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BEHAVIOUR CLOSE TO A GENERIC FIXED POINT

CARLANGELO LIVERANI

Let us consider the differential equation

(0.1) ẋ = V (x)

where x ∈ Rn and V ∈ C2(Rn,Rn). Suppose that V (x0) = 0 and det(Dx0
V ) 6= 0.

Exercize 1. Note that the condition det(Dx0
V ) 6= 0 can always be achieved by a

small C1 change of the vector field. On the contrary, the existence of a zero of the
vector field cannot be avoided by small C1 changes of the vector field: prove that
if W is a vector field C1 close to V , then there exists a x∗ close to x0 such that
W (x∗) = 0, and Dx∗W is close to Dx0

V .1 In this sense we will say that the above
conditions are generic (more on this concept later).

It is then necessary to understand the behavior of the equation in the vicinity of
the point x0. First of all, by a translation, we can assume without loss of generality
x0 = 0. Then we can develop V by the Taylor formula to obtain

(0.2) ẋ = Ax+R(x)

where ‖R(x)‖ ≤ C‖x‖2 and ‖DxR‖ ≤ C‖x‖, for all ‖x‖ ≤ 1.

Exercize 2. Show that, by a linear change of variable, one can transform A in
its Jordan canonical form. Show then that, by an arbitrary small C1 change of
the vector field one can eliminate all the Jordan blocks and insure that all the
eigenvalues have real part different from zero: this is called the hyperbolic case.

Since the hyperbolic case is generic, we will limit to it our considerations. We
will start by considering the case in which all the eigenvalue of A have real part
strictly smaller than zero.

Exercize 3. Prove that if A is diagonal with eigenvalues with real part strictly
smaller than zero, then there exists σ > 0 such that, for all x ∈ Cn,2

〈x, (A+A∗)x〉 ≤ −σ〈x, x〉
Prove that if A has only simple (that is with algebraic multiplicity one) eigenvalues,
then there exists a positive matrix B (that is B∗ = B and 〈x,Bx〉 > 0 for all x 6= 0)
such that

〈x,B(A+B−1A∗B)x〉 ≤ −σ〈x,Bx〉
Prove the same for a general matrix A with all the eigenvalues with real part strictly
smaller than zero.

Date: November 12, 2007.
1Hint: Use the implicit function theorem on the one parameter vector fields V (λ) = V +λ(W−

V ).
2As usual 〈x, y〉 :=

Pn
i=1 x̄iyi where ā is the complex conjugate of a. Moreover by A∗ we mean

the adjoint of A.
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It is well known that the linear part of (0.2) has solutions that tend to zero
exponentially fast, the question is: does the same holds true for the solutions of the
equation (0.2)?

To see it, consider z := 〈x, x〉,
d

dt
z = 〈x,Ax+R(x)〉+ 〈Ax+R(x), x〉 = 〈x, (A+A∗)x〉+O(‖x‖3) ≤ −σz+O(z

3
2 ).

If we assume ‖x‖ ≤ σ
2 , then we have

d

dt
z ≤ −σ

2
z

which implies that also the solutions of (0.2) tend exponentially fast to zero.3

Yet, the above result is far from being satisfactory: it is possible to tend to zero
in many different ways and it would be nice to understand better how this happens.

Let us start with a very simple example: x ∈ R, A = −1, R(x) = bx2. Then the
equation reads

(0.3) ẋ = −x+ bx2.

If we consider the change of variables

z = Ψ(x) =
x

1− bx
we have

ż =
−x+ bx2

1− bx +
bx(−x+ bx2)

(1− bx)2
= − x

1− bx = −z.

We have just seen that in a neighborhood of size smaller than b−1 of zero we
have a diffeomorphism that conjugate the solution of (0.3) with its linear part.

One can then suspect that this is always the case. This is not so: consider

ẋ = −2x+ cy2

ẏ = −y(0.4)

Let us consider a change of variables

z = x+ αx2 + βxy + γy2 + q(x, y)

η = y + p(x, y)

where q is of third order and p of second. Substituting in (0.4) one can see that it
is always possible to choose p ≡ 0, while the first of the (0.4) yields

ż = −2x+ cy2 − 2x(2αx+ βy)− y(βx+ 2γy) +O(3)

where by O(3) we designate third order terms. If we try to impose the right hand
side of the above equation equal to −2z (up to second order) we obtain

−2αx2 − 2βxy − 2γy2 = −4αx2 − 3βxy − (2γ + c)y2

that does not admit any solutions if c 6= 0.

3What we have just seen is that, locally, F (x) := 〈x, x〉 is a Lyapunov function for (0.2). Given
a differnetial eqaution like (0.1), where 0 is a fixed point, a Lyapunov function is any C1 function

L such that L(0) = 0, L ≥ 0 and 〈∇xL, V (x)〉 < 0 for all x 6= 0. This implies that, for each
solution x(t) of (0.1) holds

dL(x(t))

dt
= 〈∇x(t)L, V (x(t))〉 < 0.

