Thus let us fix some small r > 0 and consider a smooth non in-
creasing function g : R

+

! [0, 1] such that g(x) = 1 for x  r and
g(x) = 0 for x � 2r, with �g0  C. We can then define the functions
' : Rd ! [0, 1] F

0

, F : Rd ! Rd as '(x) := g(kxk) and
F
0

(x) := eAx

F (x) := eAx+ '(x)
⇥

�
1

(x)� eAx
⇤

=: F
0

(x) +�(x),

where �
1

is the time one flow associated to (2.2.2). Remember that
we are still considering the case in which all the eigenvalues of A have
strictly negative real part. Clearly, for kxk  r the two functions are
simply the time one map of the linear flow and the time one map of
(2.2.2), moreover they are globally Lip. Since we will be interested
only in x in the ball of radius r the modification outside such a ball is
totally irrelevant and it has been done only to facilitate the exposition
of the following argument.
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Problem 2.4 Show that, for r small enough, F is a di↵eomorphism.
Prove that k�k1 < 1.

The idea is to consider the maps F
0

, F : Rd ! Rd and to show that they
can be conjugated, that is there exists an homeomorphism �̃ : Rd ! Rd

such that �̃ � F = F
0

� �̃.
Let us look for a solution in the form �̃(x) = x + �(x), then we

have
F
0

(x+ �(x)) = F (x) + �(F (x))

or, setting ⇠ = F (x),

�(⇠) = F
0

(F�1(⇠) + � � F�1(⇠))� ⇠.

We define then the operator K : C0(Rd) ! C0(Rd) defined by

K(�)(⇠) := F
0

(F�1(⇠) + � � F�1(⇠))� ⇠

then our problem boils down to establishing the existence of a fixed
point for K. Now, given two functions h, g 2 C0(Rd), holds

sup
⇠2Rd

kK(h)(⇠)�K(g)(⇠)k = sup
x2Rd

kF
0

(x+ h(x))� F
0

(x+ g(x))k

 e��

2
kh� gk1

Thus the contracting mapping theorem yields the wanted result.

Problem 2.5 What can be done if all the eigenvalues of A have strictly
positive real part?

We have then, topologically, the behavior of a source, a node or a
stable or unstable focus are the same as the one of the linear part of
the equation. But the generic case is the one in which both eigenvalues
with positive and negative real part are present, does the same conclu-
sions hold for such a more general situation? The answer is yes. To
see it consider that in such a case Rd is naturally split into two spaces
V �W , invariant for A and such that A restricted to V has only eigen-
values with negative real part while restricted to W has eigenvalues
with positive real part. Then the spaces are invariant for F

0

as well,
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on one F
0

contracts, on the other expands. Call ds the dimension of V
and du the dimension of W . Clearly ds + du = d.

Then each e 2 Rd has a unique splitting as e = v + w, v 2 V ,
w 2 W . It is then convenient to define the projections p

1

: Rd ! V
and p

2

: Rd ! W p
1

(e) = v, p
2

(e) = w. Moreover we can split
C0(Rd) as V � W where V := {f 2 C0(Rd) : p

2

� f = 0} and W :=
{f 2 C0(Rd) : p

1

� f = 0}. We can then write canonically f as
(f

1

, f
2

) := (p
1

� f, p
2

� f).
Accordingly our conjugation equation F

0

� �̃ = �̃ � F , becomes

B�̃
1

= �̃
1

� F
D�̃

2

= �̃
2

� F

where F
0

((x
1

, x
2

)) =: (Bx
1

, Dx
2

). We transform the first equation as
we did for the contracting case, while on the second we act as you
probably did if you solved Problem 2.5:

�̃
1

= B�̃
1

� F�1

�̃
2

= D�1�̃
2

� F.

Note that, if we apply the above reasoning directly to such equations
we obtain that they have only one bounded solution: �̃ = 0, yet we are
not looking for bounded solutions but rather for solutions of the form
�̃(x) = x+�(x), where � is bounded. Substituting such a form for �̃
one can see that bounded function are mapped into bounded functions
(thanks to Problem 2.4), hence the contracting map argument applies
and the existence of a unique conjugation is established.

Remark 2.2.1 By the way, what we just proved is known as the Grobman-
Hartman Theorem.

