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We have seen that for an open set it may happen that, for a family of vector
fields V ∈ C2(R2 × [−1, 1],R2), V (0, 0) = 0, and ∂xV (0, 0) is invertible but has
purely immaginary eigenvectros.

Such a vector field, which can be assumed C∞ without loss of generality, yields
the family of differential equations

(0.1) ẋ = Ax+ λb+G(x, λ)

where G(x, λ) = O(‖x‖2 + λ2) where A = ∂xV (0, 0), b = ∂λV (0, 0).

Exercize 1. Show that with a change of variables z = Bx−α(λ) one can put (0.1)
in the form

(0.2) ż =
(

0 ω
−ω 0

)
z +G1(z, λ)

where ω > 0 and G1(0, 0) = 0, ∂xG1(0, 0) = G1(0, λ) = 0. (Hint: first prove that
the trace of A must be zero, hence it must be

A =
(
a b
c −a

)
and detA = −a2 + bc =: −ω2 must be negative. Try then with

B =
(
−ω−1 −aω−1

0 c

)
.

It remains to determine α. Note that setting x = z + α one wants G1(0, λ) =
Aα(λ) + bλ + G(α(λ), λ) = 0 that is α(λ) = −A−1bλ − A−1G(α(λ), λ) which can
be easily shown to have a unique C2 solution.)

We already know that, generically, ∂xxG1(0, 0) is not degenerate.

Exercize 2. Show that, generically, the vector fields of the form (0.1) have the
trace t of ∂xλG1(0, 0) differrent from zero. Verify that the eigenvalues of the matrix
A+ λ∂xλG1(0, 0) are given by λt/2± iω(1 +O(λ)). Finally show that, by a linear
change of coordinate, and a linear reparametrization of the time (0.2) can be put
in the form

(0.3) ẋ =
(

λ ω + aλ
−ω − aλ λ

)
z + V1(z, λ)

with ω, a 6= 0, V1(0, λ) = ∂xV1(0, 0) = ∂λV1(0, 0) = ∂xλV1(0, 0) = 0 and ∂xxV1(0, 0)
non degenerate.
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Since (0.3) is the generic case, it is now time to study it to conclude our under-
standing of the generic situation for generic two dimensional vector fields.

Given the fact that the trajectories rotate around zero almost in circles it may
occur the idea to treat the problem in polar coordinates. In fact this point of view
is quite advantageous and we will carry it out in order to show how a problem may
simplify if viewed in different coordinates.

The polar coordinates can be written as x = ρv(θ), where ρ ∈ R+, θ ∈ R and
v(θ) := (cos θ, sin θ).

Remark 0.1. Note that such a change of coordinates is singular for ρ = 0 and it
is not globally one-one. Yet to consider θ in the universal cover of S1 rather than
in S1 will be very usefull in the following.

If we substitute such coordinates in (0.3), we obtain

ρ̇v(θ) + ρn(θ)θ̇ = λρv(θ)− ωλρn(θ) + V (ρv(θ)),

where n(θ) := (− sin θ, cos θ) and ωλ = ω − λa. That is

ρ̇ = λρ+ 〈v(θ), V (ρv(θ))〉 =: λρ+ a(θ, ρ)ρ2

θ̇ = −ω + ρ−1〈n(θ), V (ρv(θ))〉 =: −ω + b(θ, ρ)ρ.
(0.4)

Note that the equation (0.4) is well defined also for ρ = 0 but in such a case, instead
of a fixed point, it has the periodic orbit (ρ(t), θ(t)) = (0,−ωt). In some sense the
polar coordinates have automatically regularized the behaviour at zero saving us
the trouble to do it by hand as one should do in Cartesian coordinates. Since for
small ρ we have θ̇ < 0, it is convenient to use θ rather than t to parameterize
the motion (here is now evident the advantage of using the universal cover of S1).
Calling again ρ the distance from the origin as a function of θ we have

(0.5)
dρ

dθ
=
λρ+ a(θ, ρ)ρ2

−ω + b(θ, ρ)ρ
=: −λ

ω
ρ− β(θ, λ)ρ2 − γ(θ, ρ, λ)ρ3,

where
β(θ, λ) = ω−1a(θ, 0) + λω−2b(θ, 0)

γ(θ, 0, λ) = λb(θ, 0)2ω−3 + a(θ, 0)b(θ, 0)ω−2 + λ∂ρb(θ, 0)ω−1 + ∂ρa(θ, 0)ω−1.