This readily implies that limt→∞ x(t) = 0. (Prove it !).
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So there is no hope to find a smooth conjugation.
What can be salvaged?
One can look for a less regular change of variables. This may not make sense for

the o.d.e. itself but it is meaningful for the associated flows.
Thus let us fix some small r > 0 and consider a smooth non increasing function

g : R+ → [0, 1] such that g(x) = 1 for x ≤ r and g(x) = 3r
2x for x ≥ 2r, with

−g′ ≤ C. We can then define the functions ϕ : Rn → [0, 1] F0, F : Rd → Rd as
ϕ(x) := g(‖x‖) and

F0(x) := eAx

F (x) := eAx+ φ1(ϕ(x)x)− ϕ(x)eAx =: F0(x) + ∆(x),

where φ1 is the time one flow associated to (0.2). Clearly, for ‖x‖ ≤ r the two
functions are simply the time one map of the linear flow and the time one map of
(0.2), moreover they are globally Lip. Since we will be interested only in x in the
ball of radius r the modification outside such a ball is totally irrelevant and it has
been done only to facilitate the exposition of the following argument.

Exercize 4. Show that, for r small enough, F is a diffeomorphism. Prove that
‖∆‖∞ <∞.4

The idea is to consider the maps F0, F : Rn → Rn and to show that they can
be conjugated, that is there exists an homeomorphism Φ̃ : Rn → Rn such that
Φ̃ ◦ F = F0 ◦ Φ̃.

Let us look for a solution in the form Φ̃(x) = x+ Φ(x), then we have

F0(x+ Φ(x)) = F (x) + Φ(F (x))

or, setting ξ = F (x),

Φ(ξ) = F0(F−1(ξ) + Φ ◦ F−1(ξ))− ξ.
We define then the operator K : C0(Rn)→ C0(Rn) defined by

K(Φ)(ξ) := F0(F−1(ξ) + Φ ◦ F−1(ξ))− ξ
then our problem boils down to establishing the existence of a fixed point for K.
Now, given two functions h, g ∈ C0(Rn), holds

sup
ξ∈Rn

‖K(h)(ξ)−K(g)(ξ)‖ = sup
x∈Rn

‖F0(x+ h(x))− F0(x+ g(x))‖ ≤ e−σ‖h− g‖∞

Thus the contracting mapping theorem yields the wanted result.

Exercize 5. What can be done if all the eigenvalues of A have strictly positive real
part?

We have then, topologically, the behaviour of a source, a node or a stable or
unstable focus are the same as the one of the linear part of the equation. But the
generic case is the one in which both eigenvalues with positive and negative real part
are present, does the same conclusions hold for such a more general situation? The
answer is yes. To see it consider that in such a case Rn is naturally split into two

4Hint: By the variation of constant method follows that

φt(x) = eAtx+

Z t

0
eA(t−s)R(φs(x))ds.
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spaces V ⊕W , invariant for A and such that A restricted to V has only eigenvalues
with negative real part while restricted to W has eigenvalues with positive real
part. Then the spaces are invariant for F0 as well, on one F0 contracts, on the
other expands. Call ds the dimension of V and du the dimension of W . Clearly
ds + du = d.

Then each e ∈ Rn has a unique splitting as e = v + w, v ∈ V , w ∈ W . It is
then convenient to define the projections p1 : Rd → V and p2 : Rd →W p1(e) = v,
p2(e) = w. Moreover we can split C0(Rn) as V ⊕W where V := {f ∈ C0(Rd) :
p2 ◦ f = 0} and W := {f ∈ C0(Rd) : p1 ◦ f = 0}. We can then write canonically f
as (f1, f2) := (p1 ◦ f, p2 ◦ f).

Accordingly our conjugation equation F0 ◦ Φ̃ = Φ̃ ◦ F , becomes

BΦ̃1 = Φ̃1 ◦ F
DΦ̃2 = Φ̃2 ◦ F

where F0((x1, x2)) =: (Bx1, Dx2). We transform the first equation as we did for
the contracting case, while on the second we act as you probably did if you solved
Exercise 5:

Φ̃1 = BΦ̃1 ◦ F−1

Φ̃2 = D−1Φ̃2 ◦ F.
Note that, if we apply the above reasoning directly to such equations we obtain
that they have only one bounded solution: Φ̃ = 0, yet we are not looking for
bounded solutions but rather for solutions of the form Φ̃(x) = x + Φ(x), where Φ

is bounded. Substituting such a form for Φ̃ one can see that bounded function are
mapped into bounded functions (thanks to exercise 4), hence the contracting map
argument applies and the existence of a unique conjugation is established.

Remark 0.1. By the way, what we just proved is known as the Grobman-Hartman
Theorem.
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