2.3 Dominated Splitting and center manifold

Let U ⇢ Rd be an open set containing zero and let us consider a vector
field V 2 Ck(U,Rd), k � 1, such that V (0) = 0 and A := D

0

V has
a spectrum that splits into two disjoint parts. More precisely, assume
there exists real numbers ↵ < �, such that �(A) = ⌃

1

[ ⌃
2

where



36 CHAPTER 2. LOCAL BEHAVIOR

µ 2 ⌃
1

implies <(µ) � � and µ 2 ⌃
2

implies <(µ)  ↵. Let V
1

,V
2

be
the eigenspaces associated to ⌃

1

,⌃
2

, respectively.
We say that a manifold W is locally invariant at zero under the

flow �t generated by the vector field V if there exists � > 0 such that,
for all t 2 R, there exists �t 2 (0, �] such that �t(W \B(0, �t)) ⇢ W .

Note that, letting eR(x) := V (x)�Ax, we can then write the di↵er-
ential equation as

ẋ = Ax+ eR(x). (2.3.5)

In the special case R̃ ⌘ 0, the di↵erential equation is linear and the
subspaces Vi are invariant manifolds for the above di↵erential equation.
It is then natural to wonder if there exists invariant manifolds also
for the non linear case. Note that the nonlinearity is small only in
a neighborhood of zero, it is then natural to look for local invariant
manifolds at zero.

We are thus interested in the solutions of (2.3.5) only in a neigh-
borhood of zero. It is then convenient to modify the equation outside
the ball B(0, �) so that the dynamics is linear outside such a ball. This
will allow us to look for a globally invariant manifold for the modified
dynamics with the property of bein locally invariant for the original
one.

Namely, let ' 2 C1(R
+

, [0, 1]), be a decreasing function such that
'(t) = 1 for t  � and '(t) = 0 for t � 2�. We then define R(x) =
eR(x)'(kxk). Clearly, if we construct an invariant manifold for the
di↵erential equation

ẋ = Ax+R(x),

then it is a locally invariant manifold for (2.3.5) as well. By the varia-
tion of constant formula we have

x(t) = eAtx(0) +

Z t

0

eA(t�s)R(x(s))ds.

To put the problem into a more general context it is convenient to
define, for a given ⌧ large enough, the map F 2 Ck such that F (x(0)) =
x(⌧).

Problem 2.6 Prove that

1. F is invertible;
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2. we can choose � > 0 such that F (B(0, 3ekAk⌧�)) � B(0, 2�);

3. F (0) = 0, D
0

F = eA⌧ and DxF = eA⌧ for kxk � 3ekAk⌧�;

4. for each " > 0 we can chose � such that kDxF � eA⌧k1  ";

5. for each � > �0 > ↵0 > ↵ there is ⌧ such that ke�A⌧ |V1k  e��0⌧

and keA⌧ |V2k  e↵
0⌧ .

Problem 2.7 Show that a manifold W is locally invariant at zero for
(2.3.5) if and only if it is so for F .

The above shows the relevance of the following theorem

Theorem 2.3.1 Let F 2 Ck(Rd,Rd), k � 1, be an invertible map from
Rd to itself such that it enjoys the properties of Problem 2.6 and, for
a su�ciently small ", kDxF �D

0

Fk1  ". Then, there exists a Ck�1

locally invariant manifold W . In addition, W is dim(V
1

) dimensional
and tangent to V

1

at zero.

Proof. By the hypotheses �(D
0

F ) splits in two parts ⌃̃
1

, ⌃̃
2

. Let
V
1

,V
2

be the associated eigenspaces. By a change of variable we can
assume that V

1

= {(⇠, 0)}⇠2Rd1 and V
2

= {(0, ⌘)}⇠2Rd2 . Also, let
⇧

1

(⇠, ⌘) = (⇠, 0), ⇧
2

= 1� ⇧
1

, ⇧
1

D
0

F⇧
1

= ⇤ and ⇧
2

D
0

F⇧
2

= �. In
addition,4 the hypotheses imply that k⇤�1k  e�� and k�k  e↵ with
↵ < �.

The basic idea is to consider manifolds that can be described by a
function G : Rd1 ! Rd2 via W = {(⇠, G(⇠)}⇠2Rd1 . Obviously we need
to limit the set to which G might belong. To this end we define,

⌦ = {G 2 Ck(Rd1 ,Rd1) : G(0) = 0, kDGk1  1}.

