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A FEW ELEMENTARY FACTS FROM

LOCAL BIFURCATION THEORY

CARLANGELO LIVERANI

1. Generic Vector fields

Let us consider a first order autonomous differential equation,

(1.1) ẋ = V (x)

where x ∈ C1(R,Rd) and V ∈ C1(Rd,Rd). We are interested in the typical local
behavior of such systems. Unfortunately, before being able to even address such an
issue, it is necessary to give a technical meaning to the three words typical, local
and behavior. By local understanding in a region K we mean that for each point
x ∈ K we are able to consider some neighborhood of x in which we understand the
solutions of (1.1).1 To do so it would be nice to consider only neighborhoods U in
which V (x) 6= 0 with, at most, the exception of one point. Of course, this is not
always possible (think of the case V ≡ 0), our claim is that typically it is.

To define typical let us consider the following.

Definition 1. Given a topological space Ω, we say that a set A ⊂ Ω is generic if it
is open and dense.

Now C1(Rd,Rd) is a Banach space2 hence the topology is trivially determined by
the norm. For now on typical will mean that it happens for a countable intersection
of generic sets (this is also called a residual set).

Problem 1. Prove that a residual set is dense.

Problem 2. Give an example of a typical set in R with zero Lebesgue measure.

Next, let us define

AK := {V ∈ C1(Rn,Rn) : V (x) = 0 implies DxV hyperbolic ∀x ∈ K}
Problem 3. Prove that, for each compact set K ⊂ Rd, if V ∈ AK , then V has
only finitely many zeroes in K. (Hint: Let x̄ ∈ K such that V (x̄) = 0. Then, by
assumption Dx̄V is invertible, so V (x̄+ ξ) = 0 can be written as

Dx̄V
−1(Dx̄V ξ − V (x̄+ ξ)) = ξ.

Since Dx̄V ξ − V (x̄+ ξ) = o(‖ξ‖), it follows that the above equation has the unique
solution ξ = 0 in a sufficiently small neighborhood of zero. Hence there exists a
neighborhood of x̄ in which there are no other zeroes. Next, for each point in K
consider a neighborhood as follows: if the V is different from zero at such a point,

Date: November 28, 2007.
1Note that, if K is compact, then finitely many such neighborhoods will cover K. On the other

hand if, for example, K = Rd, then countably many neighborhoods will do the job.
2The norm being ‖V ‖ := |V |∞ + |DV |∞.
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then consider a neighborhood for which the vector field is different from zero. If the
vector field is zero at the point then consider the above neighborhood in which the
point is the only zero. In such a way we have a covering of K, we can then extract
a finite subcover hence proving the statement.)

Problem 4. Prove that, for each compact set K ⊂ Rd, AK is generic. (Hint: Let
V ∈ AK and {xi}Mi=1 be the zeroes of V . Then for each vector field W ∈ C1(Rd,Rd),
‖W‖ ≤ 1, consider the family V (x, µ) := V (x) + µW (x). For each i ∈ {1, . . . ,M},
use the implicit function theorem to show that there exists εi, δi > 0 and Xi ∈
C1([−εi, εi],Rn) → Rd, Xi(xi) = 0, such that V (Xi(µ), µ) = 0 and V (x, µ) = 0,
‖x − xi‖ ≤ δi, |µ| ≤ εi implies that x = Xi(µ). Verify (using perturbation theory)
that, for µ small enough ∂xV (X(µ), µ) is hyperbolic. Next, set δ = min δi and
ρ := inf |x−xi|≥δ ‖V (x)‖. Clearly V (x, µ) 6= 0 if |x − xi| ≥ δ and µ < ρ. Hence
a neighborhood of V of size min{εi, ρ} belongs to AK , hence AK is open. For the
density, the first problem to rule out the possibility of infinitely many zeroes. A

possible way is to consider the vector field Vε(x) = Sdε
− d2
∫
Rd V (x− z)e− ‖x−z‖

2

ε dx,

where Sd is determined by the normalization Sd
∫
Rd e

−‖x‖2dx = 1. First verify
that limε→0 ‖V − Vε‖∞ + ‖DV − DVε‖∞ = 0, then notice that Vε is an analytic
function. From this follows that the set of zeroes of each function is (generically)
a finite union of codimension one manifolds.3 One can than do small translations
to ensure that all such manifolds have only transversal intersections. Next, if one
has a field with finitely many zeroes, let V (x̄) = 0 and Dx̄V is not hyperbolic, then
show that one can find a matrix A such that, setting V (x, µ) := V (x) + µA(x− x̄)
(in a ball containing K), holds V (·, µ) ∈ AK for all µ 6= 0. This is better done in
the coordinates in which Dx̄V is in normal Jordan form.)