Note, for later use, that β is a trigonometric polynomial of third degree while γ has
terms of forth and sixth order.

At this point the Poincarè section corresponds simply at looking at the trajectory
for multiple of 2π. We wish then to define the map Sλ : R+ → R+ defined by
Sλξ := ρ(2π, ξ, λ), where ρ(2π, ξ, λ) is the solution of (0.5) with initial condition ξ
seen at θ = 2π.1

Remark that (0.5) can be written in integral form as
(0.6)

ρ(θ, ξ, λ) = e−
λ
ω θξ−

∫ θ

0

e−
λ
ω (θ−ϕ)

[
β(ϕ, λ)ρ(ϕ, ξ, λ)2 − γ(ϕ, ρ(ϕ, ξ, λ), λ)ρ(ϕ, ξ, λ)3

]
dϕ

Exercize 3. Prove that, for fixed λ, setting

Kξ(ρ)(θ) = e−
λ
ω θξ −

∫ θ

0

e−
λ
ω (θ−ϕ)

[
β(ϕ)ρ(ϕ, ξ)2 − γ(ϕ, ρ(ϕ, ξ), λ)ρ(ϕ, ξ)3

]
dϕ

1Since θ̇ < 0, here we are going back in time with respect to the previous section, hence Sλ is

essentially what before was T−1
λ .
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for each δ > 0 there exists L,M > 0 such that the set {|ρ(θ)−e− λω θξ| ≤M |ξ| ∀|θ| ≤
L} is invariant for Kξ provided |ξ| ≤ δ, and hence contains its fixed point.

Taking into account the above exercize and terating (0.6) yields

ρ(θ, ξ, λ) =e−
λθ
ω ξ −

∫ θ

0

e−
λ(θ−ϕ)
ω β(ϕ, λ)

[
e−

2λϕ
ω ξ2 − 2

∫ ϕ

0

e−
λ(2ϕ−3x)

ω β(x, λ)ξ3
]
dϕ

−
∫ θ

0

e−
λ(θ−ϕ)
ω γ(ϕ, 0, λ)e−

3λϕ
ω ξ3dϕ+O(ξ4).

(0.7)

To compute the map Sλ we must set θ = 2π in (0.7). As already noted in the previ-
ous section some integral will be zero. Indeed, from (0.4) follows that a(θ, 0), b(θ, 0)
are homogeneous polynomials of third order while ∂ρa(θ, 0), ∂ρb(θ, 0) are of forth
order. Moreover, setting

Γ(θ, 0) :=
∫ θ

0

β(ϕ, 0)dϕ,

we have Γ(2π) = 0, hence∫ 2π

0

β(ϕ, 0)
∫ ϕ

0

β(x, 0)dxdϕ =
∫ 2π

0

Γ′(ϕ, 0)Γ(ϕ, 0)dϕ =
Γ(2π, 0)2 − Γ(0, 0)2

2
= 0.

Given the above considerations we can finally write

(0.8) Sλ(ρ) = e−
2πλ
ω ρ+Bρ3 +O(λρ2 + ρ4).

where

B = −
∫ 2π

0

[
a(θ, 0)b(θ, 0)ω−2 + ∂ρa(θ, 0)ω−1

]
dθ

Exercize 4. Compute, in terms of the Tailor coefficients of V , what it means
B 6= 0.

As before the fixed points of Sλ are ρ = 0 and ρp :=
√

2πλ
ωB +O(λ) which exists

only if λB > 0. In the latter case S′λ(ρp) = 1 + 4πλ
ω + O(λ

3
2 ), while S′λ(0) =

1 − 2πλ
ω + O(λ2). Thus, if one is attracting the other must be repelling. If, for

λB < 0, we want only an attracting focus (as we asked in the previous section),
then it must be B < 0. Hence, for λ > 0 we have an attracting focus, while for
λ > 0 the focus becomes repelling and it appears an attracting periodic orbit.
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