Let
F (⇠, ⌘) = (⇤⇠ +A(⇠, ⌘),�⌘ +B(⇠, ⌘)).

If k⌘k  k⇠k and " is small enough, we have that there exists �0 > ↵
such that

k⇤⇠ +A(⇠, ⌘)k � e�
0k⇠k.

4 For convenience I am renaming the constants ↵,� and, possibly, substituting
Fn to F in order to o↵sets the constants coming from the equivalence of the norms
in the new coordinates.
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Thus, for each G 2 ⌦ the map TG(⇠) = ⇤⇠ + A(⇠, G(⇠)) is invertible.
Moreover, for k⇠k � C� we have TG(⇠) = ⇤⇠. We can then describe
the evolution of the manifolds of interest:

F (⇠, G(⇠)) = (TG(⇠), SG � T�1

G (TG(⇠)))

where SG(⇠) = �G(⇠) +B(⇠, G(⇠)). Again note that, for k⇠k � C� we
have SG(⇠) = �G(⇠). It follows that the image manifold is described
by the operator K : ⌦! Ck(Rd,Rd)

K(G)(⇠) = SG � T�1

G (⇠).

For G 2 ⌦, K(G)(0) = 0. Also

D[K(G)] =
⇥

(�DG+ @⇠A+ @⌘ADG)(⇤+ @⇠B + @⌘BDG)�1

⇤ � T�1

G .

Note that, if DG(0) = 0, then also D(K(G))(0) = 0.
From the above computations it follows that, for " small enough,

there exists � 2 [0, 1] such that

kD[K(G)]k1  �kDGk1 + C" < kDGk1.

Accordingly, K(⌦) ⇢ ⌦. A direct computation shows that, forG
1

, G
2

2
⌦,

kTG1 � TG2k1  C
#

"kG
1

�G
2

k1
kSG1 � SG2k1  (e↵ + C

#

")kG
1

�G
2

k1.

On the other hand, for all ⇠ 2 Rd1 ,

kT�1

G1
(⇠)� T�1

G2
(⇠)k = kT�1

G2
� TG2 � T�1

G1
(⇠)� T�1

G2
(⇠)k

 (e�� + C
#

")kTG2 � T�1

G1
(⇠)� TG1 � T�1

G1
(⇠)k

 C
#

(e�� + C
#

")"kG
1

� T�1

G1
(⇠)�G

2

� T�1

G1
(⇠)k.

To conclude we introduce the norm5

|||G||| = sup
⇠2Rd1

kG(⇠)k · k⇠k�1.

5 This norm is necessary only because we do not assume ↵ < 0. If we would do
so, then the usual sup norm would work perfectly.
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Remark that if G 2 ⌦, then |||G|||  1. Next, note that

kK(G
1

)(⇠)�K(G
2

)(⇠)k  kSG1 � T�1

G1
(⇠)� SG1 � T�1

G2
(⇠)k

+ kSG1 � T�1

G2
(⇠)� SG2 � T�1

G2
(⇠)k

 (e↵ + C
#

")kT�1

G1
(⇠)� T�1

G2
(⇠)k+ (e↵ + C

#

")kG
1

� T�1

G2
(⇠)�G

2

� T�1

G2
(⇠)k.

Accordingly,

|||K(G
1

)(⇠)�K(G
2

)||| 
h

C
#

(e�� + ")"e��0
+ (e↵ + C

#

")e��0
i

|||G
1

�G
2

|||
Hence, provided " is small enough, there exists � 2 (0, 1), such that for
each G

1

, G
2

2 ⌦
|||K(G

1

)�K(G
2

)|||  � |||G
1

�G
2

||| .
The above implies that K has a unique fixed point G = limn!1Kn(0).
In addition, G is of the form G(⇠) = k⇠kĜ(⇠) with Ĝ 2 C0.

We leave to the reader the task of checking that the contraction
takes place in Ck�1 as well. In particular, if k � 2, it is trivial to check
that DG(0) = 0. ⇤

From the above we directly obtain the following very useful result.