Definition 2. We say that two vector fields V,W are equivalent in the open set U ,
if, for each t > 0, there exists a homeomorphism F : U → U such that, calling φVt ,
φWt the flows generated by the vector fields, holds φvt ◦ F = F ◦ φWt .

Finally, we we say that two vector fields have the same local behavior at x̄ if it
is possible to find U 3 x̄ such that they are equivalent in U .

It is now clear that we understand already the typical local behavior. In fact,
either V (x̄) 6= 0 and then the flow box Theorem tells us that the field has the
same local behavior than a constant vector field; or, if V (x̄) = 0, then Grobmann-
Hartman Theorem tells us that the field has the same local behavior than its linear
part.

2. Generic families of vector fields

Our next aim is to consider a situation in which the system has a control pa-
rameter. That is, it is described by the equations

(2.1) ẋ = V (x, λ)

where x ∈ Rd and λ ∈ [−2, 2] is the parameter that, in principle, can be varied. Now
by local understanding in a region K we mean that for each point (x̄, λ̄) ∈ K×[−1, 1]
we can find a neighborhood of the form U × (λ − ε, λ + ε) in which are able to

3This may seem obvious, but it is a subtle result. For example it follows from the Weierstrass
preparation theorem. Do explicitly the cases d = 1, 2.
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understand the behavior of the solutions of (2.1). Typicality will instead be (for
simplicity) with respect to the space C2(Rd × (−2, 2),Rd).

Let us now try to understand the local picture for typical families of vector fields.
In analogy with the previous section, for compact K ⊂ Rd, we can consider the sets

ĀK := {V ∈ C1(Rd × (−2, 2),Rd) : V (x, λ) = 0 implies ∂xV (x, λ) hyperbolic

∀ (x, λ) ∈ K × [−1, 1]}
Problem 5. Prove that if V ∈ ĀK , then for each (x̄, λ̄) ∈ K × [−1, 1] there exists
an open set of the form U × (−ε+ λ̄, ε+ λ̄) =: U × I such that either V (x, λ) 6= 0 or
there exists X ∈ C1(I,K) such that V (X(λ), λ) = 0 for each λ ∈ K and there are
no other zeroes in U × I. Then, prove that ĀK is open. (Hint: implicit function
theorem.)

Clearly the above situations can be treated exactly as we did in the previous
section and are therefore locally understandable. Unfortunately, the above does
not exhaust all the possibilities.

Lemma 2.1. For each K with non empty interior ĀK is not generic.

Proof. Since ĀK is open, the problem must be the density. To see this let us
consider, for example, the case d = 1, a compact set K with interior containing
zero and the family

V (x, λ) = λa+ λx+ bx2.

Now let us consider any W ∈ C1(R× [−1, 1],R) and look at Ṽ (x, λ, µ) := V (x, λ) +

µW (x, λ). The claim is that for each µ sufficiently small, then Ṽ (x, λ, µ) 6∈ ĀK .

In fact, there exists (x(µ), λ(µ)) ∈ K such that both Ṽ (x(µ), λ(µ), µ) = 0 and

∂xṼ (x(µ), λ(µ), µ) = 0. To see this we define the function F : R3 → R2

F (x, λ, µ) :=

(
λa+ λx+ bx2 + µW (x, λ)
λ+ 2bx+ µ∂xW (x, λ)

)
=

(
Ṽ

∂xṼ

)
,

clearly we are looking for (x(µ), λ(µ)) such that F (x(µ), λ(µ)) = 0. Since F (0, 0, 0) =
0 we can apply the implicit function theorem provided(

0 a
2b 1

)

is invertible, that is if ab 6= 0. We have thus seen that the family has an open
neighborhood disjoint from ĀK , hence the latter set cannot be dense. �

Thus, to have a generic situation we need to consider a larger set.
A natural possibility is given by the following. Before stating we need a bit of

notation. Given a d × d matrix an a vector w ∈ Rd we consider the d × (d + 1)
matrix (A w), by rank (A w) we mean the number of linearly independent column.

BK = {V ∈ C2 : ∀ (x, λ) ∈ K × [−1, 1] V (x, λ) = 0 =⇒ rank (∂xV ∂λV ) = d;

∂xxV (w,w) 6= 0 ∀w ∈ Rd and ∂xV v = 0, ∂xV
Tw = 0⇒ 〈w, ∂xxV (v, v)〉 6= 0}.

