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As we have seen a generic vector field in R2 can have a very limited choose
of bounded invariant sets: either a fixed point and the associated stable and un-
stable manifolds, or (by Poincarè-Bendixon) a periodic orbit. Yet one can have a
differential equation on different manifolds, notably the torus T2 = R2/Z2.

Problem 1. Consider the vector fields V (x) = ω ∈ R2 on T2 and show that
the orbit of the associated flow can be everywhere dense. (Hint: The equation
ẋ = ω = (ω1, ω2) on T2 has the solution x(t) = (x1(t), x2(t)) = x0 + ωt mod 1.
If one looks at the flow only at the times τn = nω−1

1 , then x(nτ) = x0 + (0, αn)
mod 1 where α := ω2

ω1
. One can then consider the circle map f : S1 → S1 defined

by f(z) = z + α mod 1. Clearly, if the orbit of such a map are dense in S1 the
original flow will be dense in T2. The density follows in the case α 6∈ Q. In fact
this implies that f has no periodic orbits. Then {fn(0)} is made of distinct points
and contains a converging subsequence (by compactness) hence for each ε > 0 exists
n̄ ∈ N such that |z − f n̄(z)| ≤ ε, that is f n̄ is a rotation by less than ε.)

The above problem shows that, on T2 is is possible to have a new ω-limit set: T2

itself? At this point it is natural if such a situation can take place for an open set
of vector fields. To understand the situation is is useful to generalize the setting of
Problem 1.

Definition 1. A smooth generator of the first homotopy group such that V is always
transversal to such a curve is called a global section for the flow associated to V .

Lemma 0.1. Let V ∈ C1(T2,R2) be a nowhere zero vector field with a global section
γ and let φt be the associated flow. Assume that the flow has no periodic orbits.
Then, for x ∈ γ there exists t ∈ R+ such that φt(x) ∈ γ.

Proof. Note that T2 \ γ is topologically a cylinder. Since the close curves divide
a cylinder into two disjoint set, the Poincarè-Bendixon theorem applies. Thus if
x ∈ γ and the forward trajectory never meets γ then ω(x) must be a periodic orbit,
but this contradicts the assumptions, hence the Lemma. �

The above lemma shows that the map f : γ → γ that to each point associates
its first return to γ is well defined.

Problem 2. Show that if V ∈ C2(T2,R2) and the return map is well defined, then
it is C2. (Hint: Smooth dependence from the initial conditions for an ODE.)

Theorem 1. Let V ∈ C2(T2,R2) be a nowhere zero vector field with no periodic
orbits an a global section γ. Let g : γ → γ be the return map. If g′(x) 6= 0 for all
x ∈ γ, then for each point y ∈ T2, ω(y) = T2.

Date: December 7, 2007.

1



2 CARLANGELO LIVERANI

Proof. First of all note that, by the same arguments used in Lemma 0.1, the for-
ward orbit of each x ∈ T2 meets γ. Second, since γ is smooth we can find a C2

diffeomorphism h : S1 → γ. If we set f = h−1 ◦ g ◦ h, we can consider the return
map as C2 map on the unit circle such that f ′ 6= 0 at each point. Note that a
periodic point for the map f corresponds to a periodic orbit for the flow, hence f
cannot have periodic orbits. The clam follows then by the results of the following
sections in which it is proven that a smooth circle map with no periodic orbits has
dense orbits. �

Motivated by the above theorem we will now study orientation preserving circle
maps. It turns out to be interesting and helpful to study their properties in relations
to their increasing smoothness.

1. The continuous case

We start with some facts that follow from the simple hypothesis of continuity.
First of all note that one can lift the map f to the universal cover R of the circle,

that is defining π : R→ S1 as π(x) = x mod 1, it is possible to find F ∈ C0(R,R)
such that

f ◦ π = π ◦ F.

Problem 3. Construct explicitly such an F . Show that F (x+ 1) = F (x) + 1.

Lemma 1.1. Let f : S1 → S1 an homeomorphism and FC0(R,R) a lift of f . Then
the limit

τ(f) := lim
|n|→∞

1
n
Fn(x) mod 1

exists and is independent both from the point and the lift.

Proof. See [1]. �

Problem 4. If there exists L > 0 such that −L ≤ am+n ≤ an + am + L for all
n,m ∈ N, then the limit limn→∞

an

n exists. (Hint: let lim infn→∞
an

n = a > −∞,
then for each ε,m > 0 exists n̄ ∈ N, n̄ > m, such that an̄ ≤ an̄ + εn̄. Let l ∈ N,
l > n̄, and write l = kn̄+ r, r < n̄, then

a ≤ al

l
≤ kan̄ + kL+ ar

l
≤ kn̄(a+ ε) + kL+ ar

l
= a+ ε+

L

m
+
ar

l
.

From which the claim follows.)

Problem 5. Show that τ(f) ∈ Q if and only if f has a periodic orbit. (Hint: see
[1]).

Problem 6. Given f ∈ C0(S1, S1), for any interval I ⊂ S1, if f(I) ⊂ I, then f
has a fixed point in I. (Hint: Stetting I = [a, b] note that g(x) = f(x) − x has a
zero in I.)