Theorem 2.3.2 (Center Manifold Theorem) Let F 2 Ck be an
invertible map from Rd to itself such that it enjoys the properties of
Problem 2.6. Moreover assume that the spectrum of the matrix A
splits into three disjoint parts ⌃� [ ⌃

0

[ ⌃
+

such that µ 2 ⌃� im-
plies <(µ)  ↵ < 0, µ 2 ⌃

0

implies ↵ < <(µ) < � and µ 2 ⌃
+

implies
<(µ) � � > 0. Let V

0

be the eigenspace associated to ⌃
0

and d
0

be its
dimension. Then, there exists a Ck�1 d

0

dimensional locally invariant
manifold W . In addition, W is tangent to V

0

at zero.

Proof. Let V
+

,V
0

,V� be the eigenspaces associated to the split-
ting of the spectrum and d

+

, d
0

, d� be their dimensions. Simply apply
Theorem 2.3.1 to F with the splittings ⌃

1

= ⌃
+

[ ⌃
0

, ⌃
2

= ⌃� and
to F�1 with the splitting ⌃

1

= ⌃
+

, ⌃
2

= ⌃� [ ⌃
0

. In such a way
we obtain two invariant manifolds: W+ (the weak unstable manifold)
and W� (the weak stable manifold) respectively of dimension d

+

+ d
0

and d� + d
0

. The reader can easily check that the hypotheses of the
implicit function theorem apply and prove that W = W+\W� is a d

0

dimensional Ck�1 locally invariant manifold tangent to V
0

in zero. ⇤
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2.4 Hadamard-Perron

Theorem 2.3.2 is quite general but it has a couple of disadvantages: a
slightly annoying loss of regularity (from Ck to Ck�1) and, most im-
portantly, it does not provides any information on the dynamics when
restricted to the invariant manifold which, in fact, can be pretty much
anything. To eliminate such shortcoming it is necessary to consider
situations in which there are no eighevalues with zero real part. This
gives rise to a sharper results: the Hadamard-Perron theorem. We will
discuss it in the simplest possible setting, also we will repeat several
arguments to make this section independent on the devious one.

Definition 2.4.1 Given a smooth map T : X ! X, X being a Rie-
mannian manifold, and a fixed point p 2 X (i.e. Tp = p) we call
(local) stable manifold (of size �) a manifold W s(p) such that6

W s(p) = {x 2 B�(x) ⇢ X | lim
n!1 d(Tnx, p) = 0}.

Analogously, we will call (local) unstable manifold (of size �) a manifold
W u(p) such that

W u(p) = {x 2 B�(x) ⇢ X | lim
n!1 d(T�nx, p) = 0}.

It is quite clear that TW s(p) ⇢ W s(p) and TW u(p) � W u(p)
(Problem 2.8). Less clear is that these sets deserve the name “mani-
fold.” Yet, if one thinks of a linear map it is obvious that the stable
and unstable manifolds at zero are just segments in the stable and un-
stable direction, the next Theorem shows that this is a quite general
situation.

Theorem 2.4.2 (Hadamard-Perron) Consider an invertible map T :
U ⇢ R2 ! R2, T 2 C1(U,R2), such that T0 = 0 and

D
0

T =

✓

� 0
0 µ

◆

(2.4.6)

6Sometime we will write W s

�

(p) when the size really matters. By B
�

(x) we will
always mean the open ball of radius � centered at x.
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where 0 < µ < 1 < �.7 That is, the map T is hyperbolic at the fixed
point 0. Then there exists unique C1 stable and unstable manifolds
at 0. Moreover, T

0

W s(u) = Es(u) where Es(u) are the expanding and
contracting subspaces of D

0

T .8

Remark 2.4.3 There is an issue not completely addresses in our for-
mulation of Hadamard-Perron theorem: the uniqueness of the mani-
folds.9 It is not hard to prove that the W s(u) are indeed the only sets
satisfying Definition 2.4.1 (see Problem 2.11).

The proof of Theorem 2.4.2 will be done in two steps: first we will
show the existence of the invariant manifolds and then we will prove
the regularity.

2.4.1 Existence of the invariant manifold: a fixed point
argument

We will deal explicitly only with the unstable manifold since the stable
one can be treated exactly in the same way by considering T�1 instead
of T .