Problem 6. Show that, for each compact set K, BK is dense.(Hint: show first that
the generically the zeroes of V are contained in the finite union of dimension one
varieties in Rd+1.4. Next, show that the fact that ∂xV has a null space of dimension
at most one is generic. If ∂xV is invertible, then the argument is the same as in

4This can be done, as before, by reducing to the analytic case.
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Problem 4. If, instead, the null space is not empty, there exists w ∈ Rd such that
〈w, ∂xV ξ〉 = 0 for all ξ. Next, check that 〈w, ∂λV 〉 6= 0 is dense.The density of the
second condition follows by similar considerations.)

The point of BK is that it also open.

Lemma 2.2. The set BK is open. In addition, if V ∈ BK and V (x̄, λ̄) = 0, then
there exists ε > 0 and a neighborhood U 3 x̄ such the vector field V (x, λ) either
has no zeroes or the set of zeroes consists of a smooth curve in U × (λ̄− ε, λ̄+ ε).
Moreover, on such a curve ∂xV is invertible everywhere with, at most, the exception
of one point.

Proof. Now the approach based on a simple application of the implicit function
theorem suggested in Problem 4 does not work if ∂xV (x̄, λ̄) is not invertible, yet
one can salvage such a situation in the following way. First suppose, without loss
of generality, that (x̄, λ̄) = (0, 0). Next, the null space of ∂xV (0, 0) must have
dimension one, otherwise rank (∂xV (0, 0) ∂λV (0, 0)) < d, let v ∈ Rd, ‖v‖ = 1, be
the unique vector such that ∂xV (0, 0)v = 0. Consider a vector v ∈ Rd, ‖v‖ = 1,
and the change of variables (λ, x) = Fv(ξ, τ) defined by

x = ξ − τv
λ = 〈ξ, v〉.

It is easy to check that F−1 is defined by

τ = λ− 〈x, v〉
ξ = λv + x− 〈x, v〉v.

Then

det(DF−1) = det

(
1 −vi
vj δij − vivj

)
= det

(
1 −vi
0 δij

)
= 1.

Then define the field Ṽ := V ◦ F . Since F (0, 0) = 0, Ṽ (0, 0) = 0. To apply

the implicit function theorem in the new variable we need ∂ξṼ to be invertible, but

∂ξṼ (x, λ) = ∂xV (x, λ)+∂λV (x, λ)⊗v.5 It follows that ∂ξṼ (0, 0) must be invertible,
otherwise there would exists w ∈ Rd such that, for all η ∈ Rd, holds

0 = 〈w, ∂ξṼ (0, 0)η〉 = 〈w, ∂xV (0, 0)η〉+ 〈w, ∂λV (0, 0)〉〈v, η〉.
Choosing η = v follows 〈w, ∂λV (0, 0)〉 = 0 and hence ∂xV (0, 0)Tw = 0. But this
would contradict rank (∂xV (0, 0) ∂λV (0, 0)) = d. So V ∈ BK implies invertibility

in a neighborhood of zero. We have then a C1 function ξ(τ) such that Ṽ (ξ(τ), τ) = 0,
with ξ′(τ) = (∂xV + ∂λV ⊗ v)−1∂xV v. This means that we have a smooth curve of
singular points for V in a neighborhood of (0, 0).

To conclude, we note that ∂xV (x(τ), λ(τ)) has a non empty null space iff dλ
dτ = 0.

Indeed,

dλ

dτ
= 〈ξ′(τ), v〉 = 1− 〈(∂xV + ∂λV ⊗ v)−1∂λV, v〉 =: 1− 〈ζ, v〉,

where, by definition, ∂xV ζ+∂λV 〈v, ζ〉 = ∂λV , but if dλdτ = 0, then 〈ζ, v〉 = 1, hence
∂xV ζ = 0. This means in particular that ζ(0) = v. Finally, either τ = 0 is the
only value of the parameter for which ∂xV ζ = 0 or such point accumulate to zero

5Given two vectors v, w ∈ Rd, by v ⊗ w we mean the matrix with elements (v ⊗ w)ij = viwj .
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hence d
dτ ∂xV ζ(0) = d

dτ 〈v, ζ(0)〉 = 0. But differentiating ∂xV ζ + ∂λV 〈v, ζ〉 = ∂λV
and setting τ = 0 yields

∂xxV (v, v) = ∂λV 〈v, ζ ′〉+ ∂xV ζ
′,

which would imply ∂xxV (v, v) = ∂xV ζ
′ whereby contradicting the fact that V ∈

BK . �

Problem 7. Find a generic set B̃K such that if V ∈ BK , then for each smooth
curve (x(τ), λ(τ)) such that V (x(τ), λ(τ)) = 0 holds V (x(τ), λ(τ)) ∈ AK with, at
most, one exception.