Problem 7. If τ(f) 6∈ Q, then for each n ∈ N \ {0} and x, y ∈ S1, {fk(y)}k∈N ∩
[x, fn(x)] 6= ∅. (Hint: this is the same than saying

⋃
k∈N f

−k[x, fn(x)] = S1. If not
consider f−kn[x, fn(x)], this are contiguous intervals. If they do not cover all S1,
then their length must go to zero and f−knx must have an accumulation point, call
it z. Then

z = lim
k→∞

f−kn(x) = lim
k→∞

f−kn(fn(x)) = fn(z).

Hence f must have a fixed point contradicting τ(f) 6∈ Q.)
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Lemma 1.2. For any homomorpfism f : S1 → S1 with τ(f) 6∈ Q and any x, y ∈ S1

holds ω(x) = ω(y).

Proof. If z ∈ ω(x), then there exists {nj} such that limj→∞ fnj (x) = z. But
then for each j ∈ N there exists kj such that fkj (y) ∈ [fnj (x), fnj+1(x)]. Clearly
limj→∞ fkj (y) = z, thus z ∈ ω(y). Reversing the role of x and y the Lemma
follows. �

2. The smooth case

In this section we assume f ∈ C2(S1, S1) and ln f ′ ∈ C1(S1,R).1

Lemma 2.1. If τ(f) 6∈ Q and x0 6∈ ω(x0), then
∞∑

n=0

(fn)′(x0) <∞.

Proof. Let U(x0) 3 x0 be the largest open interval not intersecting ω(x0), call
K(x0) its closure. First of all we see that the invariance of the ω-limit set implies
{fn(∂K(x0))}∞n=1 ⊂ ω(x0). This implies that either fnK(x0) ∩ K(x0) = ∅ or
fnK(x0) ⊃ K(x0) but the latter would imply the existence of a fixed point for
f−n, which is impossible, hence all the sets {fnK(x0)}n∈Z must be disjoint. We
can now conclude thanks to a typical distortion estimate: let Kn(x0) := fn(K(x0)),
then, setting D :=

∣∣∣ f ′′f ′

∣∣∣
∞

,

1 >
∑
n∈N
|Kn(x0)| =

∑
n∈N

∫
K(x0)

(fn)′(x)dx =
∑
n∈N

(fn)′(x0)
∫

K(x0)

(fn)′(x)
(fn)′(x0)

dx

≥
∑
n∈N

(fn)′(x0)
∫

K(x0)

e−
Pn−1

k=0 | ln f ′(fk(x))−ln f ′(fk(x0))|dx

≥
∑
n∈N

(fn)′(x0)
∫

K(x0)

e−
Pn−1

k=0 D|Kk(x0)|dx ≥ |K(x0)|e−D
∑
n∈N

(fn)′(x0).

�

Problem 8. If τ(f) 6∈ Q, then for each x ∈ S1 there exist infinitely many n ∈ Z
such that {fkx}|k|<n ∩ [x, fnx] = ∅.

Lemma 2.2. If τ(f) 6∈ Q, then, for all x ∈ S1, ω(x) = S1.

Proof. We use the same notation as in Lemma 2.1. Note that if there exists n ∈ N,
n 6= 0, such that fn(x0) ∈ K(x0) then, by the invariance of ω(x0), it must be
fn(x0) 6= ∂K(x0) ⊂ ω(x0) and then Problem 7 implies that there are infinitely
many k such that fk(x0) ∈ [x0, f

n(x0)] ⊂ K(x0), but this is impossible since such
an interval does not contain accumulation points of the forward trajectory. Thus,
for each n ∈ Z, n 6= 0, f (x0) 6∈ K(x0), accordingly there exist δ > 0 such that each
interval [x0, f

n(x0)] has length at least δ.
Next, choose L > 0, by Lemma 2.1 there exists m ∈ N such that (fn)′(x0) < L−1,

for all n > m. We can then apply Problem 8 to find an |n| > m such that
{fkx}|k|<n ∩ [x0, f

n(x0)] = ∅. Suppose n < 0 and let J− = [x0, f
n(x0)], then

for each k ∈ {1, . . . ,−n − 1}, fkJ− = [fkx0, f
n+kx0], since the extreme of such

1These hypotheses can be slightly weakened, see [1].
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an interval do not belong to J it follows that fkJ− ∩ J− = ∅ (otherwise the first
would be contained in the second and there would be a fixed point). Thus, setting
J = [x0, f

|n|(x0)], for all k ∈ {1, . . . ,−n− 1}, holds fkJ ∩ J = ∅. The same result
follows, setting J− = [x0, f

−n(x0)] , for n > 0. Finally we conclude with another
distortion argument

|f−|n|J | =
∫

J

(f−|n|)′(x)dx =
1

(f |n|)′(x0)

∫
J

(f |n|)′(f−|n|(f |n|(x0))
(f |n|)′(f−|n|x)

dx

≥ 1
(f |n|)′(x0)

∫
J

e−
P|n|−1

k=0 D|fkJ|dx ≥ Le−Dδ.

Then choosing L > eDδ−1 leads a length of |f−|n|J | larger than one, which contra-
dicts the fact that f is an homeomorphism. �

3. The analytic case

We have seen that the qualitative behavior of smooth circle maps with irrational
rotation number is similar to the behavior of the rigid rotation in problem 1. What
it is not clear is if the two dynamics can be conjugated (i.e. in the spirit of the flow
box theorem). This latter problem turn out to be extremely subtle and to require
much finer number theoretical consideration than distinguishing between rational
and irrationals.

We leave the study of this case to the reader, which should be easy after she/he
has carefully studied the note on the Siegel problem.
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