Proof of existence of the unstable manifold. Since the map
is continuously di↵erentiable for each " > 0 we can choose � > 0 so
that, in a 2�-neighborhood of zero, we can write

T (x) = D
0

Tx+R(x) (2.4.7)

where kR(x)k  "kxk, kDxRk  ".
The first step is to decide how to represent manifolds. In the present

case, since we deal only with curves, it seems very reasonable to con-
sider the set of curves ��,c passing through zero and “close” to being
horizontal, that is the di↵erentiable functions � : [��, �] ! R2 of the
form

�(t) =

✓

t
u(t)

◆

7Notice that if D0T has eigenvalues 0 < µ < 1 < � then one can always perform
a change of variables such that (2.4.6) holds.

8By T0W
s(u) I mean the tangent space to the manifold (curve) Wu (or W s) at

the point zero.
9Namely the doubt may remain that a less regular set satisfying Definition 2.4.1

exists.
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and such that �(0) = 0; k(1, 0)��0k1  c. It is immediately clear that
any smooth curve passing through zero and with tangent vector, at each
point, in the cone C := {(a, b) 2 R2 | | ba |  c}, can be associated to a
unique element of ��,c, just consider the part of the curve contained in
the strip {(x, y) 2 R2 | |x|  �}. Moreover, if � 2 ��,c then � ⇢ B

2�(0),
provided c  1/2.

Notice that it su�ces to specify the function u in order to identify
uniquely an element in ��,c. It is then natural to study the evolution
of a curve through the change in the associated function.

To this end let us investigate how the image of a curve in ��,c under
T looks like.

T�(t) =

✓

�t+R
1

(t, u(t))
µu(t) +R

2

(t, u(t))

◆

:=

✓

↵u(t)
�u(t)

◆

.

At this point the problem is clearly that the image it is not expressed
in the way we have chosen to represent curves, yet this is easily fixed.
First of all, ↵u(0) = �u(0) = 0. Second, by choosing " < �, we have
↵0
u(t) > 0, that is, ↵u is invertible. In addition, ↵u([��, �]) � [��� +

"�, �� � "�] � [��, �], provided "  ��1. Hence, ↵�1

u is a well defined
function from [��, �] to itself. Finally,

| d
dt
�u � ↵�1

u (t)| =
�

�

�

�

�0
u(↵

�1

u (t))

↵0
u(↵

�1

u (t))

�

�

�

�

 µc+ "

�� "
 c

where, again, we have chosen "  c(��µ)
1+c .

We can then consider the map T̃ : ��,c ! ��,c defined by

T̃�(t) :=

✓

t
�u � ↵�1

u (t)

◆

(2.4.8)

which associates to a curve in ��,c its image under T written in the
chosen representation. It is now natural to consider the set of func-
tions B�,c = {u 2 C1([��, �]) | u(0) = 0, |u0|1  c} in the vector space
Lip([��, �]).10 As we already noticed B�,c is in one-one correspon-

dence with ��,c, we can thus consider the operator T̂ : Lip([��, �]) !
Lip([��, �]) defined by

T̂ u = �u � ↵�1

u (2.4.9)

10This are the Lipschitz functions on [��, �], that is the functions such that

sup
t,s2[��, �]

|u(s)�u(t)|
|t�s| < 1.
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From the above analysis follows that T̂ (B�,c) ⇢ B�,c and that T̂ u
determines uniquely the image curve.

The problem is then reduced to studying the map T̂ . The easiest,
although probably not the most productive, point of view is to show
that T̂ is a contraction in the sup norm. Note that this creates a lit-
tle problem since C1 it is not closed in the sup norm (and not even
Lip([��, �]) is closed). Yet, the set B⇤

�,c = {u 2 Lip([��, �]) | u(0) =
0, supt,s2[��, �]

|u(s)�u(t)|
|t�s| < c} is closed (see Problem 2.9). Thus B�,c ⇢

B⇤
�,c. This means that, if we can prove that the sup norm is contract-

ing, then the fixed point will belong to B⇤
�,c and we will obtain only a

Lipschitz curve. We will need a separate argument to prove that the
curve is indeed smooth.

Let us start to verify the contraction property. Notice that

↵�1

u (t) = ��1t+ ��1R
1

(↵�1

u (t), u(↵�1

u (t))),

thus, given u
1

, u
2

2 B�,c, by Lagrange Theorem

|↵�1

u1
(t)� ↵�1

u2
(t)|  ��1|hr⇣R1

, (↵�1

u1
(t)� ↵�1

u2
(t), u

1

(↵�1

u1
(t))� u

2

(↵�1

u2
(t)))i|

 "

�

�|↵�1

u1
(t)� ↵�1

u2
(t)|+ |u

1

(↵�1

u2
(t))� u

2

(↵�1

u2
(t))| .