Thus, typically, we have to worry only about families in which the vector field
has, at most, one zero. In fact, due to the previous discussion, we need to consider
only the case in which there is one zero and the derivative is not hyperbolic.

Problem 8. Prove that generically if V (0, 0) = 0 and ∂xV (0, 0) is not hyperbolic
then only the following possibilities can occur

• A has a zero eigenvalue
• A has two purely imaginary conjugated eigenvalues.

(Hint: put the matrix in Jordan normal form).

3. One dimension

In the one dimensional case let K be a compact set containing a neighborhood
of zero and V ∈ BK , suppose, without loss of generality, that V (0, 0) = 0. Then
either V (0, 0) ∈ AK , and then we understand the local behavior of the solutions,
or ∂xV (0, 0) = 0, but then it must be ∂λV (0, 0) 6= 0 and ∂xxV (0, 0) 6= 0, hence

(3.1) V (x, λ) = λa+ λbx+ cx2 + g(x, λ),

where g = o(x2 + λ).
Then V (x, λ) has no solutions if ac > 0, while for ac < 0 there are the two

solutions x = ±
√

λa
c + O(λ). We have therefore the following generic picture:

either two points collide and kill each other or there is a creation of two zeroes of
the vector field.

Problem 9. Prove that the two equilibrium pints of the vector field are one attrac-
tive and the other repulsive.

The above scenario is called a saddle-node bifurcation.
A natural question is if there exists a simpler standard form of the above bifur-

cation. Indeed we can try to kill some of the terms in 3.1 by a change of variable.

Problem 10. Show that with a change of variables of the type z = αλ+x, µ = ρλ
one can change the vector field (4.1) to the from Ṽ (z, µ) = µ+ bz2 + o(z2 + µ).

The above is the normal form of the saddle node bifurcation. This type of
reduction can be made for each bifurcation and give rise to the large field of normal
form theory which, unfortunately, goes beyond the scopes of the present notes.



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

6 CARLANGELO LIVERANI

4. Two dimensions: a zero eigenvalue

In this case the vector field must have the form (possibly after a linear change
of variable to put ∂Vx(0, 0) in normal form)

(4.1) V (x, λ) = ā(λ) +A(λ)x+G(x, λ)

where a(0) = 0, ‖G(x, λ)‖ ≤ c‖x‖2 and

A(0) =

(
0 0
0 ν

)

At this point is it easy to show that the scenario is exactly the same than in the
one dimensional case. We leave the details to the reader.

5. Two dimensions: eigenvalues with zero real part

In this case we have the well know Hopf bifurcation. See related note.

6. The Hamiltonian case

It is important to note that non generic situations may appear due to symmetries
or other type of constraints. To give an example of such a situation let us consider
an Hamiltonian vector field, that is a vector field of the type V (x, p) = (∂pH,−∂xH)
for some function H(x, p). In this case

DV =

(
∂xpH ∂ppH
−∂xxH −∂xpH

)
.

Note that the trace ofDV is always zero, hence if one eigenvalue is null also the other
must be. It is thus clear that in this case the situation with two complex conjugate
eigenvalues is generic for a vector field while two, not one, zero eigenvalues is generic
for a vector field family. We must thus consider, for example, a family of the type

V (x, λ) = (p,−λx− x2)

Problem 11. Show that in the above family we have the collision of two fixed point
(a center and a saddle) that collide and exchange type.

Remark 6.1. Among other things, in this case we have a new situation even for the
local understanding of vector fields due to the possibility of two complex conjugate
eigenvalues a center. It is not obvious what is the local picture under perturbation
for such a situation. For the two dimensional case, it implies that the Hamiltonian
has a minimum and hence we have persistence of the center under perturbations. In
higher dimensional situation this issue is the subject of the so called KAM theory.
See the note on Siegel Theorem to have a glimpse in such a theory.

Problem 12. Consider the case of an Hamiltonian with a degenerate minimum,
e.g. H(x, p, λ) = 1

2p
2 + x4 + λx. What can you say?

Remark 6.2. The reader wishing to get a bit deeper in the bifurcation theory may
look at [1, Chapter 6].
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