This implies immediately

|↵�1

u1
(t)� ↵�1

u2
(t)|  ��1"

1� ��1"
ku

1

� u
2

k1. (2.4.10)

On the other hand

|�u1(t)� �u2(t)|  µ|u
1

(t)� u
2

(t)|+ |hr⇣R2

, (0, u
1

(t)� u
2

(t))i|
 (µ+ ")ku

1

� u
2

k1. (2.4.11)

Moreover,
|�0

u(t)|  µ+ ". (2.4.12)

Collecting the estimates (2.4.10, 2.4.11, 2.4.12) readily yields

kT̂ u
1

� T̂ u
2

k1  k�u1 � ↵�1

u1
� �u1 � ↵�1

u2
k1 + k�u1 � ↵�1

u2
� �u2 � ↵�1

u2
k1


⇢

[µ+ "]
��1"

1� ��1"
+ (µ+ ")

�

ku
1

� u
2

k1
 �ku

1

� u
2

k1,
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for some � 2 (0, 1), provided " is chosen small enough.
Clearly, the above inequality immediately implies that there exists

a unique element �⇤ 2 ��,c such that T̃�⇤ = �⇤, this is the local unstable
manifold of 0. ⇤

2.4.2 Regularity of invariant manifolds–a cone field ar-
gument

As already mentioned, a separate argument is needed to prove that �⇤
is indeed a C1 curve.

To prove this, one possibility could be to redo the previous fixed
point argument trying to prove contraction in C1

Lip (the C1 functions
with Lipschitz derivative); yet this would require to increase the reg-
ularity requirements on T . A more geometrical, more instructive and
more inspiring approach is the following.

Proof of the regularity of the unstable manifold. Let � > 0
such that the arguments of section 2.4.1 apply. For each ⇠ = (⇠x, ⇠y) 2
R2, |⇠x| < �, and |u|  c�, 0 < ✓  c� and 0 < h  �, define the
cone field C✓,h(⇠, u) := {⇠ + (a, b) 2 R2 : |a|  h; |b � au|  ✓ |a|}.
By construction, setting Dh(⇠) := {(a, b) 2 R2 : |a � ⇠x|  h},
Dh(⇠) \ �⇤ ⇢ Cc�,h(⇠, 0) for each ⇠ 2 �⇤. We will study the evolution of
such a cone field on �⇤.

For all ⌘ 2 C✓,h(⇠, u), if (a, b) = ⌘� ⇠ and (↵,�) = T⌘�T ⇠, it holds

(↵,�) = D
0

T (a, b) +O("|a|) = (�a, µb) +O("|a|).

and, at the same time, since T is C1, k(↵,�) � D⇠T (a, b)k  "✓|a|
provided h  h✓ for some h✓ small enough. Thus, setting (↵0,�0) =

D⇠T (a, ua) and u0 = �0

↵0 , one can compute

k(↵,�)� (↵0,�0)� (0, µ(b� ua))k  k(D⇠T �D
0

T )(0, b� ua)k+ ✓"|a|
 C✓"|a|.

Hence,

�

�

�

�

�

↵
� u0

�

�

�

�


�

�

�

�

�

↵
� �0

↵

�

�

�

�

+

�

�

�

�

�0

↵

�

�

�

�

�

�

�

1� ↵

↵0
�

�

�

 µ✓

�� C"
+

(µ+ C")C✓"

(�� C")2
.
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Accordingly, if h  h✓, then there exists � 2 (0, 1) such that

Dh(⇠) \ TC✓,h(⇠, u) ⇢ C�✓,h(T ⇠, u0). (2.4.13)

Finally, let ⇠ 2 �⇤, then, for each n 2 N, T�n⇠ 2 �⇤ and �⇤\Dh
n

(T�n⇠) ⇢
Cc�,h

n

(T�n⇠, 0). Thus, for all hn  h�nc�, (2.4.13) implies

�⇤ \Dh
n

(⇠) ⇢ C�nc�,h
n

(⇠, vn) (2.4.14)

where (a, avn) = DT�n⇠T
n(1, 0), for some a 2 R

+

. The last relevant
fact is that the limit

v⇤ = lim
n!1 vn (2.4.15)

exists. The proof of this fact is left as an entertainment for the reader
(see Problem 2.10). Using (2.4.14), (2.4.15) and remembering that
�⇤ admits the parametrization �⇤(t) = (t, u⇤(t)) we can compute the
derivative. Indeed, let ⌧ so that (⌧, u⇤(⌧)) = ⇠ 2 �⇤, then for each " > 0
let m so that �mc�  "

2

and |vm � v⇤|  "
2

, then for each h  hm holds

�

�

�

�

u⇤(⇠ + h)� u⇤(⇠)� v⇤h
h

�

�

�

�


�

�

�

�

u⇤(⇠ + h)� u⇤(⇠)� vmh

h

�

�

�

�

+
"

2

 c�m� +
"

2
 ".

That is, �⇤ is di↵erentiable and

�0⇤(⌧) = (1, v⇤). (2.4.16)

⇤

There is another point of view that can be adopted in the study
of stable and unstable manifolds: to “grow” the manifolds. This is
done by starting with a very short curve in ��,c, e.g. �

0

(t) = (t, 0) for
t 2 [��n�, �n�], and showing that the sequence �n := Tn�

0

converges
to a curve in the strip [��, �], independent of �

0

. From a mathematical
point of view, in the present case, it corresponds to spell out explicitly
the proof of the fixed point theorem. Nevertheless, it is a more sugges-
tive point of view and it is more convenient when the hyperbolicity is
non uniform. For example consider the map11.

11Some times this is called Lewowicz map
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T

✓

x
y

◆

:=

✓

2x� sinx+ y
x� sinx+ y

◆

(2.4.17)

then 0 is a fixed point of the map but

D
0

T =

✓

1 1
0 1

◆

is not hyperbolic, yet, due to the higher order terms, there exist stable
and unstable manifolds (see Problems 2.13, 2.14, 2.15).

Problems

2.8. Show that, if p is a fixed point, then TW s(p) ⇢ W s(p) and
TW u(p) � W u(p).

2.9. Prove that the set B⇤
�,c in section 2.4.1 is closed with respect to

the sup norm kuk1 = supt2[��,�] |u(t)|.

2.10. Prove that the limit in (2.4.16) is well defined and depend con-
tinuously on ⇠.

2.11. Prove that, in the setting of Theorem 2.4.2, the unstable manifold
is unique.

2.12. Show that Theorem 2.4.2 holds assuming only T 2 C1(U,U).

2.13. Consider the Lewowicz map (2.4.17), show that, given the set
of curves ��,c := {� : [��, �] ! R2 | �(t) = (t, u(t)); �(0) =
0; |u0(t)| 2 [c�1t, ct]}, it is possible to construct the map T̃ :
��,c ! ��(1+c�1�), c in analogy with (2.4.8).

2.14. In the case of the previous problem show that for each �i 2 ��,c
holds d(T̃�

1

, T̃�
2

)  (1� c�)d(�
1

, �
2

).

2.15. Show that for the Lewowicz map zero has a unique unstable man-
ifold.
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Hints to solving the Problems

2.1. Use the implicit function theorem on the one parameter vector
fields V (�) = V + �(W � V ).

2.4. By the variation of constant method follows that

�t(x) = eAtx+

Z t

0

eA(t�s)R(�s(x))ds.

2.11. This amounts to show that the set of points that are attracted
to zero are exactly the manifolds constructed in Theorem 2.4.2.
Use the local hyperbolicity to show that.

2.14. Grow the manifolds, that is, for each n > 1 define �n := ⇢
n . Show

that one can choose ⇢ such that �n�1

� �n(1 + c�1�n). according
to Problem 2.13 it follows that T̃ : ��

n

,c ! ��
n�1,c. Moreover,

d(T̃n�1�
1

, T̃n�1�
2

) 
n
Y

i=1

(1� c�i)d(�1, �2).

Finally, show that, setting �n(t) = (0, t) 2 ��
n

,c, the sequence
T̃n�1�n is a Cauchy sequence that converges in C0 to a curve in
�
1,c invariant under T̃ .

